1
|
Choi SY, Chung IY, Bae HW, Cho YH. Autolysis of Pseudomonas aeruginosa Quorum-Sensing Mutant Is Suppressed by Staphylococcus aureus through Iron-Dependent Metabolism. J Microbiol Biotechnol 2024; 34:795-803. [PMID: 38303126 DOI: 10.4014/jmb.2312.12028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/03/2024]
Abstract
Microorganisms usually coexist as a multifaceted polymicrobial community in the natural habitats and at mucosal sites of the human body. Two opportunistic human pathogens, Pseudomonas aeruginosa and Staphylococcus aureus commonly coexist in the bacterial infections for hospitalized and/or immunocompromised patients. Here, we observed that autolysis of the P. aeruginosa quorum-sensing (QS) mutant (lasRmvfR) was suppressed by the presence of the S. aureus cells in vitro. The QS mutant still displayed killing against S. aureus cells, suggesting the link between the S. aureus-killing activity and the autolysis suppression. Independent screens of the P. aeruginosa transposon mutants defective in the S. aureus-killing and the S. aureus transposon mutants devoid of the autolysis suppression revealed the genetic link between both phenotypes, suggesting that the iron-dependent metabolism involving S. aureus exoproteins might be central to both phenotypes. The autolysis was suppressed by iron treatment as well. These results suggest that the interaction between P. aeruginosa and S. aureus might be governed by mechanisms that necessitate the QS circuitry as well as the metabolism involving the extracellular iron resources during the polymicrobial infections in the human airway.
Collapse
Affiliation(s)
- Shin-Yae Choi
- Program of Biopharmaceutical Science and Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - In-Young Chung
- Program of Biopharmaceutical Science and Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - Hee-Won Bae
- Program of Biopharmaceutical Science and Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - You-Hee Cho
- Program of Biopharmaceutical Science and Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Republic of Korea
| |
Collapse
|
2
|
Garcia-Diosa JA, Grundmeier G, Keller A. Effect of DNA Origami Nanostructures on Bacterial Growth. Chembiochem 2024; 25:e202400091. [PMID: 38299762 DOI: 10.1002/cbic.202400091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/02/2024]
Abstract
DNA origami nanostructures are a powerful tool in biomedicine and can be used to combat drug-resistant bacterial infections. However, the effect of unmodified DNA origami nanostructures on bacteria is yet to be elucidated. With the aim to obtain a better understanding of this phenomenon, the effect of three DNA origami shapes, i.e., DNA origami triangles, six-helix bundles (6HBs), and 24-helix bundles (24HBs), on the growth of Gram-negative Escherichia coli and Gram-positive Bacillus subtilis is investigated. The results reveal that while triangles and 24HBs can be used as a source of nutrients by E. coli and thereby promote population growth, their effect is much smaller than that of genomic single- and double-stranded DNA. However, no effect on E. coli population growth is observed for the 6HBs. On the other hand, B. subtilis does not show any significant changes in population growth when cultured with the different DNA origami shapes or genomic DNA. The detailed effect of DNA origami nanostructures on bacterial growth thus depends on the competence signals and uptake mechanism of each bacterial species, as well as the DNA origami shape. This should be considered in the development of antimicrobial DNA origami nanostructures.
Collapse
Affiliation(s)
- Jaime Andres Garcia-Diosa
- Paderborn University, Technical and Macromolecular Chemistry, Warburger Str. 100, 33098, Paderborn, Germany
| | - Guido Grundmeier
- Paderborn University, Technical and Macromolecular Chemistry, Warburger Str. 100, 33098, Paderborn, Germany
| | - Adrian Keller
- Paderborn University, Technical and Macromolecular Chemistry, Warburger Str. 100, 33098, Paderborn, Germany
| |
Collapse
|
3
|
Luo T, Dai X, Wei W, Xu Q, Ni BJ. Microplastics Enhance the Prevalence of Antibiotic Resistance Genes in Anaerobic Sludge Digestion by Enriching Antibiotic-Resistant Bacteria in Surface Biofilm and Facilitating the Vertical and Horizontal Gene Transfer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14611-14621. [PMID: 37733635 DOI: 10.1021/acs.est.3c02815] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Antibiotic resistance genes (ARGs) and microplastics (MPs) are recognized as emerging contaminants and threats to global human health. Despite both of them being significantly detected in their "hotspots", i.e., waste activated sludge (WAS), rare studies on how MPs affect ARGs and antibiotic-resistant bacteria (ARB) in anaerobic sludge digestion are available. Herein, the fate of ARGs and ARB after exposure to MPs of three dosages (10, 30, and 80 particles/g-TS), three polymer types (LDPE, PET, and PS), and three branching extents (LDPE, LLDPE, and HDPE) in anaerobic sludge digestion was investigated. Metagenomic results indicated that all variants of MPs resulted in an increase of the relative abundance of ARGs in the digester compared to the control. The abundance of ARGs demonstrated a dosage-dependent relationship within the range from 10 to 80 particles/g-TS, resulting in an increase from 4.5 to 27.9% compared to the control. Branching structure and polymer type influence ARG level in the sludge digester as well. Mechanism studies revealed that LDPE selectively enriched potential ARB and ARGs in the surface biofilm, possibly creating a favorable environment for ARB proliferation and ARG exchange. Furthermore, vertical transfer of ARGs was facilitated by LDPE through increasing bacterial cell proliferation accompanied by the enhancement of relevant functional genes. The elevated abundance of mobile genetic elements (MGEs) and ARGs-carrying plasmids also demonstrated that MGE-mediated horizontal transfer was promoted by LDPE at 80 particles/g-TS. This effect was compounded by increased oxidative stress, cell membrane permeability, and cell cohesion, collectively facilitating horizontal ARG transfer. Consequently, both vertical and horizontal transfer of ARGs could be concurrently promoted by LDPE an in anaerobic sludge digester.
Collapse
Affiliation(s)
- Tianyi Luo
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 200092 Shanghai, PR China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 200092 Shanghai, PR China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Qiuxiang Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 200092 Shanghai, PR China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
4
|
Abstract
The versatile type IV secretion system (T4SS) nanomachine plays a pivotal role in bacterial pathogenesis and the propagation of antibiotic resistance determinants throughout microbial populations. In addition to paradigmatic DNA conjugation machineries, diverse T4SSs enable the delivery of multifarious effector proteins to target prokaryotic and eukaryotic cells, mediate DNA export and uptake from the extracellular milieu, and in rare examples, facilitate transkingdom DNA translocation. Recent advances have identified new mechanisms underlying unilateral nucleic acid transport through the T4SS apparatus, highlighting both functional plasticity and evolutionary adaptations that enable novel capabilities. In this review, we describe the molecular mechanisms underscoring DNA translocation through diverse T4SS machineries, emphasizing the architectural features that implement DNA exchange across the bacterial membrane and license transverse DNA release across kingdom boundaries. We further detail how recent studies have addressed outstanding questions surrounding the mechanisms by which nanomachine architectures and substrate recruitment strategies contribute to T4SS functional diversity.
Collapse
Affiliation(s)
- Mackenzie E. Ryan
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Prashant P. Damke
- Department of Veterinary Sciences, University of Kentucky College of Agriculture, Lexington, Kentucky, USA
| | - Carrie L. Shaffer
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
- Department of Veterinary Sciences, University of Kentucky College of Agriculture, Lexington, Kentucky, USA
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky, USA
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
5
|
Zhang C, Wang C, Zhao X, Hakizimana I. Effect of resistance difference on distribution of antibiotics in bacterial cell and conjugative gene transfer risks during electrochemical flow through reaction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163142. [PMID: 36996977 DOI: 10.1016/j.scitotenv.2023.163142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 05/13/2023]
Abstract
The occurrences and spread of antibiotic resistance (AR) mediated by horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs) in aquatic environment have been aggravated because of the abuse of antibiotics. While the pressure of different antibiotics is known to induce the spread of AR in bacteria, whether distribution of different antibiotics in cell structure could affect HGT risks is not clear. Here, a significant difference between the distribution of tetracycline hydrochloride (Tet) and sulfamethoxazole (Sul) in cell structure during electrochemical flow through reaction (EFTR) process was firstly reported. Meanwhile, EFTR treatment possessed excellent disinfection performance and consequently controlled the HGT risks. The intracellular Tet (iTet) was discharged through efflux pumps to increase the content of extracellular Tet (eTet) due to the resistance of donor E. coli DH5α under the selective pressure of Tet, declining the damage of donor and plasmid RP4. The HGT frequency was 8.18-fold increase compared with that by EFTR treatment alone. While the secretion of intracellular Sul (iSul) was inhibited by blocking the formation of efflux pumps to inactivate the donor under the Sul pressure, and the total content of iSul and adsorbed Sul (aSul) to be 1.36-fold higher than that of eSul. Therefore, the reactive oxygen species (ROS) generation and cell membrane permeability were improved to release ARGs, and •OH attacked plasmid RP4 in the EFTR process, inhibiting the HGT risks. This study advances the awareness of the interaction between distribution of different antibiotics in cell structure and the HGT risks in the EFTR process.
Collapse
Affiliation(s)
- Cong Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Xin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Israel Hakizimana
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
6
|
Huang L, Zhang Y, Du X, An R, Liang X. Escherichia coli Can Eat DNA as an Excellent Nitrogen Source to Grow Quickly. Front Microbiol 2022; 13:894849. [PMID: 35836416 PMCID: PMC9273947 DOI: 10.3389/fmicb.2022.894849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Is DNA or RNA a good nutrient? Although scientists have raised this question for dozens of years, few textbooks mention the nutritional role of nucleic acids. Paradoxically, mononucleotides are widely added to infant formula milk and animal feed. Interestingly, competent bacteria can bind and ingest extracellular DNA and even integrate it into their genome. These results prompt us to clarify whether bacteria can “eat” DNA as food. We found that Escherichia coli can grow well in the medium with DNA as carbon and nitrogen sources. More interestingly, in the presence of glucose and DNA, bacteria grew more rapidly, showing that bacteria can use DNA as an excellent nitrogen source. Surprisingly, the amount of DNA in the culture media decreased but its length remained unchanged, demonstrating that E. coli ingested long DNA directly. The gene expression study shows that E. coli mainly ingests DNA before digestion and digests it in the periplasm. Bifidobacterium bifidum can also use DNA as the nitrogen source for growth, but not efficiently as E. coli. This study is of great significance to study DNA metabolism and utilization in organisms. It also lays a foundation to understand the nutritional function of DNA in intestinal flora and human health.
Collapse
Affiliation(s)
- Lili Huang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yehui Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xinmei Du
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Ran An
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- *Correspondence: Ran An
| | - Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Xingguo Liang
| |
Collapse
|
7
|
Wu S, Ren P, Wu Y, Liu J, Huang Q, Cai P. Effects of hematite on the dissemination of antibiotic resistance in pathogens and underlying mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128537. [PMID: 35278942 DOI: 10.1016/j.jhazmat.2022.128537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
The dissemination of antibiotic resistance genes (ARGs) in pathogens is becoming a pervasive global health threat, to which the importance of the environment attracts more and more attention. However, how natural minerals affect ARGs transfer in pathogens is still unclear. In this study, the concentration and size effects of hematite on the ARGs conjugative transfer to a common zoonotic pathogen Escherichia coli O157:H7 and underlying mechanisms were explored. Results revealed that bulk hematite reduced the conjugation of resistant plasmids by inhibiting cell growth at any concentration (1-100 mg/L), different from nano-hematite. Low concentrations of nano-hematite (≤ 25 mg/L) induced significant increases in conjugative transfer frequency of 1.83-4.49 folds, while its high concentrations (50 and 100 mg/L) showed no impact, compared with the control group. This low-concentration effect was likely attributed to the increased intracellular ROS level, the reduced intercellular repulsion by increasing the extracellular polymeric substances production and cell surface hydrophobicity, the formation of transfer channels and the increased membrane permeability evidenced by significant changes in gene expression level, and the increased proton motive force by increasing the transmembrane potential of recipients. These findings shed light on potential health risks caused by nano minerals-mediated ARGs dissemination in pathogens in the environment.
Collapse
Affiliation(s)
- Shan Wu
- State Key Laboratory of Agricultural Microbiology, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Pengfei Ren
- State Key Laboratory of Agricultural Microbiology, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yichao Wu
- State Key Laboratory of Agricultural Microbiology, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Liu
- State Key Laboratory of Agricultural Microbiology, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
8
|
Natural transformation protein ComFA exhibits single-stranded DNA translocase activity. J Bacteriol 2022; 204:e0051821. [PMID: 35041498 DOI: 10.1128/jb.00518-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Natural transformation is one of the major mechanisms of horizontal gene transfer in bacterial populations and has been demonstrated in numerous species of bacteria. Despite the prevalence of natural transformation, much of the molecular mechanism remains unexplored. One major outstanding question is how the cell powers DNA import, which is rapid and highly processive. ComFA is one of a handful of proteins required for natural transformation in gram-positive bacteria. Its structural resemblance to the DEAD-box helicase family has led to a long-held hypothesis that ComFA acts as a motor to help drive DNA import into the cytosol. Here, we explored the helicase and translocase activity of ComFA to address this hypothesis. We followed the DNA-dependent ATPase activity of ComFA and, combined with mathematical modeling, demonstrated that ComFA likely translocates on single-stranded DNA from 5' to 3'. However, this translocase activity does not lead to DNA unwinding in the conditions we tested. Further, we analyzed the ATPase cycle of ComFA and found that ATP hydrolysis stimulates the release of DNA, providing a potential mechanism for translocation. These findings help define the molecular contribution of ComFA to natural transformation and support the conclusion that ComFA plays a key role in powering DNA uptake. Importance Competence, or the ability of bacteria to take up and incorporate foreign DNA in a process called natural transformation, is common in the bacterial kingdom. Research in several bacterial species suggests that long, contiguous stretches of DNA are imported into cells in a processive manner, but how bacteria power transformation remains unclear. Our finding that ComFA, a DEAD-box helicase required for competence in gram-positive bacteria, translocates on single-stranded DNA from 5' to 3', supports the long held hypothesis that ComFA may be the motor powering DNA transport during natural transformation. Moreover, ComFA may be a previously unidentified type of DEAD-box helicase-one with the capability of extended translocation on single-stranded DNA.
Collapse
|
9
|
Perez AJ, Villicana JB, Tsui HCT, Danforth ML, Benedet M, Massidda O, Winkler ME. FtsZ-Ring Regulation and Cell Division Are Mediated by Essential EzrA and Accessory Proteins ZapA and ZapJ in Streptococcus pneumoniae. Front Microbiol 2021; 12:780864. [PMID: 34938281 PMCID: PMC8687745 DOI: 10.3389/fmicb.2021.780864] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/22/2021] [Indexed: 12/02/2022] Open
Abstract
The bacterial FtsZ-ring initiates division by recruiting a large repertoire of proteins (the divisome; Z-ring) needed for septation and separation of cells. Although FtsZ is essential and its role as the main orchestrator of cell division is conserved in most eubacteria, the regulators of Z-ring presence and positioning are not universal. This study characterizes factors that regulate divisome presence and placement in the ovoid-shaped pathogen, Streptococcus pneumoniae (Spn), focusing on FtsZ, EzrA, SepF, ZapA, and ZapJ, which is reported here as a partner of ZapA. Epi-fluorescence microscopy (EFm) and high-resolution microscopy experiments showed that FtsZ and EzrA co-localize during the entire Spn cell cycle, whereas ZapA and ZapJ are late-arriving divisome proteins. Depletion and conditional mutants demonstrate that EzrA is essential in Spn and required for normal cell growth, size, shape homeostasis, and chromosome segregation. Moreover, EzrA(Spn) is required for midcell placement of FtsZ-rings and PG synthesis. Notably, overexpression of EzrA leads to the appearance of extra Z-rings in Spn. Together, these observations support a role for EzrA as a positive regulator of FtsZ-ring formation in Spn. Conversely, FtsZ is required for EzrA recruitment to equatorial rings and for the organization of PG synthesis. In contrast to EzrA depletion, which causes a bacteriostatic phenotype in Spn, depletion of FtsZ results in enlarged spherical cells that are subject to LytA-dependent autolysis. Co-immunoprecipitation and bacterial two-hybrid assays show that EzrA(Spn) is in complexes with FtsZ, Z-ring regulators (FtsA, SepF, ZapA, MapZ), division proteins (FtsK, StkP), and proteins that mediate peptidoglycan synthesis (GpsB, aPBP1a), consistent with a role for EzrA at the interface of cell division and PG synthesis. In contrast to the essentiality of FtsZ and EzrA, ZapA and SepF have accessory roles in regulating pneumococcal physiology. We further show that ZapA interacts with a non-ZapB homolog, named here as ZapJ, which is conserved in Streptococcus species. The absence of the accessory proteins, ZapA, ZapJ, and SepF, exacerbates growth defects when EzrA is depleted or MapZ is deleted. Taken together, these results provide new information about the spatially and temporally distinct proteins that regulate FtsZ-ring organization and cell division in Spn.
Collapse
Affiliation(s)
- Amilcar J Perez
- Department of Biology, Indiana University Bloomington, Bloomington, IN, United States
| | - Jesus Bazan Villicana
- Department of Biology, Indiana University Bloomington, Bloomington, IN, United States
| | - Ho-Ching T Tsui
- Department of Biology, Indiana University Bloomington, Bloomington, IN, United States
| | - Madeline L Danforth
- Department of Biology, Indiana University Bloomington, Bloomington, IN, United States
| | - Mattia Benedet
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Orietta Massidda
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Malcolm E Winkler
- Department of Biology, Indiana University Bloomington, Bloomington, IN, United States
| |
Collapse
|
10
|
Huang M, Liu M, Huang L, Wang M, Jia R, Zhu D, Chen S, Zhao X, Zhang S, Gao Q, Zhang L, Cheng A. The activation and limitation of the bacterial natural transformation system: The function in genome evolution and stability. Microbiol Res 2021; 252:126856. [PMID: 34454311 DOI: 10.1016/j.micres.2021.126856] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 12/26/2022]
Abstract
Bacteria can take up exogenous naked DNA and integrate it into their genomes, which has been regarded as a main contributor to bacterial evolution. The competent status of bacteria is influenced by environmental cues and by the immune systems of bacteria. Here, we review recent advances in understanding the working mechanisms underlying activation of the natural transformation system and limitations thereof. Environmental stresses including the presence of antimicrobials can activate the natural transformation system. However, bacterial enzymes (nucleases), non-coding RNAs, specific DNA sequences, the restriction-modification (R-M) systems, CRISPR-Cas systems and prokaryotic Argonaute proteins (Agos) are have been found to be involved in the limitation of the natural transformation system. Together, this review represents an opportunity to gain insight into bacterial genome stability and evolution.
Collapse
Affiliation(s)
- Mi Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Li Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Dekang Zhu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China.
| |
Collapse
|
11
|
Lam T, Ellison CK, Eddington DT, Brun YV, Dalia AB, Morrison DA. Competence pili in Streptococcus pneumoniae are highly dynamic structures that retract to promote DNA uptake. Mol Microbiol 2021; 116:381-396. [PMID: 33754381 DOI: 10.1111/mmi.14718] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 01/11/2023]
Abstract
The competence pili of transformable Gram-positive species are phylogenetically related to the diverse and widespread class of extracellular filamentous organelles known as type IV pili. In Gram-negative bacteria, type IV pili act through dynamic cycles of extension and retraction to carry out diverse activities including attachment, motility, protein secretion, and DNA uptake. It remains unclear whether competence pili in Gram-positive species exhibit similar dynamic activity, and their mechanism of action for DNA uptake remains unclear. They are hypothesized to either (1) leave transient cavities in the cell wall that facilitate DNA passage, (2) form static adhesins to enrich DNA near the cell surface for subsequent uptake by membrane-embedded transporters, or (3) play an active role in translocating bound DNA via dynamic activity. Here, we use a recently described pilus labeling approach to demonstrate that competence pili in Streptococcus pneumoniae are highly dynamic structures that rapidly extend and retract from the cell surface. By labeling the principal pilus monomer, ComGC, with bulky adducts, we further demonstrate that pilus retraction is essential for natural transformation. Together, our results suggest that Gram-positive competence pili in other species may also be dynamic and retractile structures that play an active role in DNA uptake.
Collapse
Affiliation(s)
- Trinh Lam
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Courtney K Ellison
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - David T Eddington
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Yves V Brun
- Department of Biology, Indiana University, Bloomington, IN, USA.,Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Ankur B Dalia
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Donald A Morrison
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
12
|
Chromosome Segregation and Peptidoglycan Remodeling Are Coordinated at a Highly Stabilized Septal Pore to Maintain Bacterial Spore Development. Dev Cell 2020; 56:36-51.e5. [PMID: 33383000 DOI: 10.1016/j.devcel.2020.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/21/2020] [Accepted: 12/07/2020] [Indexed: 11/23/2022]
Abstract
Asymmetric division, a hallmark of endospore development, generates two cells, a larger mother cell and a smaller forespore. Approximately 75% of the forespore chromosome must be translocated across the division septum into the forespore by the DNA translocase SpoIIIE. Asymmetric division also triggers cell-specific transcription, which initiates septal peptidoglycan remodeling involving synthetic and hydrolytic enzymes. How these processes are coordinated has remained a mystery. Using Bacillus subtilis, we identified factors that revealed the link between chromosome translocation and peptidoglycan remodeling. In cells lacking these factors, the asymmetric septum retracts, resulting in forespore cytoplasmic leakage and loss of DNA translocation. Importantly, these phenotypes depend on septal peptidoglycan hydrolysis. Our data support a model in which SpoIIIE is anchored at the edge of a septal pore, stabilized by newly synthesized peptidoglycan and protein-protein interactions across the septum. Together, these factors ensure coordination between chromosome translocation and septal peptidoglycan remodeling to maintain spore development.
Collapse
|
13
|
Liu M, Huang M, Wang M, Zhu D, Jia R, Chen S, Zhang L, Pan L, Cheng A. The Clustered Regularly Interspaced Short Palindromic Repeat System and Argonaute: An Emerging Bacterial Immunity System for Defense Against Natural Transformation? Front Microbiol 2020; 11:593301. [PMID: 33193265 PMCID: PMC7642515 DOI: 10.3389/fmicb.2020.593301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/23/2020] [Indexed: 12/21/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR) systems and prokaryotic Argonaute proteins (Agos) have been shown to defend bacterial and archaeal cells against invading nucleic acids. Indeed, they are important elements for inhibiting horizontal gene transfer between bacterial and archaeal cells. The CRISPR system employs an RNA-guide complex to target invading DNA or RNA, while Agos target DNA using single stranded DNA or RNA as guides. Thus, the CRISPR and Agos systems defend against exogenous nucleic acids by different mechanisms. It is not fully understood how antagonization of these systems occurs during natural transformation, wherein exogenous DNA enters a host cell as single stranded DNA and is then integrated into the host genome. In this review, we discuss the functions and mechanisms of the CRISPR system and Agos in cellular defense against natural transformation.
Collapse
Affiliation(s)
- Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mi Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Leichang Pan
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
14
|
Wang Y, Lu J, Engelstädter J, Zhang S, Ding P, Mao L, Yuan Z, Bond PL, Guo J. Non-antibiotic pharmaceuticals enhance the transmission of exogenous antibiotic resistance genes through bacterial transformation. THE ISME JOURNAL 2020; 14:2179-2196. [PMID: 32424247 PMCID: PMC7367833 DOI: 10.1038/s41396-020-0679-2] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/19/2022]
Abstract
Antibiotic resistance is a serious global threat for public health. Considering the high abundance of cell-free DNA encoding antibiotic resistance genes (ARGs) in both clinical and environmental settings, natural transformation is an important horizontal gene transfer pathway to transmit antibiotic resistance. It is acknowledged that antibiotics are key drivers for disseminating antibiotic resistance, yet the contributions of non-antibiotic pharmaceuticals on transformation of ARGs are overlooked. In this study, we report that some commonly consumed non-antibiotic pharmaceuticals, at clinically and environmentally relevant concentrations, significantly facilitated the spread of antibiotic resistance through the uptake of exogenous ARGs. This included nonsteroidal anti-inflammatories, ibuprofen, naproxen, diclofenac, the lipid-lowering drug, gemfibrozil, and the β-blocker propranolol. Based on the results of flow cytometry, whole-genome RNA sequencing and proteomic analysis, the enhanced transformation of ARGs was affiliated with promoted bacterial competence, enhanced stress levels, over-produced reactive oxygen species and increased cell membrane permeability. In addition, a mathematical model was proposed and calibrated to predict the dynamics of transformation during exposure to non-antibiotic pharmaceuticals. Given the high consumption of non-antibiotic pharmaceuticals, these findings reveal new concerns regarding antibiotic resistance dissemination exacerbated by non-antibiotic pharmaceuticals.
Collapse
Affiliation(s)
- Yue Wang
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ji Lu
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jan Engelstädter
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Shuai Zhang
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Pengbo Ding
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Likai Mao
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Philip L Bond
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
15
|
Nwamba OC. Membranes as the third genetic code. Mol Biol Rep 2020; 47:4093-4097. [PMID: 32279211 DOI: 10.1007/s11033-020-05437-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023]
Abstract
Biological membranes and their compositions influence cellular function, age and disease states of organisms. They achieve this by effecting the outcome of bound enzymes/proteins and carbohydrate moieties. While the membrane-bound carbohydrates give rise to antigenicity, membranes impact the eventual outcome of protein structures that would function even outside their enclosure. This is achieved by membrane modulation of translational and post-translational protein folding. Thus, the eventual 3D structures and functions of proteins might not be solely dependent on their primary amino acid sequences and surrounding environments. The 3D protein structures would also depend on enclosing membrane properties such as fluidity, other intrinsic and extrinsic proteins and carbohydrate functionalities. Also, membranes moderate DNA activities with consequences on gene activation-inactivation mechanisms. Consequently, membranes are almost indispensable to the functioning of other cell compositions and serve to modulate these other components. Besides, membrane lipid compositions are also moderated by nutrition and diets and the converse is true. Thus, it could be argued that membranes are the third genetic codes. Suggestively, membranes are at the center of the interplay between nature and nurture in health and disease states.
Collapse
|
16
|
Abstract
The translocation of proteins across membranes is a fundamental cellular function. Bacteria have evolved a striking array of pathways for delivering proteins into or across cytoplasmic membranes and, when present, outer membranes. Translocated proteins can form part of the membrane landscape, reside in the periplasmic space situated between the inner and outer membranes of Gram-negative bacteria, deposit on the cell surface, or be released to the extracellular milieu or injected directly into target cells. One protein translocation system, the general secretory pathway, is conserved in all domains of life. A second, the twin-arginine translocation pathway, is also phylogenetically distributed among most bacteria and plant chloroplasts. While all cell types have evolved additional systems dedicated to the translocation of protein cargoes, the number of such systems in bacteria is now known to exceed nine. These dedicated protein translocation systems, which include the types 1 through 9 secretion systems (T1SSs-T9SSs), the chaperone-usher pathway, and type IV pilus system, are the subject of this review. Most of these systems were originally identified and have been extensively characterized in Gram-negative or diderm (two-membrane) species. It is now known that several of these systems also have been adapted to function in Gram-positive or monoderm (single-membrane) species, and at least one pathway is found only in monoderms. This review briefly summarizes the distinctive mechanistic and structural features of each dedicated pathway, as well as the shared properties, that together account for the broad biological diversity of protein translocation in bacteria.
Collapse
Affiliation(s)
- Peter J Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St., Houston, TX, USA.
| |
Collapse
|
17
|
Bunduc CM, Ummels R, Bitter W, Houben ENG. Species-specific secretion of ESX-5 type VII substrates is determined by the linker 2 of EccC 5. Mol Microbiol 2020; 114:66-76. [PMID: 32096294 PMCID: PMC7384006 DOI: 10.1111/mmi.14496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/21/2020] [Indexed: 12/20/2022]
Abstract
Mycobacteria use type VII secretion systems (T7SSs) to translocate a wide range of proteins across their diderm cell envelope. These systems, also called ESX systems, are crucial for the viability and/or virulence of mycobacterial pathogens, including Mycobacterium tuberculosis and the fish pathogen Mycobacterium marinum. We have previously shown that the M. tuberculosis ESX-5 system is unable to fully complement secretion in an M. marinum esx-5 mutant, suggesting species specificity in secretion. In this study, we elaborated on this observation and established that the membrane ATPase EccC5 , possessing four (putative) nucleotide-binding domains (NBDs), is responsible for this. By creating M. marinum-M. tuberculosis EccC5 chimeras, we observed both in M. marinum and in M. tuberculosis that secretion specificity of PE_PGRS proteins depends on the presence of the cognate linker 2 domain of EccC5 . This region connects NBD1 and NBD2 of EccC5 and is responsible for keeping NBD1 in an inhibited state. Notably, the ESX-5 substrate EsxN, predicted to bind to NBD3 on EccC5 , showed a distinct secretion profile. These results indicate that linker 2 is involved in species-specific substrate recognition and might therefore be an additional substrate recognition site of EccC5 .
Collapse
Affiliation(s)
- Catalin M Bunduc
- Section Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Roy Ummels
- Department of Medical Microbiology and Infection Control, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Amsterdam, The Netherlands
| | - Wilbert Bitter
- Section Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Medical Microbiology and Infection Control, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Amsterdam, The Netherlands
| | - Edith N G Houben
- Section Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Abstract
Transformation is a widespread mechanism of horizontal gene transfer in bacteria. DNA uptake to the periplasmic compartment requires a DNA-uptake pilus and the DNA-binding protein ComEA. In the gram-negative bacteria, DNA is first pulled toward the outer membrane by retraction of the pilus and then taken up by binding to periplasmic ComEA, acting as a Brownian ratchet to prevent backward diffusion. A similar mechanism probably operates in the gram-positive bacteria as well, but these systems have been less well characterized. Transport, defined as movement of a single strand of transforming DNA to the cytosol, requires the channel protein ComEC. Although less is understood about this process, it may be driven by proton symport. In this review we also describe various phenomena that are coordinated with the expression of competence for transformation, such as fratricide, the kin-discriminatory killing of neighboring cells, and competence-mediated growth arrest.
Collapse
Affiliation(s)
- David Dubnau
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103, USA;
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
19
|
Identification of the periplasmic DNA receptor for natural transformation of Helicobacter pylori. Nat Commun 2019; 10:5357. [PMID: 31767852 PMCID: PMC6877725 DOI: 10.1038/s41467-019-13352-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/31/2019] [Indexed: 02/08/2023] Open
Abstract
Horizontal gene transfer through natural transformation is a major driver of antibiotic resistance spreading in many pathogenic bacterial species. In the case of Gram-negative bacteria, and in particular of Helicobacter pylori, the mechanisms underlying the handling of the incoming DNA within the periplasm are poorly understood. Here we identify the protein ComH as the periplasmic receptor for the transforming DNA during natural transformation in H. pylori. ComH is a DNA-binding protein required for the import of DNA into the periplasm. Its C-terminal domain displays strong affinity for double-stranded DNA and is sufficient for the accumulation of DNA in the periplasm, but not for DNA internalisation into the cytoplasm. The N-terminal region of the protein allows the interaction of ComH with a periplasmic domain of the inner-membrane channel ComEC, which is known to mediate the translocation of DNA into the cytoplasm. Our results indicate that ComH is involved in the import of DNA into the periplasm and its delivery to the inner membrane translocator ComEC. Some bacteria can take up DNA molecules from the environment. Here, Damke et al. identify a DNA-binding protein in Helicobacter pylori that is required for DNA import into the periplasm and that interacts with an inner-membrane channel that translocates the DNA into the cytoplasm.
Collapse
|
20
|
A DNA-Binding Protein Tunes Septum Placement during Bacillus subtilis Sporulation. J Bacteriol 2019; 201:JB.00287-19. [PMID: 31160399 PMCID: PMC6657595 DOI: 10.1128/jb.00287-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 05/15/2019] [Indexed: 01/07/2023] Open
Abstract
Bacillus subtilis is a bacterium capable of differentiating into a spore form more resistant to environmental stress. Early in sporulation, each cell possesses two copies of a circular chromosome. A polar FtsZ ring (Z ring) directs septation over one of the chromosomes, generating two cell compartments. The smaller "forespore" compartment initially contains only 25 to 30% of one chromosome, and this transient genetic asymmetry is required for differentiation. Timely assembly of polar Z rings and precise capture of the chromosome in the forespore both require the DNA-binding protein RefZ. To mediate its role in chromosome capture, RefZ must bind to specific DNA motifs (RBMs) that localize near the poles at the time of septation. Cells artificially induced to express RefZ during vegetative growth cannot assemble Z rings, an effect that also requires DNA binding. We hypothesized that RefZ-RBM complexes mediate precise chromosome capture by modulating FtsZ function. To investigate, we isolated 10 RefZ loss-of-function (rLOF) variants unable to inhibit cell division yet still capable of binding RBMs. Sporulating cells expressing the rLOF variants in place of wild-type RefZ phenocopied a ΔrefZ mutant, suggesting that RefZ acts through an FtsZ-dependent mechanism. The crystal structure of RefZ was solved, and wild-type RefZ and the rLOF variants were further characterized. Our data suggest that RefZ's oligomerization state and specificity for the RBMs are critical determinants influencing RefZ's ability to affect FtsZ dynamics. We propose that RBM-bound RefZ complexes function as a developmentally regulated nucleoid occlusion system for fine-tuning the position of the septum relative to the chromosome during sporulation.IMPORTANCE The bacterial nucleoid forms a large, highly organized structure. Thus, in addition to storing the genetic code, the nucleoid harbors positional information that can be leveraged by DNA-binding proteins to spatially constrain cellular activities. During B. subtilis sporulation, the nucleoid undergoes reorganization, and the cell division protein FtsZ assembles polarly to direct septation over one chromosome. The TetR family protein RefZ binds DNA motifs (RBMs) localized near the poles at the time of division and is required for both timely FtsZ assembly and precise capture of DNA in the future spore compartment. Our data suggest that RefZ exploits nucleoid organization by associating with polarly localized RBMs to modulate the positioning of FtsZ relative to the chromosome during sporulation.
Collapse
|
21
|
van Winden VJC, Houben ENG, Braunstein M. Protein Export into and across the Atypical Diderm Cell Envelope of Mycobacteria. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0043-2018. [PMID: 31400094 PMCID: PMC10957183 DOI: 10.1128/microbiolspec.gpp3-0043-2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Indexed: 02/07/2023] Open
Abstract
Mycobacteria, including the infamous pathogen Mycobacterium tuberculosis, are high-GC Gram-positive bacteria with a distinctive cell envelope. Although there is a typical inner membrane, the mycobacterial cell envelope is unusual in having its peptidoglycan layer connected to a polymer of arabinogalactan, which in turn is covalently attached to long-chain mycolic acids that help form a highly impermeable mycobacterial outer membrane. This complex double-membrane, or diderm, cell envelope imparts mycobacteria with unique requirements for protein export into and across the cell envelope for secretion into the extracellular environment. In this article, we review the four protein export pathways known to exist in mycobacteria: two conserved systems that exist in all types of bacteria (the Sec and Tat pathways) and two specialized systems that exist in mycobacteria, corynebacteria, and a subset of low-GC Gram-positive bacteria (the SecA2 and type VII secretion pathways). We describe the progress made over the past 15 years in understanding each of these mycobacterial export pathways, and we highlight the need for research to understand the specific steps of protein export across the mycobacterial outer membrane.
Collapse
Affiliation(s)
- Vincent J C van Winden
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Edith N G Houben
- Section of Molecular Microbiology, Amsterdam Institute for Molecules, Medicines, and Systems, Vrije Universiteit, Amsterdam, The Netherlands
| | - Miriam Braunstein
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
22
|
DNA-Membrane Anchor Facilitates Efficient Chromosome Translocation at a Distance in Bacillus subtilis. mBio 2019; 10:mBio.01117-19. [PMID: 31239381 PMCID: PMC6593407 DOI: 10.1128/mbio.01117-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
To properly segregate their chromosomes, organisms tightly regulate the organization and dynamics of their DNA. Aspects of the process by which DNA is translocated during sporulation are not yet fully understood, such as what factors indirectly influence the activity of the motor protein SpoIIIE. In this work, we have shown that a DNA-membrane tether mediated by RacA contributes to the activity of SpoIIIE. Loss of RacA nearly doubles the time of translocation, despite the physically distinct locations these proteins and their activities occupy within the cell. This is a rare example of an explicit effect that DNA-membrane connections can have on cell physiology and demonstrates that distant changes to the state of the chromosome can influence motor proteins which act upon it. Chromosome segregation in sporulating Bacillus subtilis involves the tethering of sister chromosomes at opposite cell poles. RacA is known to mediate chromosome tethering by interacting with both centromere-like elements in the DNA and with DivIVA, a membrane protein which localizes to the cell poles. RacA has a secondary function in which it assists in nucleoid condensation. Here we demonstrate that, in addition to positioning and condensing the chromosome, RacA contributes to efficient transport of DNA by the chromosome segregation motor SpoIIIE. When RacA is deleted, one-quarter of cells fail to capture DNA in the nascent spore, yet 70% of cells fail to form viable spores without RacA. This discrepancy indicates that RacA possesses a role in sporulation beyond DNA capture and condensation. We observed that the mutant cells had reduced chromosome translocation into the forespore across the entire length of the chromosome, requiring nearly twice as much time to move a given DNA locus. Additionally, functional abolition of the RacA-DivIVA interaction reduced translocation to a similar degree as in a racA deletion strain, demonstrating the importance of the RacA-mediated tether in translocation and chromosome packaging during sporulation. We propose that the DNA-membrane anchor facilitates efficient translocation by SpoIIIE, not through direct protein-protein contacts but by virtue of physical effects on the chromosome that arise from anchoring DNA at a distance.
Collapse
|
23
|
Li YG, Hu B, Christie PJ. Biological and Structural Diversity of Type IV Secretion Systems. Microbiol Spectr 2019; 7:10.1128/microbiolspec.psib-0012-2018. [PMID: 30953428 PMCID: PMC6452883 DOI: 10.1128/microbiolspec.psib-0012-2018] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Indexed: 01/25/2023] Open
Abstract
The bacterial type IV secretion systems (T4SSs) are a functionally diverse superfamily of secretion systems found in many species of bacteria. Collectively, the T4SSs translocate DNA and monomeric and multimeric protein substrates to bacterial and eukaryotic cell types. T4SSs are composed of two large subfamilies, the conjugation machines and the effector translocators that transmit their cargoes through establishment of direct donor-target cell contacts, and a third small subfamily capable of importing or exporting substrates from or to the milieu. This review summarizes recent mechanistic and structural findings that are shedding new light on how T4SSs have evolved such functional diversity. Translocation signals are now known to be located C terminally or embedded internally in structural folds; these signals in combination with substrate-associated adaptor proteins mediate the docking of specific substrate repertoires to cognate VirD4-like receptors. For the Legionella pneumophila Dot/Icm system, recent work has elucidated the structural basis for adaptor-dependent substrate loading onto the VirD4-like DotL receptor. Advances in definition of T4SS machine structures now allow for detailed comparisons of nanomachines closely related to the Agrobacterium tumefaciens VirB/VirD4 T4SS with those more distantly related, e.g., the Dot/Icm and Helicobacter pylori Cag T4SSs. Finally, it is increasingly evident that T4SSs have evolved a variety of mechanisms dependent on elaboration of conjugative pili, membrane tubes, or surface adhesins to establish productive contacts with target cells. T4SSs thus have evolved extreme functional diversity through a plethora of adaptations impacting substrate selection, machine architecture, and target cell binding.
Collapse
Affiliation(s)
- Yang Grace Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX 77030
| | - Bo Hu
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX 77030
| | - Peter J Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX 77030
| |
Collapse
|
24
|
Yang J, Pieuchot L, Jedd G. Artificial import substrates reveal an omnivorous peroxisomal importomer. Traffic 2018; 19:786-797. [PMID: 30058098 DOI: 10.1111/tra.12607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 11/30/2022]
Abstract
The peroxisome matrix protein importomer has the remarkable ability to transport oligomeric protein substrates across the bilayer. However, the selectivity and relation between import and overall peroxisome homeostasis remain unclear. Here, we microinject artificial import substrates and employ quantitative microscopy to probe limits and capabilities of the importomer. DNA and polysaccharides are "piggyback" imported when noncovalently bound by a peroxisome targeting signal (PTS)-bearing protein. A dimerization domain that can be tuned to systematically vary the binding dissociation constant (Kd ) shows that a Kd in the millimolar range is sufficient to promote piggyback import. Microinjection of import substrate at high levels results in peroxisome growth and a proportional accumulation of peroxisome membrane proteins (PMPs). However, corresponding PMP mRNAs do not accumulate, suggesting that this response is posttranscriptionally regulated. Together, our data show that the importomer can tolerate diverse macromolecular species. Coupling between matrix import and membrane biogenesis suggests that matrix protein expression levels can be sufficient to regulate peroxisome size.
Collapse
Affiliation(s)
- Jing Yang
- Temasek Life Sciences Laboratory, and Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Laurent Pieuchot
- CNRS, IS2M UMR 7361, Université de Haute-Alsace, Mulhouse, France
- Université de Strasbourg, Strasbourg, France
| | - Gregory Jedd
- Temasek Life Sciences Laboratory, and Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
25
|
Sun D. Pull in and Push Out: Mechanisms of Horizontal Gene Transfer in Bacteria. Front Microbiol 2018; 9:2154. [PMID: 30237794 PMCID: PMC6135910 DOI: 10.3389/fmicb.2018.02154] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/22/2018] [Indexed: 01/06/2023] Open
Abstract
Horizontal gene transfer (HGT) plays an important role in bacterial evolution. It is well accepted that DNA is pulled/pushed into recipient cells by conserved membrane-associated DNA transport systems, which allow the entry of only single-stranded DNA (ssDNA). However, recent studies have uncovered a new type of natural bacterial transformation in which double-stranded DNA (dsDNA) is taken up into the cytoplasm, thus complementing the existing methods of DNA transfer among bacteria. Regulated by the stationary-phase regulators RpoS and cAMP receptor protein (CRP), Escherichia coli establishes competence for natural transformation with dsDNA, which occurs in agar plates. To pass across the outer membrane, a putative channel, which may compete for the substrate with the porin OmpA, may mediate the transfer of exogenous dsDNA into the cell. To pass across the inner membrane, dsDNA may be bound to the periplasmic protein YdcS, which delivers it into the inner membrane channel formed by YdcV. The discovery of cell-to-cell contact-dependent plasmid transformation implies the presence of additional mechanism(s) of transformation. This review will summarize the current knowledge about mechanisms of HGT with an emphasis on recent progresses regarding non-canonical mechanisms of natural transformation. Fully understanding the mechanisms of HGT will provide a foundation for monitoring and controlling multidrug resistance.
Collapse
Affiliation(s)
- Dongchang Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
26
|
Zhang Y, Gu AZ, Cen T, Li X, Li D, Chen J. Petrol and diesel exhaust particles accelerate the horizontal transfer of plasmid-mediated antimicrobial resistance genes. ENVIRONMENT INTERNATIONAL 2018; 114:280-287. [PMID: 29524923 DOI: 10.1016/j.envint.2018.02.038] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 05/25/2023]
Abstract
Particles exhausted from petrol and diesel consumptions are major components of urban air pollution that can be exposed to human via direct inhalation or other routes due to atmospheric deposition into water and soil. Antimicrobial resistance is one of the most serious threats to modern health care. However, how the petrol and diesel exhaust particles affect the development and spread of antimicrobial resistance genes (ARGs) in various environments remain largely unknown. This study investigated the effects and potential mechanisms of four representative petrol and diesel exhaust particles, namely 97 octane petrol, 93 octane petrol, light diesel oil, and marine heavy diesel oil, on the horizontal transfer of ARGs between two opportunistic Escherichia coli (E. coli) strains, E. coli S17-1 (donor) and E. coli K12 (recipient). The results demonstrated that these four representative types of nano-scale particles induced concentration-dependent increases in conjugative transfer rates compared with the controls. The underlying mechanisms involved in the accelerated transfer of ARGs were also identified, including the generation of intracellular reactive oxygen species (ROS) and the consequent induction of oxidative stress, SOS response, changes in cell morphology, and the altered mRNA expression of membrane protein genes and those involved in the promotion of conjugative transfer. The findings provide new evidences and mechanistic insights into the antimicrobial resistance risks posed by petrol and diesel exhaust particles, and highlight the implications and need for stringent strategies on alternative fuels to mitigate air pollution and health risks.
Collapse
Affiliation(s)
- Ye Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - April Z Gu
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, United States
| | - Tianyu Cen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xiangyang Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Dan Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
27
|
Sequence-dependent catalytic regulation of the SpoIIIE motor activity ensures directionality of DNA translocation. Sci Rep 2018; 8:5254. [PMID: 29588476 PMCID: PMC5869595 DOI: 10.1038/s41598-018-23400-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 03/09/2018] [Indexed: 12/02/2022] Open
Abstract
Transport of cellular cargo by molecular motors requires directionality to ensure proper biological functioning. During sporulation in Bacillus subtilis, directionality of chromosome transport is mediated by the interaction between the membrane-bound DNA translocase SpoIIIE and specific octameric sequences (SRS). Whether SRS regulate directionality by recruiting and orienting SpoIIIE or by simply catalyzing its translocation activity is still unclear. By using atomic force microscopy and single-round fast kinetics translocation assays we determined the localization and dynamics of diffusing and translocating SpoIIIE complexes on DNA with or without SRS. Our findings combined with mathematical modelling revealed that SpoIIIE directionality is not regulated by protein recruitment to SRS but rather by a fine-tuned balance among the rates governing SpoIIIE-DNA interactions and the probability of starting translocation modulated by SRS. Additionally, we found that SpoIIIE can start translocation from non-specific DNA, providing an alternative active search mechanism for SRS located beyond the exploratory length defined by 1D diffusion. These findings are relevant in vivo in the context of chromosome transport through an open channel, where SpoIIIE can rapidly explore DNA while directionality is modulated by the probability of translocation initiation upon interaction with SRS versus non-specific DNA.
Collapse
|
28
|
Hovland E, Beyene GT, Frye SA, Homberset H, Balasingham SV, Gómez-Muñoz M, Derrick JP, Tønjum T, Ambur OH. DprA from Neisseria meningitidis: properties and role in natural competence for transformation. MICROBIOLOGY-SGM 2017; 163:1016-1029. [PMID: 28696187 PMCID: PMC5817196 DOI: 10.1099/mic.0.000489] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
DNA processing chain A (DprA) is a DNA-binding protein that is ubiquitous in bacteria and expressed in some archaea. DprA is active in many bacterial species that are competent for transformation of DNA, but its role in Neisseriameningitidis (Nm) is not well characterized. An Nm mutant lacking DprA was constructed, and the phenotypes of the wild-type and ΔdprA mutant were compared. The salient feature of the phenotype of dprA null cells is the total lack of competence for genetic transformation shown by all of the donor DNA substrates tested in this study. Here, Nm wild-type and dprA null cells appeared to be equally resistant to genotoxic stress. The gene encoding DprANm was cloned and overexpressed, and the biological activities of DprANm were further investigated. DprANm binds ssDNA more strongly than dsDNA, but lacks DNA uptake sequence-specific DNA binding. DprANm dimerization and interaction with the C-terminal part of the single-stranded binding protein SSBNmwere demonstrated. dprA is co-expressed with smg, a downstream gene of unknown function, and the gene encoding topoisomerase 1, topA.
Collapse
Affiliation(s)
- Eirik Hovland
- Department of Microbiology, University of Oslo, Oslo, Norway.,Present address: Lovisenberg Diaconal Hospital, Oslo, Norway
| | | | - Stephan A Frye
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | | | | | | | - Jeremy P Derrick
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Tone Tønjum
- Department of Microbiology, Oslo University Hospital, Oslo, Norway.,Department of Microbiology, University of Oslo, Oslo, Norway
| | - Ole H Ambur
- Department of Microbiology, Oslo University Hospital, Oslo, Norway.,Present address: Department of Life Sciences and Health, Oslo and Akershus University College of Applied Sciences, Norway
| |
Collapse
|
29
|
Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat Rev Immunol 2017; 17:363-375. [PMID: 28393922 DOI: 10.1038/nri.2017.21] [Citation(s) in RCA: 722] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mitochondrial DNA (mtDNA) - which is well known for its role in oxidative phosphorylation and maternally inherited mitochondrial diseases - is increasingly recognized as an agonist of the innate immune system that influences antimicrobial responses and inflammatory pathology. On entering the cytoplasm, extracellular space or circulation, mtDNA can engage multiple pattern-recognition receptors in cell-type- and context-dependent manners to trigger pro-inflammatory and type I interferon responses. Here, we review the expanding research field of mtDNA in innate immune responses to highlight new mechanistic insights and discuss the physiological and pathological relevance of this exciting area of mitochondrial biology.
Collapse
|
30
|
El Najjar N, Kaimer C, Rösch T, Graumann PL. Requirements for Septal Localization and Chromosome Segregation Activity of the DNA Translocase SftA from Bacillus subtilis. J Mol Microbiol Biotechnol 2017; 27:29-42. [PMID: 28110333 DOI: 10.1159/000450725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/09/2016] [Indexed: 11/19/2022] Open
Abstract
Bacillus subtilis possesses 2 DNA translocases that affect late stages of chromosome segregation: SftA separates nonsegregated DNA prior to septum closure, while SpoIIIE rescues septum-entrapped DNA. We provide evidence that SftA is associated with the division machinery via a stretch of 47 amino acids within its N-terminus, suggesting that SftA is recruited by protein-protein interactions with a component of the division machinery. SftA was also recruited to mid-cell in the absence of its first 20 amino acids, which are proposed to contain a membrane-binding motif. Cell fractionation experiments showed that SftA can be found in the cytosolic fraction, and to a minor degree in the membrane fraction, showing that it is a soluble protein in vivo. The expression of truncated SftA constructs led to a dominant sftA deletion phenotype, even at very low induction rates of the truncated proteins, indicating that the incorporation of nonfunctional monomers into SftA hexamers abolishes functionality. Mobility shift experiments and surface plasmon binding studies showed that SftA binds to DNA in a cooperative manner, and demonstrated low ATPase activity when binding to short nucleotides rather than to long stretches of DNA.
Collapse
Affiliation(s)
- Nina El Najjar
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, and Department of Chemistry, Philipps-Universität Marburg, Marburg, Germany
| | | | | | | |
Collapse
|
31
|
Barman A, Buragohain C, Ray SK. Disruption ofcomAhomolog inRalstonia solanacearumdoes not impair its twitching motility. J Basic Microbiol 2017; 57:218-227. [DOI: 10.1002/jobm.201600562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/17/2016] [Accepted: 12/29/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Anjan Barman
- Department of Molecular Biology and Biotechnology; Tezpur University; Tezpur Assam India
| | - Chandrika Buragohain
- Department of Molecular Biology and Biotechnology; Tezpur University; Tezpur Assam India
| | - Suvendra Kumar Ray
- Department of Molecular Biology and Biotechnology; Tezpur University; Tezpur Assam India
| |
Collapse
|
32
|
Abstract
Type VII secretion (T7S) systems of mycobacteria secrete substrates over the unusual diderm cell envelope. Furthermore, T7S gene clusters are present throughout the phylum Actinobacteria, and functional T7S-like systems have been identified in Firmicutes. Most of the T7S substrates can be divided into two families: the Esx proteins, which are found in both Firmicutes and Actinobacteria, and the PE and PPE proteins, which are more mycobacterium-specific. Members of both families have been shown to be secreted as folded heterodimers, suggesting that this is a conserved feature of T7S substrates. Most knowledge of the mechanism of T7S and the roles of T7S systems in virulence comes from studies of pathogenic mycobacteria. These bacteria can contain up to five T7S systems, called ESX-1 to ESX-5, each having its own role in bacterial physiology and virulence. In this article, we discuss the general composition of T7S systems and the role of the individual components in secretion. These conserved components include two membrane proteins with (predicted) enzymatic activities: a predicted ATPase (EccC), likely to be required for energy provision of T7S, and a subtilisin-like protease (MycP) involved in processing of specific substrates. Additionally, we describe the role of a conserved intracellular chaperone in T7S substrate recognition, based on recently published crystal structures and molecular analysis. Finally, we discuss system-specific features of the different T7S systems in mycobacteria and their role in pathogenesis and provide an overview of the role of T7S in virulence of other pathogenic bacteria.
Collapse
|
33
|
Miras M, Dubnau D. A DegU-P and DegQ-Dependent Regulatory Pathway for the K-state in Bacillus subtilis. Front Microbiol 2016; 7:1868. [PMID: 27920766 PMCID: PMC5118428 DOI: 10.3389/fmicb.2016.01868] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/07/2016] [Indexed: 12/04/2022] Open
Abstract
The K-state in the model bacterium Bacillus subtilis is associated with transformability (competence) as well as with growth arrest and tolerance for antibiotics. Entry into the K-state is determined by the stochastic activation of the transcription factor ComK and occurs in about ∼15% of the population in domesticated strains. Although the upstream mechanisms that regulate the K-state have been intensively studied and are well understood, it has remained unexplained why undomesticated isolates of B. subtilis are poorly transformable compared to their domesticated counterparts. We show here that this is because fewer cells enter the K-state, suggesting that a regulatory pathway limiting entry to the K-state is missing in domesticated strains. We find that loss of this limitation is largely due to an inactivating point mutation in the promoter of degQ. The resulting low level of DegQ decreases the concentration of phosphorylated DegU, which leads to the de-repression of the srfA operon and ultimately to the stabilization of ComK. As a result, more cells reach the threshold concentration of ComK needed to activate the auto-regulatory loop at the comK promoter. In addition, we demonstrate that the activation of srfA transcription in undomesticated strains is transient, turning off abruptly as cells enter the stationary phase. Thus, the K-state and transformability are more transient and less frequently expressed in the undomesticated strains. This limitation is more extreme than appreciated from studies of domesticated strains. Selection has apparently limited both the frequency and the duration of the bistably expressed K-state in wild strains, likely because of the high cost of growth arrest associated with the K-state. Future modeling of K-state regulation and of the fitness advantages and costs of the K-state must take these features into account.
Collapse
Affiliation(s)
- Mathieu Miras
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, NewarkNJ, USA; Laboratoire de Microbiologie et Génétique Moléculaires, Université de ToulouseToulouse, France
| | - David Dubnau
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark NJ, USA
| |
Collapse
|
34
|
Kinetics of DNA uptake during transformation provide evidence for a translocation ratchet mechanism. Proc Natl Acad Sci U S A 2016; 113:12467-12472. [PMID: 27791096 DOI: 10.1073/pnas.1608110113] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Horizontal gene transfer can speed up adaptive evolution and support chromosomal DNA repair. A particularly widespread mechanism of gene transfer is transformation. The initial step to transformation, namely the uptake of DNA from the environment, is supported by the type IV pilus system in most species. However, the molecular mechanism of DNA uptake remains elusive. Here, we used single-molecule techniques for characterizing the force-dependent velocity of DNA uptake by Neisseria gonorrhoeae We found that the DNA uptake velocity depends on the concentration of the periplasmic DNA-binding protein ComE, indicating that ComE is directly involved in the uptake process. The velocity-force relation of DNA uptake is in very good agreement with a translocation ratchet model where binding of chaperones in the periplasm biases DNA diffusion through a membrane pore in the direction of uptake. The model yields a speed of DNA uptake of 900 bp⋅s-1 and a reversal force of 17 pN. Moreover, by comparing the velocity-force relation of DNA uptake and type IV pilus retraction, we can exclude pilus retraction as a mechanism for DNA uptake. In conclusion, our data strongly support the model of a translocation ratchet with ComE acting as a ratcheting chaperone.
Collapse
|
35
|
Labroussaa F, Lebaudy A, Baby V, Gourgues G, Matteau D, Vashee S, Sirand-Pugnet P, Rodrigue S, Lartigue C. Impact of donor-recipient phylogenetic distance on bacterial genome transplantation. Nucleic Acids Res 2016; 44:8501-11. [PMID: 27488189 PMCID: PMC5041484 DOI: 10.1093/nar/gkw688] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/22/2016] [Accepted: 07/25/2016] [Indexed: 12/22/2022] Open
Abstract
Genome transplantation (GT) allows the installation of purified chromosomes into recipient cells, causing the resulting organisms to adopt the genotype and the phenotype conferred by the donor cells. This key process remains a bottleneck in synthetic biology, especially for genome engineering strategies of intractable and economically important microbial species. So far, this process has only been reported using two closely related bacteria, Mycoplasma mycoides subsp. capri (Mmc) and Mycoplasma capricolum subsp. capricolum (Mcap), and the main factors driving the compatibility between a donor genome and a recipient cell are poorly understood. Here, we investigated the impact of the evolutionary distance between donor and recipient species on the efficiency of GT. Using Mcap as the recipient cell, we successfully transplanted the genome of six bacteria belonging to the Spiroplasma phylogenetic group but including species of two distinct genera. Our results demonstrate that GT efficiency is inversely correlated with the phylogenetic distance between donor and recipient bacteria but also suggest that other species-specific barriers to GT exist. This work constitutes an important step toward understanding the cellular factors governing the GT process in order to better define and eventually extend the existing genome compatibility limit.
Collapse
Affiliation(s)
- Fabien Labroussaa
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France University of Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Anne Lebaudy
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France University of Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Vincent Baby
- Université de Sherbrooke, Département de biologie, 2500 boulevard Université Sherbrooke (Québec), J1K 2R1, Canada
| | - Géraldine Gourgues
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France University of Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Dominick Matteau
- Université de Sherbrooke, Département de biologie, 2500 boulevard Université Sherbrooke (Québec), J1K 2R1, Canada
| | | | - Pascal Sirand-Pugnet
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France University of Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Sébastien Rodrigue
- Université de Sherbrooke, Département de biologie, 2500 boulevard Université Sherbrooke (Québec), J1K 2R1, Canada
| | - Carole Lartigue
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France University of Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| |
Collapse
|
36
|
Karuppiah V, Thistlethwaite A, Derrick JP. Structures of type IV pilins from Thermus thermophilus demonstrate similarities with type II secretion system pseudopilins. J Struct Biol 2016; 196:375-384. [PMID: 27612581 PMCID: PMC5131608 DOI: 10.1016/j.jsb.2016.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/25/2016] [Accepted: 08/29/2016] [Indexed: 11/30/2022]
Abstract
Type IV pilins are proteins which form polymers that extend from the surface of the bacterial cell; they are involved in mediating a wide variety of functions, including adhesion, motility and natural competence. Here we describe the determination of the crystal structures of three type IVa pilins proteins from the thermophile Thermus thermophilus. They form part of a cluster of pilus-like proteins within the genome; our results show that one, Tt1222, is very closely related to the main structural type IV pilin, PilA4. The other two, Tt1218 and Tt1219, also adopt canonical pilin-like folds but, interestingly, are most closely related to the structures of the type II secretion system pseudopilins, EpsI/GspI and XcpW/GspJ. GspI and GspJ have been shown to form a complex with another pseudopilin, GspK, and this heterotrimeric complex is known to play a key role in initiating assembly of a pseudopilus which is thought to drive the secretion process. The structural similarity of Tt1218 and Tt1219 to GspI and GspJ suggests that they might work in a similar way, to deliver functions associated with type IV pili in T. thermophilus, such as natural competence.
Collapse
Affiliation(s)
- Vijaykumar Karuppiah
- Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, UK
| | - Angela Thistlethwaite
- Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, UK
| | - Jeremy P Derrick
- Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, UK.
| |
Collapse
|
37
|
Talukdar M, Bordoloi M, Dutta P, Saikia S, Kolita B, Talukdar S, Nath S, Yadav A, Saikia R, Jha D, Bora T. Structure elucidation and biological activity of antibacterial compound from Micromonospora auratinigra
, a soil Actinomycetes. J Appl Microbiol 2016; 121:973-87. [DOI: 10.1111/jam.13233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/20/2016] [Accepted: 07/04/2016] [Indexed: 11/28/2022]
Affiliation(s)
- M. Talukdar
- Biotechnology Division; CSIR-North East Institute of Science and Technology; Jorhat Assam India
| | - M. Bordoloi
- Natural Product Chemistry Division; CSIR-North East Institute of Science and Technology; Jorhat Assam India
| | - P.P. Dutta
- Natural Product Chemistry Division; CSIR-North East Institute of Science and Technology; Jorhat Assam India
| | - S. Saikia
- Natural Product Chemistry Division; CSIR-North East Institute of Science and Technology; Jorhat Assam India
| | - B. Kolita
- Natural Product Chemistry Division; CSIR-North East Institute of Science and Technology; Jorhat Assam India
| | - S. Talukdar
- Biotechnology Division; CSIR-North East Institute of Science and Technology; Jorhat Assam India
| | - S. Nath
- Natural Product Chemistry Division; CSIR-North East Institute of Science and Technology; Jorhat Assam India
| | - A. Yadav
- Biotechnology Division; CSIR-North East Institute of Science and Technology; Jorhat Assam India
| | - R. Saikia
- Biotechnology Division; CSIR-North East Institute of Science and Technology; Jorhat Assam India
| | - D.K. Jha
- Microbial Ecology Laboratory; Department of Botany; Gauhati University; Guwahati Assam India
| | - T.C. Bora
- Biotechnology Division; CSIR-North East Institute of Science and Technology; Jorhat Assam India
| |
Collapse
|
38
|
Horizontal Transfer of Carbapenemase-Encoding Plasmids and Comparison with Hospital Epidemiology Data. Antimicrob Agents Chemother 2016; 60:4910-9. [PMID: 27270289 DOI: 10.1128/aac.00014-16] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/28/2016] [Indexed: 12/19/2022] Open
Abstract
Carbapenemase-producing organisms have spread worldwide, and infections with these bacteria cause significant morbidity. Horizontal transfer of plasmids carrying genes that encode carbapenemases plays an important role in the spread of multidrug-resistant Gram-negative bacteria. Here we investigate parameters regulating conjugation using an Escherichia coli laboratory strain that lacks plasmids or restriction enzyme modification systems as a recipient and also using patient isolates as donors and recipients. Because conjugation is tightly regulated, we performed a systematic analysis of the transfer of Klebsiella pneumoniae carbapenemase (blaKPC)-encoding plasmids into multiple strains under different environmental conditions to investigate critical variables. We used four blaKPC-carrying plasmids isolated from patient strains obtained from two hospitals: pKpQIL and pKPC-47e from the National Institutes of Health, and pKPC_UVA01 and pKPC_UVA02 from the University of Virginia. Plasmid transfer frequency differed substantially between different donor and recipient pairs, and the frequency was influenced by plasmid content, temperature, and substrate, in addition to donor and recipient strain. pKPC-47e was attenuated in conjugation efficiency across all conditions tested. Despite its presence in multiple clinical species, pKPC_UVA01 had lower conjugation efficiencies than pKpQIL into recipient strains. The conjugation frequency of these plasmids into K. pneumoniae and E. coli patient isolates ranged widely without a clear correlation with clinical epidemiological data. Our results highlight the importance of each variable examined in these controlled experiments. The in vitro models did not reliably predict plasmid mobilization observed in a patient population, indicating that further studies are needed to understand the most important variables affecting horizontal transfer in vivo.
Collapse
|
39
|
Abstract
The genus Neisseria contains two pathogenic species of prominant public health concern: Neisseria gonorrhoeae and Neisseria meningitidis. These pathogens display a notable ability to undergo frequent programmed recombination events. The recombination-mediated pathways of transformation and pilin antigenic variation in the Neisseria are well-studied systems that are critical for pathogenesis. Here we will detail the conserved and unique aspects of transformation and antigenic variation in the Neisseria. Transformation will be followed from initial DNA binding through recombination into the genome with consideration to the factors necessary at each step. Additional focus is paid to the unique type IV secretion system that mediates donation of transforming DNA in the pathogenic Neisseria. The pilin antigenic variation system uses programmed recombinations to alter a major surface determinant, which allows immune avoidance and promotes infection. We discuss the trans- and cis- acting factors which facilitate pilin antigenic variation and present the current understanding of the mechanisms involved in the process.
Collapse
|
40
|
Abstract
Endospore formation follows a complex, highly regulated developmental pathway that occurs in a broad range of Firmicutes. Although Bacillus subtilis has served as a powerful model system to study the morphological, biochemical, and genetic determinants of sporulation, fundamental aspects of the program remain mysterious for other genera. For example, it is entirely unknown how most lineages within the Firmicutes regulate entry into sporulation. Additionally, little is known about how the sporulation pathway has evolved novel spore forms and reproductive schemes. Here, we describe endospore and internal offspring development in diverse Firmicutes and outline progress in characterizing these programs. Moreover, comparative genomics studies are identifying highly conserved sporulation genes, and predictions of sporulation potential in new isolates and uncultured bacteria can be made from these data. One surprising outcome of these comparative studies is that core regulatory and some structural aspects of the program appear to be universally conserved. This suggests that a robust and sophisticated developmental framework was already in place in the last common ancestor of all extant Firmicutes that produce internal offspring or endospores. The study of sporulation in model systems beyond B. subtilis will continue to provide key information on the flexibility of the program and provide insights into how changes in this developmental course may confer advantages to cells in diverse environments.
Collapse
|
41
|
Bose B, Reed SE, Besprozvannaya M, Burton BM. Missense Mutations Allow a Sequence-Blind Mutant of SpoIIIE to Successfully Translocate Chromosomes during Sporulation. PLoS One 2016; 11:e0148365. [PMID: 26849443 PMCID: PMC4744071 DOI: 10.1371/journal.pone.0148365] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/19/2016] [Indexed: 11/18/2022] Open
Abstract
SpoIIIE directionally pumps DNA across membranes during Bacillus subtilis sporulation and vegetative growth. The sequence-reading domain (γ domain) is required for directional DNA transport, and its deletion severely impairs sporulation. We selected suppressors of the spoIIIEΔγ sporulation defect. Unexpectedly, many suppressors were intragenic missense mutants, and some restore sporulation to near-wild-type levels. The mutant proteins are likely not more abundant, faster at translocating DNA, or sequence-sensitive, and rescue does not involve the SpoIIIE homolog SftA. Some mutants behave differently when co-expressed with spoIIIEΔγ, consistent with the idea that some, but not all, variants may form mixed oligomers. In full-length spoIIIE, these mutations do not affect sporulation, and yet the corresponding residues are rarely found in other SpoIIIE/FtsK family members. The suppressors do not rescue chromosome translocation defects during vegetative growth, indicating that the role of the γ domain cannot be fully replaced by these mutations. We present two models consistent with our findings: that the suppressors commit to transport in one arbitrarily-determined direction or delay spore development. It is surprising that missense mutations somehow rescue loss of an entire domain with a complex function, and this raises new questions about the mechanism by which SpoIIIE pumps DNA and the roles SpoIIIE plays in vivo.
Collapse
Affiliation(s)
- Baundauna Bose
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Sydney E. Reed
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Marina Besprozvannaya
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Briana M. Burton
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
42
|
Abstract
The Gram-positive bacterium Bacillus subtilis initiates the formation of an endospore in response to conditions of nutrient limitation. The morphological differentiation that spores undergo initiates with the formation of an asymmetric septum near to one pole of the cell, forming a smaller compartment, the forespore, and a larger compartment, the mother cell. This process continues with the complex morphogenesis of the spore as governed by an intricate series of interactions between forespore and mother cell proteins across the inner and outer forespore membranes. Given that these interactions occur at a particular place in the cell, a critical question is how the proteins involved in these processes get properly targeted, and we discuss recent progress in identifying mechanisms responsible for this targeting.
Collapse
|
43
|
Matthey N, Blokesch M. The DNA-Uptake Process of Naturally Competent Vibrio cholerae. Trends Microbiol 2015; 24:98-110. [PMID: 26614677 DOI: 10.1016/j.tim.2015.10.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/05/2015] [Accepted: 10/22/2015] [Indexed: 10/22/2022]
Abstract
The sophisticated DNA-uptake machinery used during natural transformation is still poorly characterized, especially in Gram-negative bacteria where the transforming DNA has to cross two membranes as well as the peptidoglycan layer before entering the cytoplasm. The DNA-uptake machinery was hypothesized to take the form of a pseudopilus, which, upon repeated cycles of extension and retraction, would pull external DNA towards the cell surface or into the periplasmic space, followed by translocation across the cytoplasmic membrane. In this review, we summarize recent advances on the DNA-uptake machinery of V. cholerae, highlighting the presence of an extended competence-induced pilus and the contribution of a conserved DNA-binding protein that acts as a ratchet and reels DNA into the periplasm.
Collapse
Affiliation(s)
- Noémie Matthey
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Station 19, EPFL-SV-UPBLO, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Station 19, EPFL-SV-UPBLO, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
44
|
Miller AK, Brown EE, Mercado BT, Herman JK. A DNA-binding protein defines the precise region of chromosome capture during Bacillus sporulation. Mol Microbiol 2015; 99:111-22. [PMID: 26360512 DOI: 10.1111/mmi.13217] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2015] [Indexed: 11/29/2022]
Abstract
During sporulation, Bacillus subtilis divides around the nucleoid near one cell pole, initially capturing approximately one quarter of one chromosome in the newly formed forespore compartment. While it is known that a specific region of the nucleoid is reproducibly captured in the forespore, the mechanism underlying the precision of capture is unknown. Here we describe a role for RefZ, a DNA-binding protein that regulates FtsZ, and its cognate binding motifs (RBMs) in defining the specific region of chromosome initially captured in the forespore. RefZ is conserved across the Bacillus genus and remains functional as an inhibitor of cell division in a species-swapping experiment. The RBMs are also conserved in their positioning relative to oriC across Bacillus, suggesting that the function of the RBMs is both important and position-dependent in the genus. In B. subtilis, the RBMs flank the region of the chromosome captured at the time of cell division, and we find that RefZ binds the five oriC-proximal RBMs with similar apparent affinity in units of two and four. refZ and RBM mutants capture chromosomal regions normally excluded from the forespore, suggesting that RefZ-RBM complexes play a role in regulating the position of cell division relative to the chromosome during sporulation.
Collapse
Affiliation(s)
- Allyssa K Miller
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843, USA
| | - Emily E Brown
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843, USA
| | - Benjamin T Mercado
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843, USA
| | - Jennifer K Herman
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843, USA
| |
Collapse
|
45
|
Oldewurtel ER, Kouzel N, Dewenter L, Henseler K, Maier B. Differential interaction forces govern bacterial sorting in early biofilms. eLife 2015; 4. [PMID: 26402455 PMCID: PMC4625442 DOI: 10.7554/elife.10811] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/23/2015] [Indexed: 12/30/2022] Open
Abstract
Bacterial biofilms can generate micro-heterogeneity in terms of surface structures. However, little is known about the associated changes in the physics of cell–cell interaction and its impact on the architecture of biofilms. In this study, we used the type IV pilus of Neisseria gonorrhoeae to test whether variation of surface structures induces cell-sorting. We show that the rupture forces between pili are fine-tuned by post-translational modification. Bacterial sorting was dependent on pilus post-translational modification and pilus density. Active force generation was necessary for defined morphologies of mixed microcolonies. The observed morphotypes were in remarkable agreement with the differential strength of adhesion hypothesis proposing that a tug-of-war among surface structures of different cells governs cell sorting. We conclude that in early biofilms the density and rupture force of bacterial surface structures can trigger cell sorting based on similar physical principles as in developing embryos. DOI:http://dx.doi.org/10.7554/eLife.10811.001 Communities of bacterial cells can live together embedded within a slime-like molecular matrix as a biofilm. This allows the bacteria to hide from external stresses. A single bacterium can replicate itself and develop into a biofilm, and over time the bacterial cells in specific regions of the biofilm will start to interact with their neighbors in different ways. These interactions occur via structures on the surface of the bacterial cells, and the differences in these interactions resemble those that occur as cells specialize during the development of animal embryos. Previous research into embryonic development has shown how differences in the physical interactions between embryonic cells are essential for sorting the cells into their correct locations and shaping the embryo. However, little is known about which processes govern the development of biofilms. Now, Oldewurtel et al. have asked whether differences in the physical interactions between bacteria trigger cell sorting during the early stages of biofilm development. The experiments involved measuring the force required to break the cell–cell connections (called the ‘rupture force’) in biofilms of a bacterium called Neisseria gonorrhoeae. Oldewurtel et al. found that, in agreement with previous predictions, physical interactions were important for sorting bacterial cells into clusters based on the structures on their surfaces. Bacterial cells actively pull on the surface structures of their neighbors, which allows the cells to sort themselves in a tug-of-war fashion. This means that a cell will move in the direction where it can pull the strongest (i.e., in the direction where the rupture force is highest). While bacteria and embryos use different molecules to generate these pulling forces, these findings indicate that the basic physical principles are similar in both systems. One of the next challenges will be to evaluate how biofilms might benefit from the structures that develop due to cell sorting. DOI:http://dx.doi.org/10.7554/eLife.10811.002
Collapse
Affiliation(s)
| | - Nadzeya Kouzel
- Department of Physics, University of Cologne, Cologne, Germany
| | - Lena Dewenter
- Department of Physics, University of Cologne, Cologne, Germany
| | - Katja Henseler
- Department of Physics, University of Cologne, Cologne, Germany
| | - Berenike Maier
- Department of Physics, University of Cologne, Cologne, Germany
| |
Collapse
|
46
|
Pi F, Vieweger M, Zhao Z, Wang S, Guo P. Discovery of a new method for potent drug development using power function of stoichiometry of homomeric biocomplexes or biological nanomotors. Expert Opin Drug Deliv 2015; 13:23-36. [PMID: 26307193 DOI: 10.1517/17425247.2015.1082544] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Multidrug resistance and the appearance of incurable diseases inspire the quest for potent therapeutics. AREAS COVERED We review a new methodology in designing potent drugs by targeting multi-subunit homomeric biological motors, machines or complexes with Z > 1 and K = 1, where Z is the stoichiometry of the target, and K is the number of drugged subunits required to block the function of the complex. The condition is similar to a series electrical circuit of Christmas decorations: failure of one light bulb causes the entire lighting system to lose power. In most multi-subunit, homomeric biological systems, a sequential coordination or cooperative action mechanism is utilized, thus K equals 1. Drug inhibition depends on the ratio of drugged to non-drugged complexes. When K = 1, and Z > 1, the inhibition effect follows a power law with respect to Z, leading to enhanced drug potency. The hypothesis that the potency of drug inhibition depends on the stoichiometry of the targeted biological complexes was recently quantified by Yang-Hui's Triangle (or binomial distribution), and proved using a highly sensitive in vitro phi29 viral DNA packaging system. Examples of targeting homomeric bio-complexes with high stoichiometry for potent drug discovery are discussed. EXPERT OPINION Biomotors with multiple subunits are widespread in viruses, bacteria and cells, making this approach generally applicable in the development of inhibition drugs with high efficiency.
Collapse
Affiliation(s)
- Fengmei Pi
- a 1 University of Kentucky, Nanobiotechnology Center , Lexington, KY 40536, USA.,b 2 University of Kentucky, Markey Cancer Center , Lexington, KY 40536, USA.,c 3 University of Kentucky, Department of Pharmaceutical Sciences , 789 S. Limestone Street, Room # 576, Lexington, KY 40536, USA +1 859 218 0128 ; +1 859 257 1307 ;
| | - Mario Vieweger
- a 1 University of Kentucky, Nanobiotechnology Center , Lexington, KY 40536, USA.,b 2 University of Kentucky, Markey Cancer Center , Lexington, KY 40536, USA.,c 3 University of Kentucky, Department of Pharmaceutical Sciences , 789 S. Limestone Street, Room # 576, Lexington, KY 40536, USA +1 859 218 0128 ; +1 859 257 1307 ;
| | - Zhengyi Zhao
- a 1 University of Kentucky, Nanobiotechnology Center , Lexington, KY 40536, USA.,b 2 University of Kentucky, Markey Cancer Center , Lexington, KY 40536, USA.,c 3 University of Kentucky, Department of Pharmaceutical Sciences , 789 S. Limestone Street, Room # 576, Lexington, KY 40536, USA +1 859 218 0128 ; +1 859 257 1307 ;
| | - Shaoying Wang
- a 1 University of Kentucky, Nanobiotechnology Center , Lexington, KY 40536, USA.,b 2 University of Kentucky, Markey Cancer Center , Lexington, KY 40536, USA.,c 3 University of Kentucky, Department of Pharmaceutical Sciences , 789 S. Limestone Street, Room # 576, Lexington, KY 40536, USA +1 859 218 0128 ; +1 859 257 1307 ;
| | - Peixuan Guo
- a 1 University of Kentucky, Nanobiotechnology Center , Lexington, KY 40536, USA.,b 2 University of Kentucky, Markey Cancer Center , Lexington, KY 40536, USA.,c 3 University of Kentucky, Department of Pharmaceutical Sciences , 789 S. Limestone Street, Room # 576, Lexington, KY 40536, USA +1 859 218 0128 ; +1 859 257 1307 ;
| |
Collapse
|
47
|
Reck M, Tomasch J, Wagner-Döbler I. The Alternative Sigma Factor SigX Controls Bacteriocin Synthesis and Competence, the Two Quorum Sensing Regulated Traits in Streptococcus mutans. PLoS Genet 2015; 11:e1005353. [PMID: 26158727 PMCID: PMC4497675 DOI: 10.1371/journal.pgen.1005353] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 06/10/2015] [Indexed: 01/13/2023] Open
Abstract
Two small quorum sensing (QS) peptides regulate competence in S. mutans in a cell density dependent manner: XIP (sigX inducing peptide) and CSP (competence stimulating peptide). Depending on the environmental conditions isogenic S. mutans cells can split into a competent and non-competent subpopulation. The origin of this population heterogeneity has not been experimentally determined and it is unknown how the two QS systems are connected. We developed a toolbox of single and dual fluorescent reporter strains and systematically knocked out key genes of the competence signaling cascade in the reporter strain backgrounds. By following signal propagation on the single cell level we discovered that the master regulator of competence, the alternative sigma factor SigX, directly controls expression of the response regulator for bacteriocin synthesis ComE. Consequently, a SigX binding motif (cin-box) was identified in the promoter region of comE. Overexpressing the genetic components involved in competence development demonstrated that ComRS represents the origin of bimodality and determines the modality of the downstream regulators SigX and ComE. Moreover these analysis showed that there is no direct regulatory link between the two QS signaling cascades. Competence is induced through a hierarchical XIP signaling cascade, which has no regulatory input from the CSP cascade. CSP exclusively regulates bacteriocin synthesis. We suggest renaming it mutacin inducing peptide (MIP). Finally, using phosphomimetic comE mutants we show that unimodal bacteriocin production is controlled posttranslationally, thus solving the puzzling observation that in complex media competence is observed in a subpopulation only, while at the same time all cells produce bacteriocins. The control of both bacteriocin synthesis and competence through the alternative sigma-factor SigX suggests that S. mutans increases its genetic repertoire via QS controlled predation on neighboring species in its natural habitat. Streptococcus mutans is a bacterium of the human dental plaque that contributes to caries development. It controls two important survival mechanisms via a cell-density dependent communication system (quorum sensing): The synthesis of peptide antibiotics, and of a membrane apparatus for genetic competence, i.e. the ability to take up external DNA and integrate it into its own genome. S. mutans synthesizes two different signalling peptides to this end. It has remained elusive, how exactly these signals are propagated within the cell and why only a fraction of the population becomes competent. To actually observe under the microscope which bacterium in the population is activated, and which genes are required for the activation, we constructed strains of S. mutans that reported on the transcription of a gene by starting to fluoresce green. We even constructed strains that reported on two genes simultaneously, by fluorescing either green or blue or both. With these tools, and by additionally knocking out or modifying key genes as needed, we investigated the complete signaling cascade under various conditions. Thus we discovered a central regulatory switch. S. mutans makes sure that external DNA is available when it becomes genetically competent–by killing cells in the environment.
Collapse
Affiliation(s)
- Michael Reck
- Helmholtz-Centre for Infection Research, Department of Medical Microbiology, Group Microbial Communication, Braunschweig, Germany
- * E-mail:
| | - Jürgen Tomasch
- Helmholtz-Centre for Infection Research, Department of Medical Microbiology, Group Microbial Communication, Braunschweig, Germany
| | - Irene Wagner-Döbler
- Helmholtz-Centre for Infection Research, Department of Medical Microbiology, Group Microbial Communication, Braunschweig, Germany
| |
Collapse
|
48
|
Fontaine L, Wahl A, Fléchard M, Mignolet J, Hols P. Regulation of competence for natural transformation in streptococci. INFECTION GENETICS AND EVOLUTION 2015; 33:343-60. [DOI: 10.1016/j.meegid.2014.09.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 08/28/2014] [Accepted: 09/07/2014] [Indexed: 02/02/2023]
|
49
|
Gene Transfer Efficiency in Gonococcal Biofilms: Role of Biofilm Age, Architecture, and Pilin Antigenic Variation. J Bacteriol 2015; 197:2422-31. [PMID: 25962915 DOI: 10.1128/jb.00171-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/30/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Extracellular DNA is an important structural component of many bacterial biofilms. It is unknown, however, to which extent external DNA is used to transfer genes by means of transformation. Here, we quantified the acquisition of multidrug resistance and visualized its spread under selective and nonselective conditions in biofilms formed by Neisseria gonorrhoeae. The density and architecture of the biofilms were controlled by microstructuring the substratum for bacterial adhesion. Horizontal transfer of antibiotic resistance genes between cocultured strains, each carrying a single resistance, occurred efficiently in early biofilms. The efficiency of gene transfer was higher in early biofilms than between planktonic cells. It was strongly reduced after 24 h and independent of biofilm density. Pilin antigenic variation caused a high fraction of nonpiliated bacteria but was not responsible for the reduced gene transfer at later stages. When selective pressure was applied to dense biofilms using antibiotics at their MIC, the double-resistant bacteria did not show a significant growth advantage. In loosely connected biofilms, the spreading of double-resistant clones was prominent. We conclude that multidrug resistance readily develops in early gonococcal biofilms through horizontal gene transfer. However, selection and spreading of the multiresistant clones are heavily suppressed in dense biofilms. IMPORTANCE Biofilms are considered ideal reaction chambers for horizontal gene transfer and development of multidrug resistances. The rate at which genes are exchanged within biofilms is unknown. Here, we quantified the acquisition of double-drug resistance by gene transfer between gonococci with single resistances. At early biofilm stages, the transfer efficiency was higher than for planktonic cells but then decreased with biofilm age. The surface topography affected the architecture of the biofilm. While the efficiency of gene transfer was independent of the architecture, spreading of double-resistant bacteria under selective conditions was strongly enhanced in loose biofilms. We propose that while biofilms help generating multiresistant strains, selection takes place mostly after dispersal from the biofilm.
Collapse
|
50
|
Yen Shin J, Lopez-Garrido J, Lee SH, Diaz-Celis C, Fleming T, Bustamante C, Pogliano K. Visualization and functional dissection of coaxial paired SpoIIIE channels across the sporulation septum. eLife 2015; 4:e06474. [PMID: 25950186 PMCID: PMC4423119 DOI: 10.7554/elife.06474] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/13/2015] [Indexed: 11/28/2022] Open
Abstract
SpoIIIE is a membrane-anchored DNA translocase that localizes to the septal midpoint to mediate chromosome translocation and membrane fission during Bacillus subtilis sporulation. Here we use cell-specific protein degradation and quantitative photoactivated localization microscopy in strains with a thick sporulation septum to investigate the architecture and function of the SpoIIIE DNA translocation complex in vivo. We were able to visualize SpoIIIE complexes with approximately equal numbers of molecules in the mother cell and the forespore. Cell-specific protein degradation showed that only the mother cell complex is required to translocate DNA into the forespore, whereas degradation in either cell reverses membrane fission. Our data suggest that SpoIIIE assembles a coaxially paired channel for each chromosome arm comprised of one hexamer in each cell to maintain membrane fission during DNA translocation. We show that SpoIIIE can operate, in principle, as a bi-directional motor that exports DNA. DOI:http://dx.doi.org/10.7554/eLife.06474.001 Bacillus subtilis is a bacterium that lives in the soil and is related to the bacteria that cause the diseases anthrax and botulism in humans. When nutrients are scarce, these bacteria can change into a dormant form called spores, which can withstand harsh environmental conditions. The spores can remain dormant for thousands of years until the conditions improve enough to allow the bacteria to grow again. During ‘sporulation’, the membrane that surrounds the bacterium pinches inward near one end of the cell to produce a large mother cell and a smaller forespore. The spore DNA becomes trapped at the site of the division so that the forespore contains only about a third of the DNA of a normal cell. The remaining two thirds lie within the mother cell, and a protein called SpoIIIE is needed to pump this DNA into the forespore. Previous studies have shown that several SpoIIIE proteins team up to form a ‘complex’ in the membrane that moves the DNA and separates the two cells, but the precise arrangement of SpoIIIE inside cells remained unclear. Here, Shin, Lopez-Garrido, Lee et al. studied how SpoIIIE is organized in living B. subtilis cells, using fluorescent labels to observe the position of SpoIIIE proteins under a microscope. The experiments show that SpoIIIE is arranged as two smaller complexes, one in the mother cell and one in the forespore, each with an equal number of SpoIIIE proteins. This suggests that SpoIIIE assembles into a channel that connects the mother cell and forespore. To investigate the role of each complex, Shin, Lopez-Garrido, Lee et al. developed a technique called ‘cell-specific protein degradation’, to destroy SpoIIIE proteins in either the mother cell or the forespore. These experiments show that only the mother SpoIIIE complex is required to move DNA into the forespore, although DNA moves more efficiently when both complexes are present. Furthermore, when SpoIIIE is only present in the forespore, DNA moved out of this cell and into the mother cell. In contrast, both the mother cell and forespore SpoIIIE are required to separate the membranes of the mother cell and forespore. Shin, Lopez-Garrido, Lee et al.'s findings suggest that SpoIIIE molecules in both cells cooperate to efficiently move DNA into the forespore and to separate the membranes. Further work is required to understand the nature of this cooperation and to determine if similar proteins in other organisms assemble in the same way. DOI:http://dx.doi.org/10.7554/eLife.06474.002
Collapse
Affiliation(s)
- Jae Yen Shin
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Javier Lopez-Garrido
- Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Sang-Hyuk Lee
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Cesar Diaz-Celis
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Tinya Fleming
- Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Carlos Bustamante
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Kit Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| |
Collapse
|