1
|
VINNER LASSE, HOLMGREN BIRGITTA, JENSEN KRISTOFFERJ, ESBJORNSSON JOAKIM, BORGGREN M, HENTZE JULIEL, KARLSSON INGRID, ANDRESEN BETINAS, GRAM GREGERSJ, KLOVERPRIS HENRIK, AABY PETER, DA SILVA ZACARIASJOSÉ, FENYÖ EVAMARIA, FOMSGAARD ANDERS. Sequence analysis of HIV-1 isolates from Guinea-Bissau: selection of vaccine epitopes relevant in both West African and European countries. APMIS 2011; 119:487-97. [DOI: 10.1111/j.1600-0463.2011.02763.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
2
|
Minang JT, Trivett MT, Barsov EV, Del Prete GQ, Trubey CM, Thomas JA, Gorelick RJ, Piatak M, Ott DE, Ohlen C. TCR triggering transcriptionally downregulates CCR5 expression on rhesus macaque CD4(+) T-cells with no measurable effect on susceptibility to SIV infection. Virology 2011; 409:132-40. [PMID: 21035160 PMCID: PMC3001627 DOI: 10.1016/j.virol.2010.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 09/28/2010] [Accepted: 10/03/2010] [Indexed: 12/24/2022]
Abstract
Studies using transformed human cell lines suggest that most SIV strains use CCR5 as co-receptor. Our analysis of primary rhesus macaque CD4(+) T-cell clones revealed marked differences in susceptibility to SIV(mac)239 infection. We investigated whether different levels of CCR5 expression account for clonal differences in SIV(mac)239 susceptibility. Macaque CD4(+) T-cells showed significant CCR5 downregulation 1-2days following CD3 mAb stimulation, which gradually recovered at resting state, 7-10days after activation. Exposure of clones to SIV(mac)239 during their CCR5(low) or CCR5(high) expression states revealed differences in SIV susceptibility independent of surface CCR5 levels. Furthermore, a CCR5 antagonist similarly reduced SIV(mac)239 infection of clones during their CCR5(low) or CCR5(high) expression states. Our data suggest a model where i) very low levels of CCR5 are sufficient for efficient SIV infection, ii) CCR5 levels above this threshold do not enhance infection, and iii) low level infection can occur in the absence of CCR5.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- CCR5 Receptor Antagonists
- CD3 Complex/immunology
- CD3 Complex/metabolism
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/virology
- Cell Line
- DNA, Viral/analysis
- Down-Regulation
- Female
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Gene Products, gag/metabolism
- Humans
- Macaca mulatta
- Male
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, CCR5/genetics
- Receptors, CCR5/metabolism
- Simian Acquired Immunodeficiency Syndrome/immunology
- Simian Acquired Immunodeficiency Syndrome/virology
- Simian Immunodeficiency Virus/pathogenicity
Collapse
Affiliation(s)
- Jacob T. Minang
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA
| | - Matthew T. Trivett
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA
| | - Eugene V Barsov
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA
| | - Gregory Q. Del Prete
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA
| | - Charles M. Trubey
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA
| | - James A. Thomas
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA
| | - Robert J. Gorelick
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA
| | - David E. Ott
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA
| | - Claes Ohlen
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA
| |
Collapse
|
3
|
Riddick NE, Hermann EA, Loftin LM, Elliott ST, Wey WC, Cervasi B, Taaffe J, Engram JC, Li B, Else JG, Li Y, Hahn BH, Derdeyn CA, Sodora DL, Apetrei C, Paiardini M, Silvestri G, Collman RG. A novel CCR5 mutation common in sooty mangabeys reveals SIVsmm infection of CCR5-null natural hosts and efficient alternative coreceptor use in vivo. PLoS Pathog 2010; 6:e1001064. [PMID: 20865163 PMCID: PMC2928783 DOI: 10.1371/journal.ppat.1001064] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 07/22/2010] [Indexed: 11/19/2022] Open
Abstract
In contrast to HIV infection in humans and SIV in macaques, SIV infection of natural hosts including sooty mangabeys (SM) is non-pathogenic despite robust virus replication. We identified a novel SM CCR5 allele containing a two base pair deletion (Δ2) encoding a truncated molecule that is not expressed on the cell surface and does not support SIV entry in vitro. The allele was present at a 26% frequency in a large SM colony, along with 3% for a CCR5Δ24 deletion allele that also abrogates surface expression. Overall, 8% of animals were homozygous for defective CCR5 alleles and 41% were heterozygous. The mutant allele was also present in wild SM in West Africa. CD8+ and CD4+ T cells displayed a gradient of CCR5 expression across genotype groups, which was highly significant for CD8+ cells. Remarkably, the prevalence of natural SIVsmm infection was not significantly different in animals lacking functional CCR5 compared to heterozygous and homozygous wild-type animals. Furthermore, animals lacking functional CCR5 had robust plasma viral loads, which were only modestly lower than wild-type animals. SIVsmm primary isolates infected both homozygous mutant and wild-type PBMC in a CCR5-independent manner in vitro, and Envs from both CCR5-null and wild-type infected animals used CXCR6, GPR15 and GPR1 in addition to CCR5 in transfected cells. These data clearly indicate that SIVsmm relies on CCR5-independent entry pathways in SM that are homozygous for defective CCR5 alleles and, while the extent of alternative coreceptor use in SM with CCR5 wild type alleles is uncertain, strongly suggest that SIVsmm tropism and host cell targeting in vivo is defined by the distribution and use of alternative entry pathways in addition to CCR5. SIVsmm entry through alternative pathways in vivo raises the possibility of novel CCR5-negative target cells that may be more expendable than CCR5+ cells and enable the virus to replicate efficiently without causing disease in the face of extremely restricted CCR5 expression seen in SM and several other natural host species.
Collapse
Affiliation(s)
- Nadeene E. Riddick
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Emilia A. Hermann
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Lamorris M. Loftin
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Sarah T. Elliott
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Winston C. Wey
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Barbara Cervasi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jessica Taaffe
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jessica C. Engram
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Bing Li
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - James G. Else
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Yingying Li
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Beatrice H. Hahn
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Cynthia A. Derdeyn
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Donald L. Sodora
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Cristian Apetrei
- Department of Microbiology and Molecular Genetics, University of Pittsburgh Center for Vaccine Research, Pittsburgh, Pennsylvania, United States of America
| | - Mirko Paiardini
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Guido Silvestri
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Ronald G. Collman
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
4
|
Willett BJ, Kraase M, Logan N, McMonagle EL, Samman A, Hosie MJ. Modulation of the virus-receptor interaction by mutations in the V5 loop of feline immunodeficiency virus (FIV) following in vivo escape from neutralising antibody. Retrovirology 2010; 7:38. [PMID: 20420700 PMCID: PMC2873508 DOI: 10.1186/1742-4690-7-38] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 04/26/2010] [Indexed: 12/27/2022] Open
Abstract
Background In the acute phase of infection with feline immunodeficiency virus (FIV), the virus targets activated CD4+ T cells by utilising CD134 (OX40) as a primary attachment receptor and CXCR4 as a co-receptor. The nature of the virus-receptor interaction varies between isolates; strains such as GL8 and CPGammer recognise a "complex" determinant on CD134 formed by cysteine-rich domains (CRDs) 1 and 2 of the molecule while strains such as PPR and B2542 require a more "simple" determinant comprising CRD1 only for infection. These differences in receptor recognition manifest as variations in sensitivity to receptor antagonists. In this study, we ask whether the nature of the virus-receptor interaction evolves in vivo. Results Following infection with a homogeneous viral population derived from a pathogenic molecular clone, a quasispecies emerged comprising variants with distinct sensitivities to neutralising antibody and displaying evidence of conversion from a "complex" to a "simple" interaction with CD134. Escape from neutralising antibody was mediated primarily by length and sequence polymorphisms in the V5 region of Env, and these alterations in V5 modulated the virus-receptor interaction as indicated by altered sensitivities to antagonism by both anti-CD134 antibody and soluble CD134. Conclusions The FIV-receptor interaction evolves under the selective pressure of the host humoral immune response, and the V5 loop contributes to the virus-receptor interaction. Our data are consistent with a model whereby viruses with distinct biological properties are present in early versus late infection and with a shift from a "complex" to a "simple" interaction with CD134 with time post-infection.
Collapse
Affiliation(s)
- Brian J Willett
- Retrovirus Research Laboratory, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow, UK.
| | | | | | | | | | | |
Collapse
|
5
|
Derivation and characterization of a simian immunodeficiency virus SIVmac239 variant with tropism for CXCR4. J Virol 2009; 83:9911-22. [PMID: 19605489 DOI: 10.1128/jvi.00533-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Like human immunodeficiency virus type 1 (HIV-1), most simian immunodeficiency virus (SIV) strains use CCR5 to establish infection. However, while HIV-1 can acquire the ability to use CXCR4, SIVs that utilize CXCR4 have rarely been reported. To explore possible barriers against SIV coreceptor switching, we derived an R5X4 variant, termed 239-ST1, from the R5 clone SIVmac239 by serially passaging virus in CD4(+) CXCR4(+) CCR5(-) SupT1 cells. A 239-ST1 env clone, designated 239-ST1.2-32, used CXCR4 and CCR5 in cell-cell fusion and reporter virus infection assays and conferred the ability for rapid, cytopathic infection of SupT1 cells to SIVmac239. Viral replication was inhibitable by the CXCR4-specific antagonist AMD3100, and replication was abrogated in a novel CXCR4(-) SupT1 line. Surprisingly, parental SIVmac239 exhibited low-level replication in SupT1 cells that was not observed in CXCR4(-) SupT1 cells. Only two mutations in the 239-ST1.2-32 Env, K47E in the C1 domain and L328W in the V3 loop, were required for CXCR4 use in cell-cell fusion assays, although two other V3 changes, N316K and I324M, improved CXCR4 use in infection assays. An Env cytoplasmic tail truncation, acquired during propagation of 239-ST1 in SupT1 cells, was not required. Compared with SIVmac239, 239-ST1.2-32 was more sensitive to neutralization by five of seven serum and plasma samples from SIVmac239-infected rhesus macaques and was approximately 50-fold more sensitive to soluble CD4. Thus, SIVmac239 can acquire the ability to use CXCR4 with high efficiency, but the changes required for this phenotype may be distinct from those for HIV-1 CXCR4 use. This finding, along with the increased neutralization sensitivity of this CXCR4-using SIV, suggests a mechanism that could select strongly against this phenotype in vivo.
Collapse
|
6
|
Vázquez-Guillén JM, García-Jacobo PJ, Zapata-Benavides P, Rosas-Taraco AG, Ordaz-Sánchez MI, López-Guillén P, Trejo-Avila L, Alcocer-González JM, Rodríguez-Padilla C, Rivera-Morales LG. Expression of DC-SIGN in peripheral blood dendritic cells of patients with typical, slow, and rapid progression to AIDS. Arch Med Res 2009; 40:132-5. [PMID: 19237024 DOI: 10.1016/j.arcmed.2008.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 11/14/2008] [Indexed: 11/25/2022]
Abstract
The main access route for human immunodeficiency virus (HIV) into the lymph nodes is through the mucosa. Once there, dendritic cells (DCs) are the first cells to interact with the virus. Then, DCs can uptake and transport to the lymph nodes, beginning a disseminated infection. Interaction between the virus and DCs is mediated by the receptor DC-SIGN. This study seeks to determine any relationship between HIV-AIDS immunopathology and DC-SIGN expression levels in DCs from typical, rapid, and slow progressors. A DC separation system was implemented using peripheral blood mononuclear cells from infected subjects. The study included 27 patients classified as typical, rapid, and slow progressors according to their clinical and epidemiological files. Finally, quantification of DC-SIGN was achieved by real-time PCR and by applying the Relative Quantification Scheme (DeltaDeltaCt). We isolated DCs from peripheral blood of 27 HIV-infected patients. Nineteen were considered as typical progressors, five as slow progressors, and three as rapid progressors. No significant differences were observed on the expression levels of DC-SIGN among the three groups of patients. Even if there are differences in expression levels among the analyzed patients, we did not find any significant differences in DC-SIGN expression among the three included groups. We therefore cannot conclude that the expression level of the receptor is related with the progression to AIDS.
Collapse
|
7
|
Laurén A, Vincic E, Hoshino H, Thorstensson R, Fenyö EM. CD4-independent use of the CCR5 receptor by sequential primary SIVsm isolates. Retrovirology 2007; 4:50. [PMID: 17645788 PMCID: PMC1950888 DOI: 10.1186/1742-4690-4-50] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 07/23/2007] [Indexed: 11/28/2022] Open
Abstract
Background CD4-independence has been taken as a sign of a more open envelope structure that is more accessible to neutralizing antibodies and may confer altered cell tropism. In the present study, we analyzed SIVsm isolates for CD4-independent use of CCR5, mode of CCR5-use and macrophage tropism. The isolates have been collected sequentially from 13 experimentally infected cynomolgus macaques and have previously been shown to use CCR5 together with CD4. Furthermore, viruses obtained early after infection were neutralization sensitive, while neutralization resistance appeared already three months after infection in monkeys with progressive immunodeficiency. Results Depending whether isolated early or late in infection, two phenotypes of CD4-independent use of CCR5 could be observed. The inoculum virus (SIVsm isolate SMM-3) and reisolates obtained early in infection often showed a pronounced CD4-independence since virus production and/or syncytia induction could be detected directly in NP-2 cells expressing CCR5 but not CD4 (CD4-independent-HIGH). Conversely, late isolates were often more CD4-dependent in that productive infection in NP-2/CCR5 cells was in most cases weak and was revealed only after cocultivation of infected NP-2/CCR5 cells with peripheral blood mononuclear cells (CD4-independent-LOW). Considering neutralization sensitivity of these isolates, newly infected macaques often harbored virus populations with a CD4-independent-HIGH and neutralization sensitive phenotype that changed to a CD4-independent-LOW and neutralization resistant virus population in the course of infection. Phenotype changes occurred faster in progressor than long-term non-progressor macaques. The phenotypes were not reflected by macrophage tropism, since all isolates replicated efficiently in macrophages. Infection of cells expressing CCR5/CXCR4 chimeric receptors revealed that SIVsm used the CCR5 receptor in a different mode than HIV-1. Conclusion Our results show that SIVsm isolates use CCR5 independently of CD4. While the degree of CD4 independence and neutralization sensitivity vary over time, the ability to productively infect monocyte-derived macrophages remains at a steady high level throughout infection. The mode of CCR5 use differs between SIVsm and HIV-1, SIVsm appears to be more flexible than HIV-1 in its receptor requirement. We suggest that the mode of CCR5 coreceptor use and CD4-independence are interrelated properties.
Collapse
Affiliation(s)
- Anna Laurén
- Department of Laboratory Medicine, Division of Medical Microbiology/Virology, Lund University, Lund, Sweden
| | - Elzbieta Vincic
- Department of Laboratory Medicine, Division of Medical Microbiology/Virology, Lund University, Lund, Sweden
| | - Hiroo Hoshino
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, Gunma, Japan
| | | | - Eva Maria Fenyö
- Department of Laboratory Medicine, Division of Medical Microbiology/Virology, Lund University, Lund, Sweden
| |
Collapse
|
8
|
Laurén A, Thorstensson R, Fenyö EM. Comparative studies on mucosal and intravenous transmission of simian immunodeficiency virus (SIVsm): the kinetics of evolution to neutralization resistance are related to progression rate of disease. J Gen Virol 2006; 87:595-606. [PMID: 16476980 DOI: 10.1099/vir.0.81409-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The kinetics of appearance of autologous neutralizing antibodies were studied in cynomolgus macaques infected with simian immunodeficiency virus (SIVsm) by the intravenous (IV) route (six monkeys) or the intrarectal (IR) route (ten monkeys). The SIVsm inoculum virus and reisolates obtained at 2 weeks, 3 or 4 months and later than 1 year were tested in a GHOST(3) cell line-based plaque-reduction assay with autologous sera collected at the same sampling times. All monkeys developed a neutralizing-antibody response to the inoculum virus, those infected by the IV route earlier than monkeys infected by the IR route. Animals were divided into progressor (P), slow-progressor (SP) and long-term non-progressor (LTNP) monkeys, based on progression rate. In P monkeys, neutralization escape could be demonstrated by 3 months post-infection. Neutralization-resistant variants also emerged in SP and LTNP monkeys, but were much delayed compared with P monkeys. Evolution of neutralization resistance was also demonstrated by a positive-control serum in the heterologous reaction. Pooled sera from four LTNP monkeys showed a broad neutralizing capacity, including neutralization of escape variants. These results from a large group of infected monkeys showed that SIV evolves to neutralization resistance in the infected host and that the kinetics of this evolution are related to the route of transmission and the progression rate of SIV disease. The results suggest an important role for neutralizing antibodies in controlling viraemia. Although this control is transient in the infected host, neutralization resistance is relative and variant viruses may be neutralized by a broadly cross-neutralizing serum pool.
Collapse
Affiliation(s)
- Anna Laurén
- Division of Medical Microbiology, Department of Laboratory Medicine, Lund University, Sölvegatan 23, 223 62 Lund, Sweden
| | | | - Eva Maria Fenyö
- Division of Medical Microbiology, Department of Laboratory Medicine, Lund University, Sölvegatan 23, 223 62 Lund, Sweden
| |
Collapse
|