1
|
Su CF, Das D, Muhammad Aslam M, Xie JQ, Li XY, Chen MX. Eukaryotic splicing machinery in the plant-virus battleground. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1793. [PMID: 37198737 DOI: 10.1002/wrna.1793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/24/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023]
Abstract
Plant virual infections are mainly caused by plant-virus parasitism which affects ecological communities. Some viruses are highly pathogen specific that can infect only specific plants, while some can cause widespread harm, such as tobacco mosaic virus (TMV) and cucumber mosaic virus (CMV). After a virus infects the host, undergoes a series of harmful effects, including the destruction of host cell membrane receptors, changes in cell membrane components, cell fusion, and the production of neoantigens on the cell surface. Therefore, competition between the host and the virus arises. The virus starts gaining control of critical cellular functions of the host cells and ultimately affects the fate of the targeted host plants. Among these critical cellular processes, alternative splicing (AS) is an essential posttranscriptional regulation process in RNA maturation, which amplify host protein diversity and manipulates transcript abundance in response to plant pathogens. AS is widespread in nearly all human genes and critical in regulating animal-virus interactions. In particular, an animal virus can hijack the host splicing machinery to re-organize its compartments for propagation. Changes in AS are known to cause human disease, and various AS events have been reported to regulate tissue specificity, development, tumour proliferation, and multi-functionality. However, the mechanisms underlying plant-virus interactions are poorly understood. Here, we summarize the current understanding of how viruses interact with their plant hosts compared with humans, analyze currently used and putative candidate agrochemicals to treat plant-viral infections, and finally discussed the potential research hotspots in the future. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Chang-Feng Su
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Debatosh Das
- College of Agriculture, Food and Natural Resources (CAFNR), Division of Plant Sciences & Technology, University of Missouri, Columbia, Missouri, USA
| | - Mehtab Muhammad Aslam
- College of Agriculture, Food and Natural Resources (CAFNR), Division of Plant Sciences & Technology, University of Missouri, Columbia, Missouri, USA
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ji-Qin Xie
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
| | - Xiang-Yang Li
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Mo-Xian Chen
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| |
Collapse
|
2
|
Abstract
Cacao swollen shoot virus causes cacao swollen shoot disease of Theobroma cacao (cacao) plants. At least six cacao-infecting Badnavirus species-Cacao swollen shoot Togo A virus, Cacao swollen shoot Togo B virus (previously known as Cacao swollen shoot virus), Cacao swollen shoot CE virus, Cacao swollen shoot Ghana M virus, Cacao swollen shoot Ghana N virus, and Cacao swollen shoot Ghana Q virus-are responsible for the swollen shoot disease of cacao in Ghana. Each of these species consists of a multiplicity of strains. The New Juaben strain, the most virulent cacao swollen shoot virus strain in Ghana, belongs to the Cacao swollen shoot Togo B virus species, and is a commonly used strain in laboratory transmission assays. Infection of cacao trees with multiple strains of the virus is common and new evidence suggests that these coinfections may have resulted in the emergence of recombinant strains of the virus. The impact of these emerging recombinant strains on disease severity is uncertain. This review focuses largely on the discovery of cacao swollen shoot virus in Ghana, diversity of the virus strains, molecular characterization, propagation of virus infection in cacao plants, emergence of recombinant virus strains, vector-mediated transmission of the virus, and the management of the cacao swollen shoot disease in Ghana. It also contains sections on the botany and origin of the cacao tree, its introduction to Ghana, the role of cacao swollen shoot disease in facilitating Ghana's independence from Britain, and a brief history of chocolate.
Collapse
Affiliation(s)
| | - Owusu Domfeh
- Plant Pathology Division, Cocoa Research Institute of Ghana, New Tafo, Akim, Ghana
| | - George Akumfi Ameyaw
- Plant Pathology Division, Cocoa Research Institute of Ghana, New Tafo, Akim, Ghana
| |
Collapse
|
3
|
Then C, Bak A, Morisset A, Dáder B, Ducousso M, Macia JL, Drucker M. The N-terminus of the cauliflower mosaic virus aphid transmission protein P2 is involved in transmission body formation and microtubule interaction. Virus Res 2021; 297:198356. [PMID: 33667624 DOI: 10.1016/j.virusres.2021.198356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 01/01/2023]
Abstract
Cauliflower mosaic virus (CaMV) is transmitted by aphids using the non-circulative transmission mode: when the insects feed on infected leaves, virus particles from infected cells attach rapidly to their stylets and are transmitted to a new host when the aphids change plants. Mandatory for CaMV transmission, the viral helper protein P2 mediates as a molecular linker binding of the virus particles to the aphid stylets. P2 is available in infected plant cells in a viral inclusion that is specialized for transmission and named the transmission body (TB). When puncturing an infected leaf cell, the aphid triggers an ultra-rapid viral response, necessary for virus acquisition and called transmission activation: The TB disrupts and P2 is redistributed onto cortical microtubules, together with virus particles that are simultaneously set free from virus factories and join P2 on the microtubules to form the so-called mixed networks (MNs). The MNs are the predominant structure from which CaMV is acquired by aphids. However, the P2 domains involved in microtubule interaction are not known. To identify P2 regions involved in its functions, we generated a set of P2 mutants by alanine scanning and analyzed them in the viral context for their capacity to form a TB, to interact with microtubules and to transmit CaMV. Our results show that contrary to the previously characterized P2-P2 and P2-virion binding sites in its C-terminus, the microtubule binding site is contained in the N-terminal half of P2. Further, this region is important for TB formation since some P2 mutant proteins did not accumulate in TBs but were retained in the viral factories where P2 is translated. Taken together, the N-terminus of P2 is not only involved in vector interaction as previously reported, but also in interaction with microtubules and in formation of TBs.
Collapse
Affiliation(s)
| | - Aurélie Bak
- INRAE Centre Occitanie - Montpellier, France
| | | | | | | | | | - Martin Drucker
- INRAE Centre Occitanie - Montpellier, France; INRAE Centre Grand Est - Colmar, France.
| |
Collapse
|
4
|
Pooggin MM, Ryabova LA. Ribosome Shunting, Polycistronic Translation, and Evasion of Antiviral Defenses in Plant Pararetroviruses and Beyond. Front Microbiol 2018; 9:644. [PMID: 29692761 PMCID: PMC5902531 DOI: 10.3389/fmicb.2018.00644] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/19/2018] [Indexed: 12/15/2022] Open
Abstract
Viruses have compact genomes and usually translate more than one protein from polycistronic RNAs using leaky scanning, frameshifting, stop codon suppression or reinitiation mechanisms. Viral (pre-)genomic RNAs often contain long 5′-leader sequences with short upstream open reading frames (uORFs) and secondary structure elements, which control both translation initiation and replication. In plants, viral RNA and DNA are targeted by RNA interference (RNAi) generating small RNAs that silence viral gene expression, while viral proteins are recognized by innate immunity and autophagy that restrict viral infection. In this review we focus on plant pararetroviruses of the family Caulimoviridae and describe the mechanisms of uORF- and secondary structure-driven ribosome shunting, leaky scanning and reinitiation after translation of short and long uORFs. We discuss conservation of these mechanisms in different genera of Caulimoviridae, including host genome-integrated endogenous viral elements, as well as in other viral families, and highlight a multipurpose use of the highly-structured leader sequence of plant pararetroviruses in regulation of translation, splicing, packaging, and reverse transcription of pregenomic RNA (pgRNA), and in evasion of RNAi. Furthermore, we illustrate how targeting of several host factors by a pararetroviral effector protein can lead to transactivation of viral polycistronic translation and concomitant suppression of antiviral defenses. Thus, activation of the plant protein kinase target of rapamycin (TOR) by the Cauliflower mosaic virus transactivator/viroplasmin (TAV) promotes reinitiation of translation after long ORFs on viral pgRNA and blocks antiviral autophagy and innate immunity responses, while interaction of TAV with the plant RNAi machinery interferes with antiviral silencing.
Collapse
Affiliation(s)
- Mikhail M Pooggin
- INRA, UMR Biologie et Génétique des Interactions Plante-Parasite, Montpellier, France
| | - Lyubov A Ryabova
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UPR 2357, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
5
|
Schoelz JE, Leisner S. Setting Up Shop: The Formation and Function of the Viral Factories of Cauliflower mosaic virus. FRONTIERS IN PLANT SCIENCE 2017; 8:1832. [PMID: 29163571 PMCID: PMC5670102 DOI: 10.3389/fpls.2017.01832] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/10/2017] [Indexed: 05/23/2023]
Abstract
Similar to cells, viruses often compartmentalize specific functions such as genome replication or particle assembly. Viral compartments may contain host organelle membranes or they may be mainly composed of viral proteins. These compartments are often termed: inclusion bodies (IBs), viroplasms or viral factories. The same virus may form more than one type of IB, each with different functions, as illustrated by the plant pararetrovirus, Cauliflower mosaic virus (CaMV). CaMV forms two distinct types of IBs in infected plant cells, those composed mainly of the viral proteins P2 (which are responsible for transmission of CaMV by insect vectors) and P6 (required for viral intra-and inter-cellular infection), respectively. P6 IBs are the major focus of this review. Much of our understanding of the formation and function of P6 IBs comes from the analyses of their major protein component, P6. Over time, the interactions and functions of P6 have been gradually elucidated. Coupled with new technologies, such as fluorescence microscopy with fluorophore-tagged viral proteins, these data complement earlier work and provide a clearer picture of P6 IB formation. As the activities and interactions of the viral proteins have gradually been determined, the functions of P6 IBs have become clearer. This review integrates the current state of knowledge on the formation and function of P6 IBs to produce a coherent model for the activities mediated by these sophisticated virus-manufacturing machines.
Collapse
Affiliation(s)
- James E. Schoelz
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
| | - Scott Leisner
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States
| |
Collapse
|
6
|
Drucker M, Then C. Transmission activation in non-circulative virus transmission: a general concept? Curr Opin Virol 2015; 15:63-8. [PMID: 26318641 DOI: 10.1016/j.coviro.2015.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/29/2015] [Accepted: 08/09/2015] [Indexed: 11/26/2022]
Abstract
Many viruses are transmitted by arthropod vectors. An important mode of transmission is the noncirculative or mechanical transmission where viruses attach to the vector mouthparts for transport to a new host. It has long been assumed that noncirculative transmission is an unsophisticated mode of viral spread, and in the simplest case mere contamination of the vector mouthparts. However, emerging evidence strongly suggests that noncirculative transmission, like other transmission strategies, results from specific interactions between pathogens, hosts, and vectors. Recently, new insights into this concept have been obtained, by demonstrating that a plant virus responds instantly to the presence of its aphid vector on the host by forming transmission morphs. This novel concept, named Transmission Activation (TA), where viruses respond directly or via the host to the outside world, opens new research horizons.
Collapse
Affiliation(s)
- Martin Drucker
- INRA, UMR 385 BGPI (CIRAD-INRA-SupAgroM), TA A54K, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France.
| | - Christiane Then
- INRA, UMR 385 BGPI (CIRAD-INRA-SupAgroM), TA A54K, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France
| |
Collapse
|
7
|
Bouton C, Geldreich A, Ramel L, Ryabova LA, Dimitrova M, Keller M. Cauliflower mosaic virus Transcriptome Reveals a Complex Alternative Splicing Pattern. PLoS One 2015; 10:e0132665. [PMID: 26162084 PMCID: PMC4498817 DOI: 10.1371/journal.pone.0132665] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 06/18/2015] [Indexed: 12/23/2022] Open
Abstract
The plant pararetrovirus Cauliflower mosaic virus (CaMV) uses alternative splicing to generate several isoforms from its polycistronic pregenomic 35S RNA. This pro-cess has been shown to be essential for infectivity. Previous works have identified four splice donor sites and a single splice acceptor site in the 35S RNA 5' region and suggested that the main role of CaMV splicing is to downregulate expression of open reading frames (ORFs) I and II. In this study, we show that alternative splicing is a conserved process among CaMV isolates. In Cabb B-JI and Cabb-S isolates, splicing frequently leads to different fusion between ORFs, particularly between ORF I and II. The corresponding P1P2 fusion proteins expressed in E. coli interact with viral proteins P2 and P3 in vitro. However, they are detected neither during infection nor upon transient expression in planta, which suggests rapid degradation after synthesis and no important biological role in the CaMV infectious cycle. To gain a better understanding of the functional relevance of 35S RNA alternative splicing in CaMV infectivity, we inactivated the previously described splice sites. All the splicing mutants were as pathogenic as the corresponding wild-type isolate. Through RT-PCR-based analysis we demonstrate that CaMV 35S RNA exhibits a complex splicing pattern, as we identify new splice donor and acceptor sites whose selection leads to more than thirteen 35S RNA isoforms in infected turnip plants. Inactivating splice donor or acceptor sites is not lethal for the virus, since disrupted sites are systematically rescued by the activation of cryptic and/or seldom used splice sites. Taken together, our data depict a conserved, complex and flexible process, involving multiple sites, that ensures splicing of 35S RNA.
Collapse
Affiliation(s)
- Clément Bouton
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| | - Angèle Geldreich
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| | - Laëtitia Ramel
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| | - Lyubov A. Ryabova
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| | - Maria Dimitrova
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
- * E-mail: (MD); (MK)
| | - Mario Keller
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
- * E-mail: (MD); (MK)
| |
Collapse
|
8
|
Hohn T, Rothnie H. Plant pararetroviruses: replication and expression. Curr Opin Virol 2013; 3:621-8. [PMID: 24063990 DOI: 10.1016/j.coviro.2013.08.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/26/2013] [Accepted: 08/26/2013] [Indexed: 02/07/2023]
Abstract
True retroviruses are not known in plants; however, plant pararetroviruses (caulimoviridae) share many retroviral properties, replicating by transcription in the nucleus followed by reverse transcription in the cytoplasm. Pararetroviruses have circular DNA genomes that do not integrate into the host genome, and display several unique expression strategies. Typical of plant pararetroviral pregenomic RNA is a highly structured leader of about 600nt long that is bypassed by scanning ribosomes. Caulimoviruses and Soymoviruses have a further interesting translation mechanism: at least six of the seven open reading frames are translated via polycistronic translation mediated by a specific transactivator (TAV), which modifies the translation complex. TAV also forms large intracellular inclusion bodies, which are the site of translation and virus assembly.
Collapse
Affiliation(s)
- Thomas Hohn
- Basel University, Botanical Institute, Basel, Switzerland.
| | | |
Collapse
|
9
|
Moshe A, Gorovits R. Virus-induced aggregates in infected cells. Viruses 2012; 4:2218-32. [PMID: 23202461 PMCID: PMC3497049 DOI: 10.3390/v4102218] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 09/27/2012] [Accepted: 09/29/2012] [Indexed: 12/21/2022] Open
Abstract
During infection, many viruses induce cellular remodeling, resulting in the formation of insoluble aggregates/inclusions, usually containing viral structural proteins. Identification of aggregates has become a useful diagnostic tool for certain viral infections. There is wide variety of viral aggregates, which differ by their location, size, content and putative function. The role of aggregation in the context of a specific virus is often poorly understood, especially in the case of plant viruses. The aggregates are utilized by viruses to house a large complex of proteins of both viral and host origin to promote virus replication, translation, intra- and intercellular transportation. Aggregated structures may protect viral functional complexes from the cellular degradation machinery. Alternatively, the activation of host defense mechanisms may involve sequestration of virus components in aggregates, followed by their neutralization as toxic for the host cell. The diversity of virus-induced aggregates in mammalian and plant cells is the subject of this review.
Collapse
Affiliation(s)
- Adi Moshe
- Institute of Plant Sciences and Genetics in Agriculture and the Otto Warburg Minerva Center for Agricultural Biotechnology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | | |
Collapse
|
10
|
Martinière A, Gargani D, Uzest M, Lautredou N, Blanc S, Drucker M. A role for plant microtubules in the formation of transmission-specific inclusion bodies of Cauliflower mosaic virus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:135-146. [PMID: 19077170 DOI: 10.1111/j.1365-313x.2008.03768.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Interactions between microtubules and viruses play important roles in viral infection. The best-characterized examples involve transport of animal viruses by microtubules to the nucleus or other intracellular destinations. In plant viruses, most work to date has focused on interaction between viral movement proteins and the cytoskeleton, which is thought to be involved in viral cell-to-cell spread. We show here, in Cauliflower mosaic virus (CaMV)-infected plant cells, that viral electron-lucent inclusion bodies (ELIBs), whose only known function is vector transmission, require intact microtubules for their efficient formation. The kinetics of the formation of CaMV-related inclusion bodies in transfected protoplasts showed that ELIBs represent newly emerging structures, appearing at late stages of the intracellular viral life cycle. Viral proteins P2 and P3 are first produced in multiple electron-dense inclusion bodies, and are later specifically exported to transiently co-localize with microtubules, before concentrating in a single, massive ELIB in each infected cell. Treatments with cytoskeleton-affecting drugs suggested that P2 and P3 might be actively transported on microtubules, by as yet unknown motors. In addition to providing information on the intracellular life cycle of CaMV, our results show that specific interactions between host cell and virus may be dedicated to a later role in vector transmission. More generally, they indicate a new unexpected function for plant cell microtubules in the virus life cycle, demonstrating that microtubules act not only on immediate intracellular or intra-host phenomena, but also on processes ultimately controlling inter-host transmission.
Collapse
Affiliation(s)
- Alexandre Martinière
- Equipe CaGeTE, UMR 385 BGPI CIRAD-INRA-SupAgro, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France
| | | | | | | | | | | |
Collapse
|
11
|
Monsion B, Duborjal H, Blanc S. Quantitative Single-letter Sequencing: a method for simultaneously monitoring numerous known allelic variants in single DNA samples. BMC Genomics 2008; 9:85. [PMID: 18291029 PMCID: PMC2276495 DOI: 10.1186/1471-2164-9-85] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Accepted: 02/21/2008] [Indexed: 11/17/2022] Open
Abstract
Background Pathogens such as fungi, bacteria and especially viruses, are highly variable even within an individual host, intensifying the difficulty of distinguishing and accurately quantifying numerous allelic variants co-existing in a single nucleic acid sample. The majority of currently available techniques are based on real-time PCR or primer extension and often require multiplexing adjustments that impose a practical limitation of the number of alleles that can be monitored simultaneously at a single locus. Results Here, we describe a novel method that allows the simultaneous quantification of numerous allelic variants in a single reaction tube and without multiplexing. Quantitative Single-letter Sequencing (QSS) begins with a single PCR amplification step using a pair of primers flanking the polymorphic region of interest. Next, PCR products are submitted to single-letter sequencing with a fluorescently-labelled primer located upstream of the polymorphic region. The resulting monochromatic electropherogram shows numerous specific diagnostic peaks, attributable to specific variants, signifying their presence/absence in the DNA sample. Moreover, peak fluorescence can be quantified and used to estimate the frequency of the corresponding variant in the DNA population. Using engineered allelic markers in the genome of Cauliflower mosaic virus, we reliably monitored six different viral genotypes in DNA extracted from infected plants. Evaluation of the intrinsic variance of this method, as applied to both artificial plasmid DNA mixes and viral genome populations, demonstrates that QSS is a robust and reliable method of detection and quantification for variants with a relative frequency of between 0.05 and 1. Conclusion This simple method is easily transferable to many other biological systems and questions, including those involving high throughput analysis, and can be performed in any laboratory since it does not require specialized equipment.
Collapse
Affiliation(s)
- Baptiste Monsion
- Biologie et Génétique des Interactions Plante-Parasite (BGPI), INRA-CIRAD-SupagroM, TA A-54/K, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France.
| | | | | |
Collapse
|
12
|
Khelifa M, Journou S, Krishnan K, Gargani D, Espérandieu P, Blanc S, Drucker M. Electron-lucent inclusion bodies are structures specialized for aphid transmission of cauliflower mosaic virus. J Gen Virol 2007; 88:2872-2880. [PMID: 17872542 DOI: 10.1099/vir.0.83009-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cauliflower mosaic virus (CaMV) is transmitted by aphids. For acquisition by the vector, a transmissible complex must form, composed of the virus particle, the viral coat-associated protein P3 and the helper protein P2. However, the components of the transmissible complex are largely separated in infected plant cells: most P3 virions are confined in electron-dense inclusion bodies, whereas P2 is sequestered in electron-lucent inclusion bodies (elIBs). This spatial separation controls virus acquisition by favouring the binding of virus-free P2 to the vector first, rendering the vector competent for later uptake of P3 virions. Consequently, sequential acquisition of virus from different cells or tissues is possible, with important implications for the biology of CaMV transmission. CaMV strains Campbell and CM1841 contain a single amino acid mutation (G94R) in the helper protein P2, rendering them non-transmissible from plant to plant. However, the mutant P2-94 protein supports aphid transmission when expressed heterologously and supplied to P3-CaMV complexes in vitro. The non-transmissibility of P2-94 was re-examined in vivo and it is shown here that the non-transmissibility of this P2 mutant is not due to low accumulation levels in infected plants, as suggested previously, but more specifically to the failure to form elIBs within infected plant cells. This demonstrates that elIBs are complex viral structures specialized for aphid transmission and suggests that viral inclusion bodies other than viral factories, most often considered as 'garbage cans', can in fact exhibit specific functions.
Collapse
Affiliation(s)
- Mounia Khelifa
- Equipe CaGeTE, UMR BGPI Interactions Plantes-Parasites (CIRAD-INRA-SupAgro), Bat. K (TA A 54K), Campus International de Baillarguet, 34 398 Montpellier Cedex 5, France
| | - Sandra Journou
- Equipe CaGeTE, UMR BGPI Interactions Plantes-Parasites (CIRAD-INRA-SupAgro), Bat. K (TA A 54K), Campus International de Baillarguet, 34 398 Montpellier Cedex 5, France
| | - Kalpana Krishnan
- Equipe CaGeTE, UMR BGPI Interactions Plantes-Parasites (CIRAD-INRA-SupAgro), Bat. K (TA A 54K), Campus International de Baillarguet, 34 398 Montpellier Cedex 5, France
| | - Daniel Gargani
- Equipe CaGeTE, UMR BGPI Interactions Plantes-Parasites (CIRAD-INRA-SupAgro), Bat. K (TA A 54K), Campus International de Baillarguet, 34 398 Montpellier Cedex 5, France
| | - Pascal Espérandieu
- Equipe CaGeTE, UMR BGPI Interactions Plantes-Parasites (CIRAD-INRA-SupAgro), Bat. K (TA A 54K), Campus International de Baillarguet, 34 398 Montpellier Cedex 5, France
| | - Stéphane Blanc
- Equipe CaGeTE, UMR BGPI Interactions Plantes-Parasites (CIRAD-INRA-SupAgro), Bat. K (TA A 54K), Campus International de Baillarguet, 34 398 Montpellier Cedex 5, France
| | - Martin Drucker
- Equipe CaGeTE, UMR BGPI Interactions Plantes-Parasites (CIRAD-INRA-SupAgro), Bat. K (TA A 54K), Campus International de Baillarguet, 34 398 Montpellier Cedex 5, France
| |
Collapse
|
13
|
Abstract
Hepatitis B virus (HBV) is a major human health problem as approximately 8% of the world’s population are chronic carriers and there are over a million HBV-related deaths annually. Treatment of HBV is extremely difficult, as the unique viral replication strategy results in both a continual source of stable DNA molecules that are the template for viral replication and gene expression, and a pool of viral quasispecies from which different isolates may emerge as selection pressures alter. Although the use of antiviral therapies has improved outcomes significantly for many chronically infected individuals, the emergence of drug-resistant and immune/vaccine-escape viruses ensures there is a continuing need for the development of new and imaginative approaches to control and eventually eradicate HBV.
Collapse
Affiliation(s)
- Peter Revill
- Victorian Infectious Diseases Reference Laboratory, Research and Molecular Development, 10 Wreckyn Street, North Melbourne, Victoria 3051, Australia
| | - Stephen Locarnini
- Victorian Infectious Diseases Reference Laboratory, Research and Molecular Development, 10 Wreckyn Street, North Melbourne, Victoria 3051, Australia
| |
Collapse
|
14
|
Shababi M, Bourque J, Palanichelvam K, Cole A, Xu D, Wan XF, Schoelz J. The ribosomal shunt translation strategy of cauliflower mosaic virus has evolved from ancient long terminal repeats. J Virol 2006; 80:3811-22. [PMID: 16571798 PMCID: PMC1440423 DOI: 10.1128/jvi.80.8.3811-3822.2006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Accepted: 01/25/2006] [Indexed: 12/17/2022] Open
Abstract
We have screened portions of the large intergenic region of the Cauliflower mosaic virus (CaMV) genome for promoter activity in baker's yeast (Saccharomyces cerevisiae) and have identified an element that contributes to promoter activity in yeast but has negligible activity in plant cells when expressed in an agroinfiltration assay. A search of the yeast genome sequence revealed that the CaMV element had sequence similarity with the R region of the long terminal repeat (LTR) of the yeast Ty1 retrotransposon, with significant statistical confidence. In plants, the same CaMV sequence has been shown to have an essential role in the ribosomal shunt mechanism of translation, as it forms the base of the right arm of the stem-loop structure that is required for the ribosomal shunt. Since the left arm of the stem-loop structure must represent an imperfect reverse copy of the right arm, we propose that the ribosomal shunt has evolved from a pair of LTRs that have become incorporated end to end into the CaMV genome.
Collapse
Affiliation(s)
- Monir Shababi
- Division of Plant Sciences, 108 Waters Hall, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Ryabova LA, Pooggin MM, Hohn T. Translation reinitiation and leaky scanning in plant viruses. Virus Res 2005; 119:52-62. [PMID: 16325949 DOI: 10.1016/j.virusres.2005.10.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 09/27/2005] [Accepted: 10/20/2005] [Indexed: 11/24/2022]
Abstract
While translation of mRNAs in eukaryotic cells in general follows strict rules, viruses infecting these cells break those rules in various ways. Viruses are under high selection pressure to compete with the host, to economize genome size, and to accommodate signals for replication, virus assembly, etc., on their RNAs as well as using them for translation. The cornucopia of extraordinary translation strategies, such as leaky scanning, internal initiation of translation, ribosome shunt, and virus-controlled reinitiation of translation, evolved by viruses continues to surprise and inform our understanding of general translation mechanisms. While internal initiation is treated in another section of this issue, we concentrate on leaky scanning, shunt and reinitiation, with emphasis on plant pararetroviruses.
Collapse
Affiliation(s)
- Lyubov A Ryabova
- Institut de Biologie Moléculaire des Plantes, UPR CNRS 2357, Strasbourg, France.
| | | | | |
Collapse
|
16
|
Moreno A, Hébrard E, Uzest M, Blanc S, Fereres A. A single amino acid position in the helper component of cauliflower mosaic virus can change the spectrum of transmitting vector species. J Virol 2005; 79:13587-93. [PMID: 16227279 PMCID: PMC1262581 DOI: 10.1128/jvi.79.21.13587-13593.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viruses frequently use insect vectors to effect rapid spread through host populations. In plant viruses, vector transmission is the major mode of transmission, used by nearly 80% of species described to date. Despite the importance of this phenomenon in epidemiology, the specificity of the virus-vector relationship is poorly understood at both the molecular and the evolutionary level, and very limited data are available on the precise viral protein motifs that control specificity. Here, using the aphid-transmitted Cauliflower mosaic virus (CaMV) as a biological model, we confirm that the "noncirculative" mode of transmission dominant in plant viruses (designated "mechanical vector transmission" in animal viruses) involves extremely specific virus-vector recognition, and we identify an amino acid position in the "helper component" (HC) protein of CaMV involved in such recognition. Site-directed mutagenesis revealed that changing the residue at this position can differentially affect transmission rates obtained with various aphid species, thus modifying the spectrum of vector species for CaMV. Most interestingly, in a virus line transmitted by a single vector species, we observed the rapid appearance of a spontaneous mutant specifically losing its transmissibility by another aphid species. Hence, in addition to the first identification of an HC motif directly involved in specific vector recognition, we demonstrate that change of a virus to a different vector species requires only a single mutation and can occur rapidly and spontaneously.
Collapse
Affiliation(s)
- Aranzazu Moreno
- UMR Biologie et Génétique des Interactions Plantes-Parasites, CIRAD-INRA-ENSAM, TA 41/K, Campus International de Baillarguet, 34398 Montpellier cedex 05, France
| | | | | | | | | |
Collapse
|