1
|
Ly CP, Veletic I, Pacheco CD, Dasdemir E, Jelloul FZ, Ferri-Borgogno S, Basi AV, Gomez JA, Root JL, Reville PK, Jindal S, Basu S, Sharma P, Quesada AE, Bueso-Ramos C, Manshouri T, Cuglievan B, Garcia M, Burks JK, Abbas HA. Multimodal spatial proteomic profiling in acute myeloid leukemia. NPJ Precis Oncol 2025; 9:148. [PMID: 40394148 PMCID: PMC12092627 DOI: 10.1038/s41698-025-00897-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 03/21/2025] [Indexed: 05/22/2025] Open
Abstract
Acute myeloid leukemia (AML) resides in an immune-rich microenvironment, yet, immune-based therapies have faltered in eliciting durable responses. Bridging this paradox requires a comprehensive understanding of leukemic interactions within the bone marrow microenvironment. We optimized a high-throughput tissue-microarray-based pipeline for high-plex spatial immunofluorescence and mass cytometry imaging on a single slide, capturing immune, tumor, and structural components. Using unbiased clustering on the spatial K function, we unveiled the presence of tertiary lymphoid-like aggregates in bone marrow, which we validated using spatial transcriptomics and an independent proteomics approach. We then found validated TLS signatures predictive of outcomes in AML using an integrated public 480-patient transcriptomic dataset. By harnessing high-plex spatial proteomics, we open the possibility of discovering novel structures and interactions that underpin leukemic immune response. Further, our study's methodologies and resources can be adapted for other bone marrow diseases where decalcification and autofluorescence present challenges.
Collapse
Affiliation(s)
- Christopher P Ly
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ivo Veletic
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher D Pacheco
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Enes Dasdemir
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Fatima Z Jelloul
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sammy Ferri-Borgogno
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Akshay V Basi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Javier A Gomez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jessica L Root
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patrick K Reville
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sonali Jindal
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sreyashi Basu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Padmanee Sharma
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andres E Quesada
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carlos Bueso-Ramos
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Taghi Manshouri
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Branko Cuglievan
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Miriam Garcia
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jared K Burks
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Hussein A Abbas
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
2
|
Gaspard-Boulinc LC, Gortana L, Walter T, Barillot E, Cavalli FMG. Cell-type deconvolution methods for spatial transcriptomics. Nat Rev Genet 2025:10.1038/s41576-025-00845-y. [PMID: 40369312 DOI: 10.1038/s41576-025-00845-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2025] [Indexed: 05/16/2025]
Abstract
Spatial transcriptomics is a powerful method for studying the spatial organization of cells, which is a critical feature in the development, function and evolution of multicellular life. However, sequencing-based spatial transcriptomics has not yet achieved cellular-level resolution, so advanced deconvolution methods are needed to infer cell-type contributions at each location in the data. Recent progress has led to diverse tools for cell-type deconvolution that are helping to describe tissue architectures in health and disease. In this Review, we describe the varied types of cell-type deconvolution methods for spatial transcriptomics, contrast their capabilities and summarize them in a web-based, interactive table to enable more efficient method selection.
Collapse
Affiliation(s)
- Lucie C Gaspard-Boulinc
- Institut Curie, PSL University, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1331, Paris, France
- Mines Paris, PSL University, CBIO - Centre for Computational Biology, Paris, France
| | - Luca Gortana
- Institut Curie, PSL University, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1331, Paris, France
- Mines Paris, PSL University, CBIO - Centre for Computational Biology, Paris, France
| | - Thomas Walter
- Institut Curie, PSL University, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1331, Paris, France
- Mines Paris, PSL University, CBIO - Centre for Computational Biology, Paris, France
| | - Emmanuel Barillot
- Institut Curie, PSL University, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1331, Paris, France
- Mines Paris, PSL University, CBIO - Centre for Computational Biology, Paris, France
| | - Florence M G Cavalli
- Institut Curie, PSL University, Paris, France.
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1331, Paris, France.
- Mines Paris, PSL University, CBIO - Centre for Computational Biology, Paris, France.
| |
Collapse
|
3
|
McDermott M, Mehta R, Roussos Torres ET, MacLean AL. Modeling the dynamics of EMT reveals genes associated with pan-cancer intermediate states and plasticity. NPJ Syst Biol Appl 2025; 11:31. [PMID: 40210876 PMCID: PMC11986130 DOI: 10.1038/s41540-025-00512-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/28/2025] [Indexed: 04/12/2025] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a cell state transition co-opted by cancer that drives metastasis via stable intermediate states. Here we study EMT dynamics to identify marker genes of highly metastatic intermediate cells via mathematical modeling with single-cell RNA sequencing (scRNA-seq) data. Across multiple tumor types and stimuli, we identified genes consistently upregulated in EMT intermediate states, many previously unrecognized as EMT markers. Bayesian parameter inference of a simple EMT mathematical model revealed tumor-specific transition rates, providing a framework to quantify EMT progression. Consensus analysis of differential expression, RNA velocity, and model-derived dynamics highlighted SFN and NRG1 as key regulators of intermediate EMT. Independent validation confirmed SFN as an intermediate state marker. Our approach integrates modeling and inference to identify genes associated with EMT dynamics, offering biomarkers and therapeutic targets to modulate tumor-promoting cell state transitions driven by EMT.
Collapse
Affiliation(s)
- MeiLu McDermott
- Department of Quantitative and Computational Biology, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA
| | - Riddhee Mehta
- Department of Quantitative and Computational Biology, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA
| | - Evanthia T Roussos Torres
- Department of Medicine, Division of Medical Oncology, Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Adam L MacLean
- Department of Quantitative and Computational Biology, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Ding DY, Tang Z, Zhu B, Ren H, Shalek AK, Tibshirani R, Nolan GP. Quantitative characterization of tissue states using multiomics and ecological spatial analysis. Nat Genet 2025; 57:910-921. [PMID: 40169791 PMCID: PMC11985343 DOI: 10.1038/s41588-025-02119-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 02/05/2025] [Indexed: 04/03/2025]
Abstract
The spatial organization of cells in tissues underlies biological function, and recent advances in spatial profiling technologies have enhanced our ability to analyze such arrangements to study biological processes and disease progression. We propose MESA (multiomics and ecological spatial analysis), a framework drawing inspiration from ecological concepts to delineate functional and spatial shifts across tissue states. MESA introduces metrics to systematically quantify spatial diversity and identify hot spots, linking spatial patterns to phenotypic outcomes, including disease progression. Furthermore, MESA integrates spatial and single-cell multiomics data to facilitate an in-depth, molecular understanding of cellular neighborhoods and their spatial interactions within tissue microenvironments. Applying MESA to diverse datasets demonstrates additional insights it brings over prior methods, including newly identified spatial structures and key cell populations linked to disease states. Available as a Python package, MESA offers a versatile framework for quantitative decoding of tissue architectures in spatial omics across health and disease.
Collapse
Affiliation(s)
- Daisy Yi Ding
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Zeyu Tang
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Bokai Zhu
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hongyu Ren
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Alex K Shalek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA
- Department of Chemistry, MIT, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Robert Tibshirani
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Statistics, Stanford University, Stanford, CA, USA
| | - Garry P Nolan
- Department of Pathology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
5
|
Marshe VS, Tuddenham JF, Chen K, Chiu R, Haage VC, Ma Y, Lee AJ, Shneider NA, Agin-Liebes JP, Alcalay RN, Teich AF, Canoll P, Riley CS, Keene D, Schneider JA, Bennett DA, Menon V, Taga M, Klein HU, Olah M, Fujita M, Zhang Y, Sims PA, De Jager PL. A factor-based analysis of individual human microglia uncovers regulators of an Alzheimer-related transcriptional signature. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.641500. [PMID: 40196633 PMCID: PMC11974870 DOI: 10.1101/2025.03.27.641500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Human microglial heterogeneity is only beginning to be appreciated at the molecular level. Here, we present a large, single-cell atlas of expression signatures from 441,088 live microglia broadly sampled across a diverse set of brain regions and neurodegenerative and neuroinflammatory diseases obtained from 161 donors sampled at autopsy or during a neurosurgical procedure. Using single-cell hierarchical Poisson factorization (scHPF), we derived a 23-factor model for continuous gene expression signatures across microglia which capture specific biological processes (e.g., metabolism, phagocytosis, antigen presentation, inflammatory signaling, disease-associated states). Using external datasets, we evaluated the aspects of microglial phenotypes that are encapsulated in various in vitro and in vivo microglia models and identified and replicated the role of two factors in human postmortem tissue of Alzheimer's disease (AD). Further, we derived a complex network of transcriptional regulators for all factors, including regulators of an AD-related factor enriched for the mouse disease-associated microglia 2 (DAM2) signature: ARID5B, CEBPA, MITF, and PPARG. We replicated the role of these four regulators in the AD-related factor and then designed a multiplexed MERFISH panel to assess our microglial factors using spatial transcriptomics. We find that, unlike cells with high expression of the interferon-response factor, cells with high expression of the AD DAM2-like factor are widely distributed in neocortical tissue. We thus propose a novel analytic framework that provides a taxonomic approach for microglia that is more biologically interpretable and use it to uncover new therapeutic targets for AD.
Collapse
Affiliation(s)
- Victoria S. Marshe
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - John F. Tuddenham
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, USA
- Icahn School of Medicine at Mount Sinai, Department of Neuroscience, New York, NY, 10029, USA
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, 10029, USA
| | - Kevin Chen
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Rebecca Chiu
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Verena C. Haage
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Yiyi Ma
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Annie J. Lee
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, USA
| | - Neil A. Shneider
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Eleanor and Lou Gehrig ALS Center, Columbia University Medical Center, New York, NY, USA
| | - Julian P. Agin-Liebes
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Roy N. Alcalay
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Movement Disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Andrew F. Teich
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, USA
| | - Claire S. Riley
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, USA
- Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Dirk Keene
- Department of Laboratory Medicine and Pathology, Division of Neuropathology, University of Washington School of Medicine, Seattle, USA
| | - Julie A. Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, USA
| | - David A. Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, USA
| | - Vilas Menon
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Mariko Taga
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Hans-Ulrich Klein
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Marta Olah
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Masashi Fujita
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Ya Zhang
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Peter A. Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, USA
- Dept. of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, USA
- Chan Zuckerberg Biohub, New York, New York, USA
| | - Philip L. De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, USA
| |
Collapse
|
6
|
Kulasinghe A, Berrell N, Donovan ML, Nilges BS. Spatial-Omics Methods and Applications. Methods Mol Biol 2025; 2880:101-146. [PMID: 39900756 DOI: 10.1007/978-1-0716-4276-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Traditional tissue profiling approaches have evolved from bulk studies to single-cell analysis over the last decade; however, the spatial context in tissues and microenvironments has always been lost. Over the last 5 years, spatial technologies have emerged that enabled researchers to investigate tissues in situ for proteins and transcripts without losing anatomy and histology. The field of spatial-omics enables highly multiplexed analysis of biomolecules like RNAs and proteins in their native spatial context-and has matured from initial proof-of-concept studies to a thriving field with widespread applications from basic research to translational and clinical studies. While there has been wide adoption of spatial technologies, there remain challenges with the standardization of methodologies, sample compatibility, throughput, resolution, and ease of use. In this chapter, we discuss the current state of the field and highlight technological advances and limitations.
Collapse
Affiliation(s)
- Arutha Kulasinghe
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Queensland Spatial Biology Centre, Wesley Research Institute, The Wesley Hospital, Auchenflower, QLD, Australia
| | - Naomi Berrell
- Queensland Spatial Biology Centre, Wesley Research Institute, The Wesley Hospital, Auchenflower, QLD, Australia
| | - Meg L Donovan
- Queensland Spatial Biology Centre, Wesley Research Institute, The Wesley Hospital, Auchenflower, QLD, Australia
| | | |
Collapse
|
7
|
Mattiuz R, Boumelha J, Hamon P, Le Berichel J, Vaidya A, Soong BY, Halasz L, Radkevich E, Kim HM, Park MD, Donne R, Troncoso L, D’Souza D, Kaiza ME, MacFawn IP, Belabed M, Mestrallet G, Humblin E, Merand R, Hennequin C, Ioannou G, Ozbey S, Figueiredo I, Hegde S, Tepper A, Merarda H, Nemeth E, Goldstein S, Reid AM, Noureddine M, Tabachnikova A, Ahmed J, Polydorides AD, Bhardwaj N, Lujambio A, Chen Z, Kozlova EG, Kim-Schulze S, Brody JD, Schotsaert M, Moussion C, Gnjatic S, Sautès-Fridman C, Fridman WH, Roudko V, Brown BD, Marron TU, Cyster JG, Salmon H, Bruno TC, Joshi NS, Kamphorst AO, Merad M. Dendritic cells type 1 control the formation, maintenance, and function of tertiary lymphoid structures in cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.27.628014. [PMID: 39763802 PMCID: PMC11703156 DOI: 10.1101/2024.12.27.628014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Tertiary lymphoid structures (TLS) are organized immune cell aggregates that arise in chronic inflammatory conditions. In cancer, TLS are associated with better prognosis and enhanced response to immunotherapy, making these structures attractive therapeutic targets. However, the mechanisms regulating TLS formation and maintenance in cancer are incompletely understood. Using spatial transcriptomics and multiplex imaging across various human tumors, we found an enrichment of mature dendritic cells (DC) expressing high levels of CCR7 in TLS, prompting us to investigate the role of DC in the formation and maintenance of TLS in solid tumors. To address this, we developed a novel murine model of non-small cell lung cancer (NSCLC) that forms mature TLS, containing B cell follicles with germinal centers and T cell zones with T follicular helper cells (TFH) and TCF1+PD-1+ progenitor exhausted CD8+ T cells (Tpex). Here we show that, during the early stages of tumor development, TLS formation relies on IFNγ-driven maturation of the conventional DC type 1 (cDC1) subset, their migration to tumor-draining lymph nodes (tdLN), and recruitment of activated T cells to the tumor site. As tumors progress, TLS maintenance becomes independent of T cell egress from tdLN, coinciding with a significant reduction of cDC1 migration to tdLN. Instead, mature cDC1 accumulate within intratumoral CCR7 ligand-enriched stromal hubs. Notably, timed depletion of cDC1 or disruption of their migration to these stromal hubs after TLS are formed alters TLS maintenance. Importantly, we found that cDC1-mediated antigen presentation to both CD4+ and CD8+ T cells and intact CD40 signaling, is critical for the maintenance of TLS, the preservation of the TFH cell pool, the formation of germinal center and the production of tumor-specific IgG antibodies. These findings underscore the key role of mature cDC1 in establishing and maintaining functional TLS within tumor lesions and highlight the potential for cDC1-targeting therapies as a promising strategy to enhance TLS function and improve anti-tumor immunity in patients with cancer.
Collapse
Affiliation(s)
- Raphaël Mattiuz
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jesse Boumelha
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Contributed equally
| | - Pauline Hamon
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Contributed equally
| | - Jessica Le Berichel
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Contributed equally
| | - Abishek Vaidya
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn school of Medicine at Mount Sinai, New York, NY, USA
| | - Brian Y. Soong
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laszlo Halasz
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emir Radkevich
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hye Mi Kim
- Tumor Microenvironment Center, Department of Immunology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew D. Park
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Romain Donne
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai
- Tisch Cancer Institute, New York, New York, USA
| | - Leanna Troncoso
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Darwin D’Souza
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Medard Ernest Kaiza
- Tumor Microenvironment Center, Department of Immunology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ian P. MacFawn
- Tumor Microenvironment Center, Department of Immunology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Meriem Belabed
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Guillaume Mestrallet
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, New York, New York, USA
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Etienne Humblin
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raphaël Merand
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Clotilde Hennequin
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Giorgio Ioannou
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sinem Ozbey
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Igor Figueiredo
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samarth Hegde
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexander Tepper
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hajer Merarda
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Erika Nemeth
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Simon Goldstein
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amanda M. Reid
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Moataz Noureddine
- Graduate School of Biomedical Sciences, Icahn school of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute and Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandra Tabachnikova
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jalal Ahmed
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandros D. Polydorides
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, and Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nina Bhardwaj
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, New York, New York, USA
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amaia Lujambio
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai
- Tisch Cancer Institute, New York, New York, USA
| | - Zhihong Chen
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edgar Gonzalez Kozlova
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seunghee Kim-Schulze
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joshua D. Brody
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Schotsaert
- Global Health and Emerging Pathogens Institute and Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Sacha Gnjatic
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Catherine Sautès-Fridman
- Department of Immunology, Inflammation, Complement and Cancer, Centre de Recherche des Cordeliers, Sorbonne Universite, INSERM, Université Paris Cité, 75006, Paris, France
| | - Wolf Herman Fridman
- Department of Immunology, Inflammation, Complement and Cancer, Centre de Recherche des Cordeliers, Sorbonne Universite, INSERM, Université Paris Cité, 75006, Paris, France
| | - Vladimir Roudko
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian D. Brown
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas U. Marron
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jason G. Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Tullia C. Bruno
- Tumor Microenvironment Center, Department of Immunology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nikhil S. Joshi
- Yale University School of Medicine, Department of Immunobiology, New Haven, CT, USA
| | - Alice O. Kamphorst
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
8
|
Miyoshi E, Morabito S, Henningfield CM, Das S, Rahimzadeh N, Shabestari SK, Michael N, Emerson N, Reese F, Shi Z, Cao Z, Srinivasan SS, Scarfone VM, Arreola MA, Lu J, Wright S, Silva J, Leavy K, Lott IT, Doran E, Yong WH, Shahin S, Perez-Rosendahl M, Head E, Green KN, Swarup V. Spatial and single-nucleus transcriptomic analysis of genetic and sporadic forms of Alzheimer's disease. Nat Genet 2024; 56:2704-2717. [PMID: 39578645 PMCID: PMC11631771 DOI: 10.1038/s41588-024-01961-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/26/2024] [Indexed: 11/24/2024]
Abstract
The pathogenesis of Alzheimer's disease (AD) depends on environmental and heritable factors, with its molecular etiology still unclear. Here we present a spatial transcriptomic (ST) and single-nucleus transcriptomic survey of late-onset sporadic AD and AD in Down syndrome (DSAD). Studying DSAD provides an opportunity to enhance our understanding of the AD transcriptome, potentially bridging the gap between genetic mouse models and sporadic AD. We identified transcriptomic changes that may underlie cortical layer-preferential pathology accumulation. Spatial co-expression network analyses revealed transient and regionally restricted disease processes, including a glial inflammatory program dysregulated in upper cortical layers and implicated in AD genetic risk and amyloid-associated processes. Cell-cell communication analysis further contextualized this gene program in dysregulated signaling networks. Finally, we generated ST data from an amyloid AD mouse model to identify cross-species amyloid-proximal transcriptomic changes with conformational context.
Collapse
Affiliation(s)
- Emily Miyoshi
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
| | - Samuel Morabito
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
- Mathematical, Computational, and Systems Biology (MCSB) Program, University of California, Irvine, Irvine, CA, USA
- Center for Complex Biological Systems (CCBS), University of California, Irvine, Irvine, CA, USA
| | - Caden M Henningfield
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
| | - Sudeshna Das
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
| | - Negin Rahimzadeh
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
- Mathematical, Computational, and Systems Biology (MCSB) Program, University of California, Irvine, Irvine, CA, USA
- Center for Complex Biological Systems (CCBS), University of California, Irvine, Irvine, CA, USA
| | - Sepideh Kiani Shabestari
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Neethu Michael
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
| | - Nora Emerson
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
| | - Fairlie Reese
- Center for Complex Biological Systems (CCBS), University of California, Irvine, Irvine, CA, USA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Zechuan Shi
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
| | - Zhenkun Cao
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Shushrruth Sai Srinivasan
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
- Mathematical, Computational, and Systems Biology (MCSB) Program, University of California, Irvine, Irvine, CA, USA
- Center for Complex Biological Systems (CCBS), University of California, Irvine, Irvine, CA, USA
- Department of Computer Science, University of California, Irvine, Irvine, CA, USA
| | - Vanessa M Scarfone
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Miguel A Arreola
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
| | - Jackie Lu
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Sierra Wright
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
| | - Justine Silva
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
| | - Kelsey Leavy
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
| | - Ira T Lott
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
- Department of Pediatrics, University of California, Irvine, School of Medicine, Orange, CA, USA
| | - Eric Doran
- Department of Pediatrics, University of California, Irvine, School of Medicine, Orange, CA, USA
| | - William H Yong
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
| | - Saba Shahin
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
| | - Mari Perez-Rosendahl
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
| | - Elizabeth Head
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
| | - Kim N Green
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA
| | - Vivek Swarup
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA.
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA, USA.
- Center for Complex Biological Systems (CCBS), University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
9
|
Withnell E, Secrier M. SpottedPy quantifies relationships between spatial transcriptomic hotspots and uncovers environmental cues of epithelial-mesenchymal plasticity in breast cancer. Genome Biol 2024; 25:289. [PMID: 39529126 PMCID: PMC11552145 DOI: 10.1186/s13059-024-03428-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Spatial transcriptomics is revolutionizing the exploration of intratissue heterogeneity in cancer, yet capturing cellular niches and their spatial relationships remains challenging. We introduce SpottedPy, a Python package designed to identify tumor hotspots and map spatial interactions within the cancer ecosystem. Using SpottedPy, we examine epithelial-mesenchymal plasticity in breast cancer and highlight stable niches associated with angiogenic and hypoxic regions, shielded by CAFs and macrophages. Hybrid and mesenchymal hotspot distribution follows transformation gradients reflecting progressive immunosuppression. Our method offers flexibility to explore spatial relationships at different scales, from immediate neighbors to broader tissue modules, providing new insights into tumor microenvironment dynamics.
Collapse
Affiliation(s)
- Eloise Withnell
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London, WC1E 6BT, UK
| | - Maria Secrier
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
10
|
Rich JM, Moses L, Einarsson PH, Jackson K, Luebbert L, Booeshaghi AS, Antonsson S, Sullivan DK, Bray N, Melsted P, Pachter L. The impact of package selection and versioning on single-cell RNA-seq analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588111. [PMID: 38617255 PMCID: PMC11014608 DOI: 10.1101/2024.04.04.588111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Standard single-cell RNA-sequencing analysis (scRNA-seq) workflows consist of converting raw read data into cell-gene count matrices through sequence alignment, followed by analyses including filtering, highly variable gene selection, dimensionality reduction, clustering, and differential expression analysis. Seurat and Scanpy are the most widely-used packages implementing such workflows, and are generally thought to implement individual steps similarly. We investigate in detail the algorithms and methods underlying Seurat and Scanpy and find that there are, in fact, considerable differences in the outputs of Seurat and Scanpy. The extent of differences between the programs is approximately equivalent to the variability that would be introduced in benchmarking scRNA-seq datasets by sequencing less than 5% of the reads or analyzing less than 20% of the cell population. Additionally, distinct versions of Seurat and Scanpy can produce very different results, especially during parts of differential expression analysis. Our analysis highlights the need for users of scRNA-seq to carefully assess the tools on which they rely, and the importance of developers of scientific software to prioritize transparency, consistency, and reproducibility for their tools.
Collapse
Affiliation(s)
- Joseph M Rich
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- USC-Caltech MD/PhD Program, Keck School of Medicine, Los Angeles, CA, 90033, USA
| | - Lambda Moses
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Pétur Helgi Einarsson
- Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, Reykjavík, Iceland
| | - Kayla Jackson
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- USC-Caltech MD/PhD Program, Keck School of Medicine, Los Angeles, CA, 90033, USA
| | - Laura Luebbert
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - A. Sina Booeshaghi
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Sindri Antonsson
- Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, Reykjavík, Iceland
| | - Delaney K. Sullivan
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | | | - Páll Melsted
- Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, Reykjavík, Iceland
| | - Lior Pachter
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
- Lead Contact
| |
Collapse
|
11
|
Vierdag WMAM, Saka SK. A perspective on FAIR quality control in multiplexed imaging data processing. FRONTIERS IN BIOINFORMATICS 2024; 4:1336257. [PMID: 38405548 PMCID: PMC10885342 DOI: 10.3389/fbinf.2024.1336257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/26/2024] [Indexed: 02/27/2024] Open
Abstract
Multiplexed imaging approaches are getting increasingly adopted for imaging of large tissue areas, yielding big imaging datasets both in terms of the number of samples and the size of image data per sample. The processing and analysis of these datasets is complex owing to frequent technical artifacts and heterogeneous profiles from a high number of stained targets To streamline the analysis of multiplexed images, automated pipelines making use of state-of-the-art algorithms have been developed. In these pipelines, the output quality of one processing step is typically dependent on the output of the previous step and errors from each step, even when they appear minor, can propagate and confound the results. Thus, rigorous quality control (QC) at each of these different steps of the image processing pipeline is of paramount importance both for the proper analysis and interpretation of the analysis results and for ensuring the reusability of the data. Ideally, QC should become an integral and easily retrievable part of the imaging datasets and the analysis process. Yet, limitations of the currently available frameworks make integration of interactive QC difficult for large multiplexed imaging data. Given the increasing size and complexity of multiplexed imaging datasets, we present the different challenges for integrating QC in image analysis pipelines as well as suggest possible solutions that build on top of recent advances in bioimage analysis.
Collapse
Affiliation(s)
| | - Sinem K. Saka
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| |
Collapse
|
12
|
Chen JG, Chávez-Fuentes JC, O'Brien M, Xu J, Ruiz E, Wang W, Amin I, Sarfraz I, Guckhool P, Sistig A, Yuan GC, Dries R. Giotto Suite: a multi-scale and technology-agnostic spatial multi-omics analysis ecosystem. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.26.568752. [PMID: 38077085 PMCID: PMC10705291 DOI: 10.1101/2023.11.26.568752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Emerging spatial omics technologies continue to advance the molecular mapping of tissue architecture and the investigation of gene regulation and cellular crosstalk, which in turn provide new mechanistic insights into a wide range of biological processes and diseases. Such technologies provide an increasingly large amount of information content at multiple spatial scales. However, representing and harmonizing diverse spatial datasets efficiently, including combining multiple modalities or spatial scales in a scalable and flexible manner, remains a substantial challenge. Here, we present Giotto Suite, a suite of open-source software packages that underlies a fully modular and integrated spatial data analysis toolbox. At its core, Giotto Suite is centered around an innovative and technology-agnostic data framework embedded in the R software environment, which allows the representation and integration of virtually any type of spatial omics data at any spatial resolution. In addition, Giotto Suite provides both scalable and extensible end-to-end solutions for data analysis, integration, and visualization. Giotto Suite integrates molecular, morphology, spatial, and annotated feature information to create a responsive and flexible workflow for multi-scale, multi-omic data analyses, as demonstrated here by applications to several state-of-the-art spatial technologies. Furthermore, Giotto Suite builds upon interoperable interfaces and data structures that bridge the established fields of genomics and spatial data science, thereby enabling independent developers to create custom-engineered pipelines. As such, Giotto Suite creates an immersive ecosystem for spatial multi-omic data analysis.
Collapse
Affiliation(s)
- Jiaji George Chen
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA
| | | | - Matthew O'Brien
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA
| | - Junxiang Xu
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA
| | - Edward Ruiz
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA
| | - Wen Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Iqra Amin
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA
| | - Irzam Sarfraz
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA
| | - Pratishtha Guckhool
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adriana Sistig
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Guo-Cheng Yuan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ruben Dries
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
13
|
Miyoshi E, Morabito S, Henningfield CM, Rahimzadeh N, Kiani Shabestari S, Das S, Michael N, Reese F, Shi Z, Cao Z, Scarfone V, Arreola MA, Lu J, Wright S, Silva J, Leavy K, Lott IT, Doran E, Yong WH, Shahin S, Perez-Rosendahl M, Head E, Green KN, Swarup V. Spatial and single-nucleus transcriptomic analysis of genetic and sporadic forms of Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.550282. [PMID: 37546983 PMCID: PMC10402031 DOI: 10.1101/2023.07.24.550282] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The pathogenesis of Alzheimer's disease (AD) depends on environmental and heritable factors, with remarkable differences evident between individuals at the molecular level. Here we present a transcriptomic survey of AD using spatial transcriptomics (ST) and single-nucleus RNA-seq in cortical samples from early-stage AD, late-stage AD, and AD in Down Syndrome (AD in DS) donors. Studying AD in DS provides an opportunity to enhance our understanding of the AD transcriptome, potentially bridging the gap between genetic mouse models and sporadic AD. Our analysis revealed spatial and cell-type specific changes in disease, with broad similarities in these changes between sAD and AD in DS. We performed additional ST experiments in a disease timecourse of 5xFAD and wildtype mice to facilitate cross-species comparisons. Finally, amyloid plaque and fibril imaging in the same tissue samples used for ST enabled us to directly link changes in gene expression with accumulation and spread of pathology.
Collapse
Affiliation(s)
- Emily Miyoshi
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
| | - Samuel Morabito
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
- Mathematical, Computational, and Systems Biology (MCSB) Program, University of California Irvine, Irvine, CA, USA
- Center for Complex Biological Systems (CCBS), University of California Irvine, Irvine, CA, USA
| | - Caden M Henningfield
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
| | - Negin Rahimzadeh
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
- Mathematical, Computational, and Systems Biology (MCSB) Program, University of California Irvine, Irvine, CA, USA
- Center for Complex Biological Systems (CCBS), University of California Irvine, Irvine, CA, USA
| | - Sepideh Kiani Shabestari
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA, USA
| | - Sudeshna Das
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
| | - Neethu Michael
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
| | - Fairlie Reese
- Center for Complex Biological Systems (CCBS), University of California Irvine, Irvine, CA, USA
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Zechuan Shi
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
| | - Zhenkun Cao
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - Vanessa Scarfone
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA, USA
| | - Miguel A Arreola
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
| | - Jackie Lu
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - Sierra Wright
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
| | - Justine Silva
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
| | - Kelsey Leavy
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
| | - Ira T Lott
- Department of Pediatrics, University of California Irvine School of Medicine, Orange, CA, USA
| | - Eric Doran
- Department of Pediatrics, University of California Irvine School of Medicine, Orange, CA, USA
| | - William H Yong
- Department of Pathology and Laboratory Medicine, University of California Irvine , Irvine, CA, USA
| | - Saba Shahin
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
| | - Mari Perez-Rosendahl
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, University of California Irvine , Irvine, CA, USA
| | - Elizabeth Head
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, University of California Irvine , Irvine, CA, USA
| | - Kim N Green
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
| | - Vivek Swarup
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
- Center for Complex Biological Systems (CCBS), University of California Irvine, Irvine, CA, USA
| |
Collapse
|