1
|
Rödin-Mörch P, Bunikis I, Choi E, Ciofi C, Diedericks G, Diroma MA, Einarsdóttir E, Försäter K, Heintz J, Jonsäll L, Lantz H, Laurila A, Leitão HG, Mosbech MB, Natali C, Olsen RA, Vinnere Pettersson O, Soler L, Svardal H, Proux-Wéra E, Höglund J. A chromosome-level genome assembly of the European green toad (Bufotes viridis). G3 (BETHESDA, MD.) 2025; 15:jkaf002. [PMID: 39969399 PMCID: PMC11917475 DOI: 10.1093/g3journal/jkaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/23/2024] [Indexed: 02/20/2025]
Abstract
The European green toad (Bufotes viridis) is geographically widely distributed. While the species global conservation status is labeled as of least concern by the IUCN, it is declining in many parts of its range where populations are fragmented and isolated. A high-quality reference genome is an important resource for conservation genomic researchers who are trying to understand and interpret the genomic signals of population decline, inbreeding, and the accumulation of deleterious mutations. Here, we assembled and annotated a chromosome-level reference genome for B. viridis as part of the European Reference Genome Atlas pilot project. The genome assembly, with a size of ∼3.89 Gb consists of 11 chromosomes and an additional 2,096 unplaced scaffolds. The final assembly had a scaffold N50 value of 478.39 Mb and covered 90.4% single copy tetrapod orthologs, and 46.7% repetitive elements. Finally, a total of 23,830 protein-coding genes matching a known gene, together with 56,974 mRNAs were predicted. This high-quality reference genome will benefit amphibian evolutionary genomics research and enable conservation genetic studies to inform practical conservation work on this species.
Collapse
Affiliation(s)
- Patrik Rödin-Mörch
- Department of Ecology and Genetics/Animal Ecology, Uppsala University, Norbyvägen 18D, Uppsala 752 36, Sweden
| | - Ignas Bunikis
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, National Genomics Infrastructure hosted by SciLifeLab, Box 518, Uppsala 751 08, Sweden
| | - Eunkyoung Choi
- Science for Life Laboratory, Department of Gene Technology, KTH-Royal Institute of Technology, Solna SE-171 21, Sweden
| | - Claudio Ciofi
- Department of Biology, University of Florence, Sesto Fiorentino (FI) 50019, Italy
| | - Genevieve Diedericks
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp 2020, Belgium
| | - Maria Angela Diroma
- Department of Biology, University of Florence, Sesto Fiorentino (FI) 50019, Italy
| | - Elísabet Einarsdóttir
- Science for Life Laboratory, Department of Gene Technology, KTH-Royal Institute of Technology, Solna SE-171 21, Sweden
| | | | - Julia Heintz
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, National Genomics Infrastructure hosted by SciLifeLab, Box 518, Uppsala 751 08, Sweden
| | - Linnea Jonsäll
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, National Genomics Infrastructure hosted by SciLifeLab, Box 518, Uppsala 751 08, Sweden
| | - Henrik Lantz
- Department of Medical Biochemistry and Microbiology, Uppsala University, NBIS—National Bioinformatics Infrastructure Sweden, Box 582, Uppsala 751 23, Sweden
- Department of Cell and Molecular Biology, Uppsala University; NBIS—National Bioinformatics Infrastructure Sweden, Box 596, Uppsala 751 24, Sweden
| | - Anssi Laurila
- Department of Ecology and Genetics/Animal Ecology, Uppsala University, Norbyvägen 18D, Uppsala 752 36, Sweden
| | - Henrique G Leitão
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp 2020, Belgium
| | - Mai-Britt Mosbech
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, National Genomics Infrastructure hosted by SciLifeLab, Box 518, Uppsala 751 08, Sweden
| | - Chiara Natali
- Department of Biology, University of Florence, Sesto Fiorentino (FI) 50019, Italy
| | - Remi-André Olsen
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna 171 65, Sweden
| | - Olga Vinnere Pettersson
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, National Genomics Infrastructure hosted by SciLifeLab, Box 518, Uppsala 751 08, Sweden
| | - Lucile Soler
- Department of Medical Biochemistry and Microbiology, Uppsala University, NBIS—National Bioinformatics Infrastructure Sweden, Box 582, Uppsala 751 23, Sweden
- Department of Cell and Molecular Biology, Uppsala University; NBIS—National Bioinformatics Infrastructure Sweden, Box 596, Uppsala 751 24, Sweden
| | - Hannes Svardal
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp 2020, Belgium
- Naturalis Biodiversity Center, Leiden 2333, Netherlands
| | - Estelle Proux-Wéra
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna 171 65, Sweden
| | - Jacob Höglund
- Department of Ecology and Genetics/Animal Ecology, Uppsala University, Norbyvägen 18D, Uppsala 752 36, Sweden
| |
Collapse
|
2
|
Lee U, Laguillo-Diego A, Wong W, Ni Z, Cheng L, Li J, Pelham-Webb B, Pertsinidis A, Leslie C, Apostolou E. Post-mitotic transcriptional activation and 3D regulatory interactions show locus- and differentiation-specific sensitivity to cohesin depletion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.638153. [PMID: 40034648 PMCID: PMC11875242 DOI: 10.1101/2025.02.13.638153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Prior studies showed that structural loops collapse upon acute cohesin depletion, while regulatory enhancer-promoter (E-P) loops largely persist, consistent with minimal transcriptional changes. However, these studies, conducted in asynchronous cells, could not resolve whether cohesin is required for the establishment of regulatory interactions and transcriptional activation during cell division or cell state transitions. To address this gap, we degraded RAD21, a core cohesin subunit, in naïve mouse embryonic stem cells (ESCs) transitioning from mitosis to G1 either in self-renewal condition or during differentiation toward formative pluripotency. Although most structural loops failed to be re-established without cohesin, about 35% of regulatory loops reformed at normal or higher frequencies. Cohesin-independent loops showed characteristics of strong active enhancers and promoters and a significant association with H3K27ac mitotic bookmarks. However, inhibition of CBP/p300 during mitotic exit did not impact these cohesin-independent interactions, suggesting the presence of complex compensatory mechanisms. At the transcriptional level, cohesin depletion induced only minor changes, supporting that post-mitotic transcriptional reactivation is largely independent of cohesin. The few genes with impaired reactivation were directly bound by RAD21 at their promoters, engaged in many structural loops, and located within strongly insulated TADs with low gene density. Importantly, degrading cohesin during the M-to-G1 transition in the presence of EpiLC differentiation signals revealed a larger group of susceptible genes, including key signature genes and transcription factors. Impaired activation of these genes was partly due to the failure to establish de novo EpiLC-specific interactions in the absence of cohesin. These experiments revealed locus-specific and context-specific dependencies between cohesin, E-P interactions, and transcription.
Collapse
Affiliation(s)
- UkJin Lee
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Molecular Biology Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, 10065, USA
| | - Alejandra Laguillo-Diego
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Wilfred Wong
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, New York, NY 10065, USA
| | - Zhangli Ni
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lingling Cheng
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jieru Li
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Bobbie Pelham-Webb
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Alexandros Pertsinidis
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Christina Leslie
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Effie Apostolou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
3
|
Golov AK, Gavrilov AA, Kaplan N, Razin SV. A genome-wide nucleosome-resolution map of promoter-centered interactions in human cells corroborates the enhancer-promoter looping model. eLife 2024; 12:RP91596. [PMID: 39688903 DOI: 10.7554/elife.91596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
The enhancer-promoter looping model, in which enhancers activate their target genes via physical contact, has long dominated the field of gene regulation. However, the ubiquity of this model has been questioned due to evidence of alternative mechanisms and the lack of its systematic validation, primarily owing to the absence of suitable experimental techniques. In this study, we present a new MNase-based proximity ligation method called MChIP-C, allowing for the measurement of protein-mediated chromatin interactions at single-nucleosome resolution on a genome-wide scale. By applying MChIP-C to study H3K4me3 promoter-centered interactions in K562 cells, we found that it had greatly improved resolution and sensitivity compared to restriction endonuclease-based C-methods. This allowed us to identify EP300 histone acetyltransferase and the SWI/SNF remodeling complex as potential candidates for establishing and/or maintaining enhancer-promoter interactions. Finally, leveraging data from published CRISPRi screens, we found that most functionally verified enhancers do physically interact with their cognate promoters, supporting the enhancer-promoter looping model.
Collapse
Affiliation(s)
- Arkadiy K Golov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
- Department of Physiology, Biophysics & Systems Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Alexey A Gavrilov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Noam Kaplan
- Department of Physiology, Biophysics & Systems Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
4
|
Luo Z, Jiang L, Xu J, Wang J, Nie W, Ning Z, Yang F. Haplotype-phased genome assemblies and annotation of the northern white-cheeked gibbon (Nomascus leucogenys). Sci Data 2024; 11:1279. [PMID: 39587154 PMCID: PMC11589157 DOI: 10.1038/s41597-024-04073-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/04/2024] [Indexed: 11/27/2024] Open
Abstract
Nomascus leucogenys is a critically endangered species of small apes. Here, we sequenced and assembled the male genome of N. leucogenys, using PacBio and Hi-C datasets, with a particular focus on its Y-chromosome. The resulting high-quality haplotype-phased assemblies are at chromosome-scale, with scaffold/contig N50 values of 124.2/102.2 Mb for Haplotype 1 and 121.2/85.67 Mb for Haplotype 2. The assembled Y-chromosome spans 16.06 Mb. BUSCO assessment indicated completeness scores exceeding 95%. We predicted 18,925 protein-coding genes (23,783 mRNAs), including 58 genes on the Y-chromosome. Approximately 50% of the genome comprises repetitive elements. These comprehensive genome datasets will serve as a valuable resource for future studies on the genetics and protection of gibbons and improve our understanding on the evolution of Y-chromosome-related genes in primates.
Collapse
Affiliation(s)
- Zhonglai Luo
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China.
| | - Libo Jiang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Jianing Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Jinhuan Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Wenhui Nie
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Zemin Ning
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Fengtang Yang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China.
| |
Collapse
|
5
|
Cohen S, Cheradame L, Pratt KJB, Collins S, Barillas A, Carlson A, Ramani V, Legube G, Villeda SA, Mullins RD, Schwer B. Endogenous neuronal DNA double-strand breaks are not sufficient to drive brain aging and neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619740. [PMID: 39484383 PMCID: PMC11526996 DOI: 10.1101/2024.10.22.619740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Loss of genomic information due to the accumulation of somatic DNA damage has been implicated in aging and neurodegeneration 1-3 . Somatic mutations in human neurons increase with age 4 , but it is unclear whether this is a cause or a consequence of brain aging. Here, we clarify the role of endogenous, neuronal DNA double-strand breaks (DSBs) in brain aging and neurodegeneration by generating mice with post-developmental inactivation of the classical non-homologous end-joining (C-NHEJ) core factor Xrcc4 in forebrain neurons. Xrcc4 is critical for the ligation step of C-NHEJ and has no known function outside of DSB repair 5,6 . We find that, unlike their wild-type counterparts, C-NHEJ-deficient neurons accumulate high levels of DSB foci with age, indicating that neurons undergo frequent DSBs that are typically efficiently repaired by C-NHEJ across their lifespan. Genome-wide mapping reveals that endogenous neuronal DSBs preferentially occur in promoter regions and other genic features. Analysis of 3-D genome organization shows intra-chromosomal clustering and loop extrusion of neuronal DSB regions. Strikingly, however, DSB accumulation caused by loss of C-NHEJ induces only minor epigenetic alterations and does not significantly affect gene expression, 3-D genome organization, or mutational outcomes at neuronal DSBs. Despite extensive aging-associated accumulation of neuronal DSBs, mice with neuronal Xrcc4 inactivation do not show neurodegeneration, neuroinflammation, reduced lifespan, or impaired memory and learning behavior. We conclude that the formation of spontaneous neuronal DSBs caused by normal cellular processes is insufficient to cause brain aging and neurodegeneration, even in the absence of C-NHEJ, the principal neuronal DSB repair pathway.
Collapse
|
6
|
Rahmaninejad H, Xiao Y, Tortora MMC, Fudenberg G. Dynamic barriers modulate cohesin positioning and genome folding at fixed occupancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617113. [PMID: 39416077 PMCID: PMC11482749 DOI: 10.1101/2024.10.08.617113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
In mammalian interphase cells, genomes are folded by cohesin loop extrusion limited by directional CTCF barriers. This interplay leads to the enrichment of cohesin at barriers, isolation between neighboring topologically associating domains, and elevated contact frequency between convergent CTCF barriers across the genome. However, recent in vivo measurements present a puzzle: reported residence times for CTCF on chromatin are in the range of a few minutes, while lifetimes for cohesin are much longer. Can the observed features of genome folding result from the action of relatively transient barriers? To address this question, we developed a dynamic barrier model, where CTCF sites switch between bound and unbound states with rates that can be directly compared with biophysical measurements. Using this model, we investigated how barrier dynamics would impact observables for a range of experimental genomic and imaging datasets, including ChIP-seq, Hi-C, and microscopy. We found the interplay of CTCF and cohesin binding timescales influence the strength of each of these features, leaving a signature of barrier dynamics even in the population-averaged snapshots offered by genomic datasets. First, in addition to barrier occupancy, barrier bound times are crucial for instructing features of genome folding. Second, the ratio of boundary to extruder lifetime greatly alters simulated ChIP-seq and simulated Hi-C. Third, large-scale changes in chromosome morphology observed experimentally after increasing extruder lifetime require dynamic barriers. By integrating multiple sources of experimental data, our biophysical model argues that CTCF barrier bound times effectively approach those of cohesin extruder lifetimes. Together, we demonstrate how models that are informed by biophysically measured protein dynamics broaden our understanding of genome folding.
Collapse
Affiliation(s)
- Hadi Rahmaninejad
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, USA
| | - Yao Xiao
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, USA
| | - Maxime M C Tortora
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, USA
| | - Geoffrey Fudenberg
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, USA
| |
Collapse
|
7
|
Pahl MC, Sharma P, Thomas RM, Thompson Z, Mount Z, Pippin JA, Morawski PA, Sun P, Su C, Campbell D, Grant SFA, Wells AD. Dynamic chromatin architecture identifies new autoimmune-associated enhancers for IL2 and novel genes regulating CD4+ T cell activation. eLife 2024; 13:RP96852. [PMID: 39302339 PMCID: PMC11418197 DOI: 10.7554/elife.96852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Genome-wide association studies (GWAS) have identified hundreds of genetic signals associated with autoimmune disease. The majority of these signals are located in non-coding regions and likely impact cis-regulatory elements (cRE). Because cRE function is dynamic across cell types and states, profiling the epigenetic status of cRE across physiological processes is necessary to characterize the molecular mechanisms by which autoimmune variants contribute to disease risk. We localized risk variants from 15 autoimmune GWAS to cRE active during TCR-CD28 co-stimulation of naïve human CD4+ T cells. To characterize how dynamic changes in gene expression correlate with cRE activity, we measured transcript levels, chromatin accessibility, and promoter-cRE contacts across three phases of naive CD4+ T cell activation using RNA-seq, ATAC-seq, and HiC. We identified ~1200 protein-coding genes physically connected to accessible disease-associated variants at 423 GWAS signals, at least one-third of which are dynamically regulated by activation. From these maps, we functionally validated a novel stretch of evolutionarily conserved intergenic enhancers whose activity is required for activation-induced IL2 gene expression in human and mouse, and is influenced by autoimmune-associated genetic variation. The set of genes implicated by this approach are enriched for genes controlling CD4+ T cell function and genes involved in human inborn errors of immunity, and we pharmacologically validated eight implicated genes as novel regulators of T cell activation. These studies directly show how autoimmune variants and the genes they regulate influence processes involved in CD4+ T cell proliferation and activation.
Collapse
Affiliation(s)
- Matthew C Pahl
- Center for Spatial and Functional Genomics, Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Division of Human Genetics, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Prabhat Sharma
- Center for Spatial and Functional Genomics, Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Pathology, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Rajan M Thomas
- Center for Spatial and Functional Genomics, Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Pathology, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Zachary Thompson
- Center for Spatial and Functional Genomics, Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Pathology, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Zachary Mount
- Center for Spatial and Functional Genomics, Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Pathology, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - James A Pippin
- Center for Spatial and Functional Genomics, Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Division of Human Genetics, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Peter A Morawski
- Benaroya Research Institute at Virginia MasonSeattleUnited States
| | - Peng Sun
- Center for Spatial and Functional Genomics, Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Pathology, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Chun Su
- Center for Spatial and Functional Genomics, Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Division of Human Genetics, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Daniel Campbell
- Benaroya Research Institute at Virginia MasonSeattleUnited States
- Department of Immunology, University of Washington School of MedicineSeattleUnited States
| | - Struan FA Grant
- Center for Spatial and Functional Genomics, Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Division of Human Genetics, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Genetics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Department of Pediatrics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Division of Endocrinology and Diabetes, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Andrew D Wells
- Center for Spatial and Functional Genomics, Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Pathology, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Institute for Immunology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
8
|
Li X, Jayaprasad S, Einarsdottir E, Cooper SJB, Suh A, Kawakami T, Palacios-Gimenez OM. Chromosome-level genome assembly of the morabine grasshopper Vandiemenella viatica19. Sci Data 2024; 11:997. [PMID: 39266578 PMCID: PMC11393057 DOI: 10.1038/s41597-024-03858-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024] Open
Abstract
Morabine grasshoppers in the Vandiemenella viatica species group, which show karyotype diversity, have been studied for their ecological distribution and speciation in relation to their genetic and chromosomal diversity. They are good models for studying sex chromosome evolution as "old" and newly emerged sex chromosomes co-exist within the group. Here we present a reference genome for the viatica19 chromosomal race, that possesses the ancestral karyotype within the group. Using PacBio HiFi and Hi-C sequencing, we generated a chromosome-level assembly of 4.09 Gb in span, scaffold N50 of 429 Mb, and complete BUSCO score of 98.1%, containing 10 pseudo-chromosomes. We provide Illumina datasets of males and females, used to identify the X chromosome. The assembly contains 19,034 predicted protein-coding genes, and a total of 75.21% of repetitive DNA sequences. By leveraging HiFi reads, we mapped the genome-wide distribution of methylated bases (5mC and 6 mA). This comprehensive assembly offers a robust reference for morabine grasshoppers and supports further research into speciation and sex chromosome diversification within the group and its related species.
Collapse
Affiliation(s)
- Xuan Li
- Department of Organismal Biology-Systematic Biology, Science for Life Laboratory, Evolutionary Biology Centre, Uppsala University, 75236, Uppsala, Sweden.
| | - Suvratha Jayaprasad
- Population Ecology Group, Institute of Ecology and Evolution, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Elisabet Einarsdottir
- Science for Life Laboratory, Department of Gene Technology, KTH-Royal Institute Technology, SE-17121, Solna, Sweden
| | - Steven J B Cooper
- Evolutionary Biology Unit, South Australian Museum, Adelaide, SA, 5000, Australia
- School of Biological Sciences and Environment Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Alexander Suh
- Department of Organismal Biology-Systematic Biology, Science for Life Laboratory, Evolutionary Biology Centre, Uppsala University, 75236, Uppsala, Sweden
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Adenauerallee 127, 53113, Bonn, Germany
- Institute of Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121, Bonn, Germany
| | | | - Octavio Manuel Palacios-Gimenez
- Department of Organismal Biology-Systematic Biology, Science for Life Laboratory, Evolutionary Biology Centre, Uppsala University, 75236, Uppsala, Sweden.
- Population Ecology Group, Institute of Ecology and Evolution, Friedrich Schiller University Jena, 07743, Jena, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany.
| |
Collapse
|
9
|
Barkan R, Cooke I, Watson SA, Lau SCY, Strugnell JM. Chromosome-scale genome assembly of the tropical abalone (Haliotis asinina). Sci Data 2024; 11:999. [PMID: 39266538 PMCID: PMC11393055 DOI: 10.1038/s41597-024-03840-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024] Open
Abstract
Abalone (family Haliotidae) are an ecologically and economically significant group of marine gastropods that can be found in tropical and temperate waters. To date, only a few Haliotis genomes are available, all belonging to temperate species. Here, we provide the first chromosome-scale abalone genome assembly and the first reference genome of the tropical abalone Haliotis asinina. The combination of PacBio long-read HiFi sequencing and Dovetail's Omni-C sequencing allowed the chromosome-level assembly of this genome, while PacBio Isoform sequencing across five tissue types enabled the construction of high-quality gene models. This assembly resulted in 16 pseudo-chromosomes spanning over 1.12 Gb (98.1% of total scaffolds length), N50 of 67.09 Mb, the longest scaffold length of 105.96 Mb, and a BUSCO completeness score of 97.6%. This study identified 25,422 protein-coding genes and 61,149 transcripts. In an era of climate change and ocean warming, this genome of a heat-tolerant species can be used for comparative genomics with a focus on thermal resistance. This high-quality reference genome of H. asinina is a valuable resource for aquaculture, fisheries, and ecological studies.
Collapse
Affiliation(s)
- Roy Barkan
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia.
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia.
| | - Ira Cooke
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
- Department of Molecular and Cell Biology, James Cook University, Townsville, QLD 4811, Australia
| | - Sue-Ann Watson
- Biodiversity and Geosciences Program, Queensland Museum Tropics, Queensland Museum, Townsville, Queensland, 4810, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| | - Sally C Y Lau
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| | - Jan M Strugnell
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| |
Collapse
|
10
|
Hartley GA, Okhovat M, Hoyt SJ, Fuller E, Pauloski N, Alexandre N, Alexandrov I, Drennan R, Dubocanin D, Gilbert DM, Mao Y, McCann C, Neph S, Ryabov F, Sasaki T, Storer JM, Svendsen D, Troy W, Wells J, Core L, Stergachis A, Carbone L, O’Neill RJ. Centromeric transposable elements and epigenetic status drive karyotypic variation in the eastern hoolock gibbon. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610280. [PMID: 39257810 PMCID: PMC11384015 DOI: 10.1101/2024.08.29.610280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Great apes have maintained a stable karyotype with few large-scale rearrangements; in contrast, gibbons have undergone a high rate of chromosomal rearrangements coincident with rapid centromere turnover. Here we characterize assembled centromeres in the Eastern hoolock gibbon, Hoolock leuconedys (HLE), finding a diverse group of transposable elements (TEs) that differ from the canonical alpha satellites found across centromeres of other apes. We find that HLE centromeres contain a CpG methylation centromere dip region, providing evidence this epigenetic feature is conserved in the absence of satellite arrays; nevertheless, we report a variety of atypical centromeric features, including protein-coding genes and mismatched replication timing. Further, large structural variations define HLE centromeres and distinguish them from other gibbons. Combined with differentially methylated TEs, topologically associated domain boundaries, and segmental duplications at chromosomal breakpoints, we propose that a "perfect storm" of multiple genomic attributes with propensities for chromosome instability shaped gibbon centromere evolution.
Collapse
Affiliation(s)
- Gabrielle A. Hartley
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Mariam Okhovat
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Savannah J. Hoyt
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Emily Fuller
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Nicole Pauloski
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Nicolas Alexandre
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Ivan Alexandrov
- Department of Anatomy and Anthropology and Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Israel
| | - Ryan Drennan
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Danilo Dubocanin
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - David M. Gilbert
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Yizi Mao
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Christine McCann
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Shane Neph
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Fedor Ryabov
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, CA, USA
| | - Takayo Sasaki
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Jessica M. Storer
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Derek Svendsen
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | | | - Jackson Wells
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Leighton Core
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Andrew Stergachis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Lucia Carbone
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR, USA
- Division of Genetics, Oregon National Primate Research Center, Portland, OR, USA
| | - Rachel J. O’Neill
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| |
Collapse
|
11
|
Supple MA, Escalona M, Adkins J, Buchalski MR, Alexandre N, Sahasrabudhe RM, Nguyen O, Sacco S, Fairbairn C, Beraut E, Seligmann W, Green RE, Meredith E, Shapiro B. A genome assembly of the American black bear, Ursus americanus, from California. J Hered 2024; 115:498-506. [PMID: 39008331 PMCID: PMC11334205 DOI: 10.1093/jhered/esae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024] Open
Abstract
The American black bear, Ursus americanus, is a widespread and ecologically important species in North America. In California, the black bear plays an important role in a variety of ecosystems and serves as an important species for recreational hunting. While research suggests that the populations in California are currently healthy, continued monitoring is critical, with genomic analyses providing an important surveillance tool. Here we report a high-quality, near chromosome-level genome assembly from a U. americanus sample from California. The primary assembly has a total length of 2.5 Gb contained in 316 scaffolds, a contig N50 of 58.9 Mb, a scaffold N50 of 67.6 Mb, and a BUSCO completeness score of 96%. This U. americanus genome assembly will provide an important resource for the targeted management of black bear populations in California, with the goal of achieving an appropriate balance between the recreational value of black bears and the maintenance of viable populations. The high quality of this genome assembly will also make it a valuable resource for comparative genomic analyses among black bear populations and among bear species.
Collapse
Affiliation(s)
- Megan A Supple
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, United States
- Howard Hughes Medical Institute, University of California, Santa Cruz, CA, United States
| | - Merly Escalona
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA, United States
| | - Jillian Adkins
- Wildlife Forensic Lab, Law Enforcement Division, California Department of Fish and Wildlife, Sacramento, CA, United States
| | - Michael R Buchalski
- Wildlife Genetics Research Unit, Wildlife Health Laboratory, California Department of Fish and Wildlife, Sacramento, CA, United States
| | - Nicolas Alexandre
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, United States
- Howard Hughes Medical Institute, University of California, Santa Cruz, CA, United States
| | - Ruta M Sahasrabudhe
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California, Davis, CA, United States
| | - Oanh Nguyen
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California, Davis, CA, United States
| | - Samuel Sacco
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, United States
| | - Colin Fairbairn
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, United States
| | - Eric Beraut
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, United States
| | - William Seligmann
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, United States
| | - Richard E Green
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA, United States
| | - Erin Meredith
- Wildlife Forensic Lab, Law Enforcement Division, California Department of Fish and Wildlife, Sacramento, CA, United States
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, United States
- Howard Hughes Medical Institute, University of California, Santa Cruz, CA, United States
| |
Collapse
|
12
|
Parey E, Ortega-Martinez O, Delroisse J, Piovani L, Czarkwiani A, Dylus D, Arya S, Dupont S, Thorndyke M, Larsson T, Johannesson K, Buckley KM, Martinez P, Oliveri P, Marlétaz F. The brittle star genome illuminates the genetic basis of animal appendage regeneration. Nat Ecol Evol 2024; 8:1505-1521. [PMID: 39030276 PMCID: PMC11310086 DOI: 10.1038/s41559-024-02456-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/29/2024] [Indexed: 07/21/2024]
Abstract
Species within nearly all extant animal lineages are capable of regenerating body parts. However, it remains unclear whether the gene expression programme controlling regeneration is evolutionarily conserved. Brittle stars are a species-rich class of echinoderms with outstanding regenerative abilities, but investigations into the genetic bases of regeneration in this group have been hindered by the limited genomic resources. Here we report a chromosome-scale genome assembly for the brittle star Amphiura filiformis. We show that the brittle star genome is the most rearranged among echinoderms sequenced so far, featuring a reorganized Hox cluster reminiscent of the rearrangements observed in sea urchins. In addition, we performed an extensive profiling of gene expression during brittle star adult arm regeneration and identified sequential waves of gene expression governing wound healing, proliferation and differentiation. We conducted comparative transcriptomic analyses with other invertebrate and vertebrate models for appendage regeneration and uncovered hundreds of genes with conserved expression dynamics, particularly during the proliferative phase of regeneration. Our findings emphasize the crucial importance of echinoderms to detect long-range expression conservation between vertebrates and classical invertebrate regeneration model systems.
Collapse
Affiliation(s)
- Elise Parey
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK.
| | - Olga Ortega-Martinez
- Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
| | - Jérôme Delroisse
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Laura Piovani
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Anna Czarkwiani
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK
- Technische Universität Dresden, Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
| | - David Dylus
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK
- Roche Pharmaceutical Research and Early Development (pRED), Cardiovascular and Metabolism, Immunology, Infectious Disease, and Ophthalmology (CMI2O), F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Srishti Arya
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK
| | - Samuel Dupont
- Department of Biology and Environmental Science, University of Gothenburg, Kristineberg Marine Research Station, Fiskebäckskil, Sweden
- IAEA Marine Environment Laboratories, Radioecology Laboratory, Quai Antoine 1er, Monaco
| | - Michael Thorndyke
- Department of Biology and Environmental Science, University of Gothenburg, Kristineberg Marine Research Station, Fiskebäckskil, Sweden
| | - Tomas Larsson
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Kerstin Johannesson
- Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
| | | | - Pedro Martinez
- Departament de Genètica, Microbiologia, i Estadística, Universitat de Barcelona, Barcelona, Spain
- Institut Català de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Paola Oliveri
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK.
| | - Ferdinand Marlétaz
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK.
| |
Collapse
|
13
|
Pletenev I, Bazarevich M, Zagirova D, Kononkova A, Cherkasov A, Efimova O, Tiukacheva E, Morozov K, Ulianov K, Komkov D, Tvorogova A, Golimbet V, Kondratyev N, Razin S, Khaitovich P, Ulianov S, Khrameeva E. Extensive long-range polycomb interactions and weak compartmentalization are hallmarks of human neuronal 3D genome. Nucleic Acids Res 2024; 52:6234-6252. [PMID: 38647066 PMCID: PMC11194087 DOI: 10.1093/nar/gkae271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/21/2024] [Accepted: 04/06/2024] [Indexed: 04/25/2024] Open
Abstract
Chromatin architecture regulates gene expression and shapes cellular identity, particularly in neuronal cells. Specifically, polycomb group (PcG) proteins enable establishment and maintenance of neuronal cell type by reorganizing chromatin into repressive domains that limit the expression of fate-determining genes and sustain distinct gene expression patterns in neurons. Here, we map the 3D genome architecture in neuronal and non-neuronal cells isolated from the Wernicke's area of four human brains and comprehensively analyze neuron-specific aspects of chromatin organization. We find that genome segregation into active and inactive compartments is greatly reduced in neurons compared to other brain cells. Furthermore, neuronal Hi-C maps reveal strong long-range interactions, forming a specific network of PcG-mediated contacts in neurons that is nearly absent in other brain cells. These interacting loci contain developmental transcription factors with repressed expression in neurons and other mature brain cells. But only in neurons, they are rich in bivalent promoters occupied by H3K4me3 histone modification together with H3K27me3, which points to a possible functional role of PcG contacts in neurons. Importantly, other layers of chromatin organization also exhibit a distinct structure in neurons, characterized by an increase in short-range interactions and a decrease in long-range ones.
Collapse
Affiliation(s)
- Ilya A Pletenev
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Maria Bazarevich
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Diana R Zagirova
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
- A.A. Kharkevich Institute for Information Transmission Problems, Moscow 127051, Russia
| | - Anna D Kononkova
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Alexander V Cherkasov
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Olga I Efimova
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Eugenia A Tiukacheva
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow 141700, Russia
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
- CNRS UMR9018, Institut Gustave Roussy, Villejuif 94805, France
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Department of Cellular Genomics, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Kirill V Morozov
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Kirill A Ulianov
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Dmitriy Komkov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Anna V Tvorogova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Vera E Golimbet
- Laboratory of Clinical Genetics, Mental Health Research Center, Moscow 115522, Russia
| | - Nikolay V Kondratyev
- Laboratory of Clinical Genetics, Mental Health Research Center, Moscow 115522, Russia
| | - Sergey V Razin
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
- Department of Cellular Genomics, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Philipp Khaitovich
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Sergey V Ulianov
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
- Department of Cellular Genomics, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Ekaterina E Khrameeva
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| |
Collapse
|
14
|
Han GD, Ma DD, Du LN, Zhao ZJ. Chromosomal-scale genome assembly of the Mediterranean mussel Mytilus galloprovincialis. Sci Data 2024; 11:644. [PMID: 38886364 PMCID: PMC11183127 DOI: 10.1038/s41597-024-03497-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
The Mediterranean mussel, Mytilus galloprovincialis, is a significant marine bivalve species that has ecological and economic importance. This species is robustly resilient and highly invasive. Despite the scientific and commercial interest in studying its biology and aquaculture, there remains a need for a high-quality, chromosome-scale reference genome. In this study, we have assembled a high-quality chromosome-scale reference genome for M. galloprovincialis. The total length of our reference genome is 1.41 Gb, with a scaffold N50 sequence length of 96.9 Mb. BUSCO analysis revealed a 97.5% completeness based on complete BUSCOs. Compared to the four other available M. galloprovincialis assemblies, the assembly described here is dramatically improved in both contiguity and completeness. This new reference genome will greatly contribute to a deeper understanding of the resilience and invasiveness of M. galloprovincialis.
Collapse
Affiliation(s)
- Guo-Dong Han
- College of Life Science, Yantai University, Yantai, Shandong, 264005, China.
| | - Dan-Dan Ma
- College of Life Science, Yantai University, Yantai, Shandong, 264005, China
| | - Li-Na Du
- College of Life Science, Yantai University, Yantai, Shandong, 264005, China
| | - Zhen-Jun Zhao
- College of Life Science, Yantai University, Yantai, Shandong, 264005, China
| |
Collapse
|
15
|
Iurlaro M, Masoni F, Flyamer IM, Wirbelauer C, Iskar M, Burger L, Giorgetti L, Schübeler D. Systematic assessment of ISWI subunits shows that NURF creates local accessibility for CTCF. Nat Genet 2024; 56:1203-1212. [PMID: 38816647 PMCID: PMC11176080 DOI: 10.1038/s41588-024-01767-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 04/23/2024] [Indexed: 06/01/2024]
Abstract
Catalytic activity of the imitation switch (ISWI) family of remodelers is critical for nucleosomal organization and DNA binding of certain transcription factors, including the insulator protein CTCF. Here we define the contribution of individual subcomplexes by deriving a panel of isogenic mouse stem cell lines, each lacking one of six ISWI accessory subunits. Individual deletions of subunits of either CERF, RSF, ACF, WICH or NoRC subcomplexes only moderately affect the chromatin landscape, while removal of the NURF-specific subunit BPTF leads to a strong reduction in chromatin accessibility and SNF2H ATPase localization around CTCF sites. This affects adjacent nucleosome occupancy and CTCF binding. At a group of sites with reduced chromatin accessibility, CTCF binding persists but cohesin occupancy is reduced, resulting in decreased insulation. These results suggest that CTCF binding can be separated from its function as an insulator in nuclear organization and identify a specific role for NURF in mediating SNF2H localization and chromatin opening at bound CTCF sites.
Collapse
Affiliation(s)
- Mario Iurlaro
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Disease Area Oncology, Novartis Biomedical Research, Basel, Switzerland
| | - Francesca Masoni
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| | - Ilya M Flyamer
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | - Murat Iskar
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Lukas Burger
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Luca Giorgetti
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
- Faculty of Science, University of Basel, Basel, Switzerland.
| |
Collapse
|
16
|
Zhao Y, Yang M, Gong F, Pan Y, Hu M, Peng Q, Lu L, Lyu X, Sun K. Accelerating 3D genomics data analysis with Microcket. Commun Biol 2024; 7:675. [PMID: 38824179 PMCID: PMC11144199 DOI: 10.1038/s42003-024-06382-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024] Open
Abstract
The three-dimensional (3D) organization of genome is fundamental to cell biology. To explore 3D genome, emerging high-throughput approaches have produced billions of sequencing reads, which is challenging and time-consuming to analyze. Here we present Microcket, a package for mapping and extracting interacting pairs from 3D genomics data, including Hi-C, Micro-C, and derivant protocols. Microcket utilizes a unique read-stitch strategy that takes advantage of the long read cycles in modern DNA sequencers; benchmark evaluations reveal that Microcket runs much faster than the current tools along with improved mapping efficiency, and thus shows high potential in accelerating and enhancing the biological investigations into 3D genome. Microcket is freely available at https://github.com/hellosunking/Microcket .
Collapse
Affiliation(s)
- Yu Zhao
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Mengqi Yang
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China
- Department of Chemical and Biological Engineering, Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China
| | - Fanglei Gong
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Yuqi Pan
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Minghui Hu
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Qin Peng
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Leina Lu
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Xiaowen Lyu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Reproductive Health Research, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Kun Sun
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| |
Collapse
|
17
|
Halasz H, Malekos E, Covarrubias S, Yitiz S, Montano C, Sudek L, Katzman S, Liu SJ, Horlbeck MA, Namvar L, Weissman JS, Carpenter S. CRISPRi screens identify the lncRNA, LOUP, as a multifunctional locus regulating macrophage differentiation and inflammatory signaling. Proc Natl Acad Sci U S A 2024; 121:e2322524121. [PMID: 38781216 PMCID: PMC11145268 DOI: 10.1073/pnas.2322524121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) account for the largest portion of RNA from the transcriptome, yet most of their functions remain unknown. Here, we performed two independent high-throughput CRISPRi screens to understand the role of lncRNAs in monocyte function and differentiation. The first was a reporter-based screen to identify lncRNAs that regulate TLR4-NFkB signaling in human monocytes and the second screen identified lncRNAs involved in monocyte to macrophage differentiation. We successfully identified numerous noncoding and protein-coding genes that can positively or negatively regulate inflammation and differentiation. To understand the functional roles of lncRNAs in both processes, we chose to further study the lncRNA LOUP [lncRNA originating from upstream regulatory element of SPI1 (also known as PU.1)], as it emerged as a top hit in both screens. Not only does LOUP regulate its neighboring gene, the myeloid fate-determining factor SPI1, thereby affecting monocyte to macrophage differentiation, but knockdown of LOUP leads to a broad upregulation of NFkB-targeted genes at baseline and upon TLR4-NFkB activation. LOUP also harbors three small open reading frames capable of being translated and are responsible for LOUP's ability to negatively regulate TLR4/NFkB signaling. This work emphasizes the value of high-throughput screening to rapidly identify functional lncRNAs in the innate immune system.
Collapse
Affiliation(s)
- Haley Halasz
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, CA95064
| | - Eric Malekos
- Department of Biomolecular Engineering, University of California Santa Cruz, CA95064
| | - Sergio Covarrubias
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, CA95064
| | - Samira Yitiz
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, CA95064
| | - Christy Montano
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, CA95064
| | - Lisa Sudek
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, CA95064
| | - Sol Katzman
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, CA95064
| | - S. John Liu
- Department of Radiation Oncology, University of California, San Francisco, CA94158
- Department of Neurological Surgery, University of California, San Francisco, CA94158
| | - Max A. Horlbeck
- Department of Radiation Oncology, University of California, San Francisco, CA94158
- Department of Neurological Surgery, University of California, San Francisco, CA94158
- Department of Pediatrics, Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA02115
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA02138
| | - Leila Namvar
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, CA95064
| | - Jonathan S. Weissman
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA02142
- HHMI, Chevy Chase, MD20815
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02142
| | - Susan Carpenter
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, CA95064
| |
Collapse
|
18
|
Hartley GA, Frankenberg SR, Robinson NM, MacDonald AJ, Hamede RK, Burridge CP, Jones ME, Faulkner T, Shute H, Rose K, Brewster R, O'Neill RJ, Renfree MB, Pask AJ, Feigin CY. Genome of the endangered eastern quoll (Dasyurus viverrinus) reveals signatures of historical decline and pelage color evolution. Commun Biol 2024; 7:636. [PMID: 38796620 PMCID: PMC11128018 DOI: 10.1038/s42003-024-06251-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/26/2024] [Indexed: 05/28/2024] Open
Abstract
The eastern quoll (Dasyurus viverrinus) is an endangered marsupial native to Australia. Since the extirpation of its mainland populations in the 20th century, wild eastern quolls have been restricted to two islands at the southern end of their historical range. Eastern quolls are the subject of captive breeding programs and attempts have been made to re-establish a population in mainland Australia. However, few resources currently exist to guide the genetic management of this species. Here, we generated a reference genome for the eastern quoll with gene annotations supported by multi-tissue transcriptomes. Our assembly is among the most complete marsupial genomes currently available. Using this assembly, we infer the species' demographic history, identifying potential evidence of a long-term decline beginning in the late Pleistocene. Finally, we identify a deletion at the ASIP locus that likely underpins pelage color differences between the eastern quoll and the closely related Tasmanian devil (Sarcophilus harrisii).
Collapse
Affiliation(s)
- Gabrielle A Hartley
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
| | | | - Natasha M Robinson
- Fenner School of Environment & Society, Australian National University, Canberra, ACT, 2601, Australia
| | - Anna J MacDonald
- Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
- Australian Antarctic Division, Department of Climate Change, Energy, the Environment and Water, Kingston, TAS, 7050, Australia
| | - Rodrigo K Hamede
- School of Natural Sciences, University of Tasmania, Hobart, TAS, 7005, Australia
| | | | - Menna E Jones
- School of Natural Sciences, University of Tasmania, Hobart, TAS, 7005, Australia
| | - Tim Faulkner
- Australian Reptile Park & Aussie Ark, Somersby, NSW, 2250, Australia
| | - Hayley Shute
- Australian Reptile Park & Aussie Ark, Somersby, NSW, 2250, Australia
| | - Karrie Rose
- Australian Registry of Wildlife Health, Taronga Conservation Society Australia, Mosman, NSW, 2088, Australia
| | - Rob Brewster
- WWF-Australia, PO Box 528, Sydney, NSW, 2001, Australia
| | - Rachel J O'Neill
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Marilyn B Renfree
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Andrew J Pask
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Department of Sciences, Museums Victoria, Carlton, VIC, 3053, Australia
| | - Charles Y Feigin
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia.
- Department of Environment and Genetics, La Trobe University, Bundoora, VIC, 3086, Australia.
| |
Collapse
|
19
|
Samejima K, Gibcus JH, Abraham S, Cisneros-Soberanis F, Samejima I, Beckett AJ, Pučeková N, Abad MA, Medina-Pritchard B, Paulson JR, Xie L, Jeyaprakash AA, Prior IA, Mirny LA, Dekker J, Goloborodko A, Earnshaw WC. Rules of engagement for condensins and cohesins guide mitotic chromosome formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590027. [PMID: 38659940 PMCID: PMC11042376 DOI: 10.1101/2024.04.18.590027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
During mitosis, interphase chromatin is rapidly converted into rod-shaped mitotic chromosomes. Using Hi-C, imaging, proteomics and polymer modeling, we determine how the activity and interplay between loop-extruding SMC motors accomplishes this dramatic transition. Our work reveals rules of engagement for SMC complexes that are critical for allowing cells to refold interphase chromatin into mitotic chromosomes. We find that condensin disassembles interphase chromatin loop organization by evicting or displacing extrusive cohesin. In contrast, condensin bypasses cohesive cohesins, thereby maintaining sister chromatid cohesion while separating the sisters. Studies of mitotic chromosomes formed by cohesin, condensin II and condensin I alone or in combination allow us to develop new models of mitotic chromosome conformation. In these models, loops are consecutive and not overlapping, implying that condensins do not freely pass one another but stall upon encountering each other. The dynamics of Hi-C interactions and chromosome morphology reveal that during prophase loops are extruded in vivo at ~1-3 kb/sec by condensins as they form a disordered discontinuous helical scaffold within individual chromatids.
Collapse
Affiliation(s)
- Kumiko Samejima
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| | - Johan H. Gibcus
- Department of Systems Biology, University of Massachusetts Chan Medical School; Worcester, USA
| | - Sameer Abraham
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology; Cambridge, USA
| | | | - Itaru Samejima
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| | - Alison J. Beckett
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool; Liverpool, UK
| | - Nina Pučeková
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| | - Maria Alba Abad
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| | - Bethan Medina-Pritchard
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| | - James R. Paulson
- Department of Chemistry, University of Wisconsin-Oshkosh; Oshkosh, USA
| | - Linfeng Xie
- Department of Chemistry, University of Wisconsin-Oshkosh; Oshkosh, USA
| | - A. Arockia Jeyaprakash
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
- Gene Center Munich, Ludwig-Maximilians-Universität München; Munich, Germany
| | - Ian A. Prior
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool; Liverpool, UK
| | - Leonid A. Mirny
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology; Cambridge, USA
| | - Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School; Worcester, USA
- Howard Hughes Medical Institute; Chevy Chase, USA
| | | | - William C. Earnshaw
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh; Edinburgh, UK
| |
Collapse
|
20
|
Wooldridge B, Orland C, Enbody E, Escalona M, Mirchandani C, Corbett-Detig R, Kapp JD, Fletcher N, Cox-Ammann K, Raimondi P, Shapiro B. Limited genomic signatures of population collapse in the critically endangered black abalone (Haliotis cracherodii). Mol Ecol 2024:e17362. [PMID: 38682494 PMCID: PMC11518883 DOI: 10.1111/mec.17362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024]
Abstract
The black abalone, Haliotis cracherodii, is a large, long-lived marine mollusc that inhabits rocky intertidal habitats along the coast of California and Mexico. In 1985, populations were impacted by a bacterial disease known as withering syndrome (WS) that wiped out >90% of individuals, leading to the closure of all U.S. black abalone fisheries since 1993. Current conservation strategies include restoring diminished populations by translocating healthy individuals. However, population collapse on this scale may have dramatically lowered genetic diversity and strengthened geographic differentiation, making translocation-based recovery contentious. Additionally, the current prevalence of WS remains unknown. To address these uncertainties, we sequenced and analysed the genomes of 133 black abalone individuals from across their present range. We observed no spatial genetic structure among black abalone, with the exception of a single chromosomal inversion that increases in frequency with latitude. Outside the inversion, genetic differentiation between sites is minimal and does not scale with either geographic distance or environmental dissimilarity. Genetic diversity appears uniformly high across the range. Demographic inference does indicate a severe population bottleneck beginning just 15 generations in the past, but this decline is short lived, with present-day size far exceeding the pre-bottleneck status quo. Finally, we find the bacterial agent of WS is equally present across the sampled range, but only in 10% of individuals. The lack of population genetic structure, uniform diversity and prevalence of WS bacteria indicates that translocation could be a valid and low-risk means of population restoration for black abalone species' recovery.
Collapse
Affiliation(s)
- Brock Wooldridge
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Chloé Orland
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| | - Erik Enbody
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| | - Merly Escalona
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| | - Cade Mirchandani
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| | - Russell Corbett-Detig
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| | - Joshua D. Kapp
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| | - Nathaniel Fletcher
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| | - Karah Cox-Ammann
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| | - Peter Raimondi
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| | - Beth Shapiro
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95064 USA
| |
Collapse
|
21
|
Cheng G, Pratto F, Brick K, Li X, Alleva B, Huang M, Lam G, Camerini-Otero RD. High resolution maps of chromatin reorganization through mouse meiosis reveal novel features of the 3D meiotic structure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586627. [PMID: 38903112 PMCID: PMC11188084 DOI: 10.1101/2024.03.25.586627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
When germ cells transition from the mitotic cycle into meiotic prophase I (MPI), chromosomes condense into an array of chromatin loops that are required to promote homolog pairing and genetic recombination. To identify the changes in chromosomal conformation, we isolated nuclei on a trajectory from spermatogonia to the end of MPI. At each stage along this trajectory, we built genomic interaction maps with the highest temporal and spatial resolution to date. The changes in chromatin folding coincided with a concurrent decline in mitotic cohesion and a rise in meiotic cohesin complexes. We found that the stereotypical large-scale A and B compartmentalization was lost during meiotic prophase I alongside the loss of topological associating domains (TADs). Still, local subcompartments were detected and maintained throughout meiosis. The enhanced Micro-C resolution revealed that, despite the loss of TADs, higher frequency contact sites between two loci were detectable during meiotic prophase I coinciding with CTCF bound sites. The pattern of interactions around these CTCF sites with their neighboring loci showed that CTCF sites were often anchoring the meiotic loops. Additionally, the localization of CTCF to the meiotic axes indicated that these anchors were at the base of loops. Strikingly, even in the face of the dramatic reconfiguration of interphase chromatin into a condensed loop-array, the interactions between regulatory elements remained well preserved. This establishes a potential mechanism for how the meiotic chromatin maintains active transcription within a highly structured genome. In summary, the high temporal and spatial resolution of these data revealed previously unappreciated aspects of mammalian meiotic chromatin organization.
Collapse
Affiliation(s)
- Gang Cheng
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Florencia Pratto
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Kevin Brick
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Xin Li
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Alleva
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Mini Huang
- Present address: Sun Yat-Sen University, School of Medicine, Shen Zhen, China
| | - Gabriel Lam
- Present address: RNA Regulation Section, NIA, National Institutes of Health, Baltimore, MD, USA
| | | |
Collapse
|
22
|
Kim YY, Gryder BE, Sinniah R, Peach ML, Shern JF, Abdelmaksoud A, Pomella S, Woldemichael GM, Stanton BZ, Milewski D, Barchi JJ, Schneekloth JS, Chari R, Kowalczyk JT, Shenoy SR, Evans JR, Song YK, Wang C, Wen X, Chou HC, Gangalapudi V, Esposito D, Jones J, Procter L, O'Neill M, Jenkins LM, Tarasova NI, Wei JS, McMahon JB, O'Keefe BR, Hawley RG, Khan J. KDM3B inhibitors disrupt the oncogenic activity of PAX3-FOXO1 in fusion-positive rhabdomyosarcoma. Nat Commun 2024; 15:1703. [PMID: 38402212 PMCID: PMC10894237 DOI: 10.1038/s41467-024-45902-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/07/2024] [Indexed: 02/26/2024] Open
Abstract
Fusion-positive rhabdomyosarcoma (FP-RMS) is an aggressive pediatric sarcoma driven primarily by the PAX3-FOXO1 fusion oncogene, for which therapies targeting PAX3-FOXO1 are lacking. Here, we screen 62,643 compounds using an engineered cell line that monitors PAX3-FOXO1 transcriptional activity identifying a hitherto uncharacterized compound, P3FI-63. RNA-seq, ATAC-seq, and docking analyses implicate histone lysine demethylases (KDMs) as its targets. Enzymatic assays confirm the inhibition of multiple KDMs with the highest selectivity for KDM3B. Structural similarity search of P3FI-63 identifies P3FI-90 with improved solubility and potency. Biophysical binding of P3FI-90 to KDM3B is demonstrated using NMR and SPR. P3FI-90 suppresses the growth of FP-RMS in vitro and in vivo through downregulating PAX3-FOXO1 activity, and combined knockdown of KDM3B and KDM1A phenocopies P3FI-90 effects. Thus, we report KDM inhibitors P3FI-63 and P3FI-90 with the highest specificity for KDM3B. Their potent suppression of PAX3-FOXO1 activity indicates a possible therapeutic approach for FP-RMS and other transcriptionally addicted cancers.
Collapse
Affiliation(s)
| | - Berkley E Gryder
- Genetics Branch, NCI, NIH, Bethesda, MD, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | | | - Megan L Peach
- Basic Science Program, Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD, USA
| | - Jack F Shern
- Pediatric Oncology Branch, NCI, NIH, Bethesda, MD, USA
| | | | - Silvia Pomella
- Genetics Branch, NCI, NIH, Bethesda, MD, USA
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Girma M Woldemichael
- Leidos Biomed Res Inc, FNLCR, Basic Sci Program, Frederick, MD, USA
- Molecular Targets Program, NCI, NIH, Frederick, MD, USA
| | - Benjamin Z Stanton
- Genetics Branch, NCI, NIH, Bethesda, MD, USA
- Nationwide Children's Hospital, Center for Childhood Cancer Research, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
- Department of Biological Chemistry & Pharmacology, The Ohio State University College of Medicine, Columbus, OH, USA
| | | | | | | | - Raj Chari
- Genome Modification Core, Laboratory Animal Sciences Program, FNLCR, Frederick, MD, USA
| | | | - Shilpa R Shenoy
- Leidos Biomed Res Inc, FNLCR, Basic Sci Program, Frederick, MD, USA
- Molecular Targets Program, NCI, NIH, Frederick, MD, USA
| | - Jason R Evans
- Natural Products Branch, NCI, NIH, Frederick, MD, USA
| | | | - Chaoyu Wang
- Genetics Branch, NCI, NIH, Bethesda, MD, USA
| | - Xinyu Wen
- Genetics Branch, NCI, NIH, Bethesda, MD, USA
| | | | | | | | - Jane Jones
- Protein Expression Laboratory, FNLCR, NIH, Frederick, MD, USA
| | - Lauren Procter
- Protein Expression Laboratory, FNLCR, NIH, Frederick, MD, USA
| | - Maura O'Neill
- Protein Characterization Laboratory, FNLCR, NIH, Frederick, MD, USA
| | | | | | - Jun S Wei
- Genetics Branch, NCI, NIH, Bethesda, MD, USA
| | | | - Barry R O'Keefe
- Molecular Targets Program, NCI, NIH, Frederick, MD, USA
- Natural Products Branch, NCI, NIH, Frederick, MD, USA
| | - Robert G Hawley
- Genetics Branch, NCI, NIH, Bethesda, MD, USA
- Department of Anatomy and Cell Biology, George Washington University, Washington, DC, USA
| | - Javed Khan
- Genetics Branch, NCI, NIH, Bethesda, MD, USA.
| |
Collapse
|
23
|
Sakamoto M, Ishiuchi T. YY1-dependent transcriptional regulation manifests at the morula stage. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001108. [PMID: 38298464 PMCID: PMC10828890 DOI: 10.17912/micropub.biology.001108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/16/2024] [Accepted: 01/15/2024] [Indexed: 02/02/2024]
Abstract
YY1 plays multifaceted roles in various cell types. We recently reported that YY1 regulates nucleosome organization in early mouse embryos. However, despite the impaired nucleosome organization in the absence of YY1, the transcriptome was minimally affected in eight-cell embryos. We then hypothesized that YY1 might prepare a chromatin environment to regulate gene expression at later stages. To test this possibility, we performed a transcriptome analysis at the morula stage. We found that a substantial number of genes are aberrantly expressed in the absence of YY1. Furthermore, our analysis revealed that YY1 is required for the transcription of LINE-1 retrotransposons.
Collapse
Affiliation(s)
- Mizuki Sakamoto
- Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Yamanashi, Japan
| | - Takashi Ishiuchi
- Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Yamanashi, Japan
| |
Collapse
|
24
|
Breuer J, Busche T, Kalinowski J, Nowrousian M. Histone binding of ASF1 is required for fruiting body development but not for genome stability in the filamentous fungus Sordaria macrospora. mBio 2024; 15:e0289623. [PMID: 38112417 PMCID: PMC10790691 DOI: 10.1128/mbio.02896-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE Histone chaperones are proteins that are involved in nucleosome assembly and disassembly and can therefore influence all DNA-dependent processes including transcription, DNA replication, and repair. ASF1 is a histone chaperone that is conserved throughout eukaryotes. In contrast to most other multicellular organisms, a deletion mutant of asf1 in the fungus Sordaria macrospora is viable; however, the mutant is sterile. In this study, we could show that the histone-binding ability of ASF1 is required for fertility in S. macrospora, whereas the function of ASF1 in maintenance of genome stability does not require histone binding. We also showed that the histone modifications H3K27me3 and H3K56ac are misregulated in the Δasf1 mutant. Furthermore, we identified a large duplication on chromosome 2 of the mutant strain that is genetically linked to the Δasf1 allele present on chromosome 6, suggesting that viability of the mutant might depend on the presence of the duplicated region.
Collapse
Affiliation(s)
- Jan Breuer
- Department of Molecular and Cellular Botany, Ruhr University Bochum, Bochum, Germany
| | - Tobias Busche
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
- Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Minou Nowrousian
- Department of Molecular and Cellular Botany, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
25
|
Destanović D, Schultz DT, Styfhals R, Cruz F, Gómez-Garrido J, Gut M, Gut I, Fiorito G, Simakov O, Alioto TS, Ponte G, Seuntjens E. A chromosome-level reference genome for the common octopus, Octopus vulgaris (Cuvier, 1797). G3 (BETHESDA, MD.) 2023; 13:jkad220. [PMID: 37850903 PMCID: PMC10700109 DOI: 10.1093/g3journal/jkad220] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/18/2023] [Indexed: 10/19/2023]
Abstract
Cephalopods are emerging animal models and include iconic species for studying the link between genomic innovations and physiological and behavioral complexities. Coleoid cephalopods possess the largest nervous system among invertebrates, both for cell counts and brain-to-body ratio. Octopus vulgaris has been at the center of a long-standing tradition of research into diverse aspects of cephalopod biology, including behavioral and neural plasticity, learning and memory recall, regeneration, and sophisticated cognition. However, no chromosome-scale genome assembly was available for O. vulgaris to aid in functional studies. To fill this gap, we sequenced and assembled a chromosome-scale genome of the common octopus, O. vulgaris. The final assembly spans 2.8 billion basepairs, 99.34% of which are in 30 chromosome-scale scaffolds. Hi-C heatmaps support a karyotype of 1n = 30 chromosomes. Comparisons with other octopus species' genomes show a conserved octopus karyotype and a pattern of local genome rearrangements between species. This new chromosome-scale genome of O. vulgaris will further facilitate research in all aspects of cephalopod biology, including various forms of plasticity and the neural machinery underlying sophisticated cognition, as well as an understanding of cephalopod evolution.
Collapse
Affiliation(s)
- Dalila Destanović
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna 1030, Austria
| | - Darrin T Schultz
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna 1030, Austria
| | - Ruth Styfhals
- Department of Biology, Lab of Developmental Neurobiology, Animal Physiology and Neurobiology Division, KU Leuven, Leuven 3000, Belgium
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples 80121, Italy
| | - Fernando Cruz
- Centro Nacional de Análisis Genómico (CNAG), Barcelona 08028, Spain
| | | | - Marta Gut
- Centro Nacional de Análisis Genómico (CNAG), Barcelona 08028, Spain
| | - Ivo Gut
- Centro Nacional de Análisis Genómico (CNAG), Barcelona 08028, Spain
| | - Graziano Fiorito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples 80121, Italy
| | - Oleg Simakov
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna 1030, Austria
| | - Tyler S Alioto
- Centro Nacional de Análisis Genómico (CNAG), Barcelona 08028, Spain
| | - Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples 80121, Italy
| | - Eve Seuntjens
- Department of Biology, Lab of Developmental Neurobiology, Animal Physiology and Neurobiology Division, KU Leuven, Leuven 3000, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), KU Leuven, Leuven 3000, Belgium
- Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| |
Collapse
|
26
|
Sept CE, Tak YE, Cerda-Smith CG, Hutchinson HM, Goel V, Blanchette M, Bhakta MS, Hansen AS, Joung JK, Johnstone S, Eyler CE, Aryee MJ. High-resolution CTCF footprinting reveals impact of chromatin state on cohesin extrusion dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563340. [PMID: 37961446 PMCID: PMC10634716 DOI: 10.1101/2023.10.20.563340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
DNA looping is vital for establishing many enhancer-promoter interactions. While CTCF is known to anchor many cohesin-mediated loops, the looped chromatin fiber appears to predominantly exist in a poorly characterized actively extruding state. To better characterize extruding chromatin loop structures, we used CTCF MNase HiChIP data to determine both CTCF binding at high resolution and 3D contact information. Here we present FactorFinder, a tool that identifies CTCF binding sites at near base-pair resolution. We leverage this substantial advance in resolution to determine that the fully extruded (CTCF-CTCF) state is rare genome-wide with locus-specific variation from ~1-10%. We further investigate the impact of chromatin state on loop extrusion dynamics, and find that active enhancers and RNA Pol II impede cohesin extrusion, facilitating an enrichment of enhancer-promoter contacts in the partially extruded loop state. We propose a model of topological regulation whereby the transient, partially extruded states play active roles in transcription.
Collapse
Affiliation(s)
- Corriene E Sept
- Department of Biostatistics, Harvard T.H. Chan School of Public Health; Boston, MA 02115, USA
- Department of Data Sciences, Dana-Farber Cancer Institute; Boston, MA 02115, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
| | - Y Esther Tak
- Molecular Pathology Unit, Massachusetts General Hospital; Charlestown, MA 02129, USA
- Department of Pathology, Harvard Medical School; Boston, MA 02115, USA
| | - Christian G Cerda-Smith
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine; Durham, NC 27710, USA
| | - Haley M Hutchinson
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine; Durham, NC 27710, USA
| | - Viraat Goel
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research; Cambridge, MA 02139, USA
| | - Marco Blanchette
- Dovetail Genomics, Cantata Bio LLC, Scotts Valley, CA 95066, USA
| | - Mital S Bhakta
- Dovetail Genomics, Cantata Bio LLC, Scotts Valley, CA 95066, USA
| | - Anders S Hansen
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research; Cambridge, MA 02139, USA
| | - J Keith Joung
- Molecular Pathology Unit, Massachusetts General Hospital; Charlestown, MA 02129, USA
- Department of Pathology, Harvard Medical School; Boston, MA 02115, USA
| | - Sarah Johnstone
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- Department of Pathology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
| | - Christine E Eyler
- Department of Radiation Oncology, Duke University School of Medicine; Durham, NC 27710, USA
- Duke Cancer Institute, Duke University School of Medicine; Durham, NC 27710, USA
| | - Martin J Aryee
- Department of Biostatistics, Harvard T.H. Chan School of Public Health; Boston, MA 02115, USA
- Department of Data Sciences, Dana-Farber Cancer Institute; Boston, MA 02115, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
| |
Collapse
|
27
|
Xie Y, Zhu C, Wang Z, Tastemel M, Chang L, Li YE, Ren B. Droplet-based single-cell joint profiling of histone modifications and transcriptomes. Nat Struct Mol Biol 2023; 30:1428-1433. [PMID: 37563440 PMCID: PMC10584685 DOI: 10.1038/s41594-023-01060-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023]
Abstract
We previously reported Paired-Tag, a combinatorial indexing-based method that can simultaneously map histone modifications and gene expression at single-cell resolution at scale. However, the lengthy procedure of Paired-Tag has hindered its general adoption in the community. To address this bottleneck, we developed a droplet-based Paired-Tag protocol that is faster and more accessible than the previous method. Using cultured mammalian cells and primary brain tissues, we demonstrate its superior performance at identifying candidate cis-regulatory elements and associating their dynamic chromatin state to target gene expression in each constituent cell type in a complex tissue.
Collapse
Affiliation(s)
- Yang Xie
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Chenxu Zhu
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- New York Genome Center, New York, NY, USA
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Zhaoning Wang
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, USA
| | - Melodi Tastemel
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, USA
| | - Lei Chang
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, USA
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Yang Eric Li
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, USA
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, USA.
- Ludwig Institute for Cancer Research, La Jolla, CA, USA.
- Center for Epigenomics, Institute of Genomic Medicine, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA, USA.
| |
Collapse
|
28
|
Cerda-Smith CG, Hutchinson HM, Liu A, Goel VY, Sept C, Kim H, Casaní-Galdón S, Burkman KG, Bassil CF, Hansen AS, Aryee MJ, Johnstone SE, Eyler CE, Wood KC. Integrative PTEN Enhancer Discovery Reveals a New Model of Enhancer Organization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558459. [PMID: 37786671 PMCID: PMC10541578 DOI: 10.1101/2023.09.20.558459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Enhancers possess both structural elements mediating promoter looping and functional elements mediating gene expression. Traditional models of enhancer-mediated gene regulation imply genomic overlap or immediate adjacency of these elements. We test this model by combining densely-tiled CRISPRa screening with nucleosome-resolution Region Capture Micro-C topology analysis. Using this integrated approach, we comprehensively define the cis-regulatory landscape for the tumor suppressor PTEN, identifying and validating 10 distinct enhancers and defining their 3D spatial organization. Unexpectedly, we identify several long-range functional enhancers whose promoter proximity is facilitated by chromatin loop anchors several kilobases away, and demonstrate that accounting for this spatial separation improves the computational prediction of validated enhancers. Thus, we propose a new model of enhancer organization incorporating spatial separation of essential functional and structural components.
Collapse
Affiliation(s)
- Christian G. Cerda-Smith
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine; Durham, NC 27710, USA
| | - Haley M. Hutchinson
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine; Durham, NC 27710, USA
| | - Annie Liu
- Department of Surgery, Duke University School of Medicine; Durham, NC 27710, USA
| | - Viraat Y. Goel
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, 02139, USA
- Broad Institute; Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research; Cambridge, MA, 02139, USA
| | - Corriene Sept
- Broad Institute; Cambridge, MA 02139, USA
- Department of Biostatistics, Harvard School of Public Health; Boston, MA 02215, USA
| | - Holly Kim
- Department of Radiation Oncology, Duke University School of Medicine; Durham, NC 27710, USA
| | - Salvador Casaní-Galdón
- Broad Institute; Cambridge, MA 02139, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
- Departments of Cell Biology and Pathology, Harvard Medical School; Boston, MA 02114, USA
| | - Katherine G. Burkman
- Department of Radiation Oncology, Duke University School of Medicine; Durham, NC 27710, USA
| | - Christopher F. Bassil
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine; Durham, NC 27710, USA
| | - Anders S. Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, 02139, USA
- Broad Institute; Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research; Cambridge, MA, 02139, USA
| | - Martin J. Aryee
- Broad Institute; Cambridge, MA 02139, USA
- Department of Pathology, Harvard Medical School; Boston, MA 02114, USA
- Department of Data Science, Dana-Farber Cancer Institute; Boston, MA 02215, USA
| | - Sarah E. Johnstone
- Broad Institute; Cambridge, MA 02139, USA
- Department of Pathology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
| | - Christine E. Eyler
- Department of Radiation Oncology, Duke University School of Medicine; Durham, NC 27710, USA
- Duke Cancer Institute, Duke University School of Medicine; Durham, NC 27710, USA
| | - Kris C. Wood
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine; Durham, NC 27710, USA
- Duke Cancer Institute, Duke University School of Medicine; Durham, NC 27710, USA
| |
Collapse
|
29
|
Filipescu D, Carcamo S, Agarwal A, Tung N, Humblin É, Goldberg MS, Vyas NS, Beaumont KG, Demircioglu D, Sridhar S, Ghiraldini FG, Capparelli C, Aplin AE, Salmon H, Sebra R, Kamphorst AO, Merad M, Hasson D, Bernstein E. MacroH2A restricts inflammatory gene expression in melanoma cancer-associated fibroblasts by coordinating chromatin looping. Nat Cell Biol 2023; 25:1332-1345. [PMID: 37605008 PMCID: PMC10495263 DOI: 10.1038/s41556-023-01208-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/20/2023] [Indexed: 08/23/2023]
Abstract
MacroH2A has established tumour suppressive functions in melanoma and other cancers, but an unappreciated role in the tumour microenvironment. Using an autochthonous, immunocompetent mouse model of melanoma, we demonstrate that mice devoid of macroH2A variants exhibit increased tumour burden compared with wild-type counterparts. MacroH2A-deficient tumours accumulate immunosuppressive monocytes and are depleted of functional cytotoxic T cells, characteristics consistent with a compromised anti-tumour response. Single cell and spatial transcriptomics identify increased dedifferentiation along the neural crest lineage of the tumour compartment and increased frequency and activation of cancer-associated fibroblasts following macroH2A loss. Mechanistically, macroH2A-deficient cancer-associated fibroblasts display increased myeloid chemoattractant activity as a consequence of hyperinducible expression of inflammatory genes, which is enforced by increased chromatin looping of their promoters to enhancers that gain H3K27ac. In summary, we reveal a tumour suppressive role for macroH2A variants through the regulation of chromatin architecture in the tumour stroma with potential implications for human melanoma.
Collapse
Affiliation(s)
- Dan Filipescu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Saul Carcamo
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aman Agarwal
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Navpreet Tung
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Étienne Humblin
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew S Goldberg
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nikki S Vyas
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristin G Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deniz Demircioglu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Subhasree Sridhar
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Flavia G Ghiraldini
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Claudia Capparelli
- Department of Pharmacology, Physiology and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrew E Aplin
- Department of Pharmacology, Physiology and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Hélène Salmon
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institut Curie, INSERM, U932, and PSL Research University, Paris, France
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alice O Kamphorst
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan Hasson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily Bernstein
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
30
|
Wang M, Sreenivas P, Sunkel BD, Wang L, Ignatius M, Stanton B. The 3D chromatin landscape of rhabdomyosarcoma. NAR Cancer 2023; 5:zcad028. [PMID: 37325549 PMCID: PMC10261698 DOI: 10.1093/narcan/zcad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/27/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is a pediatric soft tissue cancer with a lack of precision therapy options for patients. We hypothesized that with a general paucity of known mutations in RMS, chromatin structural driving mechanisms are essential for tumor proliferation. Thus, we carried out high-depth in situ Hi-C in representative cell lines and patient-derived xenografts (PDXs) to define chromatin architecture in each major RMS subtype. We report a comprehensive 3D chromatin structural analysis and characterization of fusion-positive (FP-RMS) and fusion-negative RMS (FN-RMS). We have generated spike-in in situ Hi-C chromatin interaction maps for the most common FP-RMS and FN-RMS cell lines and compared our data with PDX models. In our studies, we uncover common and distinct structural elements in large Mb-scale chromatin compartments, tumor-essential genes within variable topologically associating domains and unique patterns of structural variation. Our high-depth chromatin interactivity maps and comprehensive analyses provide context for gene regulatory events and reveal functional chromatin domains in RMS.
Collapse
Affiliation(s)
- Meng Wang
- Nationwide Children’s Hospital, Center for Childhood Cancer, Columbus, OH 43205, USA
| | - Prethish Sreenivas
- Greehey Children’s Cancer Research Institute, Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Benjamin D Sunkel
- Nationwide Children’s Hospital, Center for Childhood Cancer, Columbus, OH 43205, USA
| | - Long Wang
- Greehey Children’s Cancer Research Institute, Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Myron Ignatius
- Greehey Children’s Cancer Research Institute, Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Benjamin Z Stanton
- Nationwide Children’s Hospital, Center for Childhood Cancer, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA
- Department of Biological Chemistry and Pharmacology, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| |
Collapse
|
31
|
Littleton SH, Trang KB, Volpe CM, Cook K, DeBruyne N, Ann Maguire J, Ann Weidekamp M, Boehm K, Chesi A, Pippin JA, Anderson SA, Wells AD, Pahl MC, Grant SF. Variant-to-function analysis of the childhood obesity chr12q13 locus implicates rs7132908 as a causal variant within the 3' UTR of FAIM2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.553157. [PMID: 37662342 PMCID: PMC10473629 DOI: 10.1101/2023.08.21.553157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The ch12q13 obesity locus is among the most significant childhood obesity loci identified in genome-wide association studies. This locus resides in a non-coding region within FAIM2; thus, the underlying causal variant(s) presumably influence disease susceptibility via an influence on cis-regulation within the genomic region. We implicated rs7132908 as a putative causal variant at this locus leveraging a combination of our inhouse 3D genomic data, public domain datasets, and several computational approaches. Using a luciferase reporter assay in human primary astrocytes, we observed allele-specific cis-regulatory activity of the immediate region harboring rs7132908. Motivated by this finding, we went on to generate isogenic human embryonic stem cell lines homozygous for either rs7132908 allele with CRISPR-Cas9 homology-directed repair to assess changes in gene expression due to genotype and chromatin accessibility throughout a differentiation to hypothalamic neurons, a key cell type known to regulate feeding behavior. We observed that the rs7132908 obesity risk allele influenced the expression of FAIM2 along with other genes, decreased the proportion of neurons produced during differentiation, up-regulated cell death gene sets, and conversely down-regulated neuron differentiation gene sets. We have therefore functionally validated rs7132908 as a causal obesity variant which temporally regulates nearby effector genes at the ch12q13 locus and influences neurodevelopment and survival.
Collapse
Affiliation(s)
- Sheridan H. Littleton
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Khanh B. Trang
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Christina M. Volpe
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kieona Cook
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Psychiatry, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nicole DeBruyne
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jean Ann Maguire
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Mary Ann Weidekamp
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Keith Boehm
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alessandra Chesi
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James A. Pippin
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Stewart A. Anderson
- Department of Child and Adolescent Psychiatry, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew D. Wells
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew C. Pahl
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Struan F.A. Grant
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
32
|
Galitsyna A, Ulianov SV, Bykov NS, Veil M, Gao M, Perevoschikova K, Gelfand M, Razin SV, Mirny L, Onichtchouk D. Extrusion fountains are hallmarks of chromosome organization emerging upon zygotic genome activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.15.549120. [PMID: 37503128 PMCID: PMC10370019 DOI: 10.1101/2023.07.15.549120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The first activation of gene expression during development (zygotic genome activation, ZGA) is accompanied by massive changes in chromosome organization. The connection between these two processes remains unknown. Using Hi-C for zebrafish embryos, we found that chromosome folding starts by establishing "fountains", novel elements of chromosome organization, emerging selectively at enhancers upon ZGA. Using polymer simulations, we demonstrate that fountains can emerge as sites of targeted cohesin loading and require two-sided, yet desynchronized, loop extrusion. Specific loss of fountains upon loss of pioneer transcription factors that drive ZGA reveals a causal connection between enhancer activity and fountain formation. Finally, we show that fountains emerge in early Medaka and Xenopus embryos; moreover, we found cohesin-dependent fountain pattern on enhancers of mouse embryonic stem cells. Taken together, fountains are the first enhancer-specific elements of chromosome organization; they constitute starting points of chromosome folding during early development, likely serving as sites of targeted cohesin loading.
Collapse
Affiliation(s)
- Aleksandra Galitsyna
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sergey V. Ulianov
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Russia
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nikolai S. Bykov
- Institute for Information Transmission Problems (the Kharkevich Institute), Russian Academy of Sciences, Moscow, 127051, Russia
- Centro Nacional de Análisis Genómico (CNAG), Baldiri Reixac 4, Barcelona, 08028 Spain
| | - Marina Veil
- Department of Developmental Biology, University of Freiburg, Freiburg, 79104, Germany
| | - Meijiang Gao
- Department of Developmental Biology, University of Freiburg, Freiburg, 79104, Germany
- Signalling Research Centres BIOSS and CIBSS, Freiburg, 79104, Germany
| | - Kristina Perevoschikova
- Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Mikhail Gelfand
- Institute for Information Transmission Problems (the Kharkevich Institute), Russian Academy of Sciences, Moscow, 127051, Russia
| | - Sergey V. Razin
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Russia
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Leonid Mirny
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Daria Onichtchouk
- Department of Developmental Biology, University of Freiburg, Freiburg, 79104, Germany
- Signalling Research Centres BIOSS and CIBSS, Freiburg, 79104, Germany
- Koltzov Institute of Developmental Biology RAS, Moscow, 119991, Russia
| |
Collapse
|
33
|
Schultz DT, Haddock SHD, Bredeson JV, Green RE, Simakov O, Rokhsar DS. Ancient gene linkages support ctenophores as sister to other animals. Nature 2023; 618:110-117. [PMID: 37198475 PMCID: PMC10232365 DOI: 10.1038/s41586-023-05936-6] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 03/09/2023] [Indexed: 05/19/2023]
Abstract
A central question in evolutionary biology is whether sponges or ctenophores (comb jellies) are the sister group to all other animals. These alternative phylogenetic hypotheses imply different scenarios for the evolution of complex neural systems and other animal-specific traits1-6. Conventional phylogenetic approaches based on morphological characters and increasingly extensive gene sequence collections have not been able to definitively answer this question7-11. Here we develop chromosome-scale gene linkage, also known as synteny, as a phylogenetic character for resolving this question12. We report new chromosome-scale genomes for a ctenophore and two marine sponges, and for three unicellular relatives of animals (a choanoflagellate, a filasterean amoeba and an ichthyosporean) that serve as outgroups for phylogenetic analysis. We find ancient syntenies that are conserved between animals and their close unicellular relatives. Ctenophores and unicellular eukaryotes share ancestral metazoan patterns, whereas sponges, bilaterians, and cnidarians share derived chromosomal rearrangements. Conserved syntenic characters unite sponges with bilaterians, cnidarians, and placozoans in a monophyletic clade to the exclusion of ctenophores, placing ctenophores as the sister group to all other animals. The patterns of synteny shared by sponges, bilaterians, and cnidarians are the result of rare and irreversible chromosome fusion-and-mixing events that provide robust and unambiguous phylogenetic support for the ctenophore-sister hypothesis. These findings provide a new framework for resolving deep, recalcitrant phylogenetic problems and have implications for our understanding of animal evolution.
Collapse
Affiliation(s)
- Darrin T Schultz
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria.
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA.
- Department of Biomolecular Engineering and Bioinformatics, University of California, Santa Cruz, CA, USA.
| | - Steven H D Haddock
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Jessen V Bredeson
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Richard E Green
- Department of Biomolecular Engineering and Bioinformatics, University of California, Santa Cruz, CA, USA
| | - Oleg Simakov
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria.
| | - Daniel S Rokhsar
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|