1
|
Petrosillo G, De Stradis A, Marzulli D, Rubino L, Giannattasio S. Carnation Italian Ringspot Virus p36 Expression Induces Mitochondrial Fission and Respiratory Chain Complex Impairment in Yeast. Int J Mol Sci 2023; 24:16166. [PMID: 38003356 PMCID: PMC10670935 DOI: 10.3390/ijms242216166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Positive-strand RNA virus replication invariably occurs in association with host cell membranes, which are induced to proliferate and rearrange to form vesicular structures where the virus replication complex is assembled. In particular, carnation Italian ringspot virus (CIRV) replication takes place on the mitochondrial outer membrane in plant and yeast cells. In this work, the model host Saccharomyces cerevisiae was used to investigate the effects of CIRV p36 expression on the mitochondrial structure and function through the determination of mitochondrial morphology, mitochondrial respiratory parameters, and respiratory chain complex activities in p36-expressing cells. CIRV p36 ectopic expression was shown to induce alterations in the mitochondrial network associated with a decrease in mitochondrial respiration and the activities of NADH-cyt c, succinate-cyt c (C II-III), and cytochrome c oxidase (C IV) complexes. Our results suggest that the decrease in respiratory complex activity could be due, at least in part, to alterations in mitochondrial dynamics. This yeast-based model will be a valuable tool for identifying molecular targets to develop new anti-viral strategies.
Collapse
Affiliation(s)
- Giuseppe Petrosillo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, CNR, Via Amendola 122/O, 70126 Bari, Italy; (G.P.); (D.M.)
| | - Angelo De Stradis
- Institute for Sustainable Plant Protection, CNR, UOS Bari, Via Amendola 165/A, 70126 Bari, Italy;
| | - Domenico Marzulli
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, CNR, Via Amendola 122/O, 70126 Bari, Italy; (G.P.); (D.M.)
| | - Luisa Rubino
- Institute for Sustainable Plant Protection, CNR, UOS Bari, Via Amendola 165/A, 70126 Bari, Italy;
| | - Sergio Giannattasio
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, CNR, Via Amendola 122/O, 70126 Bari, Italy; (G.P.); (D.M.)
| |
Collapse
|
2
|
Rubino L, Guaragnella N, Giannattasio S. Heterologous expression of carnation Italian ringspot virus p36 protein enhances necrotic cell death in response to acetic acid in Saccharomyces cerevisiae. Mech Ageing Dev 2016; 161:255-261. [PMID: 27637297 DOI: 10.1016/j.mad.2016.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 09/05/2016] [Accepted: 09/12/2016] [Indexed: 11/18/2022]
Abstract
A universal feature of the replication of positive-strand RNA viruses is the association with intracellular membranes. Carnation Italian ringspot virus (CIRV) replication in plants occurs in vesicles derived from the mitochondrial outer membrane. The product encoded by CIRV ORF1, p36, is required for targeting the virus replication complex to the outer mitochondrial membrane both in plant and yeast cells. Here the yeast Saccharomyces cerevisiae was used as a model host to study the effect of CIRV p36 on cell survival and death. It was shown that p36 does not promote cell death, but decreases cell growth rate. In addition, p36 changed the nature of acetic acid-induced cell death in yeast by increasing the number of cells dying by necrosis with concomitant decrease of the number of cells dying by programmed cell death, as judged by measurements of phosphatidylserine externalization. The tight association of p36 to membranes was not affected by acetic acid treatment, thus confirming the peculiar and independent interaction of CIRV p36 with mitochondria in yeast. This work proved yeast as an invaluable model organism to study both the mitochondrial determinants of the type of cell death in response to stress and the molecular pathogenesis of (+)RNA viruses.
Collapse
Affiliation(s)
- Luisa Rubino
- Istituto di Protezione Sostenibile delle Piante, CNR, UOS Bari, Via Amendola 165/A, 70126 Bari, Italy.
| | - Nicoletta Guaragnella
- Istituto di Biomembrane e Bioenergetica, CNR, Via Amendola 165/A, 70126 Bari, Italy.
| | - Sergio Giannattasio
- Istituto di Biomembrane e Bioenergetica, CNR, Via Amendola 165/A, 70126 Bari, Italy.
| |
Collapse
|
3
|
Ashton P, Wu B, D'Angelo J, Grigull J, White KA. Biologically-supported structural model for a viral satellite RNA. Nucleic Acids Res 2015; 43:9965-77. [PMID: 26384416 PMCID: PMC4787747 DOI: 10.1093/nar/gkv917] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/04/2015] [Indexed: 01/05/2023] Open
Abstract
Satellite RNAs (satRNAs) are a class of small parasitic RNA replicon that associate with different viruses, including plus-strand RNA viruses. Because satRNAs do not encode a polymerase or capsid subunit, they rely on a companion virus to provide these proteins for their RNA replication and packaging. SatRNAs recruit these and other required factors via their RNA sequences and structures. Here, through a combination of chemical probing analysis of RNA structure, phylogenetic structural comparisons, and viability assays of satRNA mutants in infected cells, the biological importance of a deduced higher-order structure for a 619 nt long tombusvirus satRNA was assessed. Functionally-relevant secondary and tertiary RNA structures were identified throughout the length of the satRNA. Notably, a 3′-terminal segment was found to adopt two mutually-exclusive RNA secondary structures, both of which were required for efficient satRNA accumulation. Accordingly, these alternative conformations likely function as a type of RNA switch. The RNA switch was also found to engage in a required long-range kissing-loop interaction with an upstream sequence. Collectively, these results establish a high level of conformational complexity within this small parasitic RNA and provide a valuable structural framework for detailed mechanistic studies.
Collapse
Affiliation(s)
- Peter Ashton
- Department of Biology, York University, Toronto, Ontario, M3J 1P3 Canada
| | - Baodong Wu
- Department of Biology, York University, Toronto, Ontario, M3J 1P3 Canada
| | - Jessica D'Angelo
- Department of Biology, York University, Toronto, Ontario, M3J 1P3 Canada
| | - Jörg Grigull
- Department of Mathematics and Statistics, York University, Toronto, Ontario, M3J 1P3 Canada
| | - K Andrew White
- Department of Biology, York University, Toronto, Ontario, M3J 1P3 Canada
| |
Collapse
|
4
|
Conserved motifs in a tombusvirus polymerase modulate genome replication, subgenomic transcription, and amplification of defective interfering RNAs. J Virol 2015; 89:3236-46. [PMID: 25568204 DOI: 10.1128/jvi.03378-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The replication of plus-strand RNA virus genomes is mediated by virally encoded RNA-dependent RNA polymerases (RdRps). We have investigated the role of the C-proximal region in the RdRp of tomato bushy stunt virus (TBSV) in mediating viral RNA synthesis. TBSV is the prototype species in the genus Tombusvirus, family Tombusviridae, and its RdRp is responsible for replicating the viral genome, transcribing two subgenomic mRNAs, and supporting replication of defective interfering RNAs. Comparative sequence analysis of the RdRps of tombusvirids identified three highly conserved motifs in their C-proximal regions, and these sequences were subsequently targeted for mutational analysis in TBSV. The results revealed that these motifs are important for (i) synthesizing viral genomic RNA and subgenomic mRNAs, (ii) facilitating plus- and/or minus-strand synthesis, and (iii) modulating trans-replication of a defective interfering RNA. These motifs were also found to be conserved in other plant viruses as well as in a fungal and insect virus. The collective findings are discussed in relation to viral RNA synthesis and taxonomy. IMPORTANCE Little is currently known about the structure and function of the viral polymerases that replicate the genomes of RNA plant viruses. Tombusviruses, the prototype of the tombusvirids, have been used as model plus-strand RNA plant viruses for understanding many of the steps in the infectious process; however, their polymerases remain poorly characterized. To help address this issue, the function of the C-terminal region of the polymerase of a tombusvirus was investigated. Three conserved motifs were identified and targeted for mutational analysis. The results revealed that these polymerase motifs are important for determining what type of viral RNA is produced, facilitating different steps in viral RNA production, and amplifying subgenomic RNA replicons. Accordingly, the C-terminal region of the tombusvirus polymerase is needed for a variety of fundamental activities. Furthermore, as these motifs are also present in distantly related viruses, the significance of these results extends beyond tombusvirids.
Collapse
|
5
|
Rubino L, Russo M. Properties of a novel satellite RNA associated with tomato bushy stunt virus infections. J Gen Virol 2010; 91:2393-401. [PMID: 20484559 DOI: 10.1099/vir.0.022046-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The biological and molecular properties of a novel satellite RNA (satRNA L) associated with tomato bushy stunt virus (TBSV) are described. satRNA L consisted of a linear single-stranded RNA of 615 nt, lacked significant open reading frames (ORFs) and had no sequence identity with the helper genome other than in the 5'-proximal 7 nt and in a central region that is also conserved in all tombusvirus genomic, defective interfering and satellite RNAs. Secondary-structure analysis showed the presence of high-order domains similar to those described for other tombusvirus RNAs. Shorter-than-unit-length molecules were shown not to be related to a silencing mechanism. satRNA L did not modify the symptoms induced by TBSV under any of the temperature conditions tested. A full-length cDNA clone was constructed and used in co-inoculations with transcripts of carnation Italian ringspot virus (CIRV) and cymbidium ringspot virus (CymRSV). CIRV, but not CymRSV, supported the replication of satRNA L. Using CIRV-CymRSV hybrid infectious clones, two regions were identified as possible determinants of the different ability to support satRNA L replication. The first region was in the 5'-untranslated region, which folds differently in CymRSV in comparison with CIRV and TBSV; the second region was in the ORF1-encoded protein where a more efficient satRNA L-binding domain is suggested to be present in CIRV.
Collapse
Affiliation(s)
- L Rubino
- Istituto di Virologia Vegetale del CNR, Unità Organizzativa di Bari, Bari, Italy.
| | | |
Collapse
|
6
|
Satellite RNAs and Satellite Viruses of Plants. Viruses 2009; 1:1325-50. [PMID: 21994595 PMCID: PMC3185516 DOI: 10.3390/v1031325] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 12/07/2009] [Accepted: 12/07/2009] [Indexed: 12/24/2022] Open
Abstract
The view that satellite RNAs (satRNAs) and satellite viruses are purely molecular parasites of their cognate helper viruses has changed. The molecular mechanisms underlying the synergistic and/or antagonistic interactions among satRNAs/satellite viruses, helper viruses, and host plants are beginning to be comprehended. This review aims to summarize the recent achievements in basic and practical research, with special emphasis on the involvement of RNA silencing mechanisms in the pathogenicity, population dynamics, and, possibly, the origin(s) of these subviral agents. With further research following current trends, the comprehensive understanding of satRNAs and satellite viruses could lead to new insights into the trilateral interactions among host plants, viruses, and satellites.
Collapse
|
7
|
Huang YW, Hu CC, Lin NS, Tsai CH, Hsu YH. In vitro replication of Bamboo mosaic virus satellite RNA. Virus Res 2008; 136:98-106. [PMID: 18538884 DOI: 10.1016/j.virusres.2008.04.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 04/13/2008] [Accepted: 04/28/2008] [Indexed: 01/17/2023]
Abstract
An in vitro system was applied to analyze the replication of a satellite RNA of Bamboo mosaic virus (BaMV), designated satBaMV RNA, using solubilized membrane-bound RNA-dependent RNA polymerase (RdRp) complexes isolated from BaMV-infected Nicotiana benthamiana. After removal of endogenous templates, the RdRp complexes of BaMV catalyzed RNA synthesis upon the addition of the full-length positive (+)- or negative (-)-strand satBaMV RNA transcripts used as templates. Both (+)- and (-)-satBaMV RNA products were detected when only the (+)-satBaMV RNA was used as a template in the in vitro RdRp assays, which further demonstrated the capability of the RdRp preparation to complete the replication cycles of satBaMV RNAs. In addition, use of 5' rapid amplification of cDNA ends and DNA sequencing showed that the BaMV RdRp preparation could specifically recognize the promoter sequences in the (-)-satBaMV RNA for accurate initiation of (+)-satBaMV RNA synthesis. The results suggested that the same enzyme complexes could be used for the replication of both BaMV genomic and satBaMV RNAs. The soluble and template-dependent RdRp could be further used in mechanistic studies, such as those analyzing the cis-elements and candidate host factors required for satBaMV RNA replication in vitro.
Collapse
Affiliation(s)
- Ying-Wen Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuokuang Road, Taichung 40227, Taiwan, ROC
| | | | | | | | | |
Collapse
|
8
|
Rubino L, Navarro B, Russo M. Cymbidium ringspot virus defective interfering RNA replication in yeast cells occurs on endoplasmic reticulum-derived membranes in the absence of peroxisomes. J Gen Virol 2007; 88:1634-1642. [PMID: 17412997 DOI: 10.1099/vir.0.82729-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The replication of Cymbidium ringspot virus (CymRSV) defective interfering (DI) RNA in cells of the yeast Saccharomyces cerevisiae normally takes place in association with the peroxisomal membrane, thus paralleling the replication events in infected plant cells. However, previous results with a peroxisome-deficient mutant strain of yeast had suggested that the presence of peroxisomes is not a strict requirement for CymRSV DI RNA replication. Thus, a novel approach was used to study the putative alternative sites of replication by using S. cerevisiae strain YPH499 which does not contain normal peroxisomes. In this strain, CymRSV p33 and p92 accumulated over portions of the nuclear membrane and on membranous overgrowths which were identified as endoplasmic reticulum (ER) strands, following immunofluorescence and immunoelectron microscope observations. The proteins were not released by high-pH treatment, but were susceptible to proteolytic digestion, thus indicating peripheral and not integrated association. ER-associated p33 and p92 proteins supported in trans the replication of DI RNA. The capacity of plus-strand RNA viruses to replicate in association with different types of cell membranes was thus confirmed.
Collapse
Affiliation(s)
- Luisa Rubino
- Istituto di Virologia Vegetale del CNR, Sezione di Bari, c/o Dipartimento di Protezione delle Piante e Microbiologia Applicata, Università degli Studi, Bari, Italy
| | - Beatriz Navarro
- Istituto di Virologia Vegetale del CNR, Sezione di Bari, c/o Dipartimento di Protezione delle Piante e Microbiologia Applicata, Università degli Studi, Bari, Italy
| | - Marcello Russo
- Istituto di Virologia Vegetale del CNR, Sezione di Bari, c/o Dipartimento di Protezione delle Piante e Microbiologia Applicata, Università degli Studi, Bari, Italy
| |
Collapse
|
9
|
Batten JS, Turina M, Scholthof KBG. Panicovirus accumulation is governed by two membrane-associated proteins with a newly identified conserved motif that contributes to pathogenicity. Virol J 2006; 3:12. [PMID: 16524473 PMCID: PMC1421387 DOI: 10.1186/1743-422x-3-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Accepted: 03/08/2006] [Indexed: 01/08/2023] Open
Abstract
Panicum mosaic virus (PMV) has a positive-sense, single-stranded RNA genome that serves as the mRNA for two 5'-proximal genes, p48 and p112. The p112 open reading frame (ORF) has a GDD-motif, a feature of virus RNA-dependent RNA polymerases. Replication assays in protoplasts showed that p48 and p112 are sufficient for replication of PMV and its satellite virus (SPMV). Differential centrifugation of extracts from PMV-infected plants showed that the p48 and p112 proteins are membrane-associated. The same fractions exhibited RNA polymerase activity in vitro on viral RNA templates, suggesting that p48 and p112 represent the viral replication proteins. Moreover, we identified a domain spanning amino acids 306 to 405 on the p48 and p112 PMV ORFs that is common to the Tombusviridae. Alanine scanning mutagenesis of the conserved domain (CD) revealed that several substitutions were lethal or severely debilitated PMV accumulation. Other substitutions did not affect RNA accumulation, yet they caused variable phenotypes suggestive of plant-dependent effects on systemic invasion and symptom induction. The mutants that were most debilitating to PMV replication were hydrophobic amino acids that we hypothesize are important for membrane localization and functional replicase activity.
Collapse
Affiliation(s)
- Jeffrey S Batten
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
- G.C. Hawley Middle School, Creedmoor, NC, USA
| | - Massimo Turina
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
- Istituto di Virologia Vegetale, Torino, Italy
| | - Karen-Beth G Scholthof
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
10
|
Chernysheva OA, White KA. Modular arrangement of viral cis-acting RNA domains in a tombusvirus satellite RNA. Virology 2005; 332:640-9. [PMID: 15680429 DOI: 10.1016/j.virol.2004.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 11/01/2004] [Accepted: 12/06/2004] [Indexed: 11/21/2022]
Abstract
Satellite (sat) RNAs are parasitic sub-viral RNA replicons found associated with certain positive-strand RNA viruses. Typical sat RNAs, such as those associated with members of the genus Tombusvirus, share little or no sequence identity with their helper virus genomes. Here, we have investigated a tombusvirus sat RNA and determined that it contains two functionally-relevant higher-order RNA domains, a T-shaped domain and a downstream domain, that are similar to elements shown previously to be present in the 5' untranslated regions (UTRs) of tombusvirus genomes. Although the two sat RNA domains showed only limited sequence identity with their viral counterparts, they were able to adopt comparably-folded RNA secondary structures. Interestingly, the relative spacing between the domains in the viral and satellite contexts was notably different. In the viral 5' UTR, the two domains are adjacent and separated by a small hairpin, however, in the sat RNA they are separated by a 137-nt long segment. Despite this distal modular arrangement, the two domains were found to be united spatially in the sat RNA through the formation of an RNA-RNA bridge. This co-localization facilitated an important inter-domain interaction and was essential for efficient helper-mediated sat RNA accumulation in protoplasts. These results indicate that the tombusvirus sat RNA and helper genome contain structurally and functionally equivalent RNA domains. It is proposed that the limited sequence identity observed between these corresponding higher-order RNA structures is related to a strategy that reduces the induction of gene silencing, which presumably would be detrimental to both viral and sat RNA replicons.
Collapse
Affiliation(s)
- Olena A Chernysheva
- Department of Biology, York University, Toronto, 4700 Keele Street, Ontario, Canada M3J 1P3
| | | |
Collapse
|