1
|
Martins G, Gogola JL, Caetano FR, Kalinke C, Jorge TR, Santos CND, Bergamini MF, Marcolino-Junior LH. Quick electrochemical immunoassay for hantavirus detection based on biochar platform. Talanta 2019; 204:163-171. [PMID: 31357278 DOI: 10.1016/j.talanta.2019.05.101] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/24/2019] [Accepted: 05/25/2019] [Indexed: 11/30/2022]
Abstract
This work describes the first method using biochar (BC) as carbonaceous platform for immunoassay application. BC is a highly functionalized material obtained through biomass pyrolysis under controlled conditions. Due to the highly functionalized surface, covalent binding between BC and biomolecules can be performed by EDC/NHS conjugation. The application of the modified electrode was done with Hantavirus, that are etiologic agents mainly transmitted by wild rodents. Among its pathologies Hantavirus Cardiopulmonary Syndrome (HCPS) arises at Americas, caused by Hantavirus Araucária and reaches 40% lethality. The diagnostic is based on the presence of specific hantavirus nucleoprotein (Np), under viremic condition or IgG2b antibodies (Ab), during first symptoms. The results presented a device sensitivity of 5.28 μA dec-1 and a LOD of 0.14 ng mL-1 to the Np detection, ranging from 5.0 ng mL-1 to 1.0 μg mL-1, the Ab detection works as qualitative type sensor above 200 ng mL-1. Both sensors were evaluated its selectivity and serum samples; selectivity against Gumboro disease, VP2 protein, and antibody IgG2a against Yellow fever disease (YF), respectively. So, the devices here proposed are promising tool suitable for both rodent and human hantavirus clinical surveys.
Collapse
Affiliation(s)
- Gustavo Martins
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CP 19032, CEP, 81531-990 Curitiba, PR, Brazil
| | - Jeferson L Gogola
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CP 19032, CEP, 81531-990 Curitiba, PR, Brazil
| | - Fabio R Caetano
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CP 19032, CEP, 81531-990 Curitiba, PR, Brazil
| | - Cristiane Kalinke
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CP 19032, CEP, 81531-990 Curitiba, PR, Brazil
| | - Taíssa R Jorge
- Instituto Carlos Chagas, FIOCRUZ, CEP 81310-020, Curitiba, PR, Brazil
| | | | - Márcio F Bergamini
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CP 19032, CEP, 81531-990 Curitiba, PR, Brazil
| | - Luiz H Marcolino-Junior
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CP 19032, CEP, 81531-990 Curitiba, PR, Brazil.
| |
Collapse
|
2
|
Reuter M, Krüger DH. The nucleocapsid protein of hantaviruses: much more than a genome-wrapping protein. Virus Genes 2017; 54:5-16. [PMID: 29159494 DOI: 10.1007/s11262-017-1522-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/11/2017] [Indexed: 12/11/2022]
Abstract
The nucleocapsid (N) protein of hantaviruses represents an impressive example of a viral multifunctional protein. It encompasses properties as diverse as genome packaging, RNA chaperoning, intracellular protein transport, DNA degradation, intervention in host translation, and restricting host immune responses. These functions all rely on the capability of N to interact with RNA and other viral and cellular proteins. We have compiled data on the N protein of different hantavirus species together with information of the recently published three-dimensional structural data of the protein. The array of diverse functional activities accommodated in the hantaviral N protein goes far beyond to be a static structural protein and makes it an interesting target in the development of antiviral therapeutics.
Collapse
Affiliation(s)
- Monika Reuter
- Institute of Virology, Helmut-Ruska-Haus, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
| | - Detlev H Krüger
- Institute of Virology, Helmut-Ruska-Haus, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
3
|
Abstract
The ClusPro server (https://cluspro.org) is a widely used tool for protein-protein docking. The server provides a simple home page for basic use, requiring only two files in Protein Data Bank (PDB) format. However, ClusPro also offers a number of advanced options to modify the search; these include the removal of unstructured protein regions, application of attraction or repulsion, accounting for pairwise distance restraints, construction of homo-multimers, consideration of small-angle X-ray scattering (SAXS) data, and location of heparin-binding sites. Six different energy functions can be used, depending on the type of protein. Docking with each energy parameter set results in ten models defined by centers of highly populated clusters of low-energy docked structures. This protocol describes the use of the various options, the construction of auxiliary restraints files, the selection of the energy parameters, and the analysis of the results. Although the server is heavily used, runs are generally completed in <4 h.
Collapse
|
4
|
Ribosomal protein S19-binding domain provides insights into hantavirus nucleocapsid protein-mediated translation initiation mechanism. Biochem J 2015; 464:109-21. [PMID: 25062117 DOI: 10.1042/bj20140449] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The hantaviral zoonotic diseases pose a significant threat to human health due to the lack of potential antiviral therapeutics or a vaccine against hantaviruses. N (Sin Nombre hantavirus nucleocapsid protein) augments mRNA translation. N binds to both the mRNA 5' cap and 40S ribosomal subunit via RPS19 (ribosomal protein S19). N with the assistance of the viral mRNA 5'-UTR preferentially favours the translation of a downstream ORF. We identified and characterized the RPS19-binding domain at the N-terminus of N. Its deletion did not influence the secondary structure, but affected the conformation of trimeric N molecules. The N variant lacking the RPS19-binding region was able to bind both the mRNA 5' cap and panhandle-like structure, formed by the termini of viral genomic RNA. In addition, the N variant formed stable trimers similar to wild-type N. Use of this variant in multiple experiments provided insights into the mechanism of ribosome loading during N-mediated translation strategy. The present study suggests that N molecules individually associated with the mRNA 5' cap and RPS19 of the 40S ribosomal subunit undergo N-N interaction to facilitate the engagement of N-associated ribosomes at the mRNA 5' cap. This has revealed new targets for therapeutic intervention of hantavirus infection.
Collapse
|
5
|
Macleod JML, Marmor H, García-Sastre A, Frias-Staheli N. Mapping of the interaction domains of the Crimean-Congo hemorrhagic fever virus nucleocapsid protein. J Gen Virol 2014; 96:524-537. [PMID: 25389186 DOI: 10.1099/vir.0.071332-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a member of the genus Nairovirus of the family Bunyaviridae, that can cause severe haemorrhagic fever in humans, with mortality rates above 30 %. CCHFV is the most widespread of the tick-borne human viruses and it is endemic in areas of central Asia, the Middle East, Africa and southern Europe. Its viral genome consists of three negative-sense RNA segments. The large segment (L) encodes a viral RNA-dependent RNA polymerase (L protein), the small segment (S) encodes the nucleocapsid protein (N protein) and the medium segment (M) encodes the envelope proteins. The N protein of bunyaviruses binds genomic RNA, forming the viral ribonucleoprotein (RNP) complex. The L protein interacts with these RNP structures, allowing the initiation of viral replication. The N protein also interacts with actin, although the regions and specific residues involved in these interactions have not yet been described. Here, by means of immunoprecipitation and immunofluorescence assays, we identified the regions within the CCHFV N protein implicated in homo-oligomerization and actin binding. We describe the interaction of the N protein with the CCHFV L protein, and identify the N- and C-terminal regions within the L protein that might be necessary for the formation of these N-L protein complexes. These results may guide the development of potent inhibitors of these complexes that could potentially block CCHFV replication.
Collapse
Affiliation(s)
- Jesica M Levingston Macleod
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hannah Marmor
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adolfo García-Sastre
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Natalia Frias-Staheli
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
6
|
Antigenic properties of N protein of hantavirus. Viruses 2014; 6:3097-109. [PMID: 25123683 PMCID: PMC4147688 DOI: 10.3390/v6083097] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/21/2014] [Accepted: 07/21/2014] [Indexed: 01/08/2023] Open
Abstract
Hantavirus causes two important rodent-borne viral zoonoses, hemorrhagic fever with renal syndrome (HFRS) in Eurasia and hantavirus pulmonary syndrome (HPS) in North and South America. Twenty-four species that represent sero- and genotypes have been registered within the genus Hantavirus by the International Committee on Taxonomy of Viruses (ICTV). Among the viral proteins, nucleocapsid (N) protein possesses an immunodominant antigen. The antigenicitiy of N protein is conserved compared with that of envelope glycoproteins. Therefore, N protein has been used for serological diagnoses and seroepidemiological studies. An understanding of the antigenic properties of N protein is important for the interpretation of results from serological tests using N antigen. N protein consists of about 430 amino acids and possesses various epitopes. The N-terminal quarter of N protein bears linear and immunodominant epitopes. However, a serotype-specific and multimerization-dependent antigenic site was found in the C-terminal half of N protein. In this paper, the structure, function, and antigenicity of N protein are reviewed.
Collapse
|
7
|
Mutational analysis of positively charged amino acid residues of Uukuniemi phlebovirus nucleocapsid protein. Virus Res 2012; 167:118-23. [PMID: 22808531 DOI: 10.1016/j.virusres.2012.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aim of this study was to evaluate the contribution of positively charged amino acid residues for the Uukuniemi virus (UUKV) N protein functionality. Based on phlebovirus nucleocapsid (N) protein alignments and 3D-structure predictions of UUKV N protein, 14 positively charged residues were chosen as targets for the mutagenesis. The impact of mutations to the N protein functionality was analyzed using minigenome-, virus-like particle-, and mammalian two-hybrid-assays. Seven of the mutations affected the functional competence in all three assays, while others had milder impact or no impact at all. In the 3D-model of UUKV N protein, five of the affected residues, R61, R64, R73, R98 and R115, were located either within or in close proximity to the central cavity that could potentially bind RNA.
Collapse
|
8
|
Strandin T, Hepojoki J, Wang H, Vaheri A, Lankinen H. The cytoplasmic tail of hantavirus Gn glycoprotein interacts with RNA. Virology 2011; 418:12-20. [PMID: 21807393 PMCID: PMC7172371 DOI: 10.1016/j.virol.2011.06.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 06/06/2011] [Accepted: 06/16/2011] [Indexed: 11/15/2022]
Abstract
We recently characterized the interaction between the intraviral domains of envelope glycoproteins (Gn and Gc) and ribonucleoprotein (RNP) of Puumala and Tula hantaviruses (genus Hantavirus, family Bunyaviridae). Herein we report a direct interaction between spike-forming glycoprotein and nucleic acid. We show that the envelope glycoprotein Gn of hantaviruses binds genomic RNA through its cytoplasmic tail (CT). The nucleic acid binding of Gn-CT is unspecific, as demonstrated by interactions with unrelated RNA and with single-stranded DNA. Peptide scan and protein deletions of Gn-CT mapped the nucleic acid binding to regions that overlap with the previously characterized N protein binding sites and demonstrated the carboxyl-terminal part of Gn-CT to be the most potent nucleic acid-binding site. We conclude that recognition of the RNP complex by the Gn-CT could be mediated by interactions with both genomic RNA and the N protein. This would provide the required selectivity for the genome packaging of hantaviruses.
Collapse
Affiliation(s)
- Tomas Strandin
- Peptide and Protein Laboratory, Infection Biology Research Program, Haartman Institute, PO Box 21, FI-00014, University of Helsinki, Finland.
| | | | | | | | | |
Collapse
|
9
|
Characterization of two substrains of Puumala virus that show phenotypes that are different from each other and from the original strain. J Virol 2010; 85:1747-56. [PMID: 21106742 DOI: 10.1128/jvi.01428-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hantaviruses, the causative agents of two emerging diseases, are negative-stranded RNA viruses with a tripartite genome. We isolated two substrains from a parental strain of Puumala hantavirus (PUUV-Pa), PUUV-small (PUUV-Sm) and PUUV-large (PUUV-La), named after their focus size when titrated. The two isolates were sequenced; this revealed differences at two positions in the nucleocapsid protein and two positions in the RNA-dependent RNA polymerase, but the glycoproteins were identical. We also detected a 43-nucleotide deletion in the PUUV-La S-segment 5' noncoding region covering a predicted hairpin loop structure that was found to be conserved among all hantaviruses with members of the rodent subfamily Arvicolinae as their hosts. Stocks of PUUV-La showed a lower ratio of viral RNA to infectious particles than stocks of PUUV-Sm and PUUV-Pa, indicating that PUUV-La replicated more efficiently in alpha/beta interferon (IFN-α/β)-defective Vero E6 cells. In Vero E6 cells, PUUV-La replicated to higher titers and PUUV-Sm replicated to lower titers than PUUV-Pa. In contrast, in IFN-competent MRC-5 cells, PUUV-La and PUUV-Sm replicated to similar levels, while PUUV-Pa progeny virus production was strongly inhibited. The different isolates clearly differed in their potential to induce innate immune responses in MRC-5 cells. PUUV-Pa caused stronger induction of IFN-β, ISG56, and MxA than PUUV-La and PUUV-Sm, while PUUV-Sm caused stronger MxA and ISG56 induction than PUUV-La. These data demonstrate that the phenotypes of isolated hantavirus substrains can have substantial differences compared to each other and to the parental strain. Importantly, this implies that the reported differences in phenotypes for hantaviruses might depend more on chance due to spontaneous mutations during passage than inherited true differences between hantaviruses.
Collapse
|
10
|
Katz A, Freiberg AN, Backström V, Schulz AR, Mateos A, Holm L, Pettersson RF, Vaheri A, Flick R, Plyusnin A. Oligomerization of Uukuniemi virus nucleocapsid protein. Virol J 2010; 7:187. [PMID: 20698970 PMCID: PMC2925374 DOI: 10.1186/1743-422x-7-187] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 08/10/2010] [Indexed: 11/26/2022] Open
Abstract
Background Uukuniemi virus (UUKV) belongs to the Phlebovirus genus in the family Bunyaviridae. As a non-pathogenic virus for humans UUKV has served as a safe model bunyavirus in a number of studies addressing fundamental questions such as organization and regulation of viral genes, genome replication, structure and assembly. The present study is focused on the oligomerization of the UUKV nucleocapsid (N) protein, which plays an important role in several steps of virus replication. The aim was to locate the domains involved in the N protein oligomerization and study the process in detail. Results A set of experiments concentrating on the N- and C-termini of the protein was performed, first by completely or partially deleting putative N-N-interaction domains and then by introducing point mutations of amino acid residues. Mutagenesis strategy was based on the computer modeling of secondary and tertiary structure of the N protein. The N protein mutants were studied in chemical cross-linking, immunofluorescence, mammalian two-hybrid, minigenome, and virus-like particle-forming assays. The data showed that the oligomerization ability of UUKV-N protein depends on the presence of intact α-helices on both termini of the N protein molecule and that a specific structure in the N-terminal region plays a crucial role in the N-N interaction(s). This structure is formed by two α-helices, rich in amino acid residues with aromatic (W7, F10, W19, F27, F31) or long aliphatic (I14, I24) side chains. Furthermore, some of the N-terminal mutations (e.g. I14A, I24A, F31A) affected the N protein functionality both in mammalian two-hybrid and minigenome assays. Conclusions UUKV-N protein has ability to form oligomers in chemical cross-linking and mammalian two-hybrid assays. In mutational analysis, some of the introduced single-point mutations abolished the N protein functionality both in mammalian two-hybrid and minigenome assays, suggesting that especially the N-terminal region of the UUKV-N protein is essential for the N-N interaction.
Collapse
Affiliation(s)
- Anna Katz
- Department of Virology, Infection Biology Research Program, Haartman Institute, PO Box 21, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hepojoki J, Strandin T, Wang H, Vapalahti O, Vaheri A, Lankinen H. Cytoplasmic tails of hantavirus glycoproteins interact with the nucleocapsid protein. J Gen Virol 2010; 91:2341-50. [PMID: 20444994 DOI: 10.1099/vir.0.021006-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Here we characterize the interaction between the glycoproteins (Gn and Gc) and the ribonucleoprotein (RNP) of Puumala virus (PUUV; genus Hantavirus, family Bunyaviridae). The interaction was initially established with native proteins by co-immunoprecipitating PUUV nucleocapsid (N) protein with the glycoprotein complex. Mapping of the interaction sites revealed that the N protein has multiple binding sites in the cytoplasmic tail (CT) of Gn and is also able to bind to the predicted CT of Gc. The importance of Gn- and Gc-CTs to the recognition of RNP was further verified in pull-down assays using soluble peptides with binding capacity to both recombinant N protein and the RNPs of PUUV and Tula virus. Additionally, the N protein of PUUV was demonstrated to interact with peptides of Gn and Gc from a variety of hantavirus species, suggesting a conserved RNP-recognition mechanism within the genus. Based on these and our previous results, we suggest that the complete hetero-oligomeric (Gn-Gc)(4) spike complex of hantaviruses mediates the packaging of RNP into virions.
Collapse
Affiliation(s)
- J Hepojoki
- Department of Virology, Haartman Institute, University of Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|