1
|
Chen CH, Yao Z, Wu S, Regehr WG. Characterization of direct Purkinje cell outputs to the brainstem. eLife 2025; 13:RP101825. [PMID: 40013677 PMCID: PMC11867612 DOI: 10.7554/elife.101825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025] Open
Abstract
Purkinje cells (PCs) primarily project to cerebellar nuclei but also directly innervate the brainstem. Some PC-brainstem projections have been described previously, but most have not been thoroughly characterized. Here, we use a PC-specific cre line to anatomically and electrophysiologically characterize PC projections to the brainstem. PC synapses are surprisingly widespread, with the highest densities found in the vestibular and parabrachial nuclei. However, there are pronounced regional differences in synaptic densities within both the vestibular and parabrachial nuclei. Large optogenetically evoked PC-IPSCs are preferentially observed in subregions with the highest densities of putative PC boutons, suggesting that PCs selectively influence these areas and the behaviors they regulate. Unexpectedly, the pontine central gray and nearby subnuclei also contained a low density of putative PC boutons, and large PC-IPSCs are observed in a small fraction of cells. We combined electrophysiological recordings with immunohistochemistry to assess the molecular identities of two potential PC targets: PC synapses onto mesencephalic trigeminal neurons were not observed even though these cells are in close proximity to PC boutons; PC synapses onto locus coeruleus neurons are exceedingly rare or absent, even though previous studies concluded that PCs are a major input to these neurons. The availability of a highly selective cre line for PCs allowed us to study functional synapses, while avoiding complications that can accompany the use of viral approaches. We conclude that PCs directly innervate numerous brainstem nuclei, and in many nuclei they strongly inhibit a small fraction of cells. This suggests that PCs selectively target cell types with specific behavioral roles in the brainstem.
Collapse
Affiliation(s)
- Christopher H Chen
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
- Department of Neural and Behavioral Sciences, The Pennsylvania State UniversityHersheyUnited States
| | - Zhiyi Yao
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
- Department of Neural and Behavioral Sciences, The Pennsylvania State UniversityHersheyUnited States
| | - Shuting Wu
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
2
|
Chen CH, Yao Z, Wu S, Regehr WG. Characterization of direct Purkinje cell outputs to the brainstem. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.16.608221. [PMID: 39605653 PMCID: PMC11601412 DOI: 10.1101/2024.08.16.608221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Purkinje cells (PCs) primarily project to cerebellar nuclei but also directly innervate the brainstem. Some PC-brainstem projections have been described previously, but most have not been thoroughly characterized. Here we use a PC-specific cre line to anatomically and electrophysiologically characterize PC projections to the brainstem. PC synapses are surprisingly widespread, with the highest densities found in the vestibular and parabrachial nuclei. However, there are pronounced regional differences in synaptic densities within both the vestibular and parabrachial nuclei. Large optogenetically-evoked PC-IPSCs are preferentially observed in subregions with the highest densities of PC synapses, suggesting that PCs selectively influence these areas and the behaviors they regulate. Unexpectedly, the pontine central gray and nearby subnuclei also contained a low density of PC synapses, and large PC-IPSCs are observed in a small fraction of cells. We combined electrophysiological recordings with immunohistochemistry to assess the molecular identities of two putative PC targets: PC synapses onto mesencephalic trigeminal neurons were not observed even though these cells are in close proximity to PC boutons. PC synapses onto locus coeruleus neurons are exceedingly rare or absent, even though previous studies concluded that PCs are a major input to these neurons. The availability of a highly selective cre line for PCs allowed us to study functional synapses, while avoiding complications that can accompany the use of viral approaches. We conclude that PCs directly innervate numerous brainstem nuclei, but only inhibit a small fraction of cells in many nuclei. This suggests that PCs target cell types with specific behavioral roles in brainstem regions.
Collapse
Affiliation(s)
- Christopher H. Chen
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, Pennsylvania
- These authors contributed equally
| | - Zhiyi Yao
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, Pennsylvania
- These authors contributed equally
| | - Shuting Wu
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Wade G. Regehr
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Zucca S, La Rosa C, Fellin T, Peretto P, Bovetti S. Developmental encoding of natural sounds in the mouse auditory cortex. Cereb Cortex 2024; 34:bhae438. [PMID: 39503245 PMCID: PMC11538960 DOI: 10.1093/cercor/bhae438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/09/2024] Open
Abstract
Mice communicate through high-frequency ultrasonic vocalizations, which are crucial for social interactions such as courtship and aggression. Although ultrasonic vocalization representation has been found in adult brain areas along the auditory pathway, including the auditory cortex, no evidence is available on the neuronal representation of ultrasonic vocalizations early in life. Using in vivo two-photon calcium imaging, we analyzed auditory cortex layer 2/3 neuronal responses to USVs, pure tones (4 to 90 kHz), and high-frequency modulated sweeps from postnatal day 12 (P12) to P21. We found that ACx neurons are tuned to respond to ultrasonic vocalization syllables as early as P12 to P13, with an increasing number of responsive cells as the mouse age. By P14, while pure tone responses showed a frequency preference, no syllable preference was observed. Additionally, at P14, USVs, pure tones, and modulated sweeps activate clusters of largely nonoverlapping responsive neurons. Finally, we show that while cell correlation decreases with increasing processing of peripheral auditory stimuli, neurons responding to the same stimulus maintain highly correlated spontaneous activity after circuits have attained mature organization, forming neuronal subnetworks sharing similar functional properties.
Collapse
Affiliation(s)
- Stefano Zucca
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, via Accademia Albertina 13, 10123 Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10143 Orbassano, Italy
| | - Chiara La Rosa
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, via Accademia Albertina 13, 10123 Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10143 Orbassano, Italy
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Paolo Peretto
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, via Accademia Albertina 13, 10123 Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10143 Orbassano, Italy
| | - Serena Bovetti
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, via Accademia Albertina 13, 10123 Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10143 Orbassano, Italy
| |
Collapse
|
4
|
Han X, Maharjan S, Chen J, Zhao Y, Qi Y, White LE, Johnson GA, Wang N. High-resolution diffusion magnetic resonance imaging and spatial-transcriptomic in developing mouse brain. Neuroimage 2024; 297:120734. [PMID: 39032791 PMCID: PMC11377129 DOI: 10.1016/j.neuroimage.2024.120734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/06/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024] Open
Abstract
Brain development is a highly complex process regulated by numerous genes at the molecular and cellular levels. Brain tissue exhibits serial microstructural changes during the development process. High-resolution diffusion magnetic resonance imaging (dMRI) affords a unique opportunity to probe these changes in the developing brain non-destructively. In this study, we acquired multi-shell dMRI datasets at 32 µm isotropic resolution to investigate the tissue microstructure alterations, which we believe to be the highest spatial resolution dMRI datasets obtained for postnatal mouse brains. We adapted the Allen Developing Mouse Brain Atlas (ADMBA) to integrate quantitative MRI metrics and spatial transcriptomics. Diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), and neurite orientation dispersion and density imaging (NODDI) metrics were used to quantify brain development at different postnatal days. We demonstrated that the differential evolutions of fiber orientation distributions contribute to the distinct development patterns in white matter (WM) and gray matter (GM). Furthermore, the genes enriched in the nervous system that regulate brain structure and function were expressed in spatial correlation with age-matched dMRI. This study is the first one providing high-resolution dMRI, including DTI, DKI, and NODDI models, to trace mouse brain microstructural changes in WM and GM during postnatal development. This study also highlighted the genotype-phenotype correlation of spatial transcriptomics and dMRI, which may improve our understanding of brain microstructure changes at the molecular level.
Collapse
Affiliation(s)
- Xinyue Han
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, USA; Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Surendra Maharjan
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, USA
| | - Jie Chen
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, USA
| | - Yi Zhao
- Department of Biostatistics and Health Data Science, Indiana University, Indianapolis, IN, USA
| | - Yi Qi
- Center for In Vivo Microscopy, Department of Radiology, Duke University, Durham, NC, USA
| | - Leonard E White
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - G Allan Johnson
- Center for In Vivo Microscopy, Department of Radiology, Duke University, Durham, NC, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nian Wang
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, USA; Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
5
|
Stouffer KM, Trouvé A, Younes L, Kunst M, Ng L, Zeng H, Anant M, Fan J, Kim Y, Chen X, Rue M, Miller MI. Cross-modality mapping using image varifolds to align tissue-scale atlases to molecular-scale measures with application to 2D brain sections. Nat Commun 2024; 15:3530. [PMID: 38664422 PMCID: PMC11045777 DOI: 10.1038/s41467-024-47883-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
This paper explicates a solution to building correspondences between molecular-scale transcriptomics and tissue-scale atlases. This problem arises in atlas construction and cross-specimen/technology alignment where specimens per emerging technology remain sparse and conventional image representations cannot efficiently model the high dimensions from subcellular detection of thousands of genes. We address these challenges by representing spatial transcriptomics data as generalized functions encoding position and high-dimensional feature (gene, cell type) identity. We map onto low-dimensional atlas ontologies by modeling regions as homogeneous random fields with unknown transcriptomic feature distribution. We solve simultaneously for the minimizing geodesic diffeomorphism of coordinates through LDDMM and for these latent feature densities. We map tissue-scale mouse brain atlases to gene-based and cell-based transcriptomics data from MERFISH and BARseq technologies and to histopathology and cross-species atlases to illustrate integration of diverse molecular and cellular datasets into a single coordinate system as a means of comparison and further atlas construction.
Collapse
Affiliation(s)
- Kaitlin M Stouffer
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
- Centre Borelli, ENS Paris-Saclay, Gif-sur-yvette, France.
| | - Alain Trouvé
- Centre Borelli, ENS Paris-Saclay, Gif-sur-yvette, France
| | - Laurent Younes
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
| | | | - Lydia Ng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Manjari Anant
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jean Fan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, Penn State University, College of Medicine, State College, PA, USA
| | - Xiaoyin Chen
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Mara Rue
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Michael I Miller
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
6
|
Puelles L. Functional Implications of the Prosomeric Brain Model. Biomolecules 2024; 14:331. [PMID: 38540751 PMCID: PMC10968462 DOI: 10.3390/biom14030331] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 11/11/2024] Open
Abstract
Brain models present a viewpoint on the fundamental structural components of the brain and their mutual organization, generally relative to a particular concept of the brain axis. A model may be based on adult brain structure or on developmental morphogenetic aspects. Brain models usually have functional implications, depending on which functional properties derive from the postulated organization. This essay examines the present scenario about brain models, emphasizing the contrast between columnar or other longitudinal models and transverse subdivisional neuromeric models. In each case, the main functional implications and apparent problems are explored and commented. Particular attention is given to the modern molecularly based 'prosomeric model', which postulates a set of 20 transverse prosomeres as the developmental units that serve to construct all the cerebral parts and the particular typology of many different neuronal populations within the forebrain and the hindbrain, plus a number of additional spinal cord units. These metameric developmental units (serially repeated, but with unique molecular profiles) confer to this model remarkable functional properties based mainly on its multiplicity and modularity. Many important brain functions can be decomposed into subfunctions attended to by combined sets of neuronal elements derived from different neuromeres. Each neuromere may participate in multiple functions. Most aspects related to creation of precise order in neural connections (axonal navigation and synaptogenesis) and function is due to the influence of neuromeric anteroposterior and dorsoventral positional information. Research on neuromeric functionality aspects is increasing significantly in recent times.
Collapse
Affiliation(s)
- Luis Puelles
- Department Human Anatomy and Psychobiology and IMIB-Arrixaca (Murcia Institute for Biomedical Research), University of Murcia, LAIB Building, Avenida Buenavista s/n, El Palmar, 30120 Murcia, Spain
| |
Collapse
|
7
|
Liwang JK, Kronman FA, Minteer JA, Wu YT, Vanselow DJ, Ben-Simon Y, Taormina M, Parmaksiz D, Way SW, Zeng H, Tasic B, Ng L, Kim Y. epDevAtlas: Mapping GABAergic cells and microglia in postnatal mouse brains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.24.568585. [PMID: 38045330 PMCID: PMC10690281 DOI: 10.1101/2023.11.24.568585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
During development, brain regions follow encoded growth trajectories. Compared to classical brain growth charts, high-definition growth charts could quantify regional volumetric growth and constituent cell types, improving our understanding of typical and pathological brain development. Here, we create high-resolution 3D atlases of the early postnatal mouse brain, using Allen CCFv3 anatomical labels, at postnatal days (P) 4, 6, 8, 10, 12, and 14, and determine the volumetric growth of different brain regions. We utilize 11 different cell type-specific transgenic animals to validate and refine anatomical labels. Moreover, we reveal region-specific density changes in γ-aminobutyric acid-producing (GABAergic), cortical layer-specific cell types, and microglia as key players in shaping early postnatal brain development. We find contrasting changes in GABAergic neuronal densities between cortical and striatal areas, stabilizing at P12. Moreover, somatostatin-expressing cortical interneurons undergo regionally distinct density reductions, while vasoactive intestinal peptide-expressing interneurons show no significant changes. Remarkably, microglia transition from high density in white matter tracks to gray matter at P10, and show selective density increases in sensory processing areas that correlate with the emergence of individual sensory modalities. Lastly, we create an open-access web-visualization (https://kimlab.io/brain-map/epDevAtlas) for cell-type growth charts and developmental atlases for all postnatal time points.
Collapse
Affiliation(s)
- Josephine K. Liwang
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Fae A. Kronman
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Jennifer A. Minteer
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Yuan-Ting Wu
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Daniel J. Vanselow
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | | | | | - Deniz Parmaksiz
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | | | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Lydia Ng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| |
Collapse
|