1
|
Zhou X, Zhu C, Li H. BK polyomavirus: latency, reactivation, diseases and tumorigenesis. Front Cell Infect Microbiol 2023; 13:1263983. [PMID: 37771695 PMCID: PMC10525381 DOI: 10.3389/fcimb.2023.1263983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
The identification of the first human polyomavirus BK (BKV) has been over half century, The previous epidemiological and phylogenetic studies suggest that BKV prevailed and co-evolved with humans, leading to high seroprevalence all over the world. In general, BKV stays latent and symptomless reactivation in healthy individuals. BKV has been mainly interlinked with BKV-associated nephropathy (BKVAN) in kidney-transplant recipients and hemorrhagic cystitis (HC) in hematopoietic stem cell transplant recipients (HSCTRs). However, the mechanisms underlying BKV latency and reactivation are not fully understood and lack of extensive debate. As Merkel cell polyomavirus (MCV) was identified as a pathogenic agent of malignant cutaneous cancer Merkel cell carcinoma (MCC) since 2008, linking BKV to tumorigenesis of urologic tumors raised concerns in the scientific community. In this review, we mainly focus on advances of mechanisms of BKV latency and reactivation, and BKV-associated diseases or tumorigenesis with systematical review of formerly published papers following the PRISMA guidelines. The potential tumorigenesis of BKV in two major types of cancers, head and neck cancer and urologic cancer, was systematically updated and discussed in depth. Besides, BKV may also play an infectious role contributing to HIV-associated salivary gland disease (HIVSGD) presentation. As more evidence indicates the key role of BKV in potential tumorigenesis, it is important to pay more attention on its etiology and pathogenicity in vitro and in vivo.
Collapse
Affiliation(s)
- Xianfeng Zhou
- Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
- Jiangxi Engineering Research Center for Translational Cancer Technology, Nanchang, China
- Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Chunlong Zhu
- Clinical Laboratory, Third Hospital of Nanchang, Nanchang, China
| | - Hui Li
- Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
| |
Collapse
|
2
|
Seaman WT, Madden V, Webster-Cyriaque J. HIVtat Alters Epithelial Differentiation State and Increases HPV16 Infectivity in Oral Keratinocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531567. [PMID: 36945374 PMCID: PMC10028910 DOI: 10.1101/2023.03.08.531567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Human Papillomavirus (HPV)-associated oral disease has increased during the era of HIV antiretroviral therapy. HPV and HIV proteins may be co-present at mucosal surfaces. Recent published studies have determined that HIVtat is secreted in the saliva and has been detected in oral mucosa even in the context of antiretroviral therapy. We hypothesized that HIVtat promoted oral HPV pathogenesis. Clinical HPV16 cloned episomes were introduced into differentiated oral epithelial cells (OKF6tert1). HIVtat mediated transactivation, DNA damage, oxidative stress, and effects on cellular differentiation were assessed. Detection of keratin 10 and of loricrin confirmed terminal differentiation. Sodium butyrate-treated (NaB) cells demonstrated an eight-fold increase in cross-linked involucrin, suggesting full terminal differentiation. HIVtat modulated this differentiation both in the presence and absence of NaB. Later viral events, including E6* and E1^E4 gene expression were assessed. HIVtat mediated relief of repressed L1 expression that mapped to a known inhibitory region (nucleotides 5561-6820). Viruses from HIVtat co-expressing cells exhibited robust de novo HPV16 infection. In conclusion, a novel oral keratinocyte monolayer system supported replication of an HPV16 clinical isolate where direct HIVtat and oral HPV interactions enhanced HPV de novo infection.
Collapse
|
3
|
Yang JF, You J. Regulation of Polyomavirus Transcription by Viral and Cellular Factors. Viruses 2020; 12:E1072. [PMID: 32987952 PMCID: PMC7601649 DOI: 10.3390/v12101072] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
Polyomavirus infection is widespread in the human population. This family of viruses normally maintains latent infection within the host cell but can cause a range of human pathologies, especially in immunocompromised individuals. Among several known pathogenic human polyomaviruses, JC polyomavirus (JCPyV) has the potential to cause the demyelinating disease progressive multifocal leukoencephalopathy (PML); BK polyomavirus (BKPyV) can cause nephropathy in kidney transplant recipients, and Merkel cell polyomavirus (MCPyV) is associated with a highly aggressive form of skin cancer, Merkel cell carcinoma (MCC). While the mechanisms by which these viruses give rise to the relevant diseases are not well understood, it is clear that the control of gene expression in each polyomavirus plays an important role in determining the infectious tropism of the virus as well as their potential to promote disease progression. In this review, we discuss the mechanisms governing the transcriptional regulation of these pathogenic human polyomaviruses in addition to the best-studied simian vacuolating virus 40 (SV40). We highlight the roles of viral cis-acting DNA elements, encoded proteins and miRNAs that control the viral gene expression. We will also underline the cellular transcription factors and epigenetic modifications that regulate the gene expression of these viruses.
Collapse
Affiliation(s)
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| |
Collapse
|
4
|
Balis V, Sourvinos G, Soulitzis N, Giannikaki E, Sofras F, Spandidos D. Prevalence of BK Virus and Human Papillomavirus in Human Prostate Cancer. Int J Biol Markers 2018; 22:245-51. [DOI: 10.1177/172460080702200402] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Polyomaviruses such as the BK virus (BKV), JC virus (JCV) and SV40, as well as the human papillomaviruses (HPV) are frequently detected throughout human populations, causing subclinical persistent infections and inducing oncogenesis in human and other cell lines. To test the involvement of these viruses in prostate tumorigenesis, we investigated the prevalence of BKV, JCV and HPV in a series of human prostatic malignancies. Forty-two samples of diagnosed prostatic malignancies were tested using standard polymerase chain reaction (PCR) protocols. Differentiation between BKV and JCV among the polyomavirus-positive samples was achieved after sequencing analysis of the PCR products. Reconstitution of BKV in vitro was performed and indirect immunofluorescence for the large T-antigen of the virus was applied to confirm the production of progeny virus. Detection and typing of HPV was carried out by PCR. The overall prevalence of polyomaviruses was 19% in the prostate cancer cases. Sequencing analysis of the polyomavirus-positive specimens revealed the presence of BKV in all samples. Reconstitution of the BKV from the BKV-positive prostate samples was successfully achieved in cell culture and progeny viral particles were obtained, confirming the presence of the virus in the human biopsies. HPV was detected in 4.8% of the samples, however, no HPV-11, HPV-16, HPV-18 or HPV-33 types were identified. BKV was frequently detected and could play a relevant role in the development and progression of human prostate cancer, whereas HPV does not seem to be implicated in this type of human neoplasia.
Collapse
Affiliation(s)
- V. Balis
- Laboratory of Clinical Virology, Faculty of Medicine, University of Crete, Heraklion, Crete
| | - G. Sourvinos
- Laboratory of Clinical Virology, Faculty of Medicine, University of Crete, Heraklion, Crete
| | - N. Soulitzis
- Laboratory of Clinical Virology, Faculty of Medicine, University of Crete, Heraklion, Crete
| | - E. Giannikaki
- Department of Pathology, University Hospital of Crete, Heraklion, Crete
| | - F. Sofras
- Department of Urology, University Hospital of Crete, Heraklion, Crete - Greece
| | - D.A. Spandidos
- Laboratory of Clinical Virology, Faculty of Medicine, University of Crete, Heraklion, Crete
| |
Collapse
|
5
|
Abstract
BK polyomavirus (BKV) causes frequent infections during childhood and establishes persistent infections within renal tubular cells and the uroepithelium, with minimal clinical implications. However, reactivation of BKV in immunocompromised individuals following renal or hematopoietic stem cell transplantation may cause serious complications, including BKV-associated nephropathy (BKVAN), ureteric stenosis, or hemorrhagic cystitis. Implementation of more potent immunosuppression and increased posttransplant surveillance has resulted in a higher incidence of BKVAN. Antiviral immunity plays a crucial role in controlling BKV replication, and our increasing knowledge about host-virus interactions has led to the development of improved diagnostic tools and clinical management strategies. Currently, there are no effective antiviral agents for BKV infection, and the mainstay of managing reactivation is reduction of immunosuppression. Development of immune-based therapies to combat BKV may provide new and exciting opportunities for the successful treatment of BKV-associated complications.
Collapse
|
6
|
Karalic D, Lazarevic I, Banko A, Cupic M, Jevtovic D, Jovanovic T. Molecular characterization of BK virus in patients infected with human immunodeficiency virus. Med Microbiol Immunol 2015; 205:185-93. [PMID: 26498471 DOI: 10.1007/s00430-015-0439-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 10/16/2015] [Indexed: 12/18/2022]
Abstract
Immunosuppression seems to be the most important cause of BKPyV reactivation. Recently, a spectrum of diseases associated with BKPyV infection has been reported in HIV-infected patients. BKPyV isolates can be classified into four subtypes based on nucleotide polymorphisms within VP1 coding region. Mutations within the BC loop of the VP1 may be associated with an increase in the viral pathogenicity. The aims of this study were to determine prevalence and distribution of BKPyV subtypes, sequence variation and mutations within VP1 among HIV-infected patients and healthy donors. Urine samples from 114 HIV-infected patients and 120 healthy donors were collected. PCR followed by sequence analysis was carried out using primers specific for VP1 and NCRR of the virus genome. The predominant BKPyV subtype was I, followed by IV. In isolates from HIV-infected patients, the majority of non-synonymous alterations were located within the BC loop. BKV sequences from healthy donors showed non-synonymous alterations outside of the receptor loops in the β-sheets. The higher frequency of mutations in the BC loop of VP1 protein was detected among HIV-infected patients. The most frequent mutation was E82D. All HIV-infected patients who harbored mutations had CD4(+) cell counts less than 200 cell/mm(3). It seems that immunosuppression is a very important factor for BKPyV reactivation that can increase viral replication rate and leads to higher frequency of mutations in the BC loop of the VP1. These mutations may change receptor specificity, and further studies are needed to determine the effect of these mutations on the biological properties of the BKPyV.
Collapse
Affiliation(s)
- Danijela Karalic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Serbia, Dr Subotica 1, Belgrade, 11000, Serbia.
| | - Ivana Lazarevic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Serbia, Dr Subotica 1, Belgrade, 11000, Serbia
| | - Ana Banko
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Serbia, Dr Subotica 1, Belgrade, 11000, Serbia
| | - Maja Cupic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Serbia, Dr Subotica 1, Belgrade, 11000, Serbia
| | - Djordje Jevtovic
- Clinics of Infectious and Tropical Diseases, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Serbia, Bulevar oslobodjenja 16, Belgrade, 11000, Serbia
| | - Tanja Jovanovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Serbia, Dr Subotica 1, Belgrade, 11000, Serbia
| |
Collapse
|
7
|
Rinaldo CH, Tylden GD, Sharma BN. The human polyomavirus BK (BKPyV): virological background and clinical implications. APMIS 2013; 121:728-45. [PMID: 23782063 DOI: 10.1111/apm.12134] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 04/27/2013] [Indexed: 12/13/2022]
Abstract
Polyomavirus BK (BKPyV) infects most people subclinically during childhood and establishes a lifelong infection in the renourinary tract. In most immunocompetent individuals, the infection is completely asymptomatic, despite frequent episodes of viral reactivation with shedding into the urine. In immunocompromised patients, reactivation followed by high-level viral replication can lead to severe disease: 1-10% of kidney transplant patients develop polyomavirus-associated nephropathy (PyVAN) and 5-15% of allogenic hematopoietic stem cell transplant patients develop polyomavirus-associated haemorrhagic cystitis (PyVHC). Other conditions such as ureteric stenosis, encephalitis, meningoencephalitis, pneumonia and vasculopathy have also been associated with BKPyV infection in immunocompromised individuals. Although BKPyV has been associated with cancer development, especially in the bladder, definitive evidence of a role in human malignancy is lacking. Diagnosis of PyVAN and PyVHC is mainly achieved by quantitative PCR of urine and plasma, but also by cytology, immunohistology and electron microscopy. Despite more than 40 years of research on BKPyV, there is still no effective antiviral therapy. The current treatment strategy for PyVAN is to allow reconstitution of immune function by reducing or changing the immunosuppressive medication. For PyVHC, treatment is purely supportive. Here, we present a summary of the accrued knowledge regarding BKPyV.
Collapse
Affiliation(s)
- Christine Hanssen Rinaldo
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway.
| | | | | |
Collapse
|
8
|
Qu J, Zhang Q, Li Y, Liu W, Chen L, Zhu Y, Wu J. The Tat protein of human immunodeficiency virus-1 enhances hepatitis C virus replication through interferon gamma-inducible protein-10. BMC Immunol 2012; 13:15. [PMID: 22471703 PMCID: PMC3350415 DOI: 10.1186/1471-2172-13-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Accepted: 04/03/2012] [Indexed: 01/28/2023] Open
Abstract
Background Co-infection with human immunodeficiency virus-1 (HIV-1) and hepatitis C virus (HCV) is associated with faster progression of liver disease and an increase in HCV persistence. However, the mechanism by which HIV-1 accelerates the progression of HCV liver disease remains unknown. Results HIV-1/HCV co-infection is associated with increased expression of interferon gamma-induced protein-10 (IP-10) mRNA in peripheral blood mononuclear cells (PBMCs). HCV RNA levels were higher in PBMCs of patients with HIV-1/HCV co-infection than in patients with HCV mono-infection. HIV-1 Tat and IP-10 activated HCV replication in a time-dependent manner, and HIV-1 Tat induced IP-10 production. In addition, the effect of HIV-1 Tat on HCV replication was blocked by anti-IP-10 monoclonal antibody, demonstrating that the effect of HIV-1 Tat on HCV replication depends on IP-10. Taken together, these results suggest that HIV-1 Tat protein activates HCV replication by upregulating IP-10 production. Conclusions HIV-1/HCV co-infection is associated with increased expression of IP-10 mRNA and replication of HCV RNA. Furthermore, both HIV-1 Tat and IP-10 activate HCV replication. HIV-1 Tat activates HCV replication by upregulating IP-10 production. These results expand our understanding of HIV-1 in HCV replication and the mechanism involved in the regulation of HCV replication mediated by HIV-1 during co-infection.
Collapse
Affiliation(s)
- Jing Qu
- State Key Laboratory of Virology, College of Life Sciences, and Chinese-French Liver Disease Research Institute at Zhongnan Hospital, Wuhan University, Wuhan 430072, PR China
| | | | | | | | | | | | | |
Collapse
|
9
|
Traylen CM, Patel HR, Fondaw W, Mahatme S, Williams JF, Walker LR, Dyson OF, Arce S, Akula SM. Virus reactivation: a panoramic view in human infections. Future Virol 2011; 6:451-463. [PMID: 21799704 DOI: 10.2217/fvl.11.21] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Viruses are obligate intracellular parasites, relying to a major extent on the host cell for replication. An active replication of the viral genome results in a lytic infection characterized by the release of new progeny virus particles, often upon the lysis of the host cell. Another mode of virus infection is the latent phase, where the virus is 'quiescent' (a state in which the virus is not replicating). A combination of these stages, where virus replication involves stages of both silent and productive infection without rapidly killing or even producing excessive damage to the host cells, falls under the umbrella of a persistent infection. Reactivation is the process by which a latent virus switches to a lytic phase of replication. Reactivation may be provoked by a combination of external and/or internal cellular stimuli. Understanding this mechanism is essential in developing future therapeutic agents against viral infection and subsequent disease. This article examines the published literature and current knowledge regarding the viral and cellular proteins that may play a role in viral reactivation. The focus of the article is on those viruses known to cause latent infections, which include herpes simplex virus, varicella zoster virus, Epstein-Barr virus, human cytomegalovirus, human herpesvirus 6, human herpesvirus 7, Kaposi's sarcoma-associated herpesvirus, JC virus, BK virus, parvovirus and adenovirus.
Collapse
Affiliation(s)
- Christopher M Traylen
- Department of Microbiology & Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Lintas C, Altieri L, Lombardi F, Sacco R, Persico AM. Association of autism with polyomavirus infection in postmortem brains. J Neurovirol 2010; 16:141-9. [PMID: 20345322 DOI: 10.3109/13550281003685839] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Autism is a highly heritable behavioral disorder. Yet, two decades of genetic investigation have unveiled extremely few cases that can be solely explained on the basis of de novo mutations or cytogenetic abnormalities. Vertical viral transmission represents a nongenetic mechanism of disease compatible with high parent-to-offspring transmission and with low rates of disease-specific genetic abnormalities. Vertically transmitted viruses should be found more frequently in the affected tissues of autistic individuals compared to controls. Our initial step was thus to assess by nested polymerase chain reaction (PCR) and DNA sequence analysis the presence of cytomegalovirus (CMV), Epstein-Barr virus (EBV), herpes simplex virus type 1 (HSV1), herpes simplex virus type 2 (HSV2), human herpes virus 6 (HHV6), BK virus (BKV), JC virus (JCV), and simian virus 40 (SV40) in genomic DNA extracted from postmortem temporocortical tissue (Brodmann areas 41/42) belonging to 15 autistic patients and 13 controls. BKV, JCV, and SV40 combined are significantly more frequent among autistic patients compared to controls (67% versus 23%, respectively; P < .05). The majority of positives yielded archetypal sequences, whereas six patients and two controls unveiled single-base pair changes in two or more sequenced clones. No association is present with the remaining viruses, which are found in relatively few individuals (N <or= 3). Also polyviral infections tend to occur more frequently in the brains of autistic patients compared to controls (40% versus 7.7%, respectively; P = .08). Follow-up studies exploring vertical viral transmission as a possible pathogenetic mechanism in autistic disorder should focus on, but not be limited to, the role of polyomaviruses.
Collapse
Affiliation(s)
- Carla Lintas
- Laboratory of Molecular Psychiatry and Neurogenetics, University Campus Bio-Medico, Rome, Italy
| | | | | | | | | |
Collapse
|
11
|
A system for the analysis of BKV non-coding control regions: application to clinical isolates from an HIV/AIDS patient. Virology 2010; 407:368-73. [PMID: 20869740 DOI: 10.1016/j.virol.2010.08.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 06/09/2010] [Accepted: 08/30/2010] [Indexed: 12/28/2022]
Abstract
The human polyomavirus BK virus (BKV) is an important opportunistic pathogen whose disease prevalence continues to increase with the growing immunocompromised population. To date, the major determinant of replication in cell culture has not been formally proven. BKV exists as archetype virus and rearranged variants, which are classified based on the DNA sequence of their non-coding control regions (NCCRs). The archetype BKV NCCR is divided into five blocks of sequence and rearranged variants contain deletions and duplications of these blocks. In this study, a genetic system was developed and used to identify the major determinant of replication ability in primary renal proximal tubule epithelial cells, the natural host cell of BKV. This system was also used to analyze NCCR variants isolated from an immunocompromised patient which contain assorted rearrangement patterns and functional differences. This study solidifies the NCCR as the major genetic determinant of BKV replication ability in vitro.
Collapse
|
12
|
Romani B, Engelbrecht S, Glashoff RH. Functions of Tat: the versatile protein of human immunodeficiency virus type 1. J Gen Virol 2009; 91:1-12. [PMID: 19812265 DOI: 10.1099/vir.0.016303-0] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) Tat is a multifunctional protein that contributes to several pathological symptoms of HIV-1 infection as well as playing a critical role in virus replication. Tat is a robust transactivating protein that induces a variety of effects by altering the expression levels of cellular and viral genes. The functions of Tat are therefore primarily related to its role in modulation of gene expression. In this review the functions of HIV-1 Tat that have been well documented, as well as a number of novel functions that have been proposed for this protein, are discussed. Since some of the functions of Tat vary in different cell types in a concentration-dependent manner and because Tat sometimes exerts the same activity through different pathways, study of this protein has at times yielded conflicting and controversial results. Due to its pivotal role in viral replication and in disease pathogenesis, Tat and the cellular pathways targeted by Tat are potential targets for new anti-HIV drugs.
Collapse
Affiliation(s)
- Bizhan Romani
- Division of Medical Virology, Department of Pathology, University of Stellenbosch, Tygerberg 7505, South Africa.
| | | | | |
Collapse
|
13
|
Modulation of JC virus transcription by C/EBPbeta. Virus Res 2009; 146:97-106. [PMID: 19747512 DOI: 10.1016/j.virusres.2009.09.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 09/03/2009] [Accepted: 09/03/2009] [Indexed: 11/21/2022]
Abstract
The polyomavirus JC (JCV) causes the demyelinating disease progressive multifocal leukoencephalopathy (PML). Infection by JCV is very common in childhood after which the virus enters a latent state, which is poorly understood. Under conditions of severe immunosuppression, especially AIDS, JCV may reactivate to cause PML. Expression of JC viral proteins is regulated by the JCV non-coding control region (NCCR), which contains an NF-kappaB binding site previously shown to activate transcription. We now report that C/EBPbeta inhibits basal and NF-kappaB-stimulated JCV transcription via the same site. Gel shift analysis showed C/EBPbeta bound to this region in vitro and ChIP assays confirmed this binding in vivo. Further, a ternary complex of NF-kappaB/p65, C/EBPbeta-LIP and JCV DNA could be detected in co-immunoprecipitation experiments. Mutagenesis analysis of the JCV NCCR indicated p65 and C/EBPbeta-LIP bound to adjacent but distinct sites and that both sites regulate basal and p65-stimulated transcription. Thus C/EBPbeta negatively regulates JCV, which together with NF-kappaB activation, may control the balance between JCV latency and activation leading to PML. This balance may be regulated by proinflammatory cytokines in the brain.
Collapse
|
14
|
Abstract
Polyomaviruses are a growing family of small DNA viruses with a narrow tropism for both the host species and the cell type in which they productively replicate. Species host range may be constrained by requirements for precise molecular interactions between the viral T antigen, host replication proteins, including DNA polymerase, and the viral origin of replication, which are required for viral DNA replication. Cell type specificity involves, at least in part, transcription factors that are necessary for viral gene expression and restricted in their tissue distribution. In the case of the human polyomaviruses, BK virus (BKV) replication occurs in the tubular epithelial cells of the kidney, causing nephropathy in kidney allograft recipients, while JC virus (JCV) replication occurs in the glial cells of the central nervous system, where it causes progressive multifocal leukoencephalopathy. Three new human polyomaviruses have recently been discovered: MCV was found in Merkel cell carcinoma samples, while Karolinska Institute Virus and Washington University Virus were isolated from the respiratory tract. We discuss control mechanisms for gene expression in primate polyomaviruses, including simian vacuolating virus 40, BKV, and JCV. These mechanisms include not only modulation of promoter activities by transcription factor binding but also enhancer rearrangements, restriction of DNA methylation, alternate early mRNA splicing, cis-acting elements in the late mRNA leader sequence, and the production of viral microRNA.
Collapse
|
15
|
Abstract
SUMMARY Human immunodeficiency virus (HIV)-infected patients may acquire new viral co-infections; they also may experience the reactivation or worsening of existing viral infections, including active, smoldering, or latent infections. HIV-infected patients may be predisposed to these viral infections owing to immunodeficiency or risk factors common to HIV and other viruses. A number of these affect the kidney, either by direct infection or by deposition of immune complexes. In this review we discuss the renal manifestations and treatment of hepatitis C virus, BK virus, adenovirus, cytomegalovirus, and parvovirus B19 in patients with HIV disease. We also discuss an approach to the identification of new viral renal pathogens, using a viral gene chip to identify viral DNA or RNA.
Collapse
Affiliation(s)
- Meryl Waldman
- Kidney Disease Section, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892-1268, USA.
| | | | | | | |
Collapse
|
16
|
Sukov WR, Lewin M, Sethi S, Rakowski TA, Lager DJ. BK virus-associated nephropathy in a patient with AIDS. Am J Kidney Dis 2008; 51:e15-8. [PMID: 18371524 DOI: 10.1053/j.ajkd.2007.11.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Accepted: 11/20/2007] [Indexed: 12/16/2022]
Abstract
The BK virus is a ubiquitous member of the group of human polyoma viruses that commonly is reactivated in the setting of immunosuppression related to renal transplantation, which results in tubulointerstitial nephritis and allograft dysfunction. BK virus-associated nephropathy occurring in association with human immunodeficiency virus infection and acquired immunodeficiency syndrome (AIDS) was reported only rarely. We describe the case of a 43-year-old man with AIDS presenting with nonoliguric renal failure. The renal biopsy specimen showed tubulointerstitial nephritis and renal tubular cell changes consistent with BK viral inclusions. Results of in situ hybridization for BK viral DNA were positive and showed tubular cell intranuclear inclusions. To our knowledge, this represents the third case of AIDS-associated BK virus-associated nephropathy diagnosed by means of biopsy.
Collapse
Affiliation(s)
- William R Sukov
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | |
Collapse
|
17
|
Abstract
Viruses cannot autonomously replicate but must rely on the host cellular machinery to support their life cycle. Through natural selection, viruses have evolved strategies to co-opt the host organism to be a better site for their propagation. Some of these strategies are directed at the cellular machinery and involve complicated and ingenious solutions to optimize infection, replication, viral gene expression, and new virion assembly and shedding. Other strategies are directed at the host's innate and adaptive immune systems that permit the virus to evade clearance mechanisms. The more common pathogenic viral infections in nephrology-cytomegalovirus, HIV-1, hepatitis C virus, polyomavirus BK, and parvovirus B19-all have acquired subversion strategies that benefit the virus but because they interfere with normal cellular and immune processes also have become pathogenic to the host. In addition, the highly prevalent viruses cytomegalovirus, BK, and B19 cause severe disease only in the setting of immunosuppression, revealing the very delicate balance that some viruses have achieved with their host's immune system. Thus, selective pressure for survival drives both the evolution of more sophisticated viruses and the host immune system as it evolves to combat the environment of adapting and emerging infectious agents. Understanding the molecular mechanisms of these viral subversion strategies may reveal new targets for the development of highly specific antiviral therapies and also aid vaccine development.
Collapse
Affiliation(s)
- Leslie A Bruggeman
- Department of Medicine and Rammelkamp Center for Education and Research, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44109, USA.
| |
Collapse
|