1
|
Wang YP, Huang LP, Du WJ, Wei YW, Wu HL, Feng L, Liu CM. Targeting the pseudorabies virus DNA polymerase processivity factor UL42 by RNA interference efficiently inhibits viral replication. Antiviral Res 2016; 132:219-24. [PMID: 27387827 DOI: 10.1016/j.antiviral.2016.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 05/31/2016] [Accepted: 06/27/2016] [Indexed: 11/15/2022]
Abstract
RNA interference (RNAi) is a conserved gene-silencing mechanism in which small interfering RNAs (siRNAs) induce the sequence-specific degradation of homologous RNAs. It has been shown to be a novel and effective antiviral therapy against a wide range of viruses. The pseudorabies virus (PRV) processivity factor UL42 can enhance the catalytic activity of the DNA polymerase and is essential for viral replication, thus it may represent a potential drug target of antiviral therapy against PRV infection. Here, we synthesized three siRNAs (siR-386, siR-517, and siR-849) directed against UL42 and determined their antiviral activities in cell culture. We first examined the kinetics of UL42 expression and found it was expressed with early kinetics during PRV replication. We verified that siR-386, siR-517, and siR-849 efficiently inhibited UL42 expression in an in vitro transfection system, thereby validating their inhibitory effects. Furthermore, we confirmed that these three siRNAs induced potent inhibitory effects on UL42 expression after PRV infection, comparable to the positive control siRNA, siR-1046, directed against the PRV DNA polymerase, the UL30 gene product, which is essential for virus replication. In addition, PRV replication was markedly reduced upon downregulation of UL42 expression. These results indicate that UL42-targeted RNAi efficiently inhibits target gene expression and impairs viral replication. This study provides a new clue for the design of an intervention strategy against herpesviruses by targeting their processivity factors.
Collapse
Affiliation(s)
- Yi-Ping Wang
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Nangang District, Harbin 150001, China
| | - Li-Ping Huang
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Nangang District, Harbin 150001, China
| | - Wen-Juan Du
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Nangang District, Harbin 150001, China
| | - Yan-Wu Wei
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Nangang District, Harbin 150001, China
| | - Hong-Li Wu
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Nangang District, Harbin 150001, China
| | - Li Feng
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Nangang District, Harbin 150001, China
| | - Chang-Ming Liu
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Nangang District, Harbin 150001, China.
| |
Collapse
|
2
|
Wu CC, Fang CY, Hsu HY, Chen YJ, Chou SP, Huang SY, Cheng YJ, Lin SF, Chang Y, Tsai CH, Chen JY. Luteolin inhibits Epstein-Barr virus lytic reactivation by repressing the promoter activities of immediate-early genes. Antiviral Res 2016; 132:99-110. [PMID: 27185626 DOI: 10.1016/j.antiviral.2016.05.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 04/27/2016] [Accepted: 05/09/2016] [Indexed: 02/08/2023]
Abstract
The lytic reactivation of Epstein-Barr virus (EBV) has been reported to be strongly associated with several human diseases, including nasopharyngeal carcinoma (NPC). Inhibition of the EBV lytic cycle has been shown to be of great benefit in the treatment of EBV-associated diseases. The administration of dietary compounds is safer and more convenient than other approaches to preventing EBV reactivation. We screened several dietary compounds for their ability to inhibit EBV reactivation in NPC cells. Among them, the flavonoid luteolin showed significant inhibition of EBV reactivation. Luteolin inhibited protein expression from EBV lytic genes in EBV-positive epithelial and B cell lines. It also reduced the numbers of EBV-reactivating cells detected by immunofluorescence analysis and reduced the production of virion. Furthermore, luteolin reduced the activities of the promoters of the immediate-early genes Zta (Zp) and Rta (Rp) and also inhibited Sp1-luc activity, suggesting that disruption of Sp1 binding is involved in the inhibitory mechanism. CHIP analysis revealed that luteolin suppressed the activities of Zp and Rp by deregulating Sp1 binding. Taken together, luteolin inhibits EBV reactivation by repressing the promoter activities of Zp and Rp, suggesting luteolin is a potential dietary compound for prevention of virus infection.
Collapse
Affiliation(s)
- Chung-Chun Wu
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Chih-Yeu Fang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan; Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, 116, Taiwan
| | - Hui-Yu Hsu
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Yen-Ju Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Sheng-Ping Chou
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Sheng-Yen Huang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Yu-Jhen Cheng
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Su-Fang Lin
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Yao Chang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Ching-Hwa Tsai
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jen-Yang Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan; Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
3
|
Marshall B, Mo J, Covar J, Atherton SS, Zhang M. Decrease of murine cytomegalovirus-induced retinitis by intravenous delivery of immediate early protein-3-specific siRNA. Invest Ophthalmol Vis Sci 2014; 55:4151-7. [PMID: 24906861 DOI: 10.1167/iovs.14-14375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Retinitis induced by both human and murine cytomegaloviruses following immunosuppression is characterized by progressive loss of retinal architecture, due to necrosis of virus-infected cells as well as widespread apoptosis of uninfected bystander cells. Because small inhibitory RNA molecules (siRNA) can reduce murine cytomegalovirus (MCMV) gene expression and thereby inhibit virus replication in vitro, we tested siRNAs directed against MCMV immediate early protein-3 (IE-3) to determine if MCMV-induced retinitis could be alleviated in vivo. METHODS Immunosuppressed Balb/c mice (2.0 mg methylprednisolone acetate every 3 days beginning on day -2) were infected with 5 × 10(3) pfu of the K181 strain of MCMV via the supraciliary route. At day 2 post infection, mice were treated with various doses of IE-3-specific siRNA ranging from 0.1 nmol to 10 nmol, in a volume of 20 μL PBS via tail vein injection. Injected eyes were collected at various times post inoculation and subjected to plaque assay for virus titer, MCMV antigen staining, H&E staining, TUNEL assay, and Western blot for MCMV IE-3 protein. RESULTS Small but significant amounts of fluorescently labeled IE-3-specific siRNA localized to the RPE layer 48 hours after intravenous injection. IE-3-specific siRNA significantly reduced virus titers at all concentrations tested (ranging from 0.1 nmol to 10 nmol), but the most potent effect of siRNA was observed at a dose of 1 nmol. We also observed that IE-3-specific siRNA produced a substantial decrease in MCMV titers and a substantial reduction in bystander cell apoptosis over the time course of virus infection. CONCLUSIONS Systemic administration of IE-3-specific siRNA could alleviate MCMV retinitis by inhibiting virus replication and subsequent death of uninfected retinal cells.
Collapse
Affiliation(s)
- Brendan Marshall
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, Georgia, United States
| | - Juan Mo
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, Georgia, United States
| | - Jason Covar
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, Georgia, United States
| | - Sally S Atherton
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, Georgia, United States
| | - Ming Zhang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, Georgia, United States
| |
Collapse
|
4
|
Cui H, Xu B, Wu T, Xu J, Yuan Y, Gu Q. Potential antiviral lignans from the roots of Saururus chinensis with activity against Epstein-Barr virus lytic replication. JOURNAL OF NATURAL PRODUCTS 2014; 77:100-10. [PMID: 24359277 DOI: 10.1021/np400757k] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Epstein-Barr virus (EBV) is a member of the γ-herpes virus subfamily and has been implicated in the pathogenesis of several human malignancies. Bioassay-guided fractionation was conducted on an EtOAc-soluble extract of the roots of Saururus chinensis and monitored using an EBV lytic replication assay. This led to the isolation of 19 new (1-19) and nine known (20-28) lignans. The absolute configurations of the new lignans were established by Mosher's ester, ECD, and computational methods. Eight lignans, including three sesquineolignans (19, 23, and 24) and five dineolignans (3, 4, 26, 27, and 28), exhibited inhibitory effects toward EBV lytic replication with EC50 values from 1.09 to 7.55 μM and SI values from 3.3 to 116.4. In particular, manassantin B (27) exhibited the most promising inhibition, with an EC50 of 1.72 μM, low cytotoxicity, CC50 > 200 μM, and SI > 116.4. This is the first study demonstrating that lignans possess anti-EBV lytic replication activity.
Collapse
Affiliation(s)
- Hui Cui
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | | | | | | | | | | |
Collapse
|
5
|
Huang SY, Fang CY, Wu CC, Tsai CH, Lin SF, Chen JY. Reactive oxygen species mediate Epstein-Barr virus reactivation by N-methyl-N'-nitro-N-nitrosoguanidine. PLoS One 2013; 8:e84919. [PMID: 24376853 PMCID: PMC3869928 DOI: 10.1371/journal.pone.0084919] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/20/2013] [Indexed: 12/15/2022] Open
Abstract
N-nitroso compounds (NOCs) and Epstein-Barr virus (EBV) reactivation have been suggested to play a role in the development of nasopharyngeal carcinoma (NPC). Although chemicals have been shown to be a risk factor contributing to the carcinogenesis of NPC, the underlying mechanism is not fully understood. We demonstrated recently that N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) enhances the genomic instability and tumorigenicity of NPC cells via induction of EBV reactivation. However, the mechanisms that trigger EBV reactivation from latency remain unclear. Here, we address the role of ROS in induction of EBV reactivation under MNNG treatment. EBV reactivation was induced in over 70% of EBV-positive NA cells and the promoter of Rta (Rp) was activated after MNNG treatment. Inhibitor experiments revealed ATM, p38 MAPK and JNK were activated by ROS and involved in MNNG-induced EBV reactivation. Significantly, ROS scavengers N-acetyl-L-cysteine (NAC), catalase and reduced glutathione inhibited EBV reactivation under MNNG and H₂O₂ treatment, suggesting ROS mediate EBV reactivation. The p53 was essential for EBV reactivation and the Rp activation by MNNG. Moreover, the p53 was phosphorylated, translocated into nucleus, and bound to Rp following ROS stimulation. The results suggest ROS play an important role in initiation of EBV reactivation by MNNG through a p53-dependent mechanism. Our findings demonstrate novel signaling mechanisms used by NOCs to induce EBV reactivation and provide a novel insight into NOCs link the EBV reactivation in the contribution to the development of NPC. Notably, this study indicates that antioxidants might be effective for inhibiting N-nitroso compound-induced EBV reactivation and therefore could be promising preventive and therapeutic agents for EBV reactivation-associated malignancies.
Collapse
Affiliation(s)
- Sheng-Yen Huang
- Graduate Program of Biotechnology in Medicine of National Tsing Hua University and National Health Research Institutes, Hsinchu, Taiwan
- Institute of Biotechnology, Department of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Chih-Yeu Fang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Chung-Chun Wu
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Ching-Hwa Tsai
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Su-Fang Lin
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Jen-Yang Chen
- Graduate Program of Biotechnology in Medicine of National Tsing Hua University and National Health Research Institutes, Hsinchu, Taiwan
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan
| |
Collapse
|
6
|
Lima RT, Seca H, Palmeira A, Fernandes MX, Castro F, Correia-da-Silva M, Nascimento MSJ, Sousa E, Pinto M, Vasconcelos MH. Sulfated small molecules targeting eBV in Burkitt lymphoma: from in silico screening to the evidence of in vitro effect on viral episomal DNA. Chem Biol Drug Des 2013; 81:631-44. [PMID: 23350710 DOI: 10.1111/cbdd.12109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 11/13/2012] [Accepted: 01/08/2013] [Indexed: 12/13/2022]
Abstract
Epstein-Barr virus (EBV) infects more than 90% of the world population. Following primary infection, Epstein-Barr virus persists in an asymptomatic latent state. Occasionally, it may switch to lytic infection. Latent EBV infection has been associated with several diseases, such as Burkitt lymphoma (BL). To date, there are no available drugs to target latent EBV, and the existing broad-spectrum antiviral drugs are mainly active against lytic viral infection. Thus, using computational molecular docking, a virtual screen of a library of small molecules, including xanthones and flavonoids (described with potential for antiviral activity against EBV), was carried out targeting EBV proteins. The more interesting molecules were selected for further computational analysis, and subsequently, the compounds were tested in the Raji (BL) cell line, to evaluate their activity against latent EBV. This work identified three novel sulfated small molecules capable of decreasing EBV levels in a BL. Therefore, the in silico screening presents a good approach for the development of new anti-EBV agents.
Collapse
Affiliation(s)
- Raquel T Lima
- Cancer Drug Resistance Group, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Chua HH, Chiu HY, Lin SJ, Weng PL, Lin JH, Wu SW, Tsai SC, Tsai CH. p53 and Sp1 cooperate to regulate the expression of Epstein-Barr viral Zta protein. J Med Virol 2012; 84:1279-88. [PMID: 22711357 DOI: 10.1002/jmv.23316] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Epstein-Barr virus (EBV) belongs to the gammaherpesvirus family. To produce infectious progeny, EBV reactivates from latency into the lytic cycle by expressing the determinative lytic transactivator, Zta. In the presence of histone deacetylase inhibitor (HDACi), p53 is a prerequisite for the initiation of the EBV lytic cycle by facilitating the expression of Zta. In this study, a serial mutational analysis of Zta promoter (Zp) indicated an important role for the ZID element in responding to HDACi induction and p53 binds to this ZID element together with Sp1, a universal transcription factor. Abolition of the DNA-binding ability of Sp1 reduces the inducibility of ZID by HDACi and also reduces the amount of p53 binding to ZID. Finally, it was shown that EBV in p53-positive-lymphoblastoid cell lines (LCLs) can enter into the lytic cycle spontaneously; however, knockdown of p53 in LCLs leads to retardation of EBV reactivation.
Collapse
Affiliation(s)
- Huey-Huey Chua
- College of Medicine, Graduate Institute of Microbiology, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Chou YC, Chen CL, Yeh TH, Lin SJ, Chen MR, Doong SL, Lu J, Tsai CH. Involvement of recepteur d'origine nantais receptor tyrosine kinase in Epstein-Barr virus-associated nasopharyngeal carcinoma and its metastasis. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1773-81. [PMID: 22974584 DOI: 10.1016/j.ajpath.2012.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 06/05/2012] [Accepted: 07/18/2012] [Indexed: 12/14/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is characteristic for its strong association with Epstein-Barr virus (EBV) and high metastatic rate. Recently, overexpressed recepteur d'origine nantais (RON) (MST1R), receptor tyrosine kinase has been reported in human cancers and tumor metastasis. Therefore, the role of RON in EBV-associated NPC and its metastasis was investigated. Here we show that RON was found in NPC but not in control tissues. A significant correlation of latent membrane protein 1 (LMP1) and RON expression was found in NPC (Pearson's χ(2) test; P = 0.0023). At the molecular level, LMP1 stimulates nuclear factor-κB binding to the RON promoter through its carboxyl-terminal activation region 1 to induce expression of RON. Knockdown of RON in cells expressing LMP1 significantly reverses LMP1-induced epithelial-mesenchymal transition and suppresses LMP1-induced cell migration and invasion. These results suggest an important role of RON in the tumorigenesis and metastasis of NPC and RON may be a novel therapeutic target for EBV-associated NPC.
Collapse
Affiliation(s)
- Ya-Ching Chou
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Wu CC, Chuang HY, Lin CY, Chen YJ, Tsai WH, Fang CY, Huang SY, Chuang FY, Lin SF, Chang Y, Chen JY. Inhibition of Epstein-Barr virus reactivation in nasopharyngeal carcinoma cells by dietary sulforaphane. Mol Carcinog 2012; 52:946-58. [PMID: 22641235 DOI: 10.1002/mc.21926] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 03/25/2012] [Accepted: 04/24/2012] [Indexed: 01/16/2023]
Abstract
Epstein-Barr virus (EBV) has been associated with several human malignancies including nasopharyngeal carcinoma (NPC). Reactivation of latent EBV has been considered to contribute to the carcinogenesis of NPC. Blocking the EBV lytic cycle has been shown effective in the treatment of EBV-associated diseases. We have searched for natural dietary compounds inhibiting EBV reactivation in NPC cells. Among them, sulforaphane (SFN) was found to be effective in the inhibition of EBV reactivation in latent EBV-positive NPC cells, NA and HA. SFN is a histone deacetylase (HDAC) inhibitor and has been recognized as an antioxidant and antitumor compound for chemoprevention. However, its antiviral effect is less well elucidated. In this study, after determination of the cytotoxicity of SFN on various epithelial cells, we showed that SFN treatment inhibits EBV reactivation, rather than induction, by detection of EBV lytic gene expression in EBV-positive NPC cells. We also determined that the number of cells supporting the EBV lytic cycle is decreased using immunofluorescence and flow cytometric analysis. Moreover, we have found that this inhibitory effect decreases virus production. To elucidate the inhibitory mechanism of SFN on the EBV lytic cycle, luciferase reporter assays were carried out on the Zta and Rta promoters. The results show that SFN inhibits transactivation activity of the EBV immediate-early gene Rta but not Zta. Together, our results suggest that SFN has the capability to inhibit EBV lytic cycle and the potential to be taken as a dietary compound for prevention of EBV reactivation.
Collapse
Affiliation(s)
- Chung-Chun Wu
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Shah PS, Schaffer DV. Antiviral RNAi: translating science towards therapeutic success. Pharm Res 2011; 28:2966-82. [PMID: 21826573 PMCID: PMC5012899 DOI: 10.1007/s11095-011-0549-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 07/25/2011] [Indexed: 01/07/2023]
Abstract
Viruses continuously evolve to contend with an ever-changing environment that involves transmission between hosts and sometimes species, immune responses, and in some cases therapeutic interventions. Given the high mutation rate of viruses relative to the timescales of host evolution and drug development, novel drug classes that are readily screened and translated to the clinic are needed. RNA interference (RNAi)-a natural mechanism for specific degradation of target RNAs that is conserved from plants to invertebrates and vertebrates-can potentially be harnessed to yield therapies with extensive specificity, ease of design, and broad application. In this review, we discuss basic mechanisms of action and therapeutic applications of RNAi, including design considerations and areas for future development in the field.
Collapse
Affiliation(s)
- Priya S. Shah
- Department of Chemical and Biolmolecular Engineering, University of California, Berkeley, California 94720 USA
| | - David V. Schaffer
- Department of Chemical and Biolmolecular Engineering, University of California, Berkeley, California 94720 USA
- Department of Bioengineering, University of California, Berkeley, California 94720 USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720 USA
| |
Collapse
|
11
|
Marshall B, Zhang M, Atherton SS. The effect of murine cytomegalovirus IE-3 specific shRNA is dependent on intragenic target site due to multiple transcription initiation sites. HERPESVIRIDAE 2011; 2:9. [PMID: 21923934 PMCID: PMC3192721 DOI: 10.1186/2042-4280-2-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 09/18/2011] [Indexed: 12/31/2022]
Abstract
BACKGROUND Murine cytomegalovirus (MCMV) is closely related to human cytomegalovirus (HCMV) which is responsible for a variety of diseases, including retinitis, in immunocompromised individuals. Small inhibitory RNA molecules directed against essential viral regulatory genes may prove clinically useful. METHODS Small hairpin RNAs (shRNAs) directed against the essential MCMV immediate early-3 gene (IE-3) were designed and tested in vitro at m.o.i.'s of 2 and 0.2 to determine if virus replication could be inhibited. RESULTS At m.o.i. = 2, a MCMV IE-3 specific shRNA specific for sequences at the beginning of exon 5 inhibited virus replication with a maximum decrease in virus titer of approximately two logs at day 5 p.i. Surprisingly, however, at m.o.i. = 0.2, the same shRNA enhanced virus replication. In the latter case, the main IE-3 product observed in infected cells was not the expected 88 kd full length IE-3 protein observed at high m.o.i. but rather a truncated 45 kd form of this protein. Rapid analysis of 5' cDNA ends (5' RACE) indicated that substantial differences exist in the transcript profile produced by the IE-3 gene at low and high m.o.i. early after infection and that multiple transcripts are produced under both conditions. One such transcript, which originated in exon 5 of the IE-3 gene, was located outside the region targeted by our shRNA and was the major transcript produced at low m.o.i. Targeting of this exon 5 transcript with a second shRNA resulted in inhibition of virus replication at both low and high m.o.i. CONCLUSIONS These studies indicate that IE-3 has a complex transcriptional profile and that shRNA targeting of this and other viral regulatory genes which produce multiple transcripts may have unexpected effects on virus replication.
Collapse
Affiliation(s)
- Brendan Marshall
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Georgia Health Sciences University, Augusta, GA 30912, USA.
| | | | | |
Collapse
|
12
|
Tung CP, Chang FR, Wu YC, Chuang DW, Hunyadi A, Liu ST. Inhibition of the Epstein–Barr virus lytic cycle by protoapigenone. J Gen Virol 2011; 92:1760-1768. [DOI: 10.1099/vir.0.031609-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Epstein–Barr virus (EBV) expresses two transcription factors, Rta and Zta, during the immediate–early stage of the lytic cycle to activate the transcription of early and late genes. This study finds that 0.31 mM protoapigenone from Thelypteris torresiana (Gaud.) inhibits the expression of EBV lytic proteins, including Rta, Zta, EA-D and VCA, in P3HR1 cells after lytic induction with 12-O-tetradecanoylphorbol-13-acetate and sodium butyrate. The lack of expression of EBV lytic proteins after protoapigenone treatment is attributed to the inhibition of the transactivation function of Zta because protoapigenone reduces the transactivation activity of Zta and Gal4–Zta, which contains the transactivation domain of Zta fused with Gal4. In contrast, protoapigenone does not affect the ability of Rta to activate a promoter that contains an Rta-response element, showing that the inhibition is unrelated to Rta. Furthermore, in a lactate dehydrogenase assay, protoapigenone is not toxic to P3HR1 cells at the concentrations that inhibit the function of Zta, showing that protoapigenone is valuable for studying the function of Zta and preventing EBV lytic proliferation.
Collapse
Affiliation(s)
- Chao-Ping Tung
- Department of Microbiology and Immunology, Chang-Gung University, Kwei-Shan 333, Taiwan, ROC
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan, ROC
| | - Yang-Chang Wu
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan, ROC
| | - Da-Wei Chuang
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan, ROC
| | - Attila Hunyadi
- Institute of Pharmacognosy, University of Szeged, Eotvos str. 6, H-6720 Szeged, Hungary
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan, ROC
| | - Shih-Tung Liu
- Department of Microbiology and Immunology, Chang-Gung University, Kwei-Shan 333, Taiwan, ROC
| |
Collapse
|
13
|
Requirement for LMP1-induced RON receptor tyrosine kinase in Epstein-Barr virus-mediated B-cell proliferation. Blood 2011; 118:1340-9. [PMID: 21659546 DOI: 10.1182/blood-2011-02-335448] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
EBV, an oncogenic human herpesvirus, can transform primary B lymphocytes into immortalized lymphoblastoid cell lines (LCLs) through multiple regulatory mechanisms. However, the involvement of protein tyrosine kinases in the infinite proliferation of B cells is not clear. In this study, we performed kinase display assays to investigate this subject and identified a specific cellular target, Recepteur d'Origine Nantais (RON) tyrosine kinase, expressed in LCLs but not in primary B cells. Furthermore, we found that latent membrane protein 1 (LMP1), an important EBV oncogenic protein, enhanced RON expression through its C-terminal activation region-1 (CTAR1) by promoting NF-κB binding to the RON promoter. RON knockdown decreased the proliferation of LCLs, and transfection with RON compensated for the growth inhibition caused by knockdown of LMP1. Immunohistochemical analysis revealed a correlation between LMP1 and RON expression in biopsies from posttransplantation lymphoproliferative disorder (PTLD), suggesting that LMP1-induced RON expression not only is essential for the growth of LCLs but also may contribute to the pathogenesis of EBV-associated PTLD. Our study is the first to reveal the impact of RON on the proliferation of transformed B cells and to suggest that RON may be a novel therapeutic target for EBV-associated lymphoproliferative diseases.
Collapse
|
14
|
Epstein-Barr virus Zta-induced immunomodulators from nasopharyngeal carcinoma cells upregulate interleukin-10 production from monocytes. J Virol 2011; 85:7333-42. [PMID: 21543473 DOI: 10.1128/jvi.00182-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
During lytic infection with Epstein-Barr virus (EBV), several viral lytic proteins function to evade immune recognition or to actively suppress immune cells. An EBV lytic transactivator, Zta, induces an immunosuppressive cytokine interleukin 10 (IL-10) in B cells, but whether it regulates IL-10 in the context of epithelial cells is unclear. In this study, we tested nasopharyngeal carcinoma (NPC) cell lines and found that Zta did not induce IL-10 in these epithelial cells. Interestingly, the conditioned medium of Zta-expressing NPC cells enhanced IL-10 production from monocytes. We further revealed that the IL-10-inducing effect involved at least two immunomodulators that were upregulated by Zta and secreted from NPC cells: granulocyte-macrophage colony-stimulating factor (GM-CSF) and prostaglandin E(2) (PGE(2)). Zta was recruited to and activated the GM-CSF promoter, thus upregulating GM-CSF expression. Zta also activated the promoter of cyclooxygenase-2 (COX-2), and Zta-induced COX-2 increased downstream PGE(2) production. Cotreatment with GM-CSF and PGE(2) synergistically induced IL-10 production from monocytes. The IL-10-inducing effect of the Zta-conditioned medium was reduced when GM-CSF or the COX-2/PGE(2) pathway was blocked. The conditioned medium of NPC cells with EBV lytic infection showed a similar increase of GM-CSF and PGE(2) levels as well as the IL-10-inducing effect on monocytes, and knockdown of Zta abolished all the effects. Therefore, through Zta-induced immunomodulators, EBV lytic infection in NPC cells can direct bystander monocytes to produce IL-10, which may be a novel way of EBV to promote local immunosuppression.
Collapse
|
15
|
Haq K, Brisbin JT, Thanthrige-Don N, Heidari M, Sharif S. Transcriptome and proteome profiling of host responses to Marek's disease virus in chickens. Vet Immunol Immunopathol 2010; 138:292-302. [PMID: 21067815 DOI: 10.1016/j.vetimm.2010.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kamran Haq
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | | | |
Collapse
|
16
|
Huang SY, Fang CY, Tsai CH, Chang Y, Takada K, Hsu TY, Chen JY. N-methyl-N'-nitro-N-nitrosoguanidine induces and cooperates with 12-O-tetradecanoylphorbol-1,3-acetate/sodium butyrate to enhance Epstein-Barr virus reactivation and genome instability in nasopharyngeal carcinoma cells. Chem Biol Interact 2010; 188:623-34. [PMID: 20869957 DOI: 10.1016/j.cbi.2010.09.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 09/16/2010] [Accepted: 09/17/2010] [Indexed: 12/31/2022]
Abstract
Seroepidemiological studies implicate a correlation between Epstein-Barr virus (EBV) reactivation and the development of nasopharyngeal carcinoma (NPC). Moreover, N-nitroso compounds are known chemical carcinogens in preserved foodstuffs and cigarettes and have been implicated as risk factors contributing to the development of NPC. Here, NPC cell lines latently infected with EBV, NA and HA, and the corresponding EBV-negative NPC cell lines, NPC-TW01 and HONE-1, were used as the model system in this study. We demonstrate that the reactivation of EBV increases with increasing concentrations of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). MNNG at a single non-toxic concentration (0.1μg/ml) did not induce discernible reactivation of EBV, but repeated treatment with this concentration of MNNG significantly induced viral reactivation. Furthermore, low dose MNNG (0.1μg/ml) had a synergistic effect with 12-O-tetradecanoylphorbol-1,3-acetate (TPA)/sodium butyrate (SB) (10ng/ml and 0.75mM, respectively) on EBV reactivation. Through promoter activity assay, MNNG was found to enhance the transcriptional activity of Rta on Rta and Zta promoters. Using siZta to block EBV reactivation, the concomitant induction of genome instability was diminished indicating that reactivation is critical for enhancing genome instability. Co-treatment with TPA/SB and MNNG markedly increased the levels of γH2AX and ROS formation in NPC cells, which may be responsible for the increase of genome instability. Our findings offer a possible mechanism by which N-nitroso compounds induce reactivation of EBV and contribute to malignant progression by enhancing genome instability in NPC cells.
Collapse
|
17
|
Lai HC, Hsiao JR, Chen CW, Wu SY, Lee CH, Su IJ, Takada K, Chang Y. Endogenous latent membrane protein 1 in Epstein-Barr virus-infected nasopharyngeal carcinoma cells attracts T lymphocytes through upregulation of multiple chemokines. Virology 2010; 405:464-73. [PMID: 20637487 DOI: 10.1016/j.virol.2010.06.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 06/14/2010] [Accepted: 06/22/2010] [Indexed: 10/19/2022]
Abstract
Tumor-infiltrating T lymphocytes are considered to facilitate development of Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC), but how EBV in NPC tumor cells directs T cell infiltration remains unclear. Here we compare EBV-infected NPC cells with and without spontaneous expression of viral latent membrane protein 1 (LMP1) and find that culture supernatants of LMP1-positive NPC cells exert enhanced chemoattraction to primary T cells. Knockdown of endogenous LMP1 in the cells suppresses the chemotactic activity. Endogenous LMP1 in NPC cells upregulates multiple chemokines, among which MIP-1alpha, MIP-1beta and IL-8 contribute to T cell chemotaxis. We further reveal that LMP1-induced production of MIP-1alpha and MIP-1beta in NPC cells requires not only two carboxyl-terminal activation regions of LMP1 but also their downstream NF-kappaB and JNK pathways. This study corroborates that endogenous LMP1 in EBV-infected NPC cells induces multiple chemokines to promote T cell recruitment and perhaps other pathogenic events in NPC.
Collapse
Affiliation(s)
- Hsiao-Ching Lai
- Division of Infectious Diseases, National Health Research Institutes, Tainan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Wang JT, Chuang YC, Chen KL, Lu CC, Doong SL, Cheng HH, Chen YL, Liu TY, Chang Y, Han CH, Yeh SW, Chen MR. Characterization of Epstein-Barr virus BGLF4 kinase expression control at the transcriptional and translational levels. J Gen Virol 2010; 91:2186-96. [PMID: 20444992 DOI: 10.1099/vir.0.019729-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The BGLF4 protein of Epstein-Barr virus (EBV) is a serine/threonine protein kinase that phosphorylates several viral and cellular substrates at cellular cyclin-dependent kinase target sites. BGLF4 is required for efficient viral DNA replication and release of mature virions. It also stimulates the transactivation activity of the immediate-early transactivator Zta (BZLF1) and suppresses the transactivation activities of BMRF1 and EBNA-2. This study aimed to characterize further the regulation of BGLF4 expression at the transcriptional and translational levels. It was shown that BGLF4 was expressed with early kinetics and reached maximal levels after DNA replication. The promoter activity of BGLF4 was upregulated mainly by the immediate-early transactivator Rta, rather than Zta, as revealed by Zta-specific short hairpin RNA in EBV-positive cells and by luciferase reporter assays. By rapid amplification of 5' cDNA ends, two major transcriptional start sites were identified at 201 and 255 nt upstream of the first in-frame ATG of BGLF4 in P3HR1 cells. An additional transcript initiated from -468 was detected in Akata cells. The translation initiation site of BGLF4 was confirmed by mutagenesis, in vitro translation and transient transfection. The translation regulatory effect mediated by the long 5'-untranslated region (5'UTR) of BGLF4 was demonstrated by dual reporter assays in 293T and EBV-positive NA cells. These results suggested that different promoter usage and 5'UTR-mediated translation enhancement may ensure the proper expression of BGLF4 at various stages of virus replication.
Collapse
Affiliation(s)
- Jiin-Tarng Wang
- Department of Microbiology, National Taiwan University, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Larrat S, Morand P, Bas A, Vigne S, Crance JM, Boyer V, Nicod S, Grossi L, Buisson M, Burmeister WP, Seigneurin JM, Germi R. Inhibition of Epstein–Barr virus replication by small interfering RNA targeting the Epstein–Barr virus protease gene. Antivir Ther 2009. [DOI: 10.1177/135965350901400508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background The Epstein–Barr virus (EBV) protease (PR), coded by the BVRF2 gene, is essential for the maturation of the viral capsid and viral DNA packaging during the late stage of the EBV lytic cycle. Like the other herpesvirus serine PRs, EBV PR could be a target for the inhibition of EBV replication. To date, no data have been reported on the inhibition of EBV PR messenger RNA (mRNA) by small interfering RNA (siRNA). Methods In this study, siRNAs targeting EBV PR were delivered to the epithelial 293 cell line stably transfected with the complete B95-8 EBV episome. EBV DNA and PR mRNA were quantified by real-time PCR in cells and supernatant, protein expression was assessed by immunoblotting, and production of EBV infectious particles in the culture medium was measured by Raji cell superinfection. Results The EBV PR mRNA within the cells was reduced by 73%, the PR protein by 35% and the amount of virus in the cell supernatant was drastically decreased by 86% or 95%, depending on the method. Conclusions The strong effect of the siRNA targeting EBV PR on EBV replication attests to the crucial role played by EBV PR in the production of infectious particles and suggests that targeting this enzyme can be a new strategy against EBV-associated diseases where virus replication occurs.
Collapse
Affiliation(s)
- Sylvie Larrat
- UMI 3265, UJF-EMBL-CNRS, Unit of Virus Host Cell Interactions, Grenoble, France
- Département de Virologie, Centre Hospitalier Universitaire, Grenoble, France
| | - Patrice Morand
- UMI 3265, UJF-EMBL-CNRS, Unit of Virus Host Cell Interactions, Grenoble, France
- Département de Virologie, Centre Hospitalier Universitaire, Grenoble, France
| | - Ariane Bas
- UMI 3265, UJF-EMBL-CNRS, Unit of Virus Host Cell Interactions, Grenoble, France
- Département de Virologie, Centre Hospitalier Universitaire, Grenoble, France
| | - Solenne Vigne
- Unité de Virologie, Centre de Recherches du Service de Santé des Armées, Grenoble, France
| | - Jean-Marc Crance
- Unité de Virologie, Centre de Recherches du Service de Santé des Armées, Grenoble, France
| | - Véronique Boyer
- UMI 3265, UJF-EMBL-CNRS, Unit of Virus Host Cell Interactions, Grenoble, France
| | - Sandrine Nicod
- Département de Virologie, Centre Hospitalier Universitaire, Grenoble, France
| | - Laurence Grossi
- UMI 3265, UJF-EMBL-CNRS, Unit of Virus Host Cell Interactions, Grenoble, France
| | - Marlyse Buisson
- UMI 3265, UJF-EMBL-CNRS, Unit of Virus Host Cell Interactions, Grenoble, France
- Département de Virologie, Centre Hospitalier Universitaire, Grenoble, France
| | - Wim P Burmeister
- UMI 3265, UJF-EMBL-CNRS, Unit of Virus Host Cell Interactions, Grenoble, France
| | - Jean-Marie Seigneurin
- UMI 3265, UJF-EMBL-CNRS, Unit of Virus Host Cell Interactions, Grenoble, France
- Département de Virologie, Centre Hospitalier Universitaire, Grenoble, France
| | - Raphaële Germi
- UMI 3265, UJF-EMBL-CNRS, Unit of Virus Host Cell Interactions, Grenoble, France
- Département de Virologie, Centre Hospitalier Universitaire, Grenoble, France
| |
Collapse
|
20
|
Fang CY, Lee CH, Wu CC, Chang YT, Yu SL, Chou SP, Huang PT, Chen CL, Hou JW, Chang Y, Tsai CH, Takada K, Chen JY. Recurrent chemical reactivations of EBV promotes genome instability and enhances tumor progression of nasopharyngeal carcinoma cells. Int J Cancer 2009; 124:2016-25. [PMID: 19132751 DOI: 10.1002/ijc.24179] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is an endemic malignancy prevalent in South East Asia. Epidemiological studies have associated this disease closely with Epstein-Barr virus (EBV) infection. Previous studies also showed that EBV reactivation is implicated in the progression of NPC. Thus, we proposed that recurrent reactivations of EBV may be important for its pathogenic role. In this study, NPC cell lines latently infected with EBV, NA and HA, and the corresponding EBV-negative NPC cell lines, NPC-TW01 (TW01) and HONE-1, were treated with 12-O-tetradecanoylphorbol-13-acetate (TPA) and sodium n-butyrate (SB) for lytic cycle induction. A single treatment with TPA/SB revealed that DNA double-strand breaks and formation of micronuclei (a marker for genome instability) were associated with EBV reactivation in NA and HA cells. Examination of EBV early genes had identified several lytic proteins, particularly EBV DNase, as potent activators that induced DNA double-strand breaks and contribute to genome instability. Recurrent reactivations of EBV in NA and HA cells resulted in a marked increase of genome instability. In addition, the degree of chromosomal aberrations, as shown by chromosome structural variants and DNA copy-number alterations, is proportional to the frequency of TPA/SB-induced EBV reactivation. Whereas these DNA abnormalities were limited in EBV-negative TW01 cells with mock or TPA/SB treatment, and were few in mock-treated NA cells. The invasiveness and tumorigenesis assays also revealed a profound increase in both characteristics of the repeatedly reactivated NA cells. These results suggest that recurrent EBV reactivations may result in accumulation of genome instability and promote the tumor progression of NPC.
Collapse
Affiliation(s)
- Chih-Yeu Fang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lambeth LS, Zhao Y, Smith LP, Kgosana L, Nair V. Targeting Marek's disease virus by RNA interference delivered from a herpesvirus vaccine. Vaccine 2008; 27:298-306. [PMID: 18977264 DOI: 10.1016/j.vaccine.2008.10.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 09/26/2008] [Accepted: 10/02/2008] [Indexed: 10/21/2022]
Abstract
Live attenuated herpesvirus vaccines such as herpesvirus of turkey (HVT) have been used since 1970 for the control of Marek's disease (MD), a highly infectious lymphoproliferative disease of poultry. Despite the success of these vaccines in reducing losses from the disease, Marek's disease virus (MDV) strains have shown a continuing increase in virulence, presumably due to the inability of the current vaccines in preventing MDV replication. The highly specific and effective nature of RNA interference (RNAi) makes this technology particularly attractive for new antiviral strategies. In order to exploit the power of RNAi-mediated suppression of MDV replication in vivo delivered through existing vaccines, we engineered recombinant HVT expressing short hairpin RNA (shRNA) against MDV genes gB and UL29. The levels of protection induced by the RNAi-expressing HVT against virulent virus challenge were similar to the parent pHVT3 virus. However, chickens vaccinated with recombinant HVT expressing shRNA showed moderate reduction of challenge virus replication in blood and feather samples. Delivery of RNAi-based gene silencing through live attenuated vaccines for reducing replication of pathogenic viruses is a novel approach for the control of infectious diseases.
Collapse
Affiliation(s)
- Luke S Lambeth
- Division of Microbiology, Institute for Animal Health, High Street, Compton, Berkshire RG20 7NN, United Kingdom
| | | | | | | | | |
Collapse
|
22
|
Malizia AP, Keating DT, Smith SM, Walls D, Doran PP, Egan JJ. Alveolar epithelial cell injury with Epstein-Barr virus upregulates TGFbeta1 expression. Am J Physiol Lung Cell Mol Physiol 2008; 295:L451-L460. [PMID: 18621908 DOI: 10.1152/ajplung.00376.2007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a refractory and lethal interstitial lung disease characterized by alveolar epithelial cells apoptosis, fibroblast proliferation, and ECM protein deposition. Epstein-Barr virus (EBV) has previously been localized to alveolar epithelial cells of IPF patients and is associated with a poor prognosis. In this study, we utilized a microarray-based differential gene expression analysis strategy to identify molecular drivers of EBV-associated lung fibrosis. Two cell lines, primary human alveolar epithelial cells type 2 and A549 cells, were infected with EBV. EBV lytic phase induction increased active and total transforming growth factor-beta1 (TGFbeta1) transcript expression in association with reduced cell proliferation and increased caspase 3/7 activity. Exposing EBV-infected cells to ganciclovir resulted in TGFbeta1 deregulation and reduced expression of EBV early response genes, BRLF1 and BZLF1. We targeted the BRLF1 and BZLF1 gene products, Rta and Zta, by silencing RNA, and this resulted in the normalization of TGFbeta1 transcript and cell proliferation levels. Our study using a viral cell line model complements existing human and animal model data and further provides evidence to suggest that viral epithelial cell injury may play a role in IPF.
Collapse
Affiliation(s)
- Andrea P Malizia
- Advanced Lung Disease and Lung Transplant Program, Mater Misericordiae Univ. Hospital, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
23
|
Chen M, Payne WS, Hunt H, Zhang H, Holmen SL, Dodgson JB. Inhibition of Marek's disease virus replication by retroviral vector-based RNA interference. Virology 2008; 377:265-72. [DOI: 10.1016/j.virol.2008.03.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 02/07/2008] [Accepted: 03/15/2008] [Indexed: 10/21/2022]
|
24
|
Lee HH, Chang SS, Lin SJ, Chua HH, Tsai TJ, Tsai K, Lo YC, Chen HC, Tsai CH. Essential role of PKCdelta in histone deacetylase inhibitor-induced Epstein-Barr virus reactivation in nasopharyngeal carcinoma cells. J Gen Virol 2008; 89:878-883. [PMID: 18343827 DOI: 10.1099/vir.0.83533-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Histone deactylase inhibitors (HDACi) are common chemotherapeutic agents that stimulate Epstein-Barr virus (EBV) reactivation; the detailed mechanism remains obscure. In this study, it is demonstrated that PKCdelta is required for induction of the EBV lytic cycle by HDACi. Inhibition of PKCdelta abrogates HDACi-mediated transcriptional activation of the Zta promoter and downstream lytic gene expression. Nuclear translocation of PKCdelta is observed following HDACi stimulation and its overexpression leads to progression of the EBV lytic cycle. Our study suggests that PKCdelta is a crucial mediator of EBV reactivation and provides a novel insight to study the regulation of the EBV lytic cycle.
Collapse
Affiliation(s)
- Heng-Huan Lee
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan, ROC
| | - Shih-Shin Chang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan, ROC
| | - Sue-Jane Lin
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Huey-Huey Chua
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan, ROC
| | - Tze-Jiun Tsai
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan, ROC
| | - Kevin Tsai
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan, ROC
| | - You-Chang Lo
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan, ROC
| | - Hong-Chen Chen
- Department of Life Science and Graduate Institute of Biomedical Sciences, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan, ROC
| | - Ching-Hwa Tsai
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan, ROC
| |
Collapse
|
25
|
Lu CC, Chen YC, Wang JT, Yang PW, Chen MR. Xeroderma pigmentosum C is involved in Epstein Barr virus DNA replication. J Gen Virol 2008; 88:3234-3243. [PMID: 18024891 DOI: 10.1099/vir.0.83212-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cellular mismatch and base-excision repair machineries have been shown to be involved in Epstein-Barr Virus (EBV) lytic DNA replication. We report here that nucleotide-excision repair (NER) may also play an important role in EBV lytic DNA replication. Firstly, the EBV BGLF4 kinase interacts with xeroderma pigmentosum C (XPC), the critical DNA damage-recognition factor of NER, in yeast and in vitro, as demonstrated by yeast two-hybrid and glutathione S-transferase pull-down assays. Simultaneously, XPC was shown, by indirect immunofluorescence and co-immunoprecipitation assays, to interact and colocalize with BGLF4 in EBV-positive NA cells undergoing lytic viral replication. In addition, the efficiency of EBV DNA replication was reduced about 30-40 % by an XPC small interfering RNA. Expression of BGLF4 enhances cellular DNA-repair activity in p53-defective H1299/bcl2 cells in a host-cell reactivation assay. This enhancement was not observed in the XPC-mutant cell line XP4PA-SV unless complemented by ectopic XPC, suggesting that BGLF4 may stimulate DNA repair in an XPC-dependent manner. Overall, we suggest that the interaction of BGLF4 and XPC may be involved in DNA replication and repair and thereby enhance the efficiency of viral DNA replication.
Collapse
Affiliation(s)
- Chih-Chung Lu
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan 100, PR China
| | - Yi-Chun Chen
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan 100, PR China
| | - Jiin-Tarng Wang
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan 100, PR China
| | - Pei-Wen Yang
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan 100, PR China
| | - Mei-Ru Chen
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan 100, PR China
| |
Collapse
|
26
|
Yu X, Wang Z, Mertz JE. ZEB1 regulates the latent-lytic switch in infection by Epstein-Barr virus. PLoS Pathog 2007; 3:e194. [PMID: 18085824 PMCID: PMC2134958 DOI: 10.1371/journal.ppat.0030194] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 10/30/2007] [Indexed: 01/12/2023] Open
Abstract
The immediate-early (IE) BZLF1 gene of Epstein-Barr virus (EBV) regulates the switch between latent and lytic infection by EBV. We previously showed that the cellular transcription factor ZEB1 binds to a sequence element, ZV, located at nt -17 to -12 relative to the transcription initiation site of the BZLF1 promoter, Zp, repressing transcription from Zp in a transient transfection assay. Here, we report the phenotype in the context of a whole EBV genome of a variant of EBV strain B95.8 containing a 2-bp substitution mutation in the ZV element of Zp that reduced, but did not eliminate, ZEB1 binding to Zp. Strikingly, epithelial 293 cells latently infected with the EBV ZV mutant spontaneously produced IE-, early-, and late-gene products and infectious virus, while wild-type (WT)-infected 293 cells did not and have never been reported to do so. Furthermore, treatment with the chemical inducers sodium butyrate and 12-O-tetradecanoyl-phorbol-13-acetate (TPA) led to an additional order-of-magnitude production of infectious virus in the ZV mutant-infected 293 cells, but still no virus in the WT-infected 293 cells. Similarly, ZV mutant-infected Burkitt's lymphoma BJAB cells accumulated at least 10-fold more EBV IE mRNAs than did WT-infected BJAB cells, with TPA or sodium butyrate treatment leading to an additional 5- to 10-fold accumulation of EBV IE mRNAs in the ZV mutant-infected cells. Thus, we conclude that ZEB1 binding to Zp plays a central role in regulating the latent-lytic switch in EBV-infected epithelial and B cells, suggesting ZEB1 as a target for lytic-induction therapies in EBV-associated malignancies.
Collapse
Affiliation(s)
- Xianming Yu
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Zhenxun Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Janet E Mertz
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| |
Collapse
|
27
|
Ballout M, Germi R, Fafi-Kremer S, Guimet J, Barguès G, Seigneurin JM, Morand P. Real-time quantitative PCR for assessment of antiviral drug effects against Epstein-Barr virus replication and EBV late mRNA expression. J Virol Methods 2007; 143:38-44. [PMID: 17368820 DOI: 10.1016/j.jviromet.2007.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 02/02/2007] [Accepted: 02/07/2007] [Indexed: 11/16/2022]
Abstract
This study assesses the ability of quantitative real-time PCR to measure the effects of virus DNA polymerase inhibitors on EBV DNA and late mRNAs syntheses in EBV-producing cell lines. In-house real-time quantitative PCRs were used to measure EBV DNA (thymidine kinase) and mRNAs (BLLF1 gene/gp350/220, BVRF2 gene/protease) in P3HR-1 and B95-8 cells induced for EBV production by PMA and exposed to ganciclovir, cidofovir and foscarnet. The calculated 50% effective concentrations (EC(50)) for viral DNA replication inhibition in P3HR-1 cells after 7 days of drug exposure were 0.28+/-0.06, 0.29+/-0.01 and 13.6+/-0.17 microg/mL for ganciclovir, cidofovir and foscarnet, respectively. The EC(50) for B95-8 cells were 0.44+/-0.02, 0.70+/-0.06 and 46.8+/-0.5 microg/mL, respectively. The quantitation of the late viral mRNAs showed a decrease of 79-89% in the mRNA amount after 4 days of antiviral treatment. Nevertheless, a substantial amount of mRNA still remained detectable after drug exposure. The real-time PCR is an improvement in the attempt to simplify EBV DNA-quantitation for antiviral assays. The quantitation of late mRNA does not appear as more informative than DNA quantitation for the assessment of the DNA polymerase inhibitor activity, but it may be useful to assess the antiviral activity of drugs acting by another mechanism.
Collapse
Affiliation(s)
- Mirvat Ballout
- Laboratoire de Virologie Moléculaire et Structurale, CNRS FRE 2854, Université Joseph Fourier and Centre Hospitalo-Universitaire, BP 217, 38043 Grenoble Cedex 09, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Chua HH, Lee HH, Chang SS, Lu CC, Yeh TH, Hsu TY, Cheng TH, Cheng JT, Chen MR, Tsai CH. Role of the TSG101 gene in Epstein-Barr virus late gene transcription. J Virol 2006; 81:2459-71. [PMID: 17182691 PMCID: PMC1865947 DOI: 10.1128/jvi.02289-06] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Rta, an Epstein-Barr virus (EBV)-encoded immediate-early protein, governs the reactivation of the viral lytic program by transactivating a cascade of lytic gene expression. Cellular transcription factors such as Sp1, ATF2, E2F, and Akt have been demonstrated to mediate Rta transactivation of lytic genes. We report herein that Rta associates with another potent transcription factor, tumor susceptibility gene 101 (TSG101), to promote the activation of EBV late genes. Results from an EBV cDNA array reveal that depletion of TSG101 by siRNA potently inhibits the transcription of five Rta-responsive EBV late genes, BcLF1, BDLF3, BILF2, BLLF1, and BLRF2. Depletion of TSG101 impairs the Rta transactivation of these late promoters severely. Moreover, a concordant augmentation of Rta transactivating activity is observed when TSG101 is overexpressed following ectopic transfection. Mechanistically, Rta interaction with TSG101 causes the latter to accumulate principally in the nuclei, wherein the proteins colocalize and are recruited to the viral promoters. Of note, TSG101 is crucial for the efficient binding of Rta to these late promoters. As a result, cells with defective TSG101 fail to express late viral proteins, leading to a decrease in the yield of virus particles. Thus, the contribution of TSG101 to Rta-mediated late gene activation is of great importance for completion of the EBV productive lytic cycle. These observations consolidate a role for TSG101 in the replication of EBV, a DNA virus, that differs from what is observed for RNA viruses, where TSG101 aids mainly in the endosomal sorting of enveloped late viral proteins for assembly at the plasma membrane.
Collapse
MESH Headings
- Base Sequence
- Cell Line, Tumor
- DNA, Viral/genetics
- DNA, Viral/metabolism
- DNA-Binding Proteins/antagonists & inhibitors
- DNA-Binding Proteins/genetics
- Endosomal Sorting Complexes Required for Transport
- Epstein-Barr Virus Infections/genetics
- Epstein-Barr Virus Infections/metabolism
- Epstein-Barr Virus Infections/virology
- Genes, Viral
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/pathogenicity
- Herpesvirus 4, Human/physiology
- Humans
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/metabolism
- Promoter Regions, Genetic
- RNA, Small Interfering/genetics
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/genetics
- Transcription, Genetic
- Transcriptional Activation
- Ubiquitin-Conjugating Enzymes/metabolism
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Virus Replication
Collapse
Affiliation(s)
- Huey-Huey Chua
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, No. 1 Jen-Ai Road 1st section, Taipei 10051, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lu CC, Huang HT, Wang JT, Slupphaug G, Li TK, Wu MC, Chen YC, Lee CP, Chen MR. Characterization of the uracil-DNA glycosylase activity of Epstein-Barr virus BKRF3 and its role in lytic viral DNA replication. J Virol 2006; 81:1195-208. [PMID: 17108049 PMCID: PMC1797537 DOI: 10.1128/jvi.01518-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Uracil-DNA glycosylases (UDGs) of the uracil-N-glycosylase (UNG) family are the primary DNA repair enzymes responsible for removal of inappropriate uracil from DNA. Recent studies further suggest that the nuclear human UNG2 and the UDGs of large DNA viruses may coordinate with their DNA polymerase accessory factors to enhance DNA replication. Based on its amino acid sequence, the putative UDG of Epstein-Barr virus (EBV), BKRF3, belongs to the UNG family of proteins, and it was demonstrated previously to enhance oriLyt-dependent DNA replication in a cotransfection replication assay. However, the expression and enzyme activity of EBV BKRF3 have not yet been characterized. In this study, His-BKRF3 was expressed in bacteria and purified for biochemical analysis. Similar to the case for the Escherichia coli and human UNG enzymes, His-BKRF3 excised uracil from single-stranded DNA more efficiently than from double-stranded DNA and was inhibited by the purified bacteriophage PBS1 inhibitor Ugi. In addition, BKRF3 was able to complement an E. coli ung mutant in rifampin and nalidixic acid resistance mutator assays. The expression kinetics and subcellular localization of BKRF3 products were detected in EBV-positive lymphoid and epithelial cells by using BKRF3-specific mouse antibodies. Expression of BKRF3 is regulated mainly by the immediate-early transcription activator Rta. The efficiency of EBV lytic DNA replication was slightly affected by BKRF3 small interfering RNA (siRNA), whereas cellular UNG2 siRNA or inhibition of cellular and viral UNG activities by expressing Ugi repressed EBV lytic DNA replication. Taking these results together, we demonstrate the UNG activity of BKRF3 in vitro and in vivo and suggest that UNGs may participate in DNA replication or repair and thereby promote efficient production of viral DNA.
Collapse
Affiliation(s)
- Chih-Chung Lu
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Silencing gene expression through a process known as RNA interference (RNAi) has been known in the plant world for many years. In recent years, knowledge of the prevalence of RNAi and the mechanism of gene silencing through RNAi has started to unfold. It is now believed that RNAi serves in part as an innate response against invading viral pathogens and, indeed, counter silencing mechanisms aimed at neutralizing RNAi have been found in various viral pathogens. During the past few years, it has been demonstrated that RNAi, induced by specifically designed double‐stranded RNA (dsRNA) molecules, can silence gene expression of human viral pathogens both in acute and chronic viral infections. Furthermore, it is now apparent that in in vitro and in some in vivo models, the prospects for this technology in developing therapeutic applications are robust. However, many key questions and obstacles in the translation of RNAi into a potential therapeutic platform still remain, including the specificity and longevity of the silencing effect, and, most importantly, the delivery of the dsRNA that induces the system. It is expected that for the specific examples in which the delivery issue could be circumvented or resolved, RNAi may hold promise for the development of gene‐specific therapeutics. Copyright © 2006 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mali Ketzinel‐Gilad
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Yosef Shaul
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eithan Galun
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| |
Collapse
|
31
|
Chang Y, Lee HH, Chen YT, Lu J, Wu SY, Chen CW, Takada K, Tsai CH. Induction of the early growth response 1 gene by Epstein-Barr virus lytic transactivator Zta. J Virol 2006; 80:7748-55. [PMID: 16840354 PMCID: PMC1563714 DOI: 10.1128/jvi.02608-05] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Early growth response 1 (Egr-1) is a cellular transcription factor involved in diverse biologic functions. Egr-1 has been associated with Epstein-Barr virus (EBV) infection, but it is still unknown whether any EBV protein regulates Egr-1 expression. In this study, we first showed that EBV reactivation is involved in upregulation of Egr-1 and that Egr-1 can be induced by Zta, an EBV lytic transactivator. Zta not only binds to the Egr-1 promoter but also activates the ERK signaling pathway to trigger binding of Elk-1 to the Egr-1 promoter. In addition, knockdown of Egr-1 significantly reduces the spontaneous expression of Zta and Rta in EBV-infected 293 cells, suggesting that a positive-feedback network involving Egr-1 is required for EBV reactivation. This study also implies that Zta has the potential to affect expression of certain genes through Egr-1.
Collapse
Affiliation(s)
- Yao Chang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Number 1, Section 1 Jen-Ai Road, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The field of directed RNA interference (RNAi) has rapidly developed into a highly promising approach for specifically down regulating genes to alleviate disease pathology. This technology is especially well-suited to treating viral infections, and numerous examples now illustrate that a wide range of viruses can be inhibited with RNAi, both in vitro and in vivo. One principle that has arisen from this work is that antiviral RNAi therapies must be tailored to the unique life cycle of each pathogen, including the choice of delivery vehicle, route of administration, gene(s) targeted and regulation and duration of RNAi induction. Although effective strategies will be customized to each virus, all such therapies must overcome similar challenges. Importantly, treatment strategies must compensate for the inevitable fact that viral genome sequences evolve extremely rapidly, and computational and bioinformatics approaches may aid in the development of therapies that resist viral escape. Furthermore, all RNAi strategies involve the delivery of nucleic acids to target cells, and all will therefore benefit from the development of enhanced gene design and delivery technologies. Here, we review the substantial progress that has been made towards identifying effective antiviral RNAi targets and discuss strategies for translating these findings into effective clinical therapies.
Collapse
Affiliation(s)
- J N Leonard
- Department of Chemical Engineering and the Helen Wills Neuroscience Institute, University of California, Berkeley, CA USA
| | - D V Schaffer
- Department of Chemical Engineering and the Helen Wills Neuroscience Institute, University of California, Berkeley, CA USA
| |
Collapse
|
33
|
Petosa C, Morand P, Baudin F, Moulin M, Artero JB, Müller CW. Structural basis of lytic cycle activation by the Epstein-Barr virus ZEBRA protein. Mol Cell 2006; 21:565-72. [PMID: 16483937 DOI: 10.1016/j.molcel.2006.01.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 11/14/2005] [Accepted: 01/03/2006] [Indexed: 12/12/2022]
Abstract
Epstein-Barr virus (EBV) causes infectious mononucleosis and is linked to several human malignancies. EBV has a biphasic infection cycle consisting of a latent and a lytic, replicative phase. The switch from latent to lytic infection is triggered by the EBV immediate-early transcription factor ZEBRA (BZLF1, Zta, Z, EB1). We present the crystal structure of ZEBRA's DNA binding domain bound to an EBV lytic gene promoter element. ZEBRA exhibits a variant of the basic-region leucine zipper (bZIP) fold in which a C-terminal moiety stabilizes the coiled coil involved in dimer formation. The structure provides insights into ZEBRA's broad target site specificity, preferential activation of specific EBV promoters in their methylated state, ability to dimerize despite lacking a leucine zipper motif, and failure to heterodimerize with cellular bZIP proteins. The structure will allow for the design of new therapeutic agents that block activation of the EBV lytic cycle.
Collapse
Affiliation(s)
- Carlo Petosa
- European Molecular Biology Laboratory, Grenoble Outstation, B.P. 181, 38042 Grenoble Cedex 9, France
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
RNA interference (RNAi) is a sequence-specific gene-silencing mechanism that has been proposed to function as a defence mechanism of eukaryotic cells against viruses and transposons. RNAi was first observed in plants in the form of a mysterious immune response to viral pathogens. But RNAi is more than just a response to exogenous genetic material. Small RNAs termed microRNA (miRNA) regulate cellular gene expression programs to control diverse steps in cell development and physiology. The discovery that exogenously delivered short interfering RNA (siRNA) can trigger RNAi in mammalian cells has made it into a powerful technique for generating genetic knock-outs. It also raises the possibility to use RNAi technology as a therapeutic tool against pathogenic viruses. Indeed, inhibition of virus replication has been reported for several human pathogens including human immunodeficiency virus, the hepatitis B and C viruses and influenza virus. We reviewed the field of antiviral RNAi research in 2003 (Haasnoot et al. 2003), but many new studies have recently been published. In this review, we present a complete listing of all antiviral strategies published up to and including December 2004. The latest developments in the RNAi field and their antiviral application are described.
Collapse
Affiliation(s)
- Volker Erdmann
- Institute of Chemistry/Biochemistry, Free University Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Jan Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Scienes, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Jürgen Brosius
- Institute of Experimental Pathology, Molecular Neurobiology (ZMBE), University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany
| |
Collapse
|
35
|
van Rij RP, Andino R. The silent treatment: RNAi as a defense against virus infection in mammals. Trends Biotechnol 2006; 24:186-93. [PMID: 16503061 DOI: 10.1016/j.tibtech.2006.02.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 11/25/2005] [Accepted: 02/13/2006] [Indexed: 12/22/2022]
Abstract
RNA interference (RNAi) is a mechanism for sequence-specific gene silencing guided by double-stranded RNA. In plants and insects it is well established that RNAi is instrumental in the response to viral infections; whether RNAi has a similar function in mammals is under intense investigation. Recent studies to address this question have identified some unanticipated interactions between the RNAi machinery and mammalian viruses. Furthermore, introduction of virus-specific small interfering RNAs (siRNAs) into cells, thus programming the RNAi machinery to target viruses, is an effective therapeutic approach to inhibit virus replication in vitro and in animal models. Although several issues remain to be addressed, such as delivery and viral escape, these findings hold tremendous potential for the development of RNAi-based antiviral therapeutics.
Collapse
Affiliation(s)
- Ronald P van Rij
- Department of Microbiology and Immunology, University of California-San Francisco, San Francisco, CA 94143-2280, USA
| | | |
Collapse
|
36
|
Lu CC, Jeng YY, Tsai CH, Liu MY, Yeh SW, Hsu TY, Chen MR. Genome-wide transcription program and expression of the Rta responsive gene of Epstein–Barr virus. Virology 2006; 345:358-72. [PMID: 16298410 DOI: 10.1016/j.virol.2005.09.064] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 09/07/2005] [Accepted: 09/28/2005] [Indexed: 11/25/2022]
Abstract
Infection with Epstein-Barr virus (EBV) usually leads to a latent state in B lymphocytes. The virus can be reactivated through two viral transactivators, Zta and Rta, leading to a cascade of gene expression. An EBV DNA array was generated to analyze the pattern of transcription of the entire EBV genome under various conditions. Firstly, a complete set of temporal expression clusters of EBV genes was displayed by analyzing the array data of anti-IgG-induced Akata cells. In addition to assigning genes of unknown function to the various clusters, increasing expression of latent genes, including EBNA2, EBNA3A and EBNA 3C, was observed during virus replication. Secondly, gene expression independent of viral DNA replication was analyzed in PAA blocked Akata cells and in chemically induced Raji cells. Several genes with presumed late functions were found to be expressed with early kinetics and independent of viral DNA replication, suggesting possible novel functions for these genes. Finally, the EBV array was used to identify Rta responsive gene expression in Raji cells, and in the EBV-positive epithelial cells NA, using a Zta siRNA strategy. The array data were confirmed by Northern blotting, RT-PCR and reporter assays. All the information here thus provides a better understanding of the control of EBV lytic gene expression.
Collapse
Affiliation(s)
- Chih-Chung Lu
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Rd, 1st section, Taipei 100, Taiwan
| | | | | | | | | | | | | |
Collapse
|
37
|
Godfrey A, Anderson J, Papanastasiou A, Takeuchi Y, Boshoff C. Inhibiting primary effusion lymphoma by lentiviral vectors encoding short hairpin RNA. Blood 2005; 105:2510-8. [PMID: 15572586 DOI: 10.1182/blood-2004-08-3052] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AbstractWe use lentiviral-delivered RNA interference (RNAi) to inhibit the growth of a model of primary effusion lymphoma (PEL) in vitro and in vivo. RNAi is a phenomenon allowing the sequence-specific targeting and silencing of exogenous and endogenous gene expression and is being applied to inhibit viral replication both in vitro and in vivo. We show that silencing of genes believed to be essential for the Kaposi sarcoma-associated herpesvirus (KSHV) latent life cycle (the oncogenic cluster) has a varied effect in PEL cell lines cultured in vitro, however, concomitant silencing of the viral cyclin (vcyclin) and viral FLICE (Fas-associating protein with death domain-like interleukin-1β-converting enzyme) inhibitory protein (vFLIP) caused efficient apoptosis in all PEL lines tested. We demonstrate that in a murine model of PEL, lentiviral-mediated RNA interference both inhibits development of ascites and can act as a treatment for established ascites. We also show that the administered lentiviral vectors are essentially limited to the peritoneal cavity, which has advantages for safety and dosage in a therapeutic setting. This shows the use of lentiviral-mediated RNA interference in vivo as a potential therapeutic against a virally driven human cancer.
Collapse
Affiliation(s)
- Andrew Godfrey
- Cancer Research United Kingdom Viral Oncology Group, Wolfson Institute for Biomedical Research, UCL, Gower Street, London, United Kingdom WC1E 6BT
| | | | | | | | | |
Collapse
|
38
|
Hsu TY, Chang Y, Wang PW, Liu MY, Chen MR, Chen JY, Tsai CH. Reactivation of Epstein–Barr virus can be triggered by an Rta protein mutated at the nuclear localization signal. J Gen Virol 2005; 86:317-322. [PMID: 15659750 DOI: 10.1099/vir.0.80556-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rta, an immediate-early protein of Epstein–Barr virus (EBV), is a transcriptional activator that induces lytic gene expression and triggers virus reactivation. Being located predominantly in the nucleus, Rta can exert its transactivation function through either direct DNA binding or certain indirect mechanisms mediated by cellular signalling and other transcriptional factors. This study examined whether the subcellular localization of Rta was critical for the induction of target genes. First, 410KRKK413 was identified as a nuclear localization signal (NLS) of Rta. An Rta mutant with the NLS converted to 410AAAA413 showed cytoplasmic localization and failed to activate the promoter of BGLF5. Interestingly, ectopic expression of the Rta mutant still disrupted EBV latency in an epithelial cell line. Reporter gene assays revealed that the NLS-mutated Rta retained the ability to activate two lytic promoters, Zp and Rp, at a considerable level. Thus, the cytoplasmic Rta mutant could induce expression of endogenous Zta and Rta, triggering reactivation of EBV.
Collapse
Affiliation(s)
- Tsuey-Ying Hsu
- Department of Microbiology, College of Medicine, National Taiwan University, Room 722, Number 1, Section 1, Jen-Ai Road, Taipei, Taiwan
| | - Yao Chang
- Department of Microbiology, College of Medicine, National Taiwan University, Room 722, Number 1, Section 1, Jen-Ai Road, Taipei, Taiwan
| | - Pei-Wen Wang
- Department of Microbiology, College of Medicine, National Taiwan University, Room 722, Number 1, Section 1, Jen-Ai Road, Taipei, Taiwan
| | - Mei-Ying Liu
- Center of General Education, National Taipei College of Nursing, Taipei, Taiwan
| | - Mei-Ru Chen
- Department of Microbiology, College of Medicine, National Taiwan University, Room 722, Number 1, Section 1, Jen-Ai Road, Taipei, Taiwan
| | - Jen-Yang Chen
- Extramural Research Affairs Department, National Health Research Institute, Taipei, Taiwan
- Department of Microbiology, College of Medicine, National Taiwan University, Room 722, Number 1, Section 1, Jen-Ai Road, Taipei, Taiwan
| | - Ching-Hwa Tsai
- Department of Microbiology, College of Medicine, National Taiwan University, Room 722, Number 1, Section 1, Jen-Ai Road, Taipei, Taiwan
| |
Collapse
|
39
|
Chang Y, Lee HH, Chang SS, Hsu TY, Wang PW, Chang YS, Takada K, Tsai CH. Induction of Epstein-Barr virus latent membrane protein 1 by a lytic transactivator Rta. J Virol 2004; 78:13028-36. [PMID: 15542654 PMCID: PMC525024 DOI: 10.1128/jvi.78.23.13028-13036.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Latent membrane protein 1 (LMP1) of Epstein-Barr virus (EBV) is a transforming protein that affects multiple cell signaling pathways and contributes to EBV-associated oncogenesis. LMP1 can be expressed in some states of EBV latency, and significant induction of full-length LMP1 is also observed frequently during virus reactivation into the lytic cycle. It is still unknown how LMP1 expression is regulated during the lytic stage and whether any EBV lytic protein is involved in the induction of LMP1. In this study, we first identified that LMP1 expression is associated with the spontaneous virus reactivation in EBV-infected 293 cells and that its expression is a downstream event of the lytic cycle. We further found that LMP1 can be induced by ectopic expression of Rta, an EBV immediate-early lytic protein. The Rta-mediated LMP1 induction is independent of another immediate-early protein, Zta. Northern blotting and reverse transcription-PCR analysis revealed that Rta upregulates LMP1 at the RNA level. Reporter gene assays further demonstrated that Rta activates both the proximal and distal promoters of the LMP1 gene in EBV-negative cells. Both the amino and carboxyl termini of the Rta protein are required for the induction of LMP1. In addition, Rta transactivates LMP1 not only in epithelial cells but also in B-lymphoid cells. This study reveals a new mechanism to upregulate LMP1 expression, expanding the knowledge of LMP1 regulation in the EBV life cycle. Considering an equivalent case of Kaposi's sarcoma-associated herpesvirus, induction of a transforming membrane protein by a key lytic transactivator during virus reactivation is likely to be a conserved event for gammaherpesviruses.
Collapse
Affiliation(s)
- Yao Chang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Room 714, Number 1, Section 1, Jen-Ai Rd., Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|