1
|
Pitsillou E, El-Osta A, Hung A, Karagiannis TC. Epimaps of the SARS-CoV-2 Receptor-Binding Domain Mutational Landscape: Insights into Protein Stability, Epitope Prediction, and Antibody Binding. Biomolecules 2025; 15:301. [PMID: 40001604 PMCID: PMC11853434 DOI: 10.3390/biom15020301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/02/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants poses an ongoing threat to the efficacy of vaccines and therapeutic antibodies. Mutations predominantly affect the receptor-binding domain (RBD) of the spike protein, which mediates viral entry. The RBD is also a major target of monoclonal antibodies that were authorised for use during the pandemic. In this study, an in silico approach was used to investigate the mutational landscape of SARS-CoV-2 RBD variants, including currently circulating Omicron subvariants. A total of 40 single-point mutations were assessed for their potential effect on protein stability and dynamics. Destabilising effects were predicted for mutations such as L455S and F456L, while stabilising effects were predicted for mutations such as R346T. Conformational B-cell epitope predictions were subsequently performed for wild-type (WT) and variant RBDs. Mutations from SARS-CoV-2 variants were located within the predicted epitope residues and the epitope regions were found to correspond to the sites targeted by therapeutic antibodies. Furthermore, homology models of the RBD of SARS-CoV-2 variants were generated and were utilised for protein-antibody docking. The binding characteristics of 10 monoclonal antibodies against WT and 14 SARS-CoV-2 variants were evaluated. Through evaluating the binding affinities, interactions, and energy contributions of RBD residues, mutations that were contributing to viral evasion were identified. The findings from this study provide insight into the structural and molecular mechanisms underlying neutralising antibody evasion. Future antibody development could focus on broadly neutralising antibodies, engineering antibodies with enhanced binding affinity, and targeting spike protein regions beyond the RBD.
Collapse
MESH Headings
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- SARS-CoV-2/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Humans
- Protein Stability
- Epitopes, B-Lymphocyte/immunology
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/genetics
- Antibodies, Viral/immunology
- Mutation
- COVID-19/virology
- COVID-19/immunology
- Protein Domains
- Antibodies, Neutralizing/immunology
- Antibodies, Monoclonal/immunology
- Protein Binding
- Epitopes/immunology
- Epitopes/genetics
Collapse
Affiliation(s)
- Eleni Pitsillou
- Epigenomic Medicine Laboratory at prospED Polytechnic, Carlton, VIC 3053, Australia
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong, 3/F Lui Che Woo Clinical Sciences Building, 30–32 Ngan Shing Street, Sha Tin, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
- Biomedical Laboratory Science, Department of Technology, Faculty of Health, University College Copenhagen, 2200 Copenhagen, Denmark
| | - Andrew Hung
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Tom C. Karagiannis
- Epigenomic Medicine Laboratory at prospED Polytechnic, Carlton, VIC 3053, Australia
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
2
|
Oktavianthi S, Lages AC, Kusuma R, Kurniasih TS, Trimarsanto H, Andriani F, Rustandi D, Meriyanti T, Yusuf I, Malik SG, Jo J, Suriapranata I. Whole-Genome Sequencing and Mutation Analyses of SARS-CoV-2 Isolates from Indonesia. Pathogens 2024; 13:279. [PMID: 38668234 PMCID: PMC11053823 DOI: 10.3390/pathogens13040279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/12/2024] [Accepted: 03/07/2024] [Indexed: 04/29/2024] Open
Abstract
The SARS-CoV-2 infection that caused the COVID-19 pandemic has become a significant public health concern. New variants with distinct mutations have emerged, potentially impacting its infectivity, immune evasion capacity, and vaccine response. A whole-genome sequencing study of 292 SARS-CoV-2 isolates collected from selected regions of Indonesia between January and October 2021 was performed to identify the distribution of SARS-CoV-2 variants and common mutations in Indonesia. During January-April 2021, Indonesian lineages B.1.466.2 and B.1.470 dominated, but from May 2021, Delta's AY.23 lineage outcompeted them. An analysis of 7515 published sequences from January 2021 to June 2022 revealed a decline in Delta in November 2021, followed by the emergence of Omicron variants in December 2021. We identified C241T (5'UTR), P314L (NSP12b), F106F (NSP3), and D614G (Spike) mutations in all sequences. The other common substitutions included P681R (76.4%) and T478K (60%) in Spike, D377Y in Nucleocapsid (61%), and I82T in Membrane (60%) proteins. Breakthrough infection and prolonged viral shedding cases were associated with Delta variants carrying the Spike T19R, G142D, L452R, T478K, D614G, P681R, D950N, and V1264L mutations. The dynamic of SARS-CoV-2 variants in Indonesia highlights the importance of continuous genomic surveillance in monitoring and identifying potential strains leading to disease outbreaks.
Collapse
Affiliation(s)
- Sukma Oktavianthi
- Mochtar Riady Institute for Nanotechnology, Tangerang 15810, Indonesia; (S.O.); (A.C.L.); (R.K.); (T.S.K.); (F.A.); (I.Y.); (S.G.M.); (J.J.)
- Eijkman Institute for Molecular Biology, Jakarta 10430, Indonesia;
| | - Aksar Chair Lages
- Mochtar Riady Institute for Nanotechnology, Tangerang 15810, Indonesia; (S.O.); (A.C.L.); (R.K.); (T.S.K.); (F.A.); (I.Y.); (S.G.M.); (J.J.)
| | - Rinaldy Kusuma
- Mochtar Riady Institute for Nanotechnology, Tangerang 15810, Indonesia; (S.O.); (A.C.L.); (R.K.); (T.S.K.); (F.A.); (I.Y.); (S.G.M.); (J.J.)
| | - Tri Shinta Kurniasih
- Mochtar Riady Institute for Nanotechnology, Tangerang 15810, Indonesia; (S.O.); (A.C.L.); (R.K.); (T.S.K.); (F.A.); (I.Y.); (S.G.M.); (J.J.)
| | - Hidayat Trimarsanto
- Eijkman Institute for Molecular Biology, Jakarta 10430, Indonesia;
- Menzies School of Health Research, Charles Darwin University, Darwin 0811, Australia
| | - Febi Andriani
- Mochtar Riady Institute for Nanotechnology, Tangerang 15810, Indonesia; (S.O.); (A.C.L.); (R.K.); (T.S.K.); (F.A.); (I.Y.); (S.G.M.); (J.J.)
| | - David Rustandi
- Siloam Hospital Lippo Village, Tangerang 15810, Indonesia; (D.R.); (T.M.)
| | - Tandry Meriyanti
- Siloam Hospital Lippo Village, Tangerang 15810, Indonesia; (D.R.); (T.M.)
| | - Irawan Yusuf
- Mochtar Riady Institute for Nanotechnology, Tangerang 15810, Indonesia; (S.O.); (A.C.L.); (R.K.); (T.S.K.); (F.A.); (I.Y.); (S.G.M.); (J.J.)
| | - Safarina G. Malik
- Mochtar Riady Institute for Nanotechnology, Tangerang 15810, Indonesia; (S.O.); (A.C.L.); (R.K.); (T.S.K.); (F.A.); (I.Y.); (S.G.M.); (J.J.)
- Eijkman Institute for Molecular Biology, Jakarta 10430, Indonesia;
| | - Juandy Jo
- Mochtar Riady Institute for Nanotechnology, Tangerang 15810, Indonesia; (S.O.); (A.C.L.); (R.K.); (T.S.K.); (F.A.); (I.Y.); (S.G.M.); (J.J.)
- Department of Biology, Faculty of Science and Technology, Universitas Pelita Harapan, Tangerang 15811, Indonesia
| | - Ivet Suriapranata
- Mochtar Riady Institute for Nanotechnology, Tangerang 15810, Indonesia; (S.O.); (A.C.L.); (R.K.); (T.S.K.); (F.A.); (I.Y.); (S.G.M.); (J.J.)
| |
Collapse
|
3
|
Ma S, Xiao G, Deng X, Tong M, Huang J, Li Q, Zhang Y. CovidShiny: An Integrated Web Tool for SARS-CoV-2 Mutation Profiling and Molecular Diagnosis Assay Evaluation In Silico. Viruses 2023; 15:2017. [PMID: 37896794 PMCID: PMC10611021 DOI: 10.3390/v15102017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is still ongoing, with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continuing to evolve and accumulate mutations. While various bioinformatics tools have been developed for SARS-CoV-2, a well-curated mutation-tracking database integrated with in silico evaluation for molecular diagnostic assays is currently unavailable. To address this, we introduce CovidShiny, a web tool that integrates mutation profiling, in silico evaluation, and data download capabilities for genomic sequence-based SARS-CoV-2 assays and data download. It offers a feasible framework for surveilling the mutation of SARS-CoV-2 and evaluating the coverage of the molecular diagnostic assay for SARS-CoV-2. With CovidShiny, we examined the dynamic mutation pattern of SARS-CoV-2 and evaluated the coverage of commonly used assays on a large scale. Based on our in silico analysis, we stress the importance of using multiple target molecular diagnostic assays for SARS-CoV-2 to avoid potential false-negative results caused by viral mutations. Overall, CovidShiny is a valuable tool for SARS-CoV-2 mutation surveillance and in silico assay design and evaluation.
Collapse
Affiliation(s)
- Shaoqian Ma
- The State Key Laboratory of Cellular Stress Biology, National Institute for Data Science in Health and Medicine Engineering, Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361100, China; (S.M.); (G.X.); (X.D.); (M.T.); (J.H.); (Q.L.)
| | - Gezhi Xiao
- The State Key Laboratory of Cellular Stress Biology, National Institute for Data Science in Health and Medicine Engineering, Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361100, China; (S.M.); (G.X.); (X.D.); (M.T.); (J.H.); (Q.L.)
| | - Xusheng Deng
- The State Key Laboratory of Cellular Stress Biology, National Institute for Data Science in Health and Medicine Engineering, Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361100, China; (S.M.); (G.X.); (X.D.); (M.T.); (J.H.); (Q.L.)
| | - Mengsha Tong
- The State Key Laboratory of Cellular Stress Biology, National Institute for Data Science in Health and Medicine Engineering, Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361100, China; (S.M.); (G.X.); (X.D.); (M.T.); (J.H.); (Q.L.)
| | - Jialiang Huang
- The State Key Laboratory of Cellular Stress Biology, National Institute for Data Science in Health and Medicine Engineering, Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361100, China; (S.M.); (G.X.); (X.D.); (M.T.); (J.H.); (Q.L.)
| | - Qingge Li
- The State Key Laboratory of Cellular Stress Biology, National Institute for Data Science in Health and Medicine Engineering, Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361100, China; (S.M.); (G.X.); (X.D.); (M.T.); (J.H.); (Q.L.)
| | - Yongyou Zhang
- The State Key Laboratory of Cellular Stress Biology, National Institute for Data Science in Health and Medicine Engineering, Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361100, China; (S.M.); (G.X.); (X.D.); (M.T.); (J.H.); (Q.L.)
- Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361100, China
| |
Collapse
|
4
|
Chrysostomou AC, Vrancken B, Haralambous C, Alexandrou M, Aristokleous A, Christodoulou C, Gregoriou I, Ioannides M, Kalakouta O, Karagiannis C, Koumbaris G, Loizides C, Mendris M, Papastergiou P, Patsalis PC, Pieridou D, Richter J, Schmitt M, Shammas C, Stylianou DC, Themistokleous G, the COMESSAR Network, Lemey P, Kostrikis LG. Genomic Epidemiology of the SARS-CoV-2 Epidemic in Cyprus from November 2020 to October 2021: The Passage of Waves of Alpha and Delta Variants of Concern. Viruses 2022; 15:108. [PMID: 36680148 PMCID: PMC9862594 DOI: 10.3390/v15010108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 2019 resulted in the coronavirus disease 2019 (COVID-19) pandemic, which has had devastating repercussions for public health. Over the course of this pandemic, the virus has continuously been evolving, resulting in new, more infectious variants that have frequently led to surges of new SARS-CoV-2 infections. In the present study, we performed detailed genetic, phylogenetic, phylodynamic and phylogeographic analyses to examine the SARS-CoV-2 epidemic in Cyprus using 2352 SARS-CoV-2 sequences from infected individuals in Cyprus during November 2020 to October 2021. During this period, a total of 61 different lineages and sublineages were identified, with most falling into three groups: B.1.258 & sublineages, Alpha (B.1.1.7 & Q. sublineages), and Delta (B.1.617.2 & AY. sublineages), each encompassing a set of S gene mutations that primarily confer increased transmissibility as well as immune evasion. Specifically, these lineages were coupled with surges of new infections in Cyprus, resulting in the following: the second wave of SARS-CoV-2 infections in Cyprus, comprising B.1.258 & sublineages, during late autumn 2020/beginning of winter 2021; the third wave, comprising Alpha (B.1.1.7 & Q. sublineages), during spring 2021; and the fourth wave, comprising Delta (B.1.617.2 & AY. sublineages) during summer 2021. Additionally, it was identified that these lineages were primarily imported from and exported to the UK, Greece, and Sweden; many other migration links were also identified, including Switzerland, Denmark, Russia, and Germany. Taken together, the results of this study indicate that the SARS-CoV-2 epidemic in Cyprus was characterized by successive introduction of new lineages from a plethora of countries, resulting in the generation of waves of infection. Overall, this study highlights the importance of investigating the spatiotemporal evolution of the SARS-CoV-2 epidemic in the context of Cyprus, as well as the impact of protective measures placed to mitigate transmission of the virus, providing necessary information to safeguard public health.
Collapse
Affiliation(s)
| | - Bram Vrancken
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, 1050 Bruxelles, Belgium
| | - Christos Haralambous
- Unit for Surveillance and Control of Communicable Diseases, Ministry of Health, Nicosia 1148, Cyprus
| | - Maria Alexandrou
- Microbiology Department, Larnaca General Hospital, Larnaca 6301, Cyprus
| | - Antonia Aristokleous
- Department of Biological Sciences, University of Cyprus, Aglantzia, Nicosia 2109, Cyprus
| | - Christina Christodoulou
- Department of Molecular Virology, Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Ioanna Gregoriou
- Unit for Surveillance and Control of Communicable Diseases, Ministry of Health, Nicosia 1148, Cyprus
| | | | - Olga Kalakouta
- Unit for Surveillance and Control of Communicable Diseases, Ministry of Health, Nicosia 1148, Cyprus
| | | | | | | | - Michail Mendris
- Microbiology Department, Limassol General Hospital, Limassol 4131, Cyprus
| | | | - Philippos C. Patsalis
- NIPD Genetics, Nicosia 2409, Cyprus
- Medical School, University of Nicosia, Nicosia 2417, Cyprus
| | - Despo Pieridou
- Microbiology Department, Nicosia General Hospital, Nicosia 2029, Cyprus
| | - Jan Richter
- Department of Molecular Virology, Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Markus Schmitt
- Eurofins Genomics Sequencing Europe, 85560 Ebersberg, Germany
| | - Christos Shammas
- S.C.I.N.A Bioanalysis Sciomedical Centre Ltd., Limassol 4040, Cyprus
| | - Dora C. Stylianou
- Department of Biological Sciences, University of Cyprus, Aglantzia, Nicosia 2109, Cyprus
| | | | | | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Leondios G. Kostrikis
- Department of Biological Sciences, University of Cyprus, Aglantzia, Nicosia 2109, Cyprus
- Cyprus Academy of Sciences, Letters, and Arts, 60-68 Phaneromenis Street, Nicosia 1011, Cyprus
| |
Collapse
|
5
|
Lou EG, Sapoval N, McCall C, Bauhs L, Carlson-Stadler R, Kalvapalle P, Lai Y, Palmer K, Penn R, Rich W, Wolken M, Brown P, Ensor KB, Hopkins L, Treangen TJ, Stadler LB. Direct comparison of RT-ddPCR and targeted amplicon sequencing for SARS-CoV-2 mutation monitoring in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022. [PMID: 35395314 DOI: 10.2139/ssrn.4022373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Over the course of the COVID-19 pandemic, variants of SARS-CoV-2 have emerged that are more contagious and more likely to cause breakthrough infections. Targeted amplicon sequencing approach is a gold standard for identification and analysis of variants. However, when applied to environmental samples such as wastewater, it remains unclear how sensitive this method is for detecting variant-associated mutations in environmental samples. Here we directly compare a targeted amplicon sequencing approach (using ARTIC v3; hereafter referred to as sequencing) with RT-ddPCR quantification for the detection of five mutations that are characteristic of variants of concern (VoCs) in wastewater samples. In total, 547 wastewater samples were analyzed using both methods in parallel. When we observed positive mutation detections by RT-ddPCR, 42.6% of the detection events were missed by sequencing, due to negative detection or the limited read coverage at the mutation position. Further, when sequencing reported negative or depth-limited mutation detections, 26.7% of those events were instead positive detections by RT-ddPCR, highlighting the relatively poor sensitivity of sequencing. No or weak associations were observed between quantitative measurements of target mutations determined by RT-ddPCR and sequencing. These findings caution the use of quantitative measurements of SARS-CoV-2 variants in wastewater samples determined solely based on sequencing.
Collapse
Affiliation(s)
- Esther G Lou
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005, United States of America
| | - Nicolae Sapoval
- Department of Computer Science, Rice University, 6100 Main Street, Houston, TX 77005, United States of America
| | - Camille McCall
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005, United States of America
| | - Lauren Bauhs
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005, United States of America
| | - Russell Carlson-Stadler
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005, United States of America
| | - Prashant Kalvapalle
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, 6100 Main Street, Houston, TX 77005, United States of America
| | - Yanlai Lai
- Houston Health Department, 8000 N. Stadium Dr., Houston, TX 77054, United States of America
| | - Kyle Palmer
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005, United States of America
| | - Ryker Penn
- Houston Health Department, 8000 N. Stadium Dr., Houston, TX 77054, United States of America
| | - Whitney Rich
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005, United States of America
| | - Madeline Wolken
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005, United States of America
| | - Pamela Brown
- Houston Health Department, 8000 N. Stadium Dr., Houston, TX 77054, United States of America
| | - Katherine B Ensor
- Department of Statistics, Rice University, 6100 Main Street MS 138, Houston, TX 77005, United States of America
| | - Loren Hopkins
- Houston Health Department, 8000 N. Stadium Dr., Houston, TX 77054, United States of America; Department of Statistics, Rice University, 6100 Main Street MS 138, Houston, TX 77005, United States of America
| | - Todd J Treangen
- Department of Computer Science, Rice University, 6100 Main Street, Houston, TX 77005, United States of America
| | - Lauren B Stadler
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005, United States of America.
| |
Collapse
|
6
|
Lou EG, Sapoval N, McCall C, Bauhs L, Carlson-Stadler R, Kalvapalle P, Lai Y, Palmer K, Penn R, Rich W, Wolken M, Brown P, Ensor KB, Hopkins L, Treangen TJ, Stadler LB. Direct comparison of RT-ddPCR and targeted amplicon sequencing for SARS-CoV-2 mutation monitoring in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155059. [PMID: 35395314 PMCID: PMC8983075 DOI: 10.1016/j.scitotenv.2022.155059] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 05/14/2023]
Abstract
Over the course of the COVID-19 pandemic, variants of SARS-CoV-2 have emerged that are more contagious and more likely to cause breakthrough infections. Targeted amplicon sequencing approach is a gold standard for identification and analysis of variants. However, when applied to environmental samples such as wastewater, it remains unclear how sensitive this method is for detecting variant-associated mutations in environmental samples. Here we directly compare a targeted amplicon sequencing approach (using ARTIC v3; hereafter referred to as sequencing) with RT-ddPCR quantification for the detection of five mutations that are characteristic of variants of concern (VoCs) in wastewater samples. In total, 547 wastewater samples were analyzed using both methods in parallel. When we observed positive mutation detections by RT-ddPCR, 42.6% of the detection events were missed by sequencing, due to negative detection or the limited read coverage at the mutation position. Further, when sequencing reported negative or depth-limited mutation detections, 26.7% of those events were instead positive detections by RT-ddPCR, highlighting the relatively poor sensitivity of sequencing. No or weak associations were observed between quantitative measurements of target mutations determined by RT-ddPCR and sequencing. These findings caution the use of quantitative measurements of SARS-CoV-2 variants in wastewater samples determined solely based on sequencing.
Collapse
Affiliation(s)
- Esther G Lou
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005, United States of America
| | - Nicolae Sapoval
- Department of Computer Science, Rice University, 6100 Main Street, Houston, TX 77005, United States of America
| | - Camille McCall
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005, United States of America
| | - Lauren Bauhs
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005, United States of America
| | - Russell Carlson-Stadler
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005, United States of America
| | - Prashant Kalvapalle
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, 6100 Main Street, Houston, TX 77005, United States of America
| | - Yanlai Lai
- Houston Health Department, 8000 N. Stadium Dr., Houston, TX 77054, United States of America
| | - Kyle Palmer
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005, United States of America
| | - Ryker Penn
- Houston Health Department, 8000 N. Stadium Dr., Houston, TX 77054, United States of America
| | - Whitney Rich
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005, United States of America
| | - Madeline Wolken
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005, United States of America
| | - Pamela Brown
- Houston Health Department, 8000 N. Stadium Dr., Houston, TX 77054, United States of America
| | - Katherine B Ensor
- Department of Statistics, Rice University, 6100 Main Street MS 138, Houston, TX 77005, United States of America
| | - Loren Hopkins
- Houston Health Department, 8000 N. Stadium Dr., Houston, TX 77054, United States of America; Department of Statistics, Rice University, 6100 Main Street MS 138, Houston, TX 77005, United States of America
| | - Todd J Treangen
- Department of Computer Science, Rice University, 6100 Main Street, Houston, TX 77005, United States of America
| | - Lauren B Stadler
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005, United States of America.
| |
Collapse
|
7
|
Saville JW, Mannar D, Zhu X, Srivastava SS, Berezuk AM, Demers JP, Zhou S, Tuttle KS, Sekirov I, Kim A, Li W, Dimitrov DS, Subramaniam S. Structural and biochemical rationale for enhanced spike protein fitness in delta and kappa SARS-CoV-2 variants. Nat Commun 2022; 13:742. [PMID: 35136050 PMCID: PMC8826856 DOI: 10.1038/s41467-022-28324-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/19/2022] [Indexed: 12/23/2022] Open
Abstract
The Delta and Kappa variants of SARS-CoV-2 co-emerged in India in late 2020, with the Delta variant underlying the resurgence of COVID-19, even in countries with high vaccination rates. In this study, we assess structural and biochemical aspects of viral fitness for these two variants using cryo-electron microscopy (cryo-EM), ACE2-binding and antibody neutralization analyses. Both variants demonstrate escape of antibodies targeting the N-terminal domain, an important immune hotspot for neutralizing epitopes. Compared to wild-type and Kappa lineages, Delta variant spike proteins show modest increase in ACE2 affinity, likely due to enhanced electrostatic complementarity at the RBD-ACE2 interface, which we characterize by cryo-EM. Unexpectedly, Kappa variant spike trimers form a structural head-to-head dimer-of-trimers assembly, which we demonstrate is a result of the E484Q mutation and with unknown biological implications. The combination of increased antibody escape and enhanced ACE2 binding provides an explanation, in part, for the rapid global dominance of the Delta variant.
Collapse
Affiliation(s)
- James W Saville
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Dhiraj Mannar
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Xing Zhu
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Shanti S Srivastava
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Alison M Berezuk
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Jean-Philippe Demers
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Steven Zhou
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Katharine S Tuttle
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Inna Sekirov
- BC Centre for Disease Control, Vancouver, BC, V5Z 4R4, Canada
| | - Andrew Kim
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, 3550 Terrace Str, Pittsburgh, PA, 15261, USA
| | - Wei Li
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, 3550 Terrace Str, Pittsburgh, PA, 15261, USA
| | - Dimiter S Dimitrov
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, 3550 Terrace Str, Pittsburgh, PA, 15261, USA
| | - Sriram Subramaniam
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
8
|
Socher E, Heger L, Paulsen F, Zunke F, Arnold P. Molecular dynamics simulations of the delta and omicron SARS-CoV-2 spike – ACE2 complexes reveal distinct changes between both variants. Comput Struct Biotechnol J 2022; 20:1168-1176. [PMID: 35251533 PMCID: PMC8881326 DOI: 10.1016/j.csbj.2022.02.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 12/16/2022] Open
Abstract
SARS-CoV-2, the virus causing the COVID-19 pandemic, changes frequently through the appearance of mutations constantly leading to new variants. However, only few variants evolve as dominating and will be considered as “Variants of Concern” (VOCs) by the world health organization (WHO). At the end of 2020 the alpha (B.1.1.7) variant appeared in the United Kingdom and dominated the pandemic situation until mid of 2021 when it was substituted by the delta variant (B.1.617.2) that first appeared in India as predominant. At the end of 2021, SARS-CoV-2 omicron (B.1.1.529) evolved as the dominating variant. Here, we use in silico modeling and molecular dynamics (MD) simulations of the receptor-binding domain of the viral spike protein and the host cell surface receptor ACE2 to analyze and compare the interaction pattern between the wild type, delta and omicron variants. We identified residue 493 in delta (glutamine) and omicron (arginine) with altered binding properties towards ACE2.
Collapse
Affiliation(s)
- Eileen Socher
- Institute of Anatomy, Functional and Clinical Anatomy, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Institute for Clinical and Molecular Virology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
- Corresponding authors at: Institute of Anatomy, Functional and Clinical Anatomy, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Friedrich Paulsen
- Institute of Anatomy, Functional and Clinical Anatomy, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Philipp Arnold
- Institute of Anatomy, Functional and Clinical Anatomy, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Corresponding authors at: Institute of Anatomy, Functional and Clinical Anatomy, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
9
|
Deb P, Molla MMA, Saif-Ur-Rahman KM, Das MC, Das D. A review of epidemiology, clinical features and disease course, transmission dynamics, and neutralization efficacy of SARS-CoV-2 variants. THE EGYPTIAN JOURNAL OF BRONCHOLOGY 2021. [PMCID: PMC8571979 DOI: 10.1186/s43168-021-00090-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background After the first detection in November 2019, SARS-CoV-2 has spread rapidly over the continents and started the pandemic of the millennium. In addition to several novels and repurposed monoclonal antibodies (mAbs) as a therapeutic option against COVID-19, scientists from across the world have developed several candidate vaccines, developed mainly targeting the Wuhan strain, with very promising results to combat this pandemic. Unfortunately like any RNA viruses, SARS CoV-2 has also gone through the accumulation of hundreds and thousands of mutations in their genome lead to the development of several variants of concerns (VOC) and variants of interests (VOI), resulting in increased transmissibility and virulence of the virus, along with their capacity to escape cross-protection. Seemingly, the main hindrance of containing this pandemic right now is the effectiveness of currently available vaccines and mAbs against newly emerging variants. Therefore, it is important to monitor variants epidemiology, transmission dynamics, clinical characteristics, as well as their immune evasion capacity to implement appropriate vaccine strategy and other containment measures. Body In this review, we tried to focus on variants characteristics and to what extent they can escape immunity, provided by both available vaccinated sera and convalescent sera. A stringent literature review was performed using various databases, mentioned in the methodology portion. The current geographical distribution of these variants of SARS CoV-2 has been presented using a heat map. Findings from published articles comparing these variants, in terms of genome epidemiology, transmissibility, viral load dynamics, and association with different waves have been described briefly. Due strength was given while describing variants neutralization potency against current vaccines, mAbs, and also against convalescent sera. Data from both clinical trials and in vitro/ex-vivo studies have been discussed here. Comparative findings from several articles were brought into one concise paper. After careful reviewing of all the available data, it was clear that, without hesitation, we should strengthen our vaccination strategy, because the severity of COVID 19 is reasonably lower, irrespective of variants and vaccine used. Conclusion We hope that many falsified myths and beliefs regarding vaccine immunity and emerging variants will be clarified in light of this available evidence, which we summarized in our paper.
Collapse
|