1
|
Krisanti RIA, Wanandi SI, Wuyung PE, Hoemardani ASD. Effect of narrowband ultraviolet B (311 nm) exposure on skin carcinogenesis in Wistar rats. J Adv Vet Anim Res 2024; 11:1105-1113. [PMID: 40013270 PMCID: PMC11855443 DOI: 10.5455/javar.2024.k861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/25/2024] [Accepted: 12/03/2024] [Indexed: 02/28/2025] Open
Abstract
Objective The aim of this study is to determine narrowband UVB (NB-UVB) irradiation's effect on the promotion of skin cancer, particularly its effect on DNA damage, oxidative stress, inflammation, and histological changes in Wistar rat skin. Materials and Methods Wistar rats were selected for this study and randomly divided into control, dimethylbenzanthracene (DMBA), and DMBA+NB-UVB groups. The rats were given a single dose of DMBA and exposed to NB-UVB 3 times a week for 10 weeks. The radiation dose started with 1 minimal erythema dose, which is equivalent to 3.192 J/cm². In the 11th week, analysis on cyclobutene pyrimidine dimer (CPD), malondialdehyde (MDA), nuclear factor kappa-B (NFκB), inflammatory cytokines, and histopathology examination of the skin tissue was conducted. Results Higher CPD, MDA, NFκB, tumor necrosis factor a (TNF-a), interleukin (IL)-6, IL-11, IL-10, and IL-12 levels in rats exposed to DMBA+NB-UVB for 10 weeks compared to control and DMBA groups. Macroscopic examination presented erythema, skin thickening, desquamation, ulcer, and crust. Histopathology examination showed hyperkeratosis, acanthosis, atypical keratinocytes, irregular arrangement of the basement membrane, and inflammatory cell infiltration in the DMBA+NB-UVB group. Conclusion This research has shown that 10 weeks of a combination of DMBA and NB-UVB irradiation induced DNA damage, oxidative stress, inflammation, and histological changes in the Wistar rat skin.
Collapse
Affiliation(s)
- Roro Inge Ade Krisanti
- Doctoral Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Septelia Inawati Wanandi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Center of Hypoxia and Oxidative Stress Studies, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Molecular Biology and Proteomic Core Facilities, Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Puspita Eka Wuyung
- Doctoral Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Pathological Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Aida S. D. Hoemardani
- Doctoral Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
2
|
Contreras L, García-Gaipo L, Casar B, Gandarillas A. DNA damage signalling histone H2AX is required for tumour growth. Cell Death Discov 2024; 10:99. [PMID: 38402225 PMCID: PMC10894207 DOI: 10.1038/s41420-024-01869-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 02/26/2024] Open
Abstract
Cancer most frequently develops in self-renewal tissues that are the target of genetic alterations due to mutagens or intrinsic DNA replication errors. Histone γH2AX has a critical role in the cellular DNA repair pathway cascade and contributes to genomic stability. However, the role of γH2AX in the ontology of cancer is unclear. We have investigated this issue in the epidermis, a self-renewal epithelium continuously exposed to genetic hazard and replication stress. Silencing H2AX caused cell cycle hyperactivation, impaired DNA repair and epidermal hyperplasia in the skin. However, mutagen-induced carcinogenesis was strikingly reduced in the absence of H2AX. KO tumours appeared significantly later than controls and were fewer, smaller and more benign. The stem cell marker Δp63 drastically diminished in the KO epidermis. We conclude that H2AX is required for tissue-making during both homoeostasis and tumourigenesis, possibly by contributing to the control and repair of stem cells. Therefore, although H2AX is thought to act as a tumour suppressor and our results show that it contributes to homeostasis, they also indicate that it is required for the development of cancer.
Collapse
Affiliation(s)
- Lizbeth Contreras
- Cell cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Lorena García-Gaipo
- Cell cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Berta Casar
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria (UC), 39011, Santander, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Alberto Gandarillas
- Cell cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain.
- Institut National de la Santé et de la Recherche Médicale, (INSERM), Délégation Occitanie, 34394, Montpellier, France.
| |
Collapse
|
3
|
Winge MCG, Kellman LN, Guo K, Tang JY, Swetter SM, Aasi SZ, Sarin KY, Chang ALS, Khavari PA. Advances in cutaneous squamous cell carcinoma. Nat Rev Cancer 2023:10.1038/s41568-023-00583-5. [PMID: 37286893 DOI: 10.1038/s41568-023-00583-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/06/2023] [Indexed: 06/09/2023]
Abstract
Human malignancies arise predominantly in tissues of epithelial origin, where the stepwise transformation from healthy epithelium to premalignant dysplasia to invasive neoplasia involves sequential dysregulation of biological networks that govern essential functions of epithelial homeostasis. Cutaneous squamous cell carcinoma (cSCC) is a prototype epithelial malignancy, often with a high tumour mutational burden. A plethora of risk genes, dominated by UV-induced sun damage, drive disease progression in conjunction with stromal interactions and local immunomodulation, enabling continuous tumour growth. Recent studies have identified subpopulations of SCC cells that specifically interact with the tumour microenvironment. These advances, along with increased knowledge of the impact of germline genetics and somatic mutations on cSCC development, have led to a greater appreciation of the complexity of skin cancer pathogenesis and have enabled progress in neoadjuvant immunotherapy, which has improved pathological complete response rates. Although measures for the prevention and therapeutic management of cSCC are associated with clinical benefit, the prognosis remains poor for advanced disease. Elucidating how the genetic mechanisms that drive cSCC interact with the tumour microenvironment is a current focus in efforts to understand, prevent and treat cSCC.
Collapse
Affiliation(s)
- Mårten C G Winge
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
- Department of Dermatology, Stanford University, Redwood City, CA, USA
| | - Laura N Kellman
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
- Stanford Program in Cancer Biology, Stanford University, Stanford, CA, USA
| | - Konnie Guo
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
| | - Jean Y Tang
- Department of Dermatology, Stanford University, Redwood City, CA, USA
| | - Susan M Swetter
- Department of Dermatology, Stanford University, Redwood City, CA, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Sumaira Z Aasi
- Department of Dermatology, Stanford University, Redwood City, CA, USA
| | - Kavita Y Sarin
- Department of Dermatology, Stanford University, Redwood City, CA, USA
| | - Anne Lynn S Chang
- Department of Dermatology, Stanford University, Redwood City, CA, USA
| | - Paul A Khavari
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA.
- Department of Dermatology, Stanford University, Redwood City, CA, USA.
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
- Stanford Program in Cancer Biology, Stanford University, Stanford, CA, USA.
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA.
| |
Collapse
|
4
|
Levra Levron C, Watanabe M, Proserpio V, Piacenti G, Lauria A, Kaltenbach S, Tamburrini A, Nohara T, Anselmi F, Duval C, Elettrico L, Donna D, Conti L, Baev D, Natsuga K, Hagai T, Oliviero S, Donati G. Tissue memory relies on stem cell priming in distal undamaged areas. Nat Cell Biol 2023; 25:740-753. [PMID: 37081165 DOI: 10.1038/s41556-023-01120-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 02/28/2023] [Indexed: 04/22/2023]
Abstract
Epithelial cells that participated in wound repair elicit a more efficient response to future injuries, which is believed to be locally restricted. Here we show that cell adaptation resulting from a localized tissue damage has a wide spatial impact at a scale not previously appreciated. We demonstrate that a specific stem cell population, distant from the original injury, originates long-lasting wound memory progenitors residing in their own niche. Notably, these distal memory cells have not taken part in the first healing but become intrinsically pre-activated through priming. This cell state, maintained at the chromatin and transcriptional level, leads to an enhanced wound repair that is partially recapitulated through epigenetic perturbation. Importantly wound memory has long-term harmful consequences, exacerbating tumourigenesis. Overall, we show that sub-organ-scale adaptation to injury relies on spatially organized memory-dedicated progenitors, characterized by an actionable cell state that establishes an epigenetic field cancerization and predisposes to tumour onset.
Collapse
Affiliation(s)
- Chiara Levra Levron
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center 'Guido Tarone', University of Turin, Torino, Italy
| | - Mika Watanabe
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center 'Guido Tarone', University of Turin, Torino, Italy
| | - Valentina Proserpio
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center 'Guido Tarone', University of Turin, Torino, Italy
- Italian Institute for Genomic Medicine, Candiolo (TO), Italy
| | - Gabriele Piacenti
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center 'Guido Tarone', University of Turin, Torino, Italy
| | - Andrea Lauria
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center 'Guido Tarone', University of Turin, Torino, Italy
- Italian Institute for Genomic Medicine, Candiolo (TO), Italy
| | - Stefan Kaltenbach
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Annalaura Tamburrini
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center 'Guido Tarone', University of Turin, Torino, Italy
- Italian Institute for Genomic Medicine, Candiolo (TO), Italy
| | - Takuma Nohara
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Francesca Anselmi
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center 'Guido Tarone', University of Turin, Torino, Italy
| | - Carlotta Duval
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center 'Guido Tarone', University of Turin, Torino, Italy
| | - Luca Elettrico
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center 'Guido Tarone', University of Turin, Torino, Italy
| | - Daniela Donna
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center 'Guido Tarone', University of Turin, Torino, Italy
| | - Laura Conti
- Molecular Biotechnology Center 'Guido Tarone', University of Turin, Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Denis Baev
- Italian Institute for Genomic Medicine, Candiolo (TO), Italy
| | - Ken Natsuga
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tzachi Hagai
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Salvatore Oliviero
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center 'Guido Tarone', University of Turin, Torino, Italy
- Italian Institute for Genomic Medicine, Candiolo (TO), Italy
| | - Giacomo Donati
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy.
- Molecular Biotechnology Center 'Guido Tarone', University of Turin, Torino, Italy.
| |
Collapse
|
5
|
Nappi A, Miro C, Pezone A, Tramontano A, Di Cicco E, Sagliocchi S, Cicatiello AG, Murolo M, Torabinejad S, Abbotto E, Caiazzo G, Raia M, Stornaiuolo M, Antonini D, Fabbrocini G, Salvatore D, Avvedimento VE, Dentice M. Loss of p53 activates thyroid hormone via type 2 deiodinase and enhances DNA damage. Nat Commun 2023; 14:1244. [PMID: 36871014 PMCID: PMC9985592 DOI: 10.1038/s41467-023-36755-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
The Thyroid Hormone (TH) activating enzyme, type 2 Deiodinase (D2), is functionally required to elevate the TH concentration during cancer progression to advanced stages. However, the mechanisms regulating D2 expression in cancer still remain poorly understood. Here, we show that the cell stress sensor and tumor suppressor p53 silences D2 expression, thereby lowering the intracellular THs availability. Conversely, even partial loss of p53 elevates D2/TH resulting in stimulation and increased fitness of tumor cells by boosting a significant transcriptional program leading to modulation of genes involved in DNA damage and repair and redox signaling. In vivo genetic deletion of D2 significantly reduces cancer progression and suggests that targeting THs may represent a general tool reducing invasiveness in p53-mutated neoplasms.
Collapse
Affiliation(s)
- Annarita Nappi
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Caterina Miro
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Antonio Pezone
- Department of Biology, University of Naples "Federico II", 80126, Naples, Italy
| | - Alfonso Tramontano
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Emery Di Cicco
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Serena Sagliocchi
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | | | - Melania Murolo
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Sepehr Torabinejad
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Elena Abbotto
- Department of Experimental Medicine, University of Genoa, 16132, Genoa, Italy
| | - Giuseppina Caiazzo
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Maddalena Raia
- CEINGE, Biotecnologie Avanzate S.c.a.r.l., 80131, Naples, Italy
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples "Federico II", 80149, Naples, Italy
| | - Dario Antonini
- Department of Biology, University of Naples "Federico II", 80126, Naples, Italy
| | - Gabriella Fabbrocini
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Domenico Salvatore
- CEINGE, Biotecnologie Avanzate S.c.a.r.l., 80131, Naples, Italy.,Department of Public Health, University of Naples "Federico II", 80131, Naples, Italy
| | - Vittorio Enrico Avvedimento
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", 80131, Naples, Italy
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy. .,CEINGE, Biotecnologie Avanzate S.c.a.r.l., 80131, Naples, Italy.
| |
Collapse
|
6
|
Ramchatesingh B, Martínez Villarreal A, Arcuri D, Lagacé F, Setah SA, Touma F, Al-Badarin F, Litvinov IV. The Use of Retinoids for the Prevention and Treatment of Skin Cancers: An Updated Review. Int J Mol Sci 2022; 23:ijms232012622. [PMID: 36293471 PMCID: PMC9603842 DOI: 10.3390/ijms232012622] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/21/2022] Open
Abstract
Retinoids are natural and synthetic vitamin A derivatives that are effective for the prevention and the treatment of non-melanoma skin cancers (NMSC). NMSCs constitute a heterogenous group of non-melanocyte-derived skin cancers that impose substantial burdens on patients and healthcare systems. They include entities such as basal cell carcinoma and cutaneous squamous cell carcinoma (collectively called keratinocyte carcinomas), cutaneous lymphomas and Kaposi’s sarcoma among others. The retinoid signaling pathway plays influential roles in skin physiology and pathology. These compounds regulate diverse biological processes within the skin, including proliferation, differentiation, angiogenesis and immune regulation. Collectively, retinoids can suppress skin carcinogenesis. Both topical and systemic retinoids have been investigated in clinical trials as NMSC prophylactics and treatments. Desirable efficacy and tolerability in clinical trials have prompted health regulatory bodies to approve the use of retinoids for NMSC management. Acceptable off-label uses of these compounds as drugs for skin cancers are also described. This review is a comprehensive outline on the biochemistry of retinoids, their activities in the skin, their effects on cancer cells and their adoption in clinical practice.
Collapse
Affiliation(s)
| | | | - Domenico Arcuri
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
| | - François Lagacé
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
- Division of Dermatology, McGill University Health Center, Montreal, QC H4A 3J1, Canada
| | - Samy Abu Setah
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
| | - Fadi Touma
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
| | - Faris Al-Badarin
- Faculté de Médicine, Université Laval, Québec, QC G1V 0V6, Canada
| | - Ivan V. Litvinov
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
- Division of Dermatology, McGill University Health Center, Montreal, QC H4A 3J1, Canada
- Correspondence:
| |
Collapse
|
7
|
Gaviria Agudelo C, Restrepo LM. Human Skin Cancer: an Overview Of Animal, Ex Vivo, and In Vitro Models. CURRENT DERMATOLOGY REPORTS 2022. [DOI: 10.1007/s13671-022-00361-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Molecular Mechanisms of Cutaneous Squamous Cell Carcinoma. Int J Mol Sci 2022; 23:ijms23073478. [PMID: 35408839 PMCID: PMC8998533 DOI: 10.3390/ijms23073478] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 12/25/2022] Open
Abstract
Non-melanoma skin cancers are cutaneous malignancies representing the most common form of cancer in the United States. They are comprised predominantly of basal cell carcinomas and squamous cell carcinomas (cSCC). The incidence of cSCC is increasing, resulting in substantial morbidity and ever higher treatment costs; currently in excess of one billion dollars, per annum. Here, we review research defining the molecular basis and development of cSCC that aims to provide new insights into pathogenesis and drive the development of novel, cost and morbidity saving therapies.
Collapse
|
9
|
Okumura K, Saito M, Isogai E, Tokunaga Y, Hasegawa Y, Araki K, Wakabayashi Y. Functional polymorphism in Pak1-3'UTR alters skin tumor susceptibility by alternative polyadenylation. J Invest Dermatol 2022; 142:2323-2333.e12. [PMID: 35240107 DOI: 10.1016/j.jid.2022.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/15/2022]
Abstract
We identified a functional single nucleotide polymorphism (SNP) in the 3' untranslated region (UTR) of p21-activated kinase 1 (Pak1) that is responsible for the Skin tumor modifier of MSM 1a locus. Candidate SNPs in the 3'UTR of Pak1 from resistance strain MSM/Ms were introduced into susceptible strain FVB/N using CRISPR/Cas9. DMBA/TPA skin carcinogenesis experiments revealed an SNP (Pak1-3'UTR-6C>T: rs31627325) that strongly suppressed skin tumors. Furthermore, Muscleblind-Like Splicing Regulator 1 bound more strongly to FVB-allele (6C/C) and regulated the transcript length in the 3'UTR of Pak1 and tumorigenesis via polyadenylation. Therefore, the alternative polyadenylation of Pak1 is cis-regulated by rs31627325.
Collapse
Affiliation(s)
- Kazuhiro Okumura
- Division of Experimental Animal Research, Cancer Genome Center, Chiba Cancer Center Research Institute, 666-2, Nitonacho, Chuouku, Chiba, 260-8717, Japan
| | - Megumi Saito
- Division of Experimental Animal Research, Cancer Genome Center, Chiba Cancer Center Research Institute, 666-2, Nitonacho, Chuouku, Chiba, 260-8717, Japan
| | - Eriko Isogai
- Division of Experimental Animal Research, Cancer Genome Center, Chiba Cancer Center Research Institute, 666-2, Nitonacho, Chuouku, Chiba, 260-8717, Japan
| | - Yurika Tokunaga
- Division of Experimental Animal Research, Cancer Genome Center, Chiba Cancer Center Research Institute, 666-2, Nitonacho, Chuouku, Chiba, 260-8717, Japan
| | - Yoshinori Hasegawa
- Laboratory of Clinical Omics Research, Department of Applied Genomics, Kazusa DNA Research Institute, 2-6-7, Kazusa-kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Kimi Araki
- Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, 2-2-1, Honjo, Chuouku, Kumamoto, 860-0811, Japan
| | - Yuichi Wakabayashi
- Division of Experimental Animal Research, Cancer Genome Center, Chiba Cancer Center Research Institute, 666-2, Nitonacho, Chuouku, Chiba, 260-8717, Japan.
| |
Collapse
|
10
|
Isolation of cancer stem cells from skin squamous cell carcinoma. Methods Cell Biol 2022; 171:63-80. [DOI: 10.1016/bs.mcb.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
HOPX Exhibits Oncogenic Activity during Squamous Skin Carcinogenesis. J Invest Dermatol 2021; 141:2354-2368. [PMID: 33845078 DOI: 10.1016/j.jid.2020.04.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 11/23/2022]
Abstract
Cutaneous squamous cell carcinomas (SCCs) are frequent heterogeneous tumors arising from sun-exposed regions of the skin and characterized by complex pathogenesis. HOPX is a member of the homeodomain-containing superfamily of proteins holding an atypical homeodomain unable to bind to DNA. First discovered in the heart as a regulator of cardiac development, in the skin, HOPX modulates the terminal differentiation of keratinocytes. There is a particular interest in studying HOPX in squamous skin carcinogenesis because it has the atypical structure and the functional duality as an oncogene and a tumor suppressor gene, reported in different malignancies. In this study, we analyzed the effects of HOPX knockdown and overexpression on SCC tumorigenicity in vitro and in vivo. Our data show that HOPX knockdown in SCC cells inhibits their proliferative and invasive activity through the acceleration of apoptosis. We established that methylation of two alternative HOPX promoters leads to differential expression of HOPX transcripts in normal keratinocytes and SCC cells. Importantly, we report that HOPX acts as an oncogene in the pathogenesis of SCC probably through the activation of the second alternative promoter and the modulation of apoptosis.
Collapse
|
12
|
Thomson J, Bewicke-Copley F, Anene CA, Gulati A, Nagano A, Purdie K, Inman GJ, Proby CM, Leigh IM, Harwood CA, Wang J. The Genomic Landscape of Actinic Keratosis. J Invest Dermatol 2021; 141:1664-1674.e7. [PMID: 33482222 PMCID: PMC8221374 DOI: 10.1016/j.jid.2020.12.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 01/12/2023]
Abstract
Actinic keratoses (AKs) are lesions of epidermal keratinocyte dysplasia and are precursors for invasive cutaneous squamous cell carcinoma (cSCC). Identifying the specific genomic alterations driving the progression from normal skin to skin with AK to skin with invasive cSCC is challenging because of the massive UVR-induced mutational burden characteristic at all stages of this progression. In this study, we report the largest AK whole-exome sequencing study to date and perform a mutational signature and candidate driver gene analysis on these lesions. We demonstrate in 37 AKs from both immunosuppressed and immunocompetent patients that there are significant similarities between AKs and cSCC in terms of mutational burden, copy number alterations, mutational signatures, and patterns of driver gene mutations. We identify 44 significantly mutated AK driver genes and confirm that these genes are similarly altered in cSCC. We identify azathioprine mutational signature in all AKs from patients exposed to the drug, providing further evidence for its role in keratinocyte carcinogenesis. cSCCs differ from AKs in having higher levels of intrasample heterogeneity. Alterations in signaling pathways also differ, with immune-related signaling and TGFβ signaling significantly more mutated in cSCC. Integrating our findings with independent gene expression datasets confirms that dysregulated TGFβ signaling may represent an important event in AK‒cSCC progression.
Collapse
Affiliation(s)
- Jason Thomson
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom; Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom; Department of Dermatology, The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Findlay Bewicke-Copley
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Chinedu Anthony Anene
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Abha Gulati
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom; Department of Dermatology, The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Ai Nagano
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Karin Purdie
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Gareth J Inman
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom; Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Charlotte M Proby
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Irene M Leigh
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Catherine A Harwood
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom; Department of Dermatology, The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Jun Wang
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
13
|
Miro C, Nappi A, Cicatiello AG, Di Cicco E, Sagliocchi S, Murolo M, Belli V, Troiani T, Albanese S, Amiranda S, Zavacki AM, Stornaiuolo M, Mancini M, Salvatore D, Dentice M. Thyroid Hormone Enhances Angiogenesis and the Warburg Effect in Squamous Cell Carcinomas. Cancers (Basel) 2021; 13:cancers13112743. [PMID: 34205977 PMCID: PMC8199095 DOI: 10.3390/cancers13112743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 01/12/2023] Open
Abstract
Simple Summary Cancer cells rewire their metabolism to promote growth, survival, proliferation, and long-term maintenance. Aerobic glycolysis is a prominent trait of many cancers; contextually, glutamine addiction, enhanced glucose uptake and aerobic glycolysis sustain the metabolic needs of rapidly proliferating cancer cells. Thyroid hormone (TH) is a positive regulator of tumor progression and metastatic conversion of squamous cell carcinoma (SCC). Accordingly, overexpression of the TH activating enzyme, D2, is associated with metastatic SCC. The aim of our study was to assess the ability of TH and its activating enzyme in promoting key tracts of cancer progression such as angiogenesis, response to hypoxia and metabolic adaptation. By performing in vivo and in vitro studies, we demonstrate that TH induces VEGF-A in cancer cells and fosters aerobic glycolysis inducing pro-glycolytic mediators, thus implying that TH signal attenuation represents a therapeutic tool to contrast tumor angiogenesis and tumor progression. Abstract Cancer angiogenesis is required to support energetic demand and metabolic stress, particularly during conditions of hypoxia. Coupled to neo-vasculogenesis, cancer cells rewire metabolic programs to sustain growth, survival and long-term maintenance. Thyroid hormone (TH) signaling regulates growth and differentiation in a variety of cell types and tissues, thus modulating hyper proliferative processes such as cancer. Herein, we report that TH coordinates a global program of metabolic reprogramming and induces angiogenesis through up-regulation of the VEGF-A gene, which results in the enhanced proliferation of tumor endothelial cells. In vivo conditional depletion of the TH activating enzyme in a mouse model of cutaneous squamous cell carcinoma (SCC) reduces the concentration of TH in the tumoral cells and results in impaired VEGF-A production and attenuated angiogenesis. In addition, we found that TH induces the expression of the glycolytic genes and fosters lactate production, which are key traits of the Warburg effect. Taken together, our results reveal a TH–VEGF-A–HIF1α regulatory axis leading to enhanced angiogenesis and glycolytic flux, which may represent a target for SCC therapy.
Collapse
Affiliation(s)
- Caterina Miro
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (C.M.); (A.N.); (A.G.C.); (E.D.C.); (S.S.); (M.M.)
| | - Annarita Nappi
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (C.M.); (A.N.); (A.G.C.); (E.D.C.); (S.S.); (M.M.)
| | - Annunziata Gaetana Cicatiello
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (C.M.); (A.N.); (A.G.C.); (E.D.C.); (S.S.); (M.M.)
| | - Emery Di Cicco
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (C.M.); (A.N.); (A.G.C.); (E.D.C.); (S.S.); (M.M.)
| | - Serena Sagliocchi
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (C.M.); (A.N.); (A.G.C.); (E.D.C.); (S.S.); (M.M.)
| | - Melania Murolo
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (C.M.); (A.N.); (A.G.C.); (E.D.C.); (S.S.); (M.M.)
| | - Valentina Belli
- Laboratorio di Oncologia Molecolare, Dipartimento di Medicina di Precisione, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (V.B.); (T.T.)
| | - Teresa Troiani
- Laboratorio di Oncologia Molecolare, Dipartimento di Medicina di Precisione, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (V.B.); (T.T.)
| | - Sandra Albanese
- Institute of Biostructures and Bioimaging of the National Research Council, 80131 Naples, Italy; (S.A.); (M.M.)
| | - Sara Amiranda
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy;
- CEINGE–Biotecnologie Avanzate Scarl, 80131 Naples, Italy;
| | - Ann Marie Zavacki
- Harvard Medical School, Brigham and Women’s Hospital, Boston, MA 01451, USA;
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy;
| | - Marcello Mancini
- Institute of Biostructures and Bioimaging of the National Research Council, 80131 Naples, Italy; (S.A.); (M.M.)
| | - Domenico Salvatore
- CEINGE–Biotecnologie Avanzate Scarl, 80131 Naples, Italy;
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (C.M.); (A.N.); (A.G.C.); (E.D.C.); (S.S.); (M.M.)
- CEINGE–Biotecnologie Avanzate Scarl, 80131 Naples, Italy;
- Correspondence:
| |
Collapse
|
14
|
Ramovs V, Krotenberg Garcia A, Kreft M, Sonnenberg A. Integrin α3β1 Is a Key Regulator of Several Protumorigenic Pathways during Skin Carcinogenesis. J Invest Dermatol 2021; 141:732-741.e6. [PMID: 32805217 DOI: 10.1016/j.jid.2020.07.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022]
Abstract
Integrin α3β1 plays a crucial role in tumor formation in the two-stage chemical carcinogenesis model (DMBA and TPA treatment). However, the mechanisms whereby the expression of α3β1 influences key oncogenic drivers of this established model are not known yet. Using an in vivo mouse model with epidermal deletion of α3β1 and in vitro Matrigel cultures of transformed keratinocytes, we demonstrate the central role of α3β1 in promoting the activation of several protumorigenic signaling pathways during the initiation of DMBA/TPA‒driven tumorigenesis. In transformed keratinocytes, α3β1-mediated focal adhesion kinase/Src activation leads to in vitro growth of spheroids and to strong Akt and STAT 3 activation when the α3β1-binding partner tetraspanin CD151 is present to stabilize cell‒cell adhesion and promote Smad2 phosphorylation. Remarkably, α3β1 and CD151 can support Akt and STAT 3 activity independently of α3β1 ligation by laminin-332 and as such control the essential survival signals required for suprabasal keratin-10 expression during keratinocyte differentiation. These data demonstrate that α3β1 together with CD151 regulate the signaling pathways that control the survival of differentiating keratinocytes and provide a mechanistic understanding of the essential role of α3β1 in early stages of skin cancer development.
Collapse
Affiliation(s)
- Veronika Ramovs
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ana Krotenberg Garcia
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Maaike Kreft
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Arnoud Sonnenberg
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
15
|
Wan J, Dai H, Zhang X, Liu S, Lin Y, Somani AK, Xie J, Han J. Distinct transcriptomic landscapes of cutaneous basal cell carcinomas and squamous cell carcinomas. Genes Dis 2021; 8:181-192. [PMID: 33997165 PMCID: PMC8099692 DOI: 10.1016/j.gendis.2019.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/06/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022] Open
Abstract
The majority of non-melanoma skin cancer (NMSC) is cutaneous basal cell carcinoma (BCC) or squamous cell carcinoma (SCC), which are also called keratinocyte carcinomas, as both of them originate from keratinocytes. The incidence of keratinocyte carcinomas is over 5 million per year in the US, three-fold higher than the total incidence of all other types of cancer combined. While there are several reports on gene expression profiling of BCC and SCC, there are significant variations in the reported gene expression changes in different studies. One reason is that tumor-adjacent normal skin specimens were not included in many studies as matched controls. Furthermore, while numerous studies of skin stem cells in mouse models have been reported, their relevance to human skin cancer remains unknown. In this report, we analyzed gene expression profiles of paired specimens of keratinocyte carcinomas with their matched normal skin tissues as the control. Among several novel findings, we discovered a significant number of zinc finger encoding genes up-regulated in human BCC. In BCC, a novel link was found between hedgehog signaling, Wnt signaling, and the cilium. While the SCC cancer-stem-cell gene signature is shared between human and mouse SCCs, the hair follicle stem-cell signature of mice was not highly represented in human SCC. Differential gene expression (DEG) in human BCC shares gene signature with both bulge and epidermal stem cells. We have also determined that human BCCs and SCCs have distinct gene expression patterns, and some of them are not fully reflected in current mouse models.
Collapse
Affiliation(s)
- Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- School of Informatics and Computing, Indiana University – Purdue University at Indianapolis, Indianapolis, IN, 46202, USA
| | - Hongji Dai
- Department of Epidemiology and Biostatistics, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300000, PR China
| | - Xiaoli Zhang
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yuan Lin
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN, 46202, USA
| | - Ally-Khan Somani
- Dermatologic Surgery & Cutaneous Oncology Division, Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jingwu Xie
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jiali Han
- Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN, 46202, USA
| |
Collapse
|
16
|
Naik K, Janal MN, Chen J, Bandary D, Brar B, Zhang S, Dolan JC, Schmidt BL, Albertson DG, Bhattacharya A. The Histopathology of Oral Cancer Pain in a Mouse Model and a Human Cohort. J Dent Res 2020; 100:194-200. [PMID: 33030108 DOI: 10.1177/0022034520961020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Oral cancer patients often have severe, chronic, and mechanically induced pain at the site of the primary cancer. Oral cancer pain is initiated and maintained in the cancer microenvironment and attributed to release of mediators that sensitize primary sensory nerves. This study was designed to investigate the histopathology associated with painful oral cancers in a preclinical model. The relationship of pain scores with pathologic variables was also investigated in a cohort of 72 oral cancer patients. Wild-type mice were exposed to the carcinogen, 4-nitroquinoline 1-oxide (4NQO). Nociceptive (pain) behavior was measured with the dolognawmeter, an operant device and assay for measuring functional and mechanical allodynia. Lesions developed on the tongues and esophagi of the 4NQO-treated animals and included hyperkeratoses, papillomas, dysplasias, and cancers. Papillomas included lesions with benign and dysplastic pathological features. Two histologic subtypes of squamous cell carcinomas (SCCs) were identified-SCCs with exophytic and invasive components associated with papillary lesions (pSCCs) and invasive SCCs without exophytic histology (iSCCs). Only the pSCC subtype of tongue cancer was associated with nociceptive behavior. Increased tumor size was associated with greater nociceptive behavior in the mouse model and more pain experienced by oral cancer patients. In addition, depth of invasion was associated with patient-reported pain. The pSCC histology identifies 4NQO-induced tongue cancers that are expected to be enriched for expression and release of nociceptive mediators.
Collapse
Affiliation(s)
- K Naik
- Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, USA
| | - M N Janal
- Department of Epidemiology and Health Promotion, New York University College of Dentistry, New York, NY, USA
| | - J Chen
- New York University College of Dentistry, New York, NY, USA
| | - D Bandary
- New York University College of Dentistry, New York, NY, USA
| | - B Brar
- New York University College of Dentistry, New York, NY, USA
| | - S Zhang
- New York University College of Dentistry, New York, NY, USA
| | - J C Dolan
- Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, USA
| | - B L Schmidt
- Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, USA
| | - D G Albertson
- Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, USA
| | - A Bhattacharya
- Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, USA
| |
Collapse
|
17
|
Abstract
Mice are the most important animals to model tumor formation and malignant progression in humans. Chemical induction of skin tumors in mice by treatment with DMBA and TPA is a well-studied tumor induction model that is easy to use and directly applicable to genetically modified mice without any mandatory crossing with mice carrying mutations in oncogenes and tumorsuppressors. This article describes the basic protocol for DMBA/TPA induced skin tumor formation and discusses the advantages and limitations of this model, in particular the translatability of results obtained in this system to human cancer patients.
Collapse
Affiliation(s)
- Hui Li
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | | |
Collapse
|
18
|
Squarzanti DF, Zavattaro E, Pizzimenti S, Amoruso A, Savoia P, Azzimonti B. Non-Melanoma Skin Cancer: news from microbiota research. Crit Rev Microbiol 2020; 46:433-449. [PMID: 32692305 DOI: 10.1080/1040841x.2020.1794792] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recently, research has been deeply focusing on the role of the microbiota in numerous diseases, either affecting the skin or other organs. What it is well established is that its dysregulation promotes several cutaneous disorders (i.e. psoriasis and atopic dermatitis). To date, little is known about its composition, mediators and role in the genesis, progression and response to therapy of Non-Melanoma Skin Cancer (NMSC). Starting from a bibliographic study, we classified the selected articles into four sections: i) normal skin microbiota; ii) in vitro study models; iii) microbiota and NMSC and iv) probiotics, antibiotics and NMSC. What has emerged is how skin microflora changes, mainly represented by increases of Staphylococcus aureus, Streptococcus pyogenes and Pseudomonas aeruginosa strains, modifications in the mutual quantity of β-Human papillomavirus genotypes, of Epstein Barr Virus and Malassezia or candidiasis, may contribute to the induction of a state of chronic self-maintaining inflammation, leading to cancer. In this context, the role of S. aureus and that of specific antimicrobial peptides look to be prominent. Moreover, although antibiotics may contribute to carcinogenesis, due to their ability to influence the microbiota balance, specific probiotics, such as Lacticaseibacillus rhamnosus GG, Lactobacillus johnsonii NCC 533 and Bifidobacteria spp., may be protective.
Collapse
Affiliation(s)
- Diletta Francesca Squarzanti
- Department of Health Sciences (DiSS), University of Piemonte Orientale (UPO), Novara, Italy.,Center for Translational Research on Autoimmune and Allergic Diseases (CAAD), DiSS, UPO, Novara, Italy
| | - Elisa Zavattaro
- Department of Translational Medicine (DiMeT), UPO, Novara, Italy
| | - Stefania Pizzimenti
- Department of Clinical and Biological Sciences (DSCB), University of Turin, Turin, Italy
| | | | - Paola Savoia
- Department of Health Sciences (DiSS), University of Piemonte Orientale (UPO), Novara, Italy
| | - Barbara Azzimonti
- Department of Health Sciences (DiSS), University of Piemonte Orientale (UPO), Novara, Italy.,Center for Translational Research on Autoimmune and Allergic Diseases (CAAD), DiSS, UPO, Novara, Italy
| |
Collapse
|
19
|
Abstract
Two-stage chemical carcinogenesis method is widely used to elucidate genetic and molecular changes that lead to skin cancer development, as well as to test chemotherapeutic properties of novel drugs. This protocol allows researchers to reliably induce benign papilloma development and their conversion to squamous cell carcinoma in the skin of susceptible mouse strains in response to a single dose of carcinogen 2,4-dimethoxybenzaldehyde (DMBA) and repetitive applications of tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA).
Collapse
|
20
|
Miro C, Di Cicco E, Ambrosio R, Mancino G, Di Girolamo D, Cicatiello AG, Sagliocchi S, Nappi A, De Stefano MA, Luongo C, Antonini D, Visconte F, Varricchio S, Ilardi G, Del Vecchio L, Staibano S, Boelen A, Blanpain C, Missero C, Salvatore D, Dentice M. Thyroid hormone induces progression and invasiveness of squamous cell carcinomas by promoting a ZEB-1/E-cadherin switch. Nat Commun 2019; 10:5410. [PMID: 31776338 PMCID: PMC6881453 DOI: 10.1038/s41467-019-13140-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 10/18/2019] [Indexed: 01/04/2023] Open
Abstract
Epithelial tumor progression often involves epithelial-mesenchymal transition (EMT). We report that increased intracellular levels of thyroid hormone (TH) promote the EMT and malignant evolution of squamous cell carcinoma (SCC) cells. TH induces the EMT by transcriptionally up-regulating ZEB-1, mesenchymal genes and metalloproteases and suppresses E-cadherin expression. Accordingly, in human SCC, elevated D2 (the T3-producing enzyme) correlates with tumor grade and is associated with an increased risk of postsurgical relapse and shorter disease-free survival. These data provide the first in vivo demonstration that TH and its activating enzyme, D2, play an effective role not only in the EMT but also in the entire neoplastic cascade starting from tumor formation up to metastatic transformation, and supports the concept that TH is an EMT promoter. Our studies indicate that tumor progression relies on precise T3 availability, suggesting that pharmacological inactivation of D2 and TH signaling may suppress the metastatic proclivity of SCC.
Collapse
Affiliation(s)
- Caterina Miro
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Emery Di Cicco
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | | | - Giuseppina Mancino
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Daniela Di Girolamo
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | | | - Serena Sagliocchi
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Annarita Nappi
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Maria Angela De Stefano
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Cristina Luongo
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Dario Antonini
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | | | - Silvia Varricchio
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Gennaro Ilardi
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | | | - Stefania Staibano
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Anita Boelen
- Endocrine Laboratory, Department of Clinical Chemistry, Amsterdam University Medical Center, location AMC, Amsterdam, The Netherlands
| | - Cedric Blanpain
- IRIBHM, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Caterina Missero
- Department of Biology, University of Naples "Federico II", Naples, Italy
- CEINGE-Biotecnologie Avanzate Scarl, Naples, Italy
| | - Domenico Salvatore
- CEINGE-Biotecnologie Avanzate Scarl, Naples, Italy
- Department of Public Health, University of Naples "Federico II", Naples, Italy
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy.
- CEINGE-Biotecnologie Avanzate Scarl, Naples, Italy.
| |
Collapse
|
21
|
Vabeiryureilai M, Lalrinzuali K, Jagetia GC. Chemopreventive effect of hesperidin, a citrus bioflavonoid in two stage skin carcinogenesis in Swiss albino mice. Heliyon 2019; 5:e02521. [PMID: 31720442 PMCID: PMC6838872 DOI: 10.1016/j.heliyon.2019.e02521] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/03/2019] [Accepted: 09/23/2019] [Indexed: 01/11/2023] Open
Abstract
The cancer-protective ability of hesperidin was investigated on 7, 12-dimethylbenz[a]anthracene (DMBA) and 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced skin carcinogenesis in Swiss albino mice. Topical application of DMBA+TPA on mice skin led to 100% tumour incidence and rise in average number of tumours. Administration of different doses of hesperidin (HPD) before (pre) or after (post) and continuous (pre and post) DMBA application significantly reduced tumour incidence and average number of tumours in comparison to DMBA+TPA treatment alone. Topical application of DMBA+TPA increased oxidative stress as shown by significantly increased TBARS values and reduced glutathione contents, and glutathione-S-transferase, superoxide dismutase and catalase activities. Hesperidin treatment significantly reduced TBARS values and elevated glutathione concentration and glutathione-S-transferase, superoxide dismutase and catalase activities in the skin/tumors of mice treated with HPD+DMBA+TPA, HPD+DMBA+TPA+HPD or DMBA+TPA+HPD when compared to DMBA+TPA application alone. The study of molecular mechanisms showed that hesperidin suppressed expression of Rassf7, Nrf2, PARP and NF-κB in a dose dependent manner with a maximum inhibition at the level of 300 mg/kg body weight hesperidin. In conclusion, oral administration of hesperidin protected mice against chemical carcinogenesis by increasing antioxidant status, reducing DMBA+TPA induced lipid peroxidation and inflammatory response, and repressing of Rassf7, Nrf2, PARP and NF-κB levels.
Collapse
|
22
|
Hidaka T, Fujimura T, Aiba S. Aryl Hydrocarbon Receptor Modulates Carcinogenesis and Maintenance of Skin Cancers. Front Med (Lausanne) 2019; 6:194. [PMID: 31552251 PMCID: PMC6736988 DOI: 10.3389/fmed.2019.00194] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/20/2019] [Indexed: 12/20/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that responds to a wide range of chemicals, including chemical carcinogens such as dioxins and carcinogenic polyaromatic hydrocarbons, and induces a battery of genes associated with detoxification, proliferation, and immune regulation. Recent reports suggest that AHR plays an important role in carcinogenesis and maintenance of various types of skin cancers. Indeed, AHR is a susceptibility gene for squamous cell carcinoma and a prognostic factor for melanoma and Merkel cell carcinoma. In addition, the carcinogenic effects of ultraviolet (UV) and chemical carcinogens, both of which are major environmental carcinogenetic factors of skin, are at least partly mediated by AHR, which regulates UV-induced inflammation and apoptosis, the DNA repair system, and metabolic activation of chemical carcinogens. Furthermore, AHR modulates the efficacy of key therapeutic agents in melanoma. AHR activation induces the expression of resistance genes against the inhibitors of V600E mutated B-Raf proto-oncogene, serine/threonine kinase (BRAF) in melanoma and upregulation of programmed cell death protein 1 (PD-1) in tumor-infiltrating T cells surrounding melanoma. Taken together, these findings underscore the importance of AHR in the biology of skin cancers. Development of therapeutic agents that modulate AHR activity is a promising strategy to advance chemoprevention and chemotherapy for skin cancers.
Collapse
Affiliation(s)
- Takanori Hidaka
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Taku Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
23
|
Md Roduan MR, Abd Hamid R, Mohtarrudin N. Modulation of cancer signalling pathway(s) in two -stage mouse skin tumorigenesis by annonacin. Altern Ther Health Med 2019; 19:238. [PMID: 31481122 PMCID: PMC6724370 DOI: 10.1186/s12906-019-2650-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/21/2019] [Indexed: 01/15/2023]
Abstract
Background Annonacin, an annonaceous acetogenin isolated from Annona muricata has been reported to be strongly cytotoxic against various cell lines, in vitro. Nevertheless, its effect against in vivo tumor promoting activity has not been reported yet. Therefore, this study was aimed to investigate antitumor-promoting activity of annonacin via in vivo two-stage mouse skin tumorigenesis model and its molecular pathways involved. Methods Mice were initiated with single dose of 7,12-dimethylbenz[α]anthracene (DMBA) (390 nmol/100 μL) followed by, in subsequent week, repeated promotion (twice weekly; 22 weeks) with 12-O-tetradecanoylphorbol-13-acetate (TPA) (1.7 nmol/100 μL). Annonacin (85 nM) and curcumin (10 mg/kg; reference) were, respectively, applied topically to DMBA/TPA-induced mice 30 min before each TPA application for 22 weeks. Upon termination, histopathological examination of skin, liver and kidney as well as genes and proteins expression analysis were conducted to elucidate the potential mechanism of annonacin. Results With comparison to the carcinogen control, Annonacin significantly increased the tumor latency period and reduced the tumor incidence, tumor burden and tumor volume, respectively. In addition, it also suppressed tumorigenesis manifested by significant reduction of hyperkeratosis, dermal papillae and number of keratin pearls on skin tissues. Annonacin also appeared to be non-toxic to liver and kidney. Significant modulation of both AKT, ERK, mTOR, p38, PTEN and Src genes and proteins were also observed in annonacin-targeted signaling pathway(s) against tumorigenesis. Conclusions Collectively, results of this study indicate that annonacin is a potential therapeutic compound targeting tumor promoting stage in skin tumorigenesis by modulating multiple gene and protein in cancer signaling pathways without apparent toxicity. Electronic supplementary material The online version of this article (10.1186/s12906-019-2650-1) contains supplementary material, which is available to authorized users.
Collapse
|
24
|
Time-Series Analysis of Tumorigenesis in a Murine Skin Carcinogenesis Model. Sci Rep 2018; 8:12994. [PMID: 30158594 PMCID: PMC6115443 DOI: 10.1038/s41598-018-31349-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 08/17/2018] [Indexed: 12/18/2022] Open
Abstract
Recent years have witnessed substantial progress in understanding tumor heterogeneity and the process of tumor progression; however, the entire process of the transition of tumors from a benign to metastatic state remains poorly understood. In the present study, we performed a prospective cancer genome-sequencing analysis by employing an experimental carcinogenesis mouse model of squamous cell carcinoma to systematically understand the evolutionary process of tumors. We surgically collected a part of a lesion of each tumor and followed the progression of these tumors in vivo over time. Comparative time-series analysis of the genomes of tumors with different fates, i.e., those that eventually metastasized and regressed, suggested that these tumors acquired and inherited different mutations. These findings suggest that despite the occurrence of an intra-tumor selection event for malignant alteration during the transformation from early- to late-stage papilloma, the fate determination of tumors might be determined at an even earlier stage.
Collapse
|
25
|
Translation from unconventional 5' start sites drives tumour initiation. Nature 2017; 541:494-499. [PMID: 28077873 DOI: 10.1038/nature21036] [Citation(s) in RCA: 242] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/07/2016] [Indexed: 02/06/2023]
Abstract
We are just beginning to understand how translational control affects tumour initiation and malignancy. Here we use an epidermis-specific, in vivo ribosome profiling strategy to investigate the translational landscape during the transition from normal homeostasis to malignancy. Using a mouse model of inducible SOX2, which is broadly expressed in oncogenic RAS-associated cancers, we show that despite widespread reductions in translation and protein synthesis, certain oncogenic mRNAs are spared. During tumour initiation, the translational apparatus is redirected towards unconventional upstream initiation sites, enhancing the translational efficiency of oncogenic mRNAs. An in vivo RNA interference screen of translational regulators revealed that depletion of conventional eIF2 complexes has adverse effects on normal but not oncogenic growth. Conversely, the alternative initiation factor eIF2A is essential for cancer progression, during which it mediates initiation at these upstream sites, differentially skewing translation and protein expression. Our findings unveil a role for the translation of 5' untranslated regions in cancer, and expose new targets for therapeutic intervention.
Collapse
|
26
|
Halliwill KD, Quigley DA, Kang HC, Del Rosario R, Ginzinger D, Balmain A. Panx3 links body mass index and tumorigenesis in a genetically heterogeneous mouse model of carcinogen-induced cancer. Genome Med 2016; 8:83. [PMID: 27506198 PMCID: PMC4977876 DOI: 10.1186/s13073-016-0334-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 07/11/2016] [Indexed: 01/01/2023] Open
Abstract
Background Body mass index (BMI) has been implicated as a primary factor influencing cancer development. However, understanding the relationship between these two complex traits has been confounded by both environmental and genetic heterogeneity. Methods In order to gain insight into the genetic factors linking BMI and cancer, we performed chemical carcinogenesis on a genetically heterogeneous cohort of interspecific backcross mice ((Mus Spretus × FVB/N) F1 × FVB/N). Using this cohort, we performed quantitative trait loci (QTL) analysis to identify regions linked to BMI. We then performed an integrated analysis incorporating gene expression, sequence comparison between strains, and gene expression network analysis to identify candidate genes influencing both tumor development and BMI. Results Analysis of QTL linked to tumorigenesis and BMI identified several loci associated with both phenotypes. Exploring these loci in greater detail revealed a novel relationship between the Pannexin 3 gene (Panx3) and both BMI and tumorigenesis. Panx3 is positively associated with BMI and is strongly tied to a lipid metabolism gene expression network. Pre-treatment Panx3 gene expression levels in normal skin are associated with tumor susceptibility and inhibition of Panx function strongly influences inflammation. Conclusions These studies have identified several genetic loci that influence both BMI and carcinogenesis and implicate Panx3 as a candidate gene that links these phenotypes through its effects on inflammation and lipid metabolism. Electronic supplementary material The online version of this article (doi:10.1186/s13073-016-0334-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kyle D Halliwill
- Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, USA.,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - David A Quigley
- Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, USA.,Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Hio Chung Kang
- Invitae Corporation, 458 Brannan St, San Francisco, CA, 94107, USA
| | - Reyno Del Rosario
- Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - David Ginzinger
- Thermo Fisher Scientific, 5791 Van Allen Way, Carlsbad, CA, 92008, USA
| | - Allan Balmain
- Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, USA. .,Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA.
| |
Collapse
|
27
|
Watt SA, Purdie KJ, den Breems NY, Dimon M, Arron ST, McHugh AT, Xue DJ, Dayal JHS, Proby CM, Harwood CA, Leigh IM, South AP. Novel CARD11 Mutations in Human Cutaneous Squamous Cell Carcinoma Lead to Aberrant NF-κB Regulation. THE AMERICAN JOURNAL OF PATHOLOGY 2015. [PMID: 26212909 DOI: 10.1016/j.ajpath.2015.05.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
NF-κB signaling plays a crucial role in regulating proliferation and differentiation in the epidermis. Alterations in the NF-κB pathway can lead to skin pathologies with a significant burden to human health such as psoriasis and cutaneous squamous cell carcinoma (cSCC). Caspase recruitment domain (CARD)-containing scaffold proteins are key regulators of NF-κB signaling by providing a link between membrane receptors and NF-κB transcriptional subunits. Mutations in the CARD family member, CARD14, have been identified in patients with the inflammatory skin diseases psoriasis and pityriasis rubra pilaris. Here, we describe that the gene coding for another CARD scaffold protein, CARD11, is mutated in more than 38% of 111 cSCCs, and show that novel variants outside of the coiled-coil domain lead to constitutively activated NF-κB signaling. CARD11 protein expression was detectable in normal skin and increased in all cSCCs tested. CARD11 mRNA levels were comparable with CARD14 in normal skin and CARD11 mRNA was increased in cSCC. In addition, we identified CARD11 mutations in peritumoral and sun-exposed skin, suggesting that CARD11-mediated alterations in NF-κB signaling may be an early event in the development of cSCC.
Collapse
Affiliation(s)
- Stephen A Watt
- Division of Cancer Research, University of Dundee, Dundee, United Kingdom
| | - Karin J Purdie
- Centre for Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | | | - Michelle Dimon
- Department of Dermatology, University of California, San Francisco, California
| | - Sarah T Arron
- Department of Dermatology, University of California, San Francisco, California
| | - Angela T McHugh
- Division of Cancer Research, University of Dundee, Dundee, United Kingdom
| | - Dylan J Xue
- Division of Cancer Research, University of Dundee, Dundee, United Kingdom
| | - Jasbani H S Dayal
- Division of Cancer Research, University of Dundee, Dundee, United Kingdom
| | - Charlotte M Proby
- Division of Cancer Research, University of Dundee, Dundee, United Kingdom
| | - Catherine A Harwood
- Centre for Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Irene M Leigh
- Division of Cancer Research, University of Dundee, Dundee, United Kingdom; Centre for Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Andrew P South
- Division of Cancer Research, University of Dundee, Dundee, United Kingdom; Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|