1
|
Beilleau G, Stalder H, Almeida L, Oliveira Esteves BI, Alves MP, Schweizer M. The Pestivirus RNase E rns Tames the Interferon Response of the Respiratory Epithelium. Viruses 2024; 16:1908. [PMID: 39772215 PMCID: PMC11680131 DOI: 10.3390/v16121908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Bovine viral diarrhea virus (BVDV), a pestivirus in the family Flaviviridae, is a major livestock pathogen. Horizontal transmission leads to acute transient infections via the oronasal route, whereas vertical transmission might lead to the birth of immunotolerant, persistently infected animals. In both cases, BVDV exerts an immunosuppressive effect, predisposing infected animals to secondary infections. Erns, an immunomodulatory viral protein, is present on the envelope of the virus and is released as a soluble protein. In this form, it is taken up by cells and, with its RNase activity, degrades single- and double-stranded (ds) RNA, thus preventing activation of the host's interferon system. Here, we show that Erns of the pestiviruses BVDV and Bungowannah virus effectively inhibit dsRNA-induced IFN synthesis in well-differentiated airway epithelial cells cultured at the air-liquid interface. This activity was observed independently of the side of entry, apical or basolateral, of the pseudostratified, polarized cell layer. Virus infection was successful from both surfaces but was inefficient, requiring several days of incubation. Virus release was almost exclusively restricted to the apical side. This confirms that primary, well-differentiated respiratory epithelial cells cultured at the air-liquid interface are an appropriate model to study viral infection and innate immunotolerance in the bovine respiratory tract. Furthermore, evidence is presented that Erns might contribute to the immunosuppressive effect observed after BVDV infections, especially in persistently infected animals.
Collapse
Affiliation(s)
- Guillaume Beilleau
- Institute of Virology and Immunology, Länggass-Str. 122, CH-3001 Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Hanspeter Stalder
- Institute of Virology and Immunology, Länggass-Str. 122, CH-3001 Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| | - Lea Almeida
- Institute of Virology and Immunology, Länggass-Str. 122, CH-3001 Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| | - Blandina I. Oliveira Esteves
- Institute of Virology and Immunology, Länggass-Str. 122, CH-3001 Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| | - Marco P. Alves
- Institute of Virology and Immunology, Länggass-Str. 122, CH-3001 Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, CH-3012 Bern, Switzerland
| | - Matthias Schweizer
- Institute of Virology and Immunology, Länggass-Str. 122, CH-3001 Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| |
Collapse
|
2
|
Cai D, Shen Z, Tian B, Chen J, Zhang Y, Shen L, Wang Y, Ma X, Zuo Z. Matrine and icariin can inhibit bovine viral diarrhoea virus replication by promoting type I interferon response in vitro. J Vet Res 2024; 68:35-44. [PMID: 38525227 PMCID: PMC10960331 DOI: 10.2478/jvetres-2024-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 03/01/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction Bovine viral diarrhoea virus (BVDV) can cause diarrhoea (BVD) in an animal herd, leading to heavy economic losses. There are limited drugs available for treating and controlling BVD. This research aims to investigate the antiviral and immunoregulatory effects of two traditional Chinese herb extracts against BVDV infection. The extracts are matrine and icariin, which have been proved to have immunostimulant and antiviral effects. Material and Methods A cell counting kit-8 assay was used to analyse the toxicity of matrine and icariin to Madin-Darby bovine kidney (MDBK) cells. The model of MDBK cells infected with BVDV was utilised to uncover the antiviral mechanism of matrine and icariin, which along with their immunoregulatory ability was evaluated by quantitative reverse-transcription PCR and ELISA. Results The results showed that matrine and icariin can significantly inhibit the gene expression level of the BVDV 5' untranslated region through various pathways. Both matrine and icariin can statistically upregulate the gene expression level of interferon alpha, interferon beta (IFN-β), toll-like receptor 3, retinoic acid-inducible gene I and interferon regulatory factor 3, and raise the concentration of IFN-β after BVDV infection. Conclusion This study proves that both matrine and icariin have inhibitory effects on BVDV replication by activating IFN production and the IFN signalling pathway. The finding is promising and should open up the possibility of larger-scale in vitro research followed by in vivo experiments evaluating matrine and icariin as therapeutic agents in BVD cases.
Collapse
Affiliation(s)
- Dongjie Cai
- College of Veterinary Medicine, Sichuan Agricultural University, 611130Chengdu, China
| | - Zifan Shen
- College of Veterinary Medicine, Sichuan Agricultural University, 611130Chengdu, China
| | - Bin Tian
- College of Veterinary Medicine, Sichuan Agricultural University, 611130Chengdu, China
| | - Jie Chen
- College of Veterinary Medicine, Sichuan Agricultural University, 611130Chengdu, China
| | - Yilin Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, 611130Chengdu, China
- Laboratory of Animal Disease Prevention and Control Center, Agriculture and Rural Affairs Bureau of Luoping County, 655800Qujing, China
| | - Liuhong Shen
- College of Veterinary Medicine, Sichuan Agricultural University, 611130Chengdu, China
| | - Ya Wang
- College of Veterinary Medicine, Sichuan Agricultural University, 611130Chengdu, China
| | - Xiaoping Ma
- College of Veterinary Medicine, Sichuan Agricultural University, 611130Chengdu, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, 611130Chengdu, China
| |
Collapse
|
3
|
Nandy S, Bora NR, Gaurav S, Kumar S. The p30 protein of the African swine fever virus behaves as an RNase. Virology 2024; 590:109967. [PMID: 38086285 DOI: 10.1016/j.virol.2023.109967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
The African Swine Fever Virus (ASFV) is responsible for causing African Swine Fever (ASF), a severe contagious disease characterized by hemorrhagic symptoms. The p30 protein of ASFV is the most abundantly expressed viral protein. It is reported to be antigenic and has recognized phosphorylation, glycosylation, and membrane attachment sites, which also shows that the C-terminal region of p30 is more active than the N-terminal region. The present study reports the unique RNase activity of recombinant p30. The RNase activity of p30 was stable at an optimum temperature of 37 °C, and the maximum activity was recorded at pH 7-9 in the presence of monovalent salts. The mutant of p30 (p30m), where cysteine was mutated to alanine at position 109, showed a loss of RNase activity. Our understanding of ASFV biology is significantly less; until now, we have little knowledge about the functions of its proteins. The results of the present study will assist in exploring the biology of ASFV and the role of its protein in counteracting the host immune response.
Collapse
Affiliation(s)
- Satyendu Nandy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Nilave Ranjan Bora
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Shubham Gaurav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
4
|
Mishchenko AV, Mishchenko VA, Gulyukin MI, Oganesyan AS, Alexeyenkova SV, Zaberezhny AD, Gulyukin AМ. [Persistent form of bovine viral diarrhea]. Vopr Virusol 2023; 68:465-478. [PMID: 38156563 DOI: 10.36233/0507-4088-184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Indexed: 12/30/2023]
Abstract
The review provides an analysis of literature data on the persistent form of Bovine Viral diarrhea/Mucosal disease (BVD) and is focused on virus and host factors, including those related to immune response, that contribute the persistence of the virus. BVD is a cattle disease widespread throughout the world that causes significant economic damage to dairy and beef cattle. The disease is characterized by a variety of clinical signs, including damage to the digestive and respiratory organs, abortions, stillbirths and other failures of reproductive functions.
Collapse
Affiliation(s)
| | - V A Mishchenko
- Federal Scientific Center VIEV
- Federal Animal Healthcare Center
| | | | | | | | - A D Zaberezhny
- All-Russian Research and Technological Institution of Industry
| | | |
Collapse
|
5
|
Guo X, Zhang M, Liu X, Zhang Y, Wang C, Guo Y. Attachment, Entry, and Intracellular Trafficking of Classical Swine Fever Virus. Viruses 2023; 15:1870. [PMID: 37766277 PMCID: PMC10534341 DOI: 10.3390/v15091870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Classical swine fever virus (CSFV), which is a positive-sense, single-stranded RNA virus with an envelope, is a member of the Pestivirus genus in the Flaviviridae family. CSFV causes a severe and highly contagious disease in pigs and is prevalent worldwide, threatening the pig farming industry. The detailed mechanisms of the CSFV life cycle have been reported, but are still limited. Some receptors and attachment factors of CSFV, including heparan sulfate (HS), laminin receptor (LamR), complement regulatory protein (CD46), MER tyrosine kinase (MERTK), disintegrin, and metalloproteinase domain-containing protein 17 (ADAM17), were identified. After attachment, CSFV internalizes via clathrin-mediated endocytosis (CME) and/or caveolae/raft-dependent endocytosis (CavME). After internalization, CSFV moves to early and late endosomes before uncoating. During this period, intracellular trafficking of CSFV relies on components of the endosomal sorting complex required for transport (ESCRT) and Rab proteins in the endosome dynamics, with a dependence on the cytoskeleton network. This review summarizes the data on the mechanisms of CSFV attachment, internalization pathways, and intracellular trafficking, and provides a general view of the early events in the CSFV life cycle.
Collapse
Affiliation(s)
| | | | | | | | | | - Yidi Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| |
Collapse
|
6
|
Hong T, Yang Y, Wang P, Zhu G, Zhu C. Pestiviruses infection: Interferon-virus mutual regulation. Front Cell Infect Microbiol 2023; 13:1146394. [PMID: 36936761 PMCID: PMC10018205 DOI: 10.3389/fcimb.2023.1146394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Pestiviruses are a class of viruses that in some cases can cause persistent infection of the host, thus posing a threat to the livestock industry. Interferons (IFNs) are a group of secreted proteins that play a crucial role in antiviral defense. In this review, on the one hand, we elaborate on how pestiviruses are recognized by the host retinoic acid-inducible gene-I (RIG-I), melanoma-differentiation-associated protein 5 (MDA5), and Toll-like receptor 3 (TLR3) proteins to induce the synthesis of IFNs. On the other hand, we focus on reviewing how pestiviruses antagonize the production of IFNs utilizing various strategies mediated by self-encoded proteins, such as the structural envelope protein (Erns) and non-structural protein (Npro). Hence, the IFN signal transduction pathway induced by pestiviruses infection and the process of pestiviruses blockade on the production of IFNs intertwines into an intricate regulatory network. By reviewing the interaction between IFN and pestiviruses (based on studies on BVDV and CSFV), we expect to provide a theoretical basis and reference for a better understanding of the mechanisms of induction and evasion of the innate immune response during infection with these viruses.
Collapse
Affiliation(s)
- Tianqi Hong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yi Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Pengzhi Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
- *Correspondence: Guoqiang Zhu, ; Congrui Zhu,
| | - Congrui Zhu
- College of Animal Science, South China Agricultural University, Guangzhou, China
- *Correspondence: Guoqiang Zhu, ; Congrui Zhu,
| |
Collapse
|
7
|
Tong C, Liu H, Wang J, Sun Y, Chen N. Safety, efficacy, and DIVA feasibility on a novel live attenuated classical swine fever marker vaccine candidate. Vaccine 2022; 40:7219-7229. [PMID: 36328881 DOI: 10.1016/j.vaccine.2022.10.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/24/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
Abstract
Classical swine fever virus (CSFV) is the etiological agent of classical swine fever, a highly contagious disease that causes significant economic losses to the swine industry. Systemic prophylactic immunization with the live attenuated vaccine, the C-strain vaccine, is one of the effective measures for CSF control. However, one of the limitations of the C-strain vaccine is that the field strains-infected animals cannot be differentiated from the C-strain vaccinated herds by serological tests (DIVA). This constraint hampers the practical usage of the C-strain vaccine to eradicate the CSF in China. In the current study, a novel CSF modified live marker vaccine candidate was constructed based on the attenuation of the prevalent 2.1 genotype strain by the deletion of two virulence associated functional residues in the CSFV Erns, H79, and C171. Meanwhile, four residues S14, G22, E24, and E25 were identified specifically for the 6B8 mAb binding to the CSFV E2 as the novel conformational epitope. Then four substitutions of S14K, G22A, E24R, and G25D were further incorporated in the double deletion construct as a negative serological marker. Finally, the double-deletion marker MLV candidate GD18-ddErnHC-KARD was rescued, and its safety and efficacy profiles were evaluated in piglets. The safety study results indicated that the candidate did not induce fever, clinical signs, or pathological lesions with a high dose of 105.0 TCID50, and in addition, no virus shedding was detected until 21 days post-inoculation. Meanwhile, the efficacy study results demonstrated that at a low dose of 103.0 TCID50, it conferred complete clinical protection and no virus shedding was detected after the challenge with a highly virulent Shimen strain. Importantly, the infected animals were differentiated using the accompanied DIVA ELISA. These results constitute a proof-of-concept for rationally designing a CSF antigenically marked modified live vaccine candidate.
Collapse
Affiliation(s)
- Chao Tong
- Boehringer Ingelheim Vetmedica (China) Co. Ltd., Taizhou 225300, People's Republic of China.
| | - Huanhuan Liu
- Boehringer Ingelheim Vetmedica (China) Co. Ltd., Taizhou 225300, People's Republic of China.
| | - Jiaying Wang
- Boehringer Ingelheim Vetmedica (China) Co. Ltd., Taizhou 225300, People's Republic of China.
| | - Yanyong Sun
- Boehringer Ingelheim Vetmedica (China) Co. Ltd., Taizhou 225300, People's Republic of China.
| | - Ning Chen
- Boehringer Ingelheim Vetmedica (China) Co. Ltd., Taizhou 225300, People's Republic of China.
| |
Collapse
|
8
|
DNAJC14-Independent Replication of the Atypical Porcine Pestivirus. J Virol 2022; 96:e0198021. [PMID: 35852352 PMCID: PMC9364808 DOI: 10.1128/jvi.01980-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Atypical porcine pestiviruses (APPV; Pestivirus K) are a recently discovered, very divergent species of the genus Pestivirus within the family Flaviviridae. The presence of APPV in piglet-producing farms is associated with the occurrence of so-called “shaking piglets,” suffering from mild to severe congenital tremor type A-II. Previous studies showed that the cellular protein DNAJC14 is an essential cofactor of the NS2 autoprotease of all classical pestiviruses. Consequently, genetically engineered DNAJC14 knockout cell lines were resistant to all tested noncytopathogenic (non-cp) pestiviruses. Surprisingly, we found that the non-cp APPV can replicate in these cells in the absence of DNAJC14, suggesting a divergent mechanism of polyprotein processing. A complete laboratory system for the study of APPV was established to learn more about the replication of this unusual virus. The inactivation of the APPV NS2 autoprotease using reverse genetics resulted in nonreplicative genomes. To further investigate whether a regulation of the NS2-3 cleavage is also existing in APPV, we constructed synthetic viral genomes with deletions and duplications leading to the NS2 independent release of mature NS3. As observed with other pestiviruses, the increase of mature NS3 resulted in elevated viral RNA replication levels and increased protein expression. Our data suggest that APPV exhibit a divergent mechanism for the regulation of the NS2 autoprotease activity most likely utilizing a different cellular protein for the adjustment of replication levels. IMPORTANCE DNAJC14 is an essential cofactor of the pestiviral NS2 autoprotease, limiting replication to tolerable levels as a prerequisite for the noncytopathogenic biotype of pestiviruses. Surprisingly, we found that the atypical porcine pestivirus (APPV) is able to replicate in the absence of DNAJC14. We further investigated the NS2-3 processing of APPV using a molecular clone, monoclonal antibodies, and DNAJC14 knockout cells. We identified two potential active site residues of the NS2 autoprotease and could demonstrate that the release of NS3 by the NS2 autoprotease is essential for APPV replication. Defective interfering genomes and viral genomes with duplicated NS3 sequences that produce mature NS3 independent of the NS2 autoprotease activity showed increased replication and antigen expression. It seems likely that an alternative cellular cofactor controls NS2-3 cleavage and thus replication of APPV. The replication-optimized synthetic APPV genomes might be suitable live vaccine candidates, whose establishment and testing warrant further research.
Collapse
|
9
|
Removal of the E rns RNase Activity and of the 3' Untranslated Region Polyuridine Insertion in a Low-Virulence Classical Swine Fever Virus Triggers a Cytokine Storm and Lethal Disease. J Virol 2022; 96:e0043822. [PMID: 35758667 PMCID: PMC9327722 DOI: 10.1128/jvi.00438-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In this study, we assessed the potential synergistic effect of the Erns RNase activity and the poly-U insertion in the 3′ untranslated region (UTR) of the low-virulence classical swine fever virus (CSFV) isolate Pinar de Rio (PdR) in innate and adaptive immunity regulation and its relationship with classical swine fever (CSF) pathogenesis in pigs. We knocked out the Erns RNase activity of PdR and replaced the long polyuridine sequence of the 3′ UTR with 5 uridines found typically at this position, resulting in a double mutant, vPdR-H30K-5U. This mutant induced severe CSF in 5-day-old piglets and 3-week-old pigs, with higher lethality in the newborn (89.5%) than in the older (33.3%) pigs. However, the viremia and viral excretion were surprisingly low, while the virus load was high in the tonsils. Only alpha interferon (IFN-α) and interleukin 12 (IL-12) were highly and consistently elevated in the two groups. Additionally, high IL-8 levels were found in the newborn but not in the older pigs. This points toward a role of these cytokines in the CSF outcome, with age-related differences. The disproportional activation of innate immunity might limit systemic viral spread from the tonsils and increase virus clearance, inducing strong cytokine-mediated symptoms. Infection with vPdR-H30K-5U resulted in poor neutralizing antibody responses compared with results obtained previously with the parent and RNase knockout PdR. This study shows for the first time the synergistic effect of the 3′ UTR and the Erns RNase function in regulating innate immunity against CSFV, favoring virus replication in target tissue and thus contributing to disease severity. IMPORTANCE CSF is one of the most relevant viral epizootic diseases of swine, with high economic and sanitary impact. Systematic stamping out of infected herds with and without vaccination has permitted regional virus eradication. However, the causative agent, CSFV, persists in certain areas of the world, leading to disease reemergence. Nowadays, low- and moderate-virulence strains that could induce unapparent CSF forms are prevalent, posing a challenge for disease eradication. Here, we show for the first time the synergistic role of lacking the Erns RNase activity and the 3′ UTR polyuridine insertion from a low-virulence CSFV isolate in innate immunity disproportional activation. This might limit systemic viral spread to the tonsils and increase virus clearance, inducing strong cytokine-mediated symptoms, thus contributing to disease severity. These results highlight the role played by the Erns RNase activity and the 3′ UTR in CSFV pathogenesis, providing new perspectives for novel diagnostic tools and vaccine strategies.
Collapse
|
10
|
Epigenomic and Proteomic Changes in Fetal Spleens Persistently Infected with Bovine Viral Diarrhea Virus: Repercussions for the Developing Immune System, Bone, Brain, and Heart. Viruses 2022; 14:v14030506. [PMID: 35336913 PMCID: PMC8949278 DOI: 10.3390/v14030506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 12/10/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) infection during early gestation results in persistently infected (PI) immunotolerant calves that are the primary reservoirs of the virus. Pathologies observed in PI cattle include congenital defects of the brain, heart, and bone as well as marked functional defects in their immune system. It was hypothesized that fetal BVDV infection alters T cell activation and signaling genes by epigenetic mechanisms. To test this, PI and control fetal splenic tissues were collected on day 245 of gestation, 170 days post maternal infection. DNA was isolated for reduced representation bisulfite sequencing, protein was isolated for proteomics, both were analyzed with appropriate bioinformatic methods. Within set parameters, 1951 hypermethylated and 691 hypomethylated DNA regions were identified in PI compared to control fetuses. Pathways associated with immune system, neural, cardiac, and bone development were associated with heavily methylated DNA. The proteomic analysis revealed 12 differentially expressed proteins in PI vs. control animals. Upregulated proteins were associated with protein processing, whereas downregulated proteins were associated with lymphocyte migration and development in PI compared to control fetal spleens. The epigenetic changes in DNA may explain the immune dysfunctions, abnormal bone formation, and brain and heart defects observed in PI animals.
Collapse
|
11
|
de Martin E, Schweizer M. Fifty Shades of Erns: Innate Immune Evasion by the Viral Endonucleases of All Pestivirus Species. Viruses 2022; 14:v14020265. [PMID: 35215858 PMCID: PMC8880635 DOI: 10.3390/v14020265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/10/2022] Open
Abstract
The genus Pestivirus, family Flaviviridae, includes four historically accepted species, i.e., bovine viral diarrhea virus (BVDV)-1 and -2, classical swine fever virus (CSFV), and border disease virus (BDV). A large number of new pestivirus species were identified in recent years. A common feature of most members is the presence of two unique proteins, Npro and Erns, that pestiviruses evolved to regulate the host’s innate immune response. In addition to its function as a structural envelope glycoprotein, Erns is also released in the extracellular space, where it is endocytosed by neighboring cells. As an endoribonuclease, Erns is able to cleave viral ss- and dsRNAs, thus preventing the stimulation of the host’s interferon (IFN) response. Here, we characterize the basic features of soluble Erns of a large variety of classified and unassigned pestiviruses that have not yet been described. Its ability to form homodimers, its RNase activity, and the ability to inhibit dsRNA-induced IFN synthesis were investigated. Overall, we found large differences between the various Erns proteins that cannot be predicted solely based on their primary amino acid sequences, and that might be the consequence of different virus-host co-evolution histories. This provides valuable information to delineate the structure-function relationship of pestiviral endoribonucleases.
Collapse
Affiliation(s)
- Elena de Martin
- Institute of Virology and Immunology, Länggass-Str. 122, POB, CH-3001 Bern, Switzerland;
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Matthias Schweizer
- Institute of Virology and Immunology, Länggass-Str. 122, POB, CH-3001 Bern, Switzerland;
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland
- Correspondence:
| |
Collapse
|
12
|
A double deletion prevents replication of the pestivirus bovine viral diarrhea virus in the placenta of pregnant heifers. PLoS Pathog 2021; 17:e1010107. [PMID: 34879119 PMCID: PMC8654156 DOI: 10.1371/journal.ppat.1010107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/10/2021] [Indexed: 01/13/2023] Open
Abstract
In contrast to wild type bovine viral diarhea virus (BVDV) specific double deletion mutants are not able to establish persistent infection upon infection of a pregnant heifer. Our data shows that this finding results from a defect in transfer of the virus from the mother animal to the fetus. Pregnant heifers were inoculated with such a double deletion mutant or the parental wild type virus and slaughtered pairwise on days 6, 9, 10 and 13 post infection. Viral RNA was detected via qRT-PCR and RNAscope analyses in maternal tissues for both viruses from day 6 p.i. on. However, the double deletion mutant was not detected in placenta and was only found in samples from animals infected with the wild type virus. Similarly, high levels of wild type viral RNA were present in fetal tissues whereas the genome of the double deletion mutant was not detected supporting the hypothesis of a specific inhibition of mutant virus replication in the placenta. We compared the induction of gene expression upon infection of placenta derived cell lines with wild type and mutant virus via gene array analysis. Genes important for the innate immune response were strongly upregulated by the mutant virus compared to the wild type in caruncle epithelial cells that establish the cell layer on the maternal side at the maternal–fetal interface in the placenta. Also, trophoblasts which can be found on the fetal side of the interface showed significant induction of gene expression upon infection with the mutant virus although with lower complexity. Growth curves recorded in both cell lines revealed a general reduction of virus replication in caruncular epithelial cells compared to the trophoblasts. Compared to the wild type virus this effect was dramtic for the mutant virus that reached only a TCID50 of 1.0 at 72 hours post infection. Here we report on animal studies elucidating mechanisms preventing the transfer of a double deletion mutant of a pestivirus to the fetus in pregnant heifers. This mutant lacks both known factors engaged in blocking the innate immune response to pestiviral infection. As shown also in earlier studies, this mutant was not detected in the fetuses at any of the tested time points in contrast to the wild-type (wt) virus. However, similar to the wt the mutant was detected in a large variety of different maternal tissues. The only exception was the placenta where only wt but not mutant virus was detected. Using gene array analyses we showed that infection of two cell lines derived either from the maternal or the fetal site of the maternal-fetal interface with the mutant virus induces a significant antiviral gene expression response. The reaction of cells from the maternal side was more complex and virus replication in these cells was reduced, almost completly blocking the mutant virus. These results support the hypothesis that replication of the mutant virus is blocked in the placenta due to a highly active innate immune response and the prevention of replication also blocks transfer of the virus to the fetus.
Collapse
|
13
|
The Molecular Basis for E rns Dimerization in Classical Swine Fever Virus. Viruses 2021; 13:v13112204. [PMID: 34835010 PMCID: PMC8625691 DOI: 10.3390/v13112204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/26/2022] Open
Abstract
The pestivirus classical swine fever virus (CSFV) represents one of the most important pathogens of swine. Its virulence is dependent on the RNase activity of the essential structural glycoprotein Erns that uses an amphipathic helix as a membrane anchor and forms homodimers via disulfide bonds employing cysteine 171. Dimerization is not necessary for CSFV viability but for its virulence. Mutant Erns proteins lacking cysteine 171 are still able to interact transiently as shown in crosslink experiments. Deletion analysis did not reveal the presence of a primary sequence-defined contact surface essential for dimerization, but indicated a general importance of an intact ectodomain for efficient establishment of dimers. Pseudoreverted viruses reisolated in earlier experiments from pigs with mutations Cys171Ser/Ser209Cys exhibited partially restored virulence and restoration of the ability to form Erns homodimers. Dimer formation was also observed for experimentally mutated proteins, in which other amino acids at different positions of the membrane anchor region of Erns were replaced by cysteine. However, with one exception of two very closely located residues, the formation of disulfide-linked dimers was only observed for cysteine residues located at the same position of the helix.
Collapse
|
14
|
Lussi C, de Martin E, Schweizer M. Positively Charged Amino Acids in the Pestiviral E rns Control Cell Entry, Endoribonuclease Activity and Innate Immune Evasion. Viruses 2021; 13:v13081581. [PMID: 34452446 PMCID: PMC8402660 DOI: 10.3390/v13081581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
The genus Pestivirus, family Flaviviridae, includes four economically important viruses of livestock, i.e., bovine viral diarrhea virus-1 (BVDV-1) and -2 (BVDV-2), border disease virus (BDV) and classical swine fever virus (CSFV). Erns and Npro, both expressed uniquely by pestiviruses, counteract the host's innate immune defense by interfering with the induction of interferon (IFN) synthesis. The structural envelope protein Erns also exists in a soluble form and, by its endoribonuclease activity, degrades immunostimulatory RNA prior to their activation of pattern recognition receptors. Here, we show that at least three out of four positively-charged residues in the C-terminal glycosaminoglycan (GAG)-binding site of BVDV-Erns are required for efficient cell entry, and that a positively charged region more upstream is not involved in cell entry but rather in RNA-binding. Moreover, the C-terminal domain on its own determines intracellular targeting, as GFP fused to the C-terminal amino acids of Erns was found at the same compartments as wt Erns. In summary, RNase activity and uptake into cells are both required for Erns to act as an IFN antagonist, and the C-terminal amphipathic helix containing the GAG-binding site determines the efficiency of cell entry and its intracellular localization.
Collapse
Affiliation(s)
- Carmela Lussi
- Institute of Virology and Immunology (IVI), CH-3001 Bern, Switzerland; (C.L.); (E.d.M.)
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, CH-3012 Bern, Switzerland
| | - Elena de Martin
- Institute of Virology and Immunology (IVI), CH-3001 Bern, Switzerland; (C.L.); (E.d.M.)
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, CH-3012 Bern, Switzerland
| | - Matthias Schweizer
- Institute of Virology and Immunology (IVI), CH-3001 Bern, Switzerland; (C.L.); (E.d.M.)
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
- Correspondence:
| |
Collapse
|
15
|
The E rns Carboxyterminus: Much More Than a Membrane Anchor. Viruses 2021; 13:v13071203. [PMID: 34201636 PMCID: PMC8310223 DOI: 10.3390/v13071203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
Pestiviruses express the unique essential envelope protein Erns, which exhibits RNase activity, is attached to membranes by a long amphipathic helix, and is partially secreted from infected cells. The RNase activity of Erns is directly connected with pestivirus virulence. Formation of homodimers and secretion of the protein are hypothesized to be important for its role as a virulence factor, which impairs the host's innate immune response to pestivirus infection. The unusual membrane anchor of Erns raises questions with regard to proteolytic processing of the viral polyprotein at the Erns carboxy-terminus. Moreover, the membrane anchor is crucial for establishing the critical equilibrium between retention and secretion and ensures intracellular accumulation of the protein at the site of virus budding so that it is available to serve both as structural component of the virion and factor controlling host immune reactions. In the present manuscript, we summarize published as well as new data on the molecular features of Erns including aspects of its interplay with the other two envelope proteins with a special focus on the biochemistry of the Erns membrane anchor.
Collapse
|
16
|
Riedel C, Aitkenhead H, El Omari K, Rümenapf T. Atypical Porcine Pestiviruses: Relationships and Conserved Structural Features. Viruses 2021; 13:v13050760. [PMID: 33926056 PMCID: PMC8146772 DOI: 10.3390/v13050760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 01/22/2023] Open
Abstract
For two decades, the genus pestivirus has been expanding and the host range now extends to rodents, bats and marine mammals. In this review, we focus on one of the most diverse pestiviruses, atypical porcine pestivirus or pestivirus K, comparing its special traits to what is already known at the structural and functional level from other pestiviruses.
Collapse
Affiliation(s)
- Christiane Riedel
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
- Correspondence:
| | - Hazel Aitkenhead
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (H.A.); (K.E.O.)
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, UK
| | - Kamel El Omari
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (H.A.); (K.E.O.)
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, UK
| | - Till Rümenapf
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| |
Collapse
|
17
|
Oetter KM, Kühn J, Meyers G. Charged Residues in the Membrane Anchor of the Pestiviral E rns Protein Are Important for Processing and Secretion of E rns and Recovery of Infectious Viruses. Viruses 2021; 13:v13030444. [PMID: 33801849 PMCID: PMC8002126 DOI: 10.3390/v13030444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/02/2021] [Accepted: 03/07/2021] [Indexed: 12/28/2022] Open
Abstract
The pestivirus envelope protein Erns is anchored in membranes via a long amphipathic helix. Despite the unusual membrane topology of the Erns membrane anchor, it is cleaved from the following glycoprotein E1 by cellular signal peptidase. This was proposed to be enabled by a salt bridge-stabilized hairpin structure (so-called charge zipper) formed by conserved charged residues in the membrane anchor. We show here that the exchange of one or several of these charged residues reduces processing at the Erns carboxy-terminus to a variable extend, but reciprocal mutations restoring the possibility to form salt bridges did not necessarily restore processing efficiency. When introduced into an Erns-only expression construct, these mutations enhanced the naturally occurring Erns secretion significantly, but again to varying extents that did not correlate with the number of possible salt bridges. Equivalent effects on both processing and secretion were also observed when the proteins were expressed in avian cells, which points at phylogenetic conservation of the underlying principles. In the viral genome, some of the mutations prevented recovery of infectious viruses or immediately (pseudo)reverted, while others were stable and neutral with regard to virus growth.
Collapse
|
18
|
Downstream Sequences Control the Processing of the Pestivirus E rns-E1 Precursor. J Virol 2020; 95:JVI.01905-20. [PMID: 33028718 DOI: 10.1128/jvi.01905-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023] Open
Abstract
Like other enveloped viruses, pestiviruses employ cellular proteases for processing of their structural proteins. While typical signal peptidase cleavage motifs are present at the carboxy terminus of the signal sequence preceding Erns and the E1/E2 and E2/P7 sites, the Erns-E1 precursor is cleaved by signal peptidase at a highly unusual structure, in which the transmembrane sequence upstream of the cleavage site is replaced by an amphipathic helix. As shown before, the integrity of the amphipathic helix is crucial for efficient processing. The data presented here demonstrate that the E1 sequence downstream of this cleavage site is also important for the cleavage. Carboxy-terminal truncation of the E1 moiety as well as internal deletions in E1 reduced the cleavage efficiency to less than 30% of the wild-type (wt) level. Moreover, the C-terminal truncation by more than 30 amino acids resulted in strong secretion of the uncleaved fusion proteins. The reduced processing and increased secretion were even observed when 10 to 5 amino-terminal residues of E1 were left, whereas extensions by 1 or 3 E1 residues resulted in reduced processing but no significantly increased secretion. In contrast to the E1 sequences, a 10-amino-acid c-myc tag fused to the Erns C terminus had only marginal effect on secretion but was also not processed efficiently. Mutation of the von Heijne sequence upstream of E2 not only blocked the cleavage between E1 and E2 but also prevented the processing between Erns and E2. Thus, processing at the Erns-E1 site is a highly regulated process.IMPORTANCE Cellular signal peptidase (SPase) cleavage represents an important step in maturation of viral envelope proteins. Fine tuning of this system allows for establishment of concerted folding and processing processes in different enveloped viruses. We report here on SPase processing of the Erns-E1-E2 glycoprotein precursor of pestiviruses. Erns-E1 cleavage is delayed and only executed efficiently when the complete E1 sequence is present. C-terminal truncation of the Erns-E1 precursor impairs processing and leads to significant secretion of the protein. The latter is not detected when internal deletions preserving the E1 carboxy terminus are introduced, but also these constructs show impaired processing. Moreover, Erns-E1 is only processed after cleavage at the E1/E2 site. Thus, processing of the pestiviral glycoprotein precursor by SPase is done in an ordered way and depends on the integrity of the proteins for efficient cleavage. The functional importance of this processing scheme is discussed in the paper.
Collapse
|
19
|
Koethe S, König P, Wernike K, Pfaff F, Schulz J, Reimann I, Makoschey B, Beer M. A Synthetic Modified Live Chimeric Marker Vaccine against BVDV-1 and BVDV-2. Vaccines (Basel) 2020; 8:vaccines8040577. [PMID: 33023099 PMCID: PMC7712951 DOI: 10.3390/vaccines8040577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
Bovine viral diarrhea virus (BVDV), a pestivirus which exists in the two distinct species BVDV-1 (syn. Pestivirus A) and BVDV-2 (syn. Pestivirus B), is the causative agent of one of the most widespread and economically important virus infections in cattle. For economic as well as for animal health reasons, an increasing number of national BVDV control programs were recently implemented. The main focus lies on the detection and removal of persistently infected cattle. The application of efficient marker or DIVA (differentiation of infected from vaccinated animals) vaccines would be beneficial for the eradication success in regions with a high BVDV prevalence to prevent fetal infection and it would allow serological monitoring of the BVDV status also in vaccinated farms. Therefore, a marker vaccine based on the cytopathic (cp) BVDV-1b strain CP7 was constructed as a synthetic backbone (BVDV-1b_synCP7). For serological discrimination of vaccinated from infected animals, the viral protein Erns was substituted by the heterologous Erns of Bungowannah virus (BuPV, species Pestivirus F). In addition, the vaccines were attenuated by a deletion within the type I interferon inhibitor Npro protein encoding sequence. The BVDV-2 vaccine candidate is based on the genetic sequence of the glycoproteins E1 and E2 of BVDV-2 strain CS8644 (CS), which were introduced into the backbone of BVDV-1b_synCP7_ΔNpro_Erns Bungo in substitution of the homologous glycoproteins. Vaccine virus recovery resulted in infectious cytopathic virus chimera that grew to titers of up to 106 TCID50/mL. Both synthetic chimera BVDV-1b_synCP7_ΔNpro_Erns Bungo and BVDV-1b_synCP7_ΔNpro_Erns Bungo_E1E2 BVDV-2 CS were avirulent in cattle, provided a high level of protection in immunization and challenge experiments against both BVDV species and allowed differentiation of infected from vaccinated cattle. Our study presents the first report on an efficient BVDV-1 and -2 modified live marker vaccine candidate and the accompanying commercially available serological marker ELISA system.
Collapse
Affiliation(s)
- Susanne Koethe
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (S.K.); (P.K.); (K.W.); (F.P.); (I.R.)
| | - Patricia König
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (S.K.); (P.K.); (K.W.); (F.P.); (I.R.)
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (S.K.); (P.K.); (K.W.); (F.P.); (I.R.)
| | - Florian Pfaff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (S.K.); (P.K.); (K.W.); (F.P.); (I.R.)
| | - Jana Schulz
- Institute of Epidemiology Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany;
| | - Ilona Reimann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (S.K.); (P.K.); (K.W.); (F.P.); (I.R.)
| | - Birgit Makoschey
- Intervet International B.V., MSD Animal Health, 5831 AN Boxmeer, The Netherlands;
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (S.K.); (P.K.); (K.W.); (F.P.); (I.R.)
- Correspondence: ; Tel.: +49-38351-71200
| |
Collapse
|
20
|
Ganges L, Crooke HR, Bohórquez JA, Postel A, Sakoda Y, Becher P, Ruggli N. Classical swine fever virus: the past, present and future. Virus Res 2020; 289:198151. [PMID: 32898613 DOI: 10.1016/j.virusres.2020.198151] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 12/22/2022]
Abstract
Classical swine fever (CSF) is among the most relevant viral epizootic diseases of swine. Due to its severe economic impact, CSF is notifiable to the world organisation for animal health. Strict control policies, including systematic stamping out of infected herds with and without vaccination, have permitted regional virus eradication. Nevertheless, CSF virus (CSFV) persists in certain areas of the world and has re-emerged regularly. This review summarizes the basic established knowledge in the field and provides a comprehensive and updated overview of the recent advances in fundamental CSFV research, diagnostics and vaccine development. It covers the latest discoveries on the genetic diversity of pestiviruses, with implications for taxonomy, the progress in understanding disease pathogenesis, immunity against acute and persistent infections, and the recent findings in virus-host interactions and virulence determinants. We also review the progress and pitfalls in the improvement of diagnostic tools and the challenges in the development of modern and efficacious marker vaccines compatible with serological tests for disease surveillance. Finally, we highlight the gaps that require research efforts in the future.
Collapse
Affiliation(s)
- Llilianne Ganges
- OIE Reference Laboratory for Classical Swine Fever, Institute of Agrifood Research and Technology, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain.
| | - Helen R Crooke
- Virology Department, Animal and Plant Health Agency, APHA-Weybridge, Woodham Lane, New Haw, Addlestone, KT15 3NB, UK
| | - Jose Alejandro Bohórquez
- OIE Reference Laboratory for Classical Swine Fever, Institute of Agrifood Research and Technology, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain
| | - Alexander Postel
- EU & OIE Reference Laboratory for Classical Swine Fever, Institute of Virology, University of Veterinary Medicine, Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Paul Becher
- EU & OIE Reference Laboratory for Classical Swine Fever, Institute of Virology, University of Veterinary Medicine, Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Nicolas Ruggli
- The Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
| |
Collapse
|
21
|
Knapek KJ, Georges HM, Van Campen H, Bishop JV, Bielefeldt-Ohmann H, Smirnova NP, Hansen TR. Fetal Lymphoid Organ Immune Responses to Transient and Persistent Infection with Bovine Viral Diarrhea Virus. Viruses 2020; 12:v12080816. [PMID: 32731575 PMCID: PMC7472107 DOI: 10.3390/v12080816] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
Bovine Viral Diarrhea Virus (BVDV) fetal infections occur in two forms; persistent infection (PI) or transient infection (TI), depending on what stage of gestation the fetus is infected. Examination of lymphoid organs from both PI and TI fetuses reveals drastically different fetal responses, dependent upon the developmental stage of the fetal immune system. Total RNA was extracted from the thymuses and spleens of uninfected control, PI, and TI fetuses collected on day 190 of gestation to test the hypothesis that BVDV infection impairs the innate and adaptive immune response in the fetal thymus and spleen of both infection types. Transcripts of genes representing the innate immune response and adaptive immune response genes were assayed by Reverse Transcription quatitative PCR (RT-qPCR) (2−ΔΔCq; fold change). Genes of the innate immune response, interferon (IFN) inducible genes, antigen presentation to lymphocytes, and activation of B cells were downregulated in day 190 fetal PI thymuses compared to controls. In contrast, innate immune response genes were upregulated in TI fetal thymuses compared to controls and tended to be upregulated in TI fetal spleens. Genes associated with the innate immune system were not different in PI fetal spleens; however, adaptive immune system genes were downregulated, indicating that PI fetal BVDV infection has profound inhibitory effects on the expression of genes involved in the innate and adaptive immune response. The downregulation of these genes in lymphocytes and antigen-presenting cells in the developing thymus and spleen may explain the incomplete clearance of BVDV and the persistence of the virus in PI animals while the upregulation of the TI innate immune response indicates a more mature immune system, able to clear the virus.
Collapse
Affiliation(s)
- Katie J. Knapek
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (K.J.K.); (H.M.G.); (H.V.C.); (J.V.B.); (N.P.S.)
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Hanah M. Georges
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (K.J.K.); (H.M.G.); (H.V.C.); (J.V.B.); (N.P.S.)
| | - Hana Van Campen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (K.J.K.); (H.M.G.); (H.V.C.); (J.V.B.); (N.P.S.)
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Jeanette V. Bishop
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (K.J.K.); (H.M.G.); (H.V.C.); (J.V.B.); (N.P.S.)
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre and School of Veterinary Science, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Natalia P. Smirnova
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (K.J.K.); (H.M.G.); (H.V.C.); (J.V.B.); (N.P.S.)
| | - Thomas R. Hansen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (K.J.K.); (H.M.G.); (H.V.C.); (J.V.B.); (N.P.S.)
- Correspondence: ; Tel.: +1-970-988-4582
| |
Collapse
|
22
|
Shiokawa M, Omatsu T, Katayama Y, Nishine K, Fujimoto Y, Uchiyama S, Kameyama KI, Nagai M, Mizutani T, Sakoda Y, Fukusho A, Aoki H. END-phenomenon negative bovine viral diarrhea virus that induces the host's innate immune response supports propagation of BVDVs with different immunological properties. Virology 2019; 538:97-110. [PMID: 31590058 DOI: 10.1016/j.virol.2019.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/30/2019] [Accepted: 09/30/2019] [Indexed: 10/25/2022]
Abstract
Our previous study reported that persistently infected (PI) cattle of bovine viral diarrhea virus (BVDV) have co-infected with BVDV/END- and /END+ that promote and inhibit host's type-I interferon (IFN) production, respectively. However, the relationship between co-infection of immunologically distinct BVDVs and persistent infection as well as the biological significance of END- viruses remains unknown. Experiments using cultured cells revealed that END+ virus, which is unable to propagate in situations where the host's immune response is induced by IFN-α addition, is able to propagate under those conditions when co-infecting with END- virus. These results indicate that BVDV/END- can coexist with BVDV/END+ and that co-infection with END- viruses supports the propagation of END+ viruses. Our in vitro experiments strongly suggest that co-infection with END- virus is involved in the maintenance of persistent infection of BVDV.
Collapse
Affiliation(s)
- Mai Shiokawa
- School of Veterinary Nursing and Technology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Tsutomu Omatsu
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yukie Katayama
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kaoru Nishine
- School of Veterinary Nursing and Technology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan; Kyoto Biken Laboratories, Inc. Formulation Department, Formulation Section 1, Kyoto, Japan
| | - Yuri Fujimoto
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Shiori Uchiyama
- School of Veterinary Nursing and Technology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Ken-Ichiro Kameyama
- Division of Transboundary Animal Disease, National Institute of Animal Health, NARO, Ibaraki, Japan
| | - Makoto Nagai
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Tetsuya Mizutani
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Akio Fukusho
- School of Veterinary Nursing and Technology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Hiroshi Aoki
- School of Veterinary Nursing and Technology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan.
| |
Collapse
|
23
|
Lussi C, Sauter KS, Schweizer M. Homodimerisation-independent cleavage of dsRNA by a pestiviral nicking endoribonuclease. Sci Rep 2018; 8:8226. [PMID: 29844335 PMCID: PMC5974291 DOI: 10.1038/s41598-018-26557-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 05/09/2018] [Indexed: 12/12/2022] Open
Abstract
The glycoprotein Erns plays a central role in the biology of the pestivirus bovine viral diarrhea virus (BVDV). This soluble endonuclease mediates the escape from an interferon (IFN) response in the infected fetus, thereby permitting the establishment of persistent infection. Viral single-stranded (ss) and double-stranded (ds) RNA act as potent IFN inducing signals and we previously showed that Erns efficiently cleaves these substrates, thereby inhibiting an IFN response that is crucial for successful fetal infection. Considering that a large variety of RNases and DNases require dimerisation to cleave double-stranded substrates, the activity of Erns against dsRNA was postulated to depend on homodimer formation mediated by disulfide bonds involving residue Cys171. Here, we show that monomeric Erns is equally able to cleave dsRNA and to inhibit dsRNA-induced IFN synthesis as the wild-type form. Furthermore, both forms were able to degrade RNA within a DNA/RNA- as well as within a methylated RNA/RNA-hybrid, with the DNA and the methylated RNA strand being resistant to degradation. These results support our model that Erns acts as 'nicking endoribonuclease' degrading ssRNA within double-stranded substrates. This efficiently prevents the activation of IFN and helps to maintain a state of innate immunotolerance in persistently infected animals.
Collapse
Affiliation(s)
- Carmela Lussi
- Institute of Virology and Immunology, Laenggass-Str. 122, CH-3001, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Kay-Sara Sauter
- Institute of Virology and Immunology, Laenggass-Str. 122, CH-3001, Bern, Switzerland.,Department of Clinical Research, Faculty of Medicine, University of Bern, CH-3010, Bern, Switzerland
| | - Matthias Schweizer
- Institute of Virology and Immunology, Laenggass-Str. 122, CH-3001, Bern, Switzerland. .,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| |
Collapse
|
24
|
The L83L ORF of African swine fever virus strain Georgia encodes for a non-essential gene that interacts with the host protein IL-1β. Virus Res 2018; 249:116-123. [PMID: 29605728 DOI: 10.1016/j.virusres.2018.03.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 01/01/2023]
Abstract
African swine fever virus (ASFV) causes a contagious and frequently lethal disease of pigs causing significant economic consequences to the swine industry. The ASFV genome encodes for more than 150 genes, but only a few of them have been studied in detail. Here we report the characterization of open reading frame L83L which encodes a highly conserved protein across all ASFV isolates. A recombinant ASFV harboring a HA tagged L83L protein was developed (ASFV-G-L83L-HA) and used to demonstrate that L83L is a transiently expressed early virus protein. A recombinant ASFV lacking the L83L gene (ASFV-G-ΔL83L) was developed from the highly virulent field isolate Georgia2007 (ASFV-G) and was used to show that L83L is a non-essential gene. ASFV-G-ΔL83L had similar replication in primary swine macrophage cells when compared to its parental virus ASFV-G. Analysis of host-protein interactions for L83L identified IL-1β as its host ligand. Experimental infection of domestic pigs showed that ASFV-G-ΔL83L is as virulent as the parental virus ASFV-G.
Collapse
|
25
|
Tucakov AK, Yavuz S, Schürmann EM, Mischler M, Klingebeil A, Meyers G. Restoration of glycoprotein E rns dimerization via pseudoreversion partially restores virulence of classical swine fever virus. J Gen Virol 2017; 99:86-96. [PMID: 29235980 DOI: 10.1099/jgv.0.000990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The classical swine fever virus (CSFV) represents one of the most important pathogens of swine. The CSFV glycoprotein Erns is an essential structural protein and an important virulence factor. The latter is dependent on the RNase activity of this envelope protein and, most likely, its secretion from the infected cell. A further important feature with regard to its function as a virulence factor is the formation of disulfide-linked Erns homodimers that are found in virus-infected cells and virions. Mutant CSFV lacking cysteine (Cys) 171, the residue responsible for intermolecular disulfide bond formation, were found to be attenuated in pigs (Tews BA, Schürmann EM, Meyers G. J Virol 2009;83:4823-4834). In the course of an animal experiment with such a dimerization-negative CSFV mutant, viruses were reisolated from pigs that contained a mutation of serine (Ser) 209 to Cys. This mutation restored the ability to form disulphide-linked Erns homodimers. In transient expression studies Erns mutants carrying the S209C change were found to form homodimers with about wt efficiency. Also the secretion level of the mutated proteins was equivalent to that of wt Erns. Virus mutants containing the Cys171Ser/Ser209Cys configuration exhibited wt growth rates and increased virulence when compared with the Cys171Ser mutant. These results provide further support for the connection between CSFV virulence and Erns dimerization.
Collapse
Affiliation(s)
- Anna Katharina Tucakov
- Institut für Immunologie, Friedrich-Loeffler-Institut, D-17493 Greifswald-Insel Riems, Germany
| | - Sabine Yavuz
- Institut für Immunologie, Friedrich-Loeffler-Institut, D-17493 Greifswald-Insel Riems, Germany.,Present address: Fachdienst Verbraucherschutz und Veterinärangelegenheiten, Landratsamt Alb-Donau-Kreis, Ulm, Germany
| | - Eva-Maria Schürmann
- Institut für Immunologie, Friedrich-Loeffler-Institut, D-17493 Greifswald-Insel Riems, Germany.,Present address: Landesamt für Gesundheit und Lebensmittelsicherheit, Oberschleissheim, Germany
| | - Manjula Mischler
- Institut für Immunologie, Friedrich-Loeffler-Institut, D-17493 Greifswald-Insel Riems, Germany
| | - Anne Klingebeil
- Institut für Immunologie, Friedrich-Loeffler-Institut, D-17493 Greifswald-Insel Riems, Germany
| | - Gregor Meyers
- Institut für Immunologie, Friedrich-Loeffler-Institut, D-17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
26
|
Postel A, Austermann-Busch S, Petrov A, Moennig V, Becher P. Epidemiology, diagnosis and control of classical swine fever: Recent developments and future challenges. Transbound Emerg Dis 2017; 65 Suppl 1:248-261. [PMID: 28795533 DOI: 10.1111/tbed.12676] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Indexed: 12/31/2022]
Abstract
Classical swine fever (CSF) represents a major health and trade problem for the pig industry. In endemic countries or those with a wild boar reservoir, CSF remains a priority for Veterinary Services. Surveillance as well as stamping out and/or vaccination are the principle tools of prevention and control, depending on the context. In the past decades, marker vaccines and accompanying diagnostic tests allowing the discrimination of infected from vaccinated animals have been developed. In the European Union, an E2 subunit and a chimeric live vaccine have been licensed and are available for the use in future disease outbreak scenarios. The implementation of commonly accepted and globally harmonized concepts could pave the way to replace the ethically questionable stamping out policy by a vaccination-to-live strategy and thereby avoid culling of a large number of healthy animals and save food resources. Although a number of vaccines and diagnostic tests are available worldwide, technological advancement in both domains is desirable. This work provides a summary of an analysis undertaken by the DISCONTOOLS group of experts on CSF. Details of the analysis can be downloaded from the web site at http://www.discontools.eu/.
Collapse
Affiliation(s)
- Alexander Postel
- EU and OIE Reference Laboratory for Classical Swine Fever, Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sophia Austermann-Busch
- EU and OIE Reference Laboratory for Classical Swine Fever, Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Anja Petrov
- EU and OIE Reference Laboratory for Classical Swine Fever, Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Volker Moennig
- EU and OIE Reference Laboratory for Classical Swine Fever, Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Paul Becher
- EU and OIE Reference Laboratory for Classical Swine Fever, Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
27
|
Holinka LG, O’Donnell V, Risatti GR, Azzinaro P, Arzt J, Stenfeldt C, Velazquez-Salinas L, Carlson J, Gladue DP, Borca MV. Early protection events in swine immunized with an experimental live attenuated classical swine fever marker vaccine, FlagT4G. PLoS One 2017; 12:e0177433. [PMID: 28542321 PMCID: PMC5443506 DOI: 10.1371/journal.pone.0177433] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/27/2017] [Indexed: 11/19/2022] Open
Abstract
Prophylactic vaccination using live attenuated classical swine fever (CSF) vaccines has been a very effective method to control the disease in endemic regions and during outbreaks in previously disease-free areas. These vaccines confer effective protection against the disease at early times post-vaccination although the mechanisms mediating the protection are poorly characterized. Here we present the events occurring after the administration of our in-house developed live attenuated marker vaccine, FlagT4Gv. We previously reported that FlagT4Gv intramuscular (IM) administered conferred effective protection against intranasal challenge with virulent CSFV (BICv) as early as 7 days post-vaccination. Here we report that FlagT4Gv is able to induce protection against disease as early as three days post-vaccination. Immunohistochemical testing of tissues from FlagT4Gv-inoculated animals showed that tonsils were colonized by the vaccine virus by day 3 post-inoculation. There was a complete absence of BICv in tonsils of FlagT4Gv-inoculated animals which had been intranasal (IN) challenged with BICv 3 days after FlagT4Gv infection, confirming that FlagT4Gv inoculation confers sterile immunity. Analysis of systemic levels of 19 different cytokines in vaccinated animals demonstrated an increase of IFN-α three days after FlagT4Gv inoculation compared with mock infected controls.
Collapse
Affiliation(s)
- Lauren G. Holinka
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, New York, United States of America
| | - Vivian O’Donnell
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, New York, United States of America
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, Connecticut, United States of America
| | - Guillermo R. Risatti
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, Connecticut, United States of America
| | - Paul Azzinaro
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, New York, United States of America
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, United States of America
| | - Jonathan Arzt
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, New York, United States of America
| | - Carolina Stenfeldt
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, New York, United States of America
| | - Lauro Velazquez-Salinas
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, New York, United States of America
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, United States of America
| | - Jolene Carlson
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, New York, United States of America
- Biosecurity Research Institute and Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Douglas P. Gladue
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, New York, United States of America
| | - Manuel V. Borca
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, New York, United States of America
| |
Collapse
|
28
|
The core protein of a pestivirus protects the incoming virus against IFN-induced effectors. Sci Rep 2017; 7:44459. [PMID: 28290554 PMCID: PMC5349576 DOI: 10.1038/srep44459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/08/2017] [Indexed: 01/21/2023] Open
Abstract
A multitude of viral factors - either inhibiting the induction of the IFN-system or its effectors – have been described to date. However, little is known about the role of structural components of the incoming virus particle in protecting against IFN-induced antiviral factors during or immediately after entry. In this study, we take advantage of the previously reported property of Classical swine fever virus (family Flaviviridae, genus Pestivirus) to tolerate a deletion of the core protein if a compensatory mutation is present in the NS3-helicase-domain (Vp447∆c). In contrast to the parental virus (Vp447), which causes a hemorrhagic-fever-like disease in pigs, Vp447∆c is avirulent in vivo. In comparison to Vp447, growth of Vp447∆c in primary porcine cells and IFN-treated porcine cell lines was reduced >20-fold. Also, primary porcine endothelial cells and IFN-pretreated porcine cell lines were 8–24 times less susceptible to Vp447∆c. This reduction of susceptibility could be partially reversed by loading Vp447∆c particles with different levels of core protein. In contrast, expression of core protein in the recipient cell did not have any beneficial effect. Therefore, a protective effect of core protein in the incoming virus particle against the products of IFN-stimulated genes could be demonstrated.
Collapse
|
29
|
Sun Y, Ke H, Han M, Chen N, Fang W, Yoo D. Nonstructural Protein 11 of Porcine Reproductive and Respiratory Syndrome Virus Suppresses Both MAVS and RIG-I Expression as One of the Mechanisms to Antagonize Type I Interferon Production. PLoS One 2016; 11:e0168314. [PMID: 27997564 PMCID: PMC5172586 DOI: 10.1371/journal.pone.0168314] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 11/29/2016] [Indexed: 12/21/2022] Open
Abstract
Type I interferons (IFN-α/β) play a key role in antiviral defense, and porcine reproductive and respiratory syndrome virus (PRRSV) is known to down-regulate the IFN response in virus-infected cells and pigs. In this study, we showed that the overexpression of nsp11 of PRRSV induced a strong suppression of IFN production. Nsp11 suppressed both IRF3 and NF-κB activities when stimulated with a dsRNA analogue and TNF-α, respectively. This suppression was RLR dependent, since the transcripts and proteins of MAVS and RIG-I, two critical factors in RLR-mediated pathway, were both found to be reduced in the presence of overexpressed nsp11. Since nsp11 is an endoribonuclease (EndoU), the structure function relationship was examined using a series of nsp11 EndoU mutant plasmids. The mutants that impaired the EndoU activity failed to suppress IFN and led to the normal expression of MAVS. Seven single amino acid substitutions (4 in subdomain A and 3 in subdomain B) plus one insertion (frame-shift in nsp11) were then introduced into PRRSV infectious cDNA clones to generate nsp11 mutant viruses. Unfortunately, all EndoU knock-out nsp11 mutant viruses appeared replication-defective and no progenies were produced. Three mutations in EndoU subdomain A expressed the N and nsp2/3 proteins but their infectivity diminished after 2 passages. Taken together, our data show that PRRSV nsp11 endoribonuclease activity is critical for both viral replication and IFN antagonism. More importantly, the endoribonuclease activity of nsp11 demonstrates the substrate specificity towards MAVS and RIG-I (transcripts and proteins) over p65 and IRF3 in the context of gene transfection and overexpression. This is likely a mechanism of nsp11 suppression of type I IFN production.
Collapse
Affiliation(s)
- Yan Sun
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Hanzhong Ke
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Mingyuan Han
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Ning Chen
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Weihuan Fang
- Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Dongwan Yoo
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
30
|
Pestivirus Npro Directly Interacts with Interferon Regulatory Factor 3 Monomer and Dimer. J Virol 2016; 90:7740-7. [PMID: 27334592 DOI: 10.1128/jvi.00318-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/06/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Interferon regulatory factor 3 (IRF3) is a transcription factor involved in the activation of type I alpha/beta interferon (IFN-α/β) in response to viral infection. Upon viral infection, the IRF3 monomer is activated into a phosphorylated dimer, which induces the transcription of interferon genes in the nucleus. Viruses have evolved several ways to target IRF3 in order to subvert the innate immune response. Pestiviruses, such as classical swine fever virus (CSFV), target IRF3 for ubiquitination and subsequent proteasomal degradation. This is mediated by the viral protein N(pro) that interacts with IRF3, but the molecular details for this interaction are largely unknown. We used recombinant N(pro) and IRF3 proteins and show that N(pro) interacts with IRF3 directly without additional proteins and forms a soluble 1:1 complex. The full-length IRF3 but not merely either of the individual domains is required for this interaction. The interaction between N(pro) and IRF3 is not dependent on the activation state of IRF3, since N(pro) binds to a constitutively active form of IRF3 in the presence of its transcriptional coactivator, CREB-binding protein (CBP). The results indicate that the N(pro)-binding site on IRF3 encompasses a region that is unperturbed by the phosphorylation and subsequent activation of IRF3 and thus excludes the dimer interface and CBP-binding site. IMPORTANCE The pestivirus N-terminal protease, N(pro), is essential for evading the host's immune system by facilitating the degradation of interferon regulatory factor 3 (IRF3). However, the nature of the N(pro) interaction with IRF3, including the IRF3 species (inactive monomer versus activated dimer) that N(pro) targets for degradation, is largely unknown. We show that classical swine fever virus N(pro) and porcine IRF3 directly interact in solution and that full-length IRF3 is required for interaction with N(pro) Additionally, N(pro) interacts with a constitutively active form of IRF3 bound to its transcriptional cofactor, the CREB-binding protein. This is the first study to demonstrate that N(pro) is able to bind both inactive IRF3 monomer and activated IRF3 dimer and thus likely targets both IRF3 species for ubiquitination and proteasomal degradation.
Collapse
|
31
|
Lussi C, Schweizer M. What can pestiviral endonucleases teach us about innate immunotolerance? Cytokine Growth Factor Rev 2016; 29:53-62. [PMID: 27021825 PMCID: PMC7173139 DOI: 10.1016/j.cytogfr.2016.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/01/2016] [Indexed: 02/07/2023]
Abstract
In this review, we describe the identification of the PRRs involved in the recognition of pestiviruses, and the mechanisms of these viruses to prevent the activation of host’s innate immune response with special emphasis on viral RNases. Most importantly, we extend these data and present our model of innate immunotolerance requiring continuous prevention of detection of immunostimulatory self nucleic acids, in contrast to the well-known long-term tolerance of the adaptive immune system targeted predominantly against proteins. This hypothesis is very likely relevant beyond the bovine species and might answer more fundamental questions on the discrimination between “self” and “viral nonself RNA”, which are relevant also for the prevention and treatment of chronic IFN induction and autoimmunity induced by “self-RNAs”.
Pestiviruses including bovine viral diarrhea virus (BVDV), border disease virus (BDV) and classical swine fever virus (CSFV), occur worldwide and are important pathogens of livestock. A large part of their success can be attributed to the induction of central immunotolerance including B- and T-cells upon fetal infection leading to the generation of persistently infected (PI) animals. In the past few years, it became evident that evasion of innate immunity is a central element to induce and maintain persistent infection. Hence, the viral non-structural protease Npro heads the transcription factor IRF-3 for proteasomal degradation, whereas an extracellularly secreted, soluble form of the envelope glycoprotein Erns degrades immunostimulatory viral single- and double-stranded RNA, which makes this RNase unique among viral endoribonucleases. We propose that these pestiviral interferon (IFN) antagonists maintain a state of innate immunotolerance mainly pertaining its viral nucleic acids, in contrast to the well-established immunotolerance of the adaptive immune system, which is mainly targeted at proteins. In particular, the unique extension of ‘self’ to include the viral genome by degrading immunostimulatory viral RNA by Erns is reminiscent of various host nucleases that are important to prevent inappropriate IFN activation by the host’s own nucleic acids in autoimmune diseases such as Aicardi-Goutières syndrome or systemic lupus erythematosus. This mechanism of “innate tolerance” might thus provide a new facet to the role of extracellular RNases in the sustained prevention of the body’s own immunostimulatory RNA to act as a danger-associated molecular pattern that is relevant across various species.
Collapse
Affiliation(s)
- Carmela Lussi
- Institute of Virology and Immunology, Federal Food Safety and Veterinary Office (FSVO) and Vetsuisse Faculty University of Bern, Laenggass-Str. 122, CH-3001 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.
| | - Matthias Schweizer
- Institute of Virology and Immunology, Federal Food Safety and Veterinary Office (FSVO) and Vetsuisse Faculty University of Bern, Laenggass-Str. 122, CH-3001 Bern, Switzerland.
| |
Collapse
|
32
|
Li Y, Yang Z, Zhang M. Different evolutionary patterns of classical swine fever virus envelope proteins. Can J Microbiol 2015; 62:210-9. [PMID: 26911308 DOI: 10.1139/cjm-2015-0709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Classical swine fever virus (CSFV) is the causative agent of classical swine fever, which is a highly contagious disease of the domestic pig as well as wild boar. The proteins E(rns), E1, and E2 are components of the viral envelope membrane. They are also implicated in virus attachment and entry, replication, and (or) anti-immune response. Here, we studied the genetic variations of these envelope proteins in the evolution of CSFV. The results reveal that the envelope proteins underwent different evolutionary fates. In E(rns) and E1, but not E2, a number of amino acid sites experienced functional divergence. Furthermore, the diversification in E(rns) and E1 was generally episodic because the divergence-related changes of E1 only occurred with the separation of 2 major groups of CSFV and that of E(rns) took place with the division of 1 major group. The major divergence-related sites of E(rns) are located on one of the substrate-binding regions of the RNase domain and C-terminal extension. These functional domains have been reported to block activation of the innate immune system and attachment and entry into host cells, respectively. Our results may shed some light on the divergent roles of the envelope proteins.
Collapse
Affiliation(s)
- Yan Li
- a College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Zexiao Yang
- b College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Mingwang Zhang
- a College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China
| |
Collapse
|
33
|
Aberle D, Oetter KM, Meyers G. Lipid Binding of the Amphipathic Helix Serving as Membrane Anchor of Pestivirus Glycoprotein Erns. PLoS One 2015; 10:e0135680. [PMID: 26270479 PMCID: PMC4536213 DOI: 10.1371/journal.pone.0135680] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/26/2015] [Indexed: 01/30/2023] Open
Abstract
Pestiviruses express a peculiar protein named Erns representing envelope glycoprotein and RNase, which is important for control of the innate immune response and persistent infection. The latter functions are connected with secretion of a certain amount of Erns from the infected cell. Retention/secretion of Erns is most likely controlled by its unusual membrane anchor, a long amphipathic helix attached in plane to the membrane. Here we present results of experiments conducted with a lipid vesicle sedimentation assay able to separate lipid-bound from unbound protein dissolved in the water phase. Using this technique we show that a protein composed of tag sequences and the carboxyterminal 65 residues of Erns binds specifically to membrane vesicles with a clear preference for compositions containing negatively charged lipids. Mutations disturbing the helical folding and/or amphipathic character of the anchor as well as diverse truncations and exchange of amino acids important for intracellular retention of Erns had no or only small effects on the proteins membrane binding. This result contrasts the dramatically increased secretion rates observed for Erns proteins with equivalent mutations within cells. Accordingly, the ratio of secreted versus cell retained Erns is not determined by the lipid affinity of the membrane anchor.
Collapse
Affiliation(s)
- Daniel Aberle
- Institut für Immunologie, Friedrich-Loeffler-Institut, Greifswald—Insel Riems, Germany
| | - Kay-Marcus Oetter
- Institut für Immunologie, Friedrich-Loeffler-Institut, Greifswald—Insel Riems, Germany
| | - Gregor Meyers
- Institut für Immunologie, Friedrich-Loeffler-Institut, Greifswald—Insel Riems, Germany
- * E-mail:
| |
Collapse
|
34
|
Structures and Functions of Pestivirus Glycoproteins: Not Simply Surface Matters. Viruses 2015; 7:3506-29. [PMID: 26131960 PMCID: PMC4517112 DOI: 10.3390/v7072783] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/11/2015] [Accepted: 06/18/2015] [Indexed: 12/21/2022] Open
Abstract
Pestiviruses, which include economically important animal pathogens such as bovine viral diarrhea virus and classical swine fever virus, possess three envelope glycoproteins, namely Erns, E1, and E2. This article discusses the structures and functions of these glycoproteins and their effects on viral pathogenicity in cells in culture and in animal hosts. E2 is the most important structural protein as it interacts with cell surface receptors that determine cell tropism and induces neutralizing antibody and cytotoxic T-lymphocyte responses. All three glycoproteins are involved in virus attachment and entry into target cells. E1-E2 heterodimers are essential for viral entry and infectivity. Erns is unique because it possesses intrinsic ribonuclease (RNase) activity that can inhibit the production of type I interferons and assist in the development of persistent infections. These glycoproteins are localized to the virion surface; however, variations in amino acids and antigenic structures, disulfide bond formation, glycosylation, and RNase activity can ultimately affect the virulence of pestiviruses in animals. Along with mutations that are driven by selection pressure, antigenic differences in glycoproteins influence the efficacy of vaccines and determine the appropriateness of the vaccines that are currently being used in the field.
Collapse
|
35
|
Treatment with interferon-alpha delays disease in swine infected with a highly virulent CSFV strain. Virology 2015; 483:284-90. [PMID: 26004252 DOI: 10.1016/j.virol.2015.04.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/21/2015] [Accepted: 04/24/2015] [Indexed: 12/20/2022]
Abstract
Interferon-alpha (IFNα) can effectively inhibit or abort a viral infection within the host. It has been reported that IFN induction and production is hindered during classical swine fever virus (CSFV) infection. Most of those studies have been performed in vitro, making it difficult to elucidate the actual role of IFNs during CSFV infection in swine. Here, we report the effect of IFNα treatment (delivered by a replication defective recombinant human adenovirus type 5, Ad5) in swine experimentally infected with highly virulent CSFV strain Brescia. Treatment with two different subtypes of IFNα delayed the appearance of CSF-related clinical signs and virus replication although it did not prevent lethal disease. This is the first report describing the effect of IFNα treatment during CSFV infection in swine.
Collapse
|
36
|
Summerfield A, Ruggli N. Immune Responses Against Classical Swine Fever Virus: Between Ignorance and Lunacy. Front Vet Sci 2015; 2:10. [PMID: 26664939 PMCID: PMC4672165 DOI: 10.3389/fvets.2015.00010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/20/2015] [Indexed: 11/14/2022] Open
Abstract
Classical swine fever virus infection of pigs causes disease courses from life-threatening to asymptomatic, depending on the virulence of the virus strain and the immunocompetence of the host. The virus targets immune cells, which are central in orchestrating innate and adaptive immune responses such as macrophages and conventional and plasmacytoid dendritic cells. Here, we review current knowledge and concepts aiming to explain the immunopathogenesis of the disease at both the host and the cellular level. We propose that the interferon type I system and in particular the interaction of the virus with plasmacytoid dendritic cells and macrophages is crucial to understand elements governing the induction of protective rather than pathogenic immune responses. The review also concludes that despite the knowledge available many aspects of classical swine fever immunopathogenesis are still puzzling.
Collapse
Affiliation(s)
| | - Nicolas Ruggli
- Institute of Virology and Immunology - IVI , Bern , Switzerland
| |
Collapse
|
37
|
Abstract
Pestiviruses are among the economically most important pathogens of livestock. The biology of these viruses is characterized by unique and interesting features that are both crucial for their success as pathogens and challenging from a scientific point of view. Elucidation of these features at the molecular level has made striking progress during recent years. The analyses revealed that major aspects of pestivirus biology show significant similarity to the biology of human hepatitis C virus (HCV). The detailed molecular analyses conducted for pestiviruses and HCV supported and complemented each other during the last three decades resulting in elucidation of the functions of viral proteins and RNA elements in replication and virus-host interaction. For pestiviruses, the analyses also helped to shed light on the molecular basis of persistent infection, a special strategy these viruses have evolved to be maintained within their host population. The results of these investigations are summarized in this chapter.
Collapse
Affiliation(s)
- Norbert Tautz
- Institute for Virology and Cell Biology, University of Lübeck, Lübeck, Germany
| | - Birke Andrea Tews
- Institut für Immunologie, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Gregor Meyers
- Institut für Immunologie, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| |
Collapse
|
38
|
Abstract
The past decade has witnessed steady and rapid progress in HCV research, which has led to the recent breakthrough in therapies against this significant human pathogen. Yet a deeper understanding of the life cycle of the virus is required to develop more affordable treatments and to advance vaccine design. HCV entry presents both a challenge for scientific research and an opportunity for alternative intervention approaches, owning to its highly complex nature and the myriad of players involved. More than half a dozen cellular proteins are implicated in HCV entry; and a more definitive picture regarding the structures of the glycoproteins is emerging. A role of apolipoproteins in HCV entry has also been established. Still, major questions remain, and the answers to these, which we summarize in this review, will hopefully close the gaps in our understanding and complete the puzzle that is HCV entry.
Collapse
Affiliation(s)
- Sarah C Ogden
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA
| | - Hengli Tang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA ; Institute of Health Sciences, Anhui University, Hefei, 230601, PR China
| |
Collapse
|
39
|
Ji W, Guo Z, Ding NZ, He CQ. Studying classical swine fever virus: Making the best of a bad virus. Virus Res 2015; 197:35-47. [DOI: 10.1016/j.virusres.2014.12.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 01/04/2023]
|
40
|
Zürcher C, Sauter KS, Schweizer M. Pestiviral E(rns) blocks TLR-3-dependent IFN synthesis by LL37 complexed RNA. Vet Microbiol 2014; 174:399-408. [PMID: 25457366 DOI: 10.1016/j.vetmic.2014.09.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 02/05/2023]
Abstract
The ribonuclease activity of the soluble glycoprotein E(rns) of pestiviruses represents a unique mechanism to circumvent the host's innate immune system by blocking interferon type-I synthesis in response to extracellularly added single- (ss) and double-stranded (ds) RNA. However, the reason why pestiviruses encode a ribonuclease in addition to the abundant serum RNases remained elusive. Here, we show that the 5' UTR and NS5B regions of various strains of the RNA genome of the pestivirus bovine viral diarrhea virus (BVDV) are resistant to serum RNases and are potent TLR-3 agonists. Inhibitory activity of E(rns) was restricted to cleavable RNA products, and did not extend to the synthetic TLR-7/8 agonist R-848. RNA complexed with the antimicrobial peptide LL37 was protected from degradation by E(rns)in vitro but was fully inhibited by E(rns) in its ability to induce IFN in cell cultures, suggesting that the viral protein is mainly active in cleaving RNA in an intracellular compartment. We propose that secreted E(rns) represents a potent IFN antagonist, which degrades viral RNA that is resistant to the ubiquitous host RNases in the extracellular space. Thus, the viral RNase prevents its own pathogen-associated molecular pattern (PAMP) to inadvertently activate the IFN response that might break innate immunotolerance required for persistent pestivirus infections.
Collapse
Affiliation(s)
- Christoph Zürcher
- Institute of Veterinary Virology (current name: Institute of Virology and Immunology), Vetsuisse Faculty University of Bern, Laenggass-Str. 122, CH-3001 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Kay-Sara Sauter
- Institute of Veterinary Virology (current name: Institute of Virology and Immunology), Vetsuisse Faculty University of Bern, Laenggass-Str. 122, CH-3001 Bern, Switzerland
| | - Matthias Schweizer
- Institute of Veterinary Virology (current name: Institute of Virology and Immunology), Vetsuisse Faculty University of Bern, Laenggass-Str. 122, CH-3001 Bern, Switzerland.
| |
Collapse
|
41
|
Castro EF, Campos RH, Cavallaro LV. Stability of the resistance to the thiosemicarbazone derived from 5,6-dimethoxy-1-indanone, a non-nucleoside polymerase inhibitor of bovine viral diarrhea virus. PLoS One 2014; 9:e100528. [PMID: 24950191 PMCID: PMC4065067 DOI: 10.1371/journal.pone.0100528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/28/2014] [Indexed: 12/03/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) is the prototype Pestivirus. BVDV infection is distributed worldwide and causes serious problems for the livestock industry. The thiosemicarbazone of 5,6-dimethoxy-1-indanone (TSC) is a non-nucleoside polymerase inhibitor (NNI) of BVDV. All TSC-resistant BVDV variants (BVDV-TSCr T1–5) present an N264D mutation in the NS5B gene (RdRp) whereas the variant BVDV-TSCr T1 also presents an NS5B A392E mutation. In the present study, we carried out twenty passages of BVDV-TSCr T1–5 in MDBK cells in the absence of TSC to evaluate the stability of the resistance. The viral populations obtained (BVDV R1–5) remained resistant to the antiviral compound and conserved the mutations in NS5B associated with this phenotype. Along the passages, BVDV R2, R3 and R5 presented a delay in the production of cytopathic effect that correlated with a decrease in cell apoptosis and intracellular accumulation of viral RNA. The complete genome sequences that encode for NS2 to NS5B, Npro and Erns were analyzed. Additional mutations were detected in the NS5B of BVDV R1, R3 and R4. In both BVDV R2 and R3, most of the mutations found were localized in NS5A, whereas in BVDV R5, the only mutation fixed was NS5A V177A. These results suggest that mutations in NS5A could alter BVDV cytopathogenicity. In conclusion, the stability of the resistance to TSC may be due to the fixation of different compensatory mutations in each BVDV-TSCr. During their replication in a TSC-free medium, some virus populations presented a kind of interaction with the host cell that resembled a persistent infection: decreased cytopathogenicity and viral genome synthesis. This is the first report on the stability of antiviral resistance and on the evolution of NNI-resistant BVDV variants. The results obtained for BVDV-TSCr could also be applied for other NNIs.
Collapse
Affiliation(s)
- Eliana F. Castro
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rodolfo H. Campos
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lucía V. Cavallaro
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
42
|
To sense or not to sense viral RNA--essentials of coronavirus innate immune evasion. Curr Opin Microbiol 2014; 20:69-75. [PMID: 24908561 PMCID: PMC7108419 DOI: 10.1016/j.mib.2014.05.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 05/06/2014] [Accepted: 05/11/2014] [Indexed: 11/20/2022]
Abstract
Coronaviruses employ versatile mechanisms to evade sensing of viral RNA. Cap-methylation of viral RNA facilitates innate immune evasion. There is increasing evidence that virus-encoded ribonucleases impact innate immune responses.
An essential function of innate immunity is to distinguish self from non-self and receptors have evolved to specifically recognize viral components and initiate the expression of antiviral proteins to restrict viral replication. Coronaviruses are RNA viruses that replicate in the host cytoplasm and evade innate immune sensing in most cell types, either passively by hiding their viral signatures and limiting exposure to sensors or actively, by encoding viral antagonists to counteract the effects of interferons. Since many cytoplasmic viruses exploit similar mechanisms of innate immune evasion, mechanistic insight into the direct interplay between viral RNA, viral RNA-processing enzymes, cellular sensors and antiviral proteins will be highly relevant to develop novel antiviral targets and to restrict important animal and human infections.
Collapse
|
43
|
Prolonged activity of the pestiviral RNase Erns as an interferon antagonist after uptake by clathrin-mediated endocytosis. J Virol 2014; 88:7235-43. [PMID: 24741078 DOI: 10.1128/jvi.00672-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The RNase activity of the envelope glycoprotein E(rns) of the pestivirus bovine viral diarrhea virus (BVDV) is required to block type I interferon (IFN) synthesis induced by single-stranded RNA (ssRNA) and double-stranded RNA (dsRNA) in bovine cells. Due to the presence of an unusual membrane anchor at its C terminus, a significant portion of E(rns) is also secreted. In addition, a binding site for cell surface glycosaminoglycans is located within the C-terminal region of E(rns). Here, we show that the activity of soluble E(rns) as an IFN antagonist is not restricted to bovine cells. Extracellularly applied E(rns) protein bound to cell surface glycosaminoglycans and was internalized into the cells within 1 h of incubation by an energy-dependent mechanism that could be blocked by inhibitors of clathrin-dependent endocytosis. E(rns) mutants that lacked the C-terminal membrane anchor retained RNase activity but lost most of their intracellular activity as an IFN antagonist. Surprisingly, once taken up into the cells, E(rns) remained active and blocked dsRNA-induced IFN synthesis for several days. Thus, we propose that E(rns) acts as an enzymatically active decoy receptor that degrades extracellularly added viral RNA mainly in endolysosomal compartments that might otherwise activate intracellular pattern recognition receptors (PRRs) in order to maintain a state of innate immunotolerance. IMPORTANCE The pestiviral RNase E(rns) was previously shown to inhibit viral ssRNA- and dsRNA-induced interferon (IFN) synthesis. However, the localization of E(rns) at or inside the cells, its species specificity, and its mechanism of interaction with cell membranes in order to block the host's innate immune response are still largely unknown. Here, we provide strong evidence that the pestiviral RNase E(rns) is taken up within minutes by clathrin-mediated endocytosis and that this uptake is mostly dependent on the glycosaminoglycan binding site located within the C-terminal end of the protein. Remarkably, the inhibitory activity of E(rns) remains for several days, indicating the very potent and prolonged effect of a viral IFN antagonist. This novel mechanism of an enzymatically active decoy receptor that degrades a major viral pathogen-associated molecular pattern (PAMP) might be required to efficiently maintain innate and, thus, also adaptive immunotolerance, and it might well be relevant beyond the bovine species.
Collapse
|
44
|
Aberle D, Muhle-Goll C, Bürck J, Wolf M, Reißer S, Luy B, Wenzel W, Ulrich AS, Meyers G. Structure of the membrane anchor of pestivirus glycoprotein E(rns), a long tilted amphipathic helix. PLoS Pathog 2014; 10:e1003973. [PMID: 24586172 PMCID: PMC3937272 DOI: 10.1371/journal.ppat.1003973] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 01/20/2014] [Indexed: 01/02/2023] Open
Abstract
E(rns) is an essential virion glycoprotein with RNase activity that suppresses host cellular innate immune responses upon being partially secreted from the infected cells. Its unusual C-terminus plays multiple roles, as the amphiphilic helix acts as a membrane anchor, as a signal peptidase cleavage site, and as a retention/secretion signal. We analyzed the structure and membrane binding properties of this sequence to gain a better understanding of the underlying mechanisms. CD spectroscopy in different setups, as well as Monte Carlo and molecular dynamics simulations confirmed the helical folding and showed that the helix is accommodated in the amphiphilic region of the lipid bilayer with a slight tilt rather than lying parallel to the surface. This model was confirmed by NMR analyses that also identified a central stretch of 15 residues within the helix that is fully shielded from the aqueous layer, which is C-terminally followed by a putative hairpin structure. These findings explain the strong membrane binding of the protein and provide clues to establishing the E(rns) membrane contact, processing and secretion.
Collapse
Affiliation(s)
- Daniel Aberle
- Institut für Immunologie, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - Claudia Muhle-Goll
- Karlsruhe Institute of Technology, Institut für Organische Chemie, Karlsruhe, Germany
| | - Jochen Bürck
- Karlsruhe Institute of Technology, Institut für Biologische Grenzflächen (IBG-2), Karlsruhe, Germany
| | - Moritz Wolf
- Karlsruhe Institute of Technology, Institut für Nanotechnologie, Karlsruhe, Germany
| | - Sabine Reißer
- Karlsruhe Institute of Technology, Institut für Organische Chemie, Karlsruhe, Germany
| | - Burkhard Luy
- Karlsruhe Institute of Technology, Institut für Organische Chemie, Karlsruhe, Germany
- Karlsruhe Institute of Technology, Institut für Biologische Grenzflächen (IBG-2), Karlsruhe, Germany
| | - Wolfgang Wenzel
- Karlsruhe Institute of Technology, Institut für Nanotechnologie, Karlsruhe, Germany
| | - Anne S. Ulrich
- Karlsruhe Institute of Technology, Institut für Organische Chemie, Karlsruhe, Germany
- Karlsruhe Institute of Technology, Institut für Biologische Grenzflächen (IBG-2), Karlsruhe, Germany
| | - Gregor Meyers
- Institut für Immunologie, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| |
Collapse
|
45
|
Python S, Gerber M, Suter R, Ruggli N, Summerfield A. Efficient sensing of infected cells in absence of virus particles by plasmacytoid dendritic cells is blocked by the viral ribonuclease E(rns.). PLoS Pathog 2013; 9:e1003412. [PMID: 23785283 PMCID: PMC3681750 DOI: 10.1371/journal.ppat.1003412] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 04/25/2013] [Indexed: 02/07/2023] Open
Abstract
Plasmacytoid dendritic cells (pDC) have been shown to efficiently sense HCV- or HIV-infected cells, using a virion-free pathway. Here, we demonstrate for classical swine fever virus, a member of the Flaviviridae, that this process is much more efficient in terms of interferon-alpha induction when compared to direct stimulation by virus particles. By employment of virus replicon particles or infectious RNA which can replicate but not form de novo virions, we exclude a transfer of virus from the donor cell to the pDC. pDC activation by infected cells was mediated by a contact-dependent RNA transfer to pDC, which was sensitive to a TLR7 inhibitor. This was inhibited by drugs affecting the cytoskeleton and membrane cholesterol. We further demonstrate that a unique viral protein with ribonuclease activity, the viral Erns protein of pestiviruses, efficiently prevented this process. This required intact ribonuclease function in intracellular compartments. We propose that this pathway of activation could be of particular importance for viruses which tend to be mostly cell-associated, cause persistent infection, and are non-cytopathogenic. Plasmacytoid dendritic cells (pDC) represent the most potent producers of interferon type I and are therefore of major importance in antiviral defences. A TLR7-dependent induction of interferon-α in pDC by infected cells in the absence of virions has been demonstrated for hepatitis C virus. Here, we show that this pathway is also very efficient for classical swine fever virus, a pestivirus that is also a member of the Flaviviridae. Our data indicate a transfer of RNA from the donor cell to pDC in a cell-contact-dependent manner requiring intact lipid rafts and cytoskeleton of the donor cell. Importantly, we demonstrate that the enigmatic viral Erns protein unique to pestiviruses efficiently prevents this pathway of pDC activation. This novel function of Erns is dependent on its RNase activity within intracellular compartments. The present study underlines the importance of pDC activation by infected cells and identifies a novel pathway of virus escaping the interferon system. Considering that Erns is required for pestiviruses to establish persistent infection of foetuses after transplacental virus transmission resulting in the development of immunotolerant animals, this report also points on a possible role of pDC in preventing immunotolerance after viral infection of foetuses.
Collapse
Affiliation(s)
- Sylvie Python
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
| | - Markus Gerber
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
| | - Rolf Suter
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
| | - Nicolas Ruggli
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- * E-mail: (NR); (AS)
| | - Artur Summerfield
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- * E-mail: (NR); (AS)
| |
Collapse
|
46
|
Peterhans E, Schweizer M. BVDV: A pestivirus inducing tolerance of the innate immune response. Biologicals 2013; 41:39-51. [DOI: 10.1016/j.biologicals.2012.07.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 07/16/2012] [Indexed: 12/14/2022] Open
|
47
|
Pathway analysis in blood cells of pigs infected with classical swine fever virus: comparison of pigs that develop a chronic form of infection or recover. Arch Virol 2012; 158:325-39. [DOI: 10.1007/s00705-012-1491-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 08/17/2012] [Indexed: 01/25/2023]
|
48
|
Krey T, Bontems F, Vonrhein C, Vaney MC, Bricogne G, Rümenapf T, Rey FA. Crystal structure of the pestivirus envelope glycoprotein E(rns) and mechanistic analysis of its ribonuclease activity. Structure 2012; 20:862-73. [PMID: 22579253 DOI: 10.1016/j.str.2012.03.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 02/29/2012] [Accepted: 03/03/2012] [Indexed: 01/24/2023]
Abstract
Pestiviruses, which belong to the Flaviviridae family of RNA viruses, are important agents of veterinary diseases causing substantial economical losses in animal farming worldwide. Pestivirus particles display three envelope glycoproteins at their surface: E(rns), E1, and E2. We report here the crystal structure of the catalytic domain of E(rns), the ribonucleolytic activity of which is believed to counteract the innate immunity of the host. The structure reveals a three-dimensional fold corresponding to T2 ribonucleases from plants and fungi. Cocrystallization experiments with mono- and oligonucleotides revealed the structural basis for substrate recognition at two binding sites previously identified for T2 RNases. A detailed analysis of poly-U cleavage products using (31)P-NMR and size exclusion chromatography, together with molecular docking studies, provides a comprehensive mechanistic picture of E(rns) activity on its substrates and reveals the presence of at least one additional nucleotide binding site.
Collapse
Affiliation(s)
- Thomas Krey
- Unité de Virologie Structurale, Institut Pasteur, 75015 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
49
|
Burrack S, Aberle D, Bürck J, Ulrich AS, Meyers G. A new type of intracellular retention signal identified in a pestivirus structural glycoprotein. FASEB J 2012; 26:3292-305. [PMID: 22549508 DOI: 10.1096/fj.12-207191] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Sorting of membrane proteins into intracellular organelles is crucial for cell function. Viruses exploit intracellular transport and retention systems to concentrate envelope proteins at the site of virus budding. In pestiviruses, a group of important pathogens of pigs and ruminants closely related to human hepatitis C virus, the E(rns) protein translated from the viral RNA is secreted from the infected cells and found in the serum of infected animals. Secretion of the protein is regarded as crucial for its function as a viral virulence factor associated with its RNase activity. However, ∼95% of the E(rns) molecules are retained within the infected cell. Fusion of different E(rns) fragments to the C terminus of CD72 allowed identification of a retention signal within the C-terminal 65 aa of the viral protein. This C-terminal sequence represents its membrane anchor and folds into an amphipathic helix binding in-plane to the membrane surface. Residues L183, I190, and L208 are important for intracellular location of E(rns). Presentation of the retention signal on the cytoplasmic instead of the luminal face of the ER membrane in CD8α fusion proteins still led to retention. Thus, E(rns) contains in its C-terminal amphipathic helix an intracellular retention signal that is active on both faces of the membrane.
Collapse
Affiliation(s)
- Sandra Burrack
- Institut für Immunologie, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | | | | | | | | |
Collapse
|
50
|
Sakoda Y. [Pestivirus]. Uirusu 2011; 61:239-248. [PMID: 22916570 DOI: 10.2222/jsv.61.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Members of the genus Pestivirus, are causative agents of economically important diseases for livestock and wild animals that occur worldwide, such as bovine viral diarrhea, classical swine fever, and border disease of sheep. Pestivirus have novel insertions of host genes in the viral genome and functions of unique viral proteins, N(pro) and E(rns), related to the pathogenicity although genomic structure is closely related to the other viruses of Flaviviridae family, especially hepatitis C virus. In this review, recent studies on the molecular basis of pathogenicity of pestivirus infections were summarized.
Collapse
Affiliation(s)
- Yoshihiro Sakoda
- Laboratory of Microbiology, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18 Nishi-9, Sapporo 060-0818, Japan.
| |
Collapse
|