1
|
Krenz B, Lee J, Kannan T, Eilers M. Immune evasion: An imperative and consequence of MYC deregulation. Mol Oncol 2024; 18:2338-2355. [PMID: 38957016 PMCID: PMC11459038 DOI: 10.1002/1878-0261.13695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/08/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024] Open
Abstract
MYC has been implicated in the pathogenesis of a wide range of human tumors and has been described for many years as a transcription factor that regulates genes with pleiotropic functions to promote tumorigenic growth. However, despite extensive efforts to identify specific target genes of MYC that alone could be responsible for promoting tumorigenesis, the field is yet to reach a consensus whether this is the crucial function of MYC. Recent work shifts the view on MYC's function from being a gene-specific transcription factor to an essential stress resilience factor. In highly proliferating cells, MYC preserves cell integrity by promoting DNA repair at core promoters, protecting stalled replication forks, and/or preventing transcription-replication conflicts. Furthermore, an increasing body of evidence demonstrates that MYC not only promotes tumorigenesis by driving cell-autonomous growth, but also enables tumors to evade the host's immune system. In this review, we summarize our current understanding of how MYC impairs antitumor immunity and why this function is evolutionarily hard-wired to the biology of the MYC protein family. We show why the cell-autonomous and immune evasive functions of MYC are mutually dependent and discuss ways to target MYC proteins in cancer therapy.
Collapse
Affiliation(s)
- Bastian Krenz
- Department of Biochemistry and Molecular BiologyTheodor Boveri Institute, Biocenter, University of WürzburgWürzburgGermany
- Mildred Scheel Early Career CenterWürzburgGermany
| | - Jongkuen Lee
- Department of Biochemistry and Molecular BiologyTheodor Boveri Institute, Biocenter, University of WürzburgWürzburgGermany
| | - Toshitha Kannan
- Department of Biochemistry and Molecular BiologyTheodor Boveri Institute, Biocenter, University of WürzburgWürzburgGermany
| | - Martin Eilers
- Department of Biochemistry and Molecular BiologyTheodor Boveri Institute, Biocenter, University of WürzburgWürzburgGermany
- Comprehensive Cancer Center MainfrankenWürzburgGermany
| |
Collapse
|
2
|
Benichou E, Seffou B, Topçu S, Renoult O, Lenoir V, Planchais J, Bonner C, Postic C, Prip-Buus C, Pecqueur C, Guilmeau S, Alves-Guerra MC, Dentin R. The transcription factor ChREBP Orchestrates liver carcinogenesis by coordinating the PI3K/AKT signaling and cancer metabolism. Nat Commun 2024; 15:1879. [PMID: 38424041 PMCID: PMC10904844 DOI: 10.1038/s41467-024-45548-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
Cancer cells integrate multiple biosynthetic demands to drive unrestricted proliferation. How these cellular processes crosstalk to fuel cancer cell growth is still not fully understood. Here, we uncover the mechanisms by which the transcription factor Carbohydrate responsive element binding protein (ChREBP) functions as an oncogene during hepatocellular carcinoma (HCC) development. Mechanistically, ChREBP triggers the expression of the PI3K regulatory subunit p85α, to sustain the activity of the pro-oncogenic PI3K/AKT signaling pathway in HCC. In parallel, increased ChREBP activity reroutes glucose and glutamine metabolic fluxes into fatty acid and nucleic acid synthesis to support PI3K/AKT-mediated HCC growth. Thus, HCC cells have a ChREBP-driven circuitry that ensures balanced coordination between PI3K/AKT signaling and appropriate cell anabolism to support HCC development. Finally, pharmacological inhibition of ChREBP by SBI-993 significantly suppresses in vivo HCC tumor growth. Overall, we show that targeting ChREBP with specific inhibitors provides an attractive therapeutic window for HCC treatment.
Collapse
Affiliation(s)
- Emmanuel Benichou
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | - Bolaji Seffou
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | - Selin Topçu
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | - Ophélie Renoult
- Nantes Université, INSERM U1307, CNRS 6075, CRCI2NA, Nantes, France
| | - Véronique Lenoir
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | - Julien Planchais
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | - Caroline Bonner
- Institut Pasteur de Lille, Lille, France
- INSERM, U1011, Lille, France
- European Genomic Institute for Diabetes, Lille, France
- Université de Lille, Lille, France
| | - Catherine Postic
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | - Carina Prip-Buus
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | - Claire Pecqueur
- Nantes Université, INSERM U1307, CNRS 6075, CRCI2NA, Nantes, France
| | - Sandra Guilmeau
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | | | - Renaud Dentin
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014, Paris, France.
- Institut Cochin, Faculté de Médecine 3ème étage, 24 Rue du Faubourg Saint Jacques, 75014, Paris, France.
| |
Collapse
|
3
|
Yu A, Yu P, Zhu Y, Zhu R, Sun R, Ye D, Yu FX. Glucose-induced and ChREBP: MLX-mediated lipogenic program promotes hepatocellular carcinoma development. Oncogene 2023; 42:3182-3193. [PMID: 37684408 DOI: 10.1038/s41388-023-02831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/26/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023]
Abstract
The Carbohydrate Response Element (ChoRE) Binding Protein (ChREBP) and its binding partner Max-like protein X (MLX) mediate transcription of lipogenic genes under glucose-rich conditions. Dysregulation of glucose and lipid metabolism frequently occurs in cancers, including Hepatocellular Carcinomas (HCCs). However, it is currently unclear whether the glucose-induced lipogenic program plays a role in the development of HCCs. Here, we show that MLX expression is elevated in HCC specimens and downregulation of MLX expression inhibits proliferation of HCC cells. In mice, liver-specific knockout of Mlx results in dramatic decrease in the expression of lipogenic genes and lipid levels in circulation. Interestingly, in the absence of Mlx, the development of tumors in multiple HCC models, such as diethylnitrosamine (DEN) treatment and hydrodynamic injection of oncogenes (AKT/RAS or CTNNB1/RAS), is robustly blocked. However, a high-fat diet can partially restore tumorigenesis in Mlx-deficient livers, indicating a critical role of lipid synthesis in HCC development. In addition, liver-specific expression of a dominant negative MLX (dnMLX) via adeno-associated virus effectively blocks tumorigenesis in mice. Thus, the glucose-induced lipogenic program is required in the development of HCC, and the ChREBP: MLX transcription factors serve as a potential target for cancer therapies.
Collapse
Affiliation(s)
- Aijuan Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Pengcheng Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yuwen Zhu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Rui Zhu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Renqiang Sun
- Huashan Hospital and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Dan Ye
- Huashan Hospital and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Li J, Pan J, Liu Y, Luo X, Yang C, Xiao W, Li Q, Yang L, Zhang X. 3‑Bromopyruvic acid regulates glucose metabolism by targeting the c‑Myc/TXNIP axis and induces mitochondria‑mediated apoptosis in TNBC cells. Exp Ther Med 2022; 24:520. [PMID: 35837063 PMCID: PMC9257941 DOI: 10.3892/etm.2022.11447] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/01/2022] [Indexed: 12/03/2022] Open
Abstract
Aerobic glycolysis is commonly observed in tumor cells, including triple-negative breast cancer (TNBC) cells, and the rate of aerobic glycolysis is higher in TNBC cells than in non-TNBC cells. Hexokinase 2 (HK2) is a key enzyme in the glycolytic pathway and a target of the transcription factor c-Myc, which is highly expressed in TNBC and promotes aerobic glycolysis by enhancing HK2 expression. As an inhibitor of HK2, 3-bromopyruvic acid (3-BrPA) exhibits good therapeutic efficacy in intrahepatic and extrahepatic tumors and inhibits the proliferation of human tumor cells with high expression levels of c-Myc in vivo and in vitro. In addition, 3-BrPA combines with photodynamic therapy to inhibit TNBC cell migration. Thioredoxin-interacting protein (TXNIP) competes with c-Myc to reduce glucose consumption in tumor cells to restrain cell proliferation. A comparative analysis was performed in the present study in TNBC (HCC1143) and non-TNBC (MCF-7) cell lines to explore the effect of 3-BrPA on energy metabolism in TNBC cells and to investigate the possible mechanism of action. Cell viability and apoptosis were detected through Cell Counting Kit-8 and flow cytometry assays, respectively. Expression levels of HK2, glucose transporter 1, TXNIP, c-Myc and mitochondria-regulated apoptosis pathway proteins were measured through western blotting. 3-BrPA inhibited cell proliferation, downregulated c-Myc and HK2 expression, and upregulated TXNIP expression in TNBC cells, but it doesn't have the same effect on non-TNBC cells. Furthermore, 3-BrPA induced the typical manifestations of mitochondrial-mediated apoptosis such as decreasing Bcl-2 expression and increasing Bax, Cyt-C and Caspase-3 expression. The present results suggested that 3-BrPA promoted TXNIP protein expression and reduced HK2 expression in TNBC cells by downregulating c-Myc expression, inhibiting glycolysis including suppressing lactate generation, intracellular ATP generation and HK activity, inducing mitochondrial-mediated apoptosis and eventually suppressing TNBC cell proliferation. These findings may reveal a novel therapeutic target for the clinical treatment of TNBC.
Collapse
Affiliation(s)
- Jiachen Li
- Department of Gastrointestinal and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jianmin Pan
- Department of Gastrointestinal and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yang Liu
- Department of Gastrointestinal and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiaohui Luo
- Department of Gastrointestinal and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Cheng Yang
- Department of Gastrointestinal and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Wangfa Xiao
- Department of Gastrointestinal and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Qishang Li
- Department of Gastrointestinal and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Lihui Yang
- Department of Nursing, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiaodong Zhang
- Department of Gastrointestinal and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
5
|
Abstract
Significance: Thioredoxin-interacting protein (Txnip) is an α-arrestin protein that acts as a cancer suppressor. Txnip is simultaneously a critical regulator of energy metabolism. Other alpha-arrestin proteins also play key roles in cell biology and cancer. Recent Advances: Txnip expression is regulated by multilayered mechanisms, including transcriptional regulation, microRNA, messenger RNA (mRNA) stabilization, and protein degradation. The Txnip-based connection between cancer and metabolism has been widely recognized. Meanwhile, new aspects are proposed for the mechanism of action of Txnip, including the regulation of RNA expression and autophagy. Arrestin domain containing 3 (ARRDC3), another α-arrestin protein, regulates endocytosis and signaling, whereas ARRDC1 and ARRDC4 regulate extracellular vesicle formation. Critical Issues: The mechanism of action of Txnip is yet to be elucidated. The regulation of intracellular protein trafficking by arrestin family proteins has opened an emerging field of biology and medical research, which needs to be examined further. Future Directions: A fundamental understanding of the mechanism of action of Txnip and other arrestin family members needs to be explored in the future to combat diseases such as cancer and diabetes. Antioxid. Redox Signal. 36, 1001-1022.
Collapse
Affiliation(s)
- Hiroshi Masutani
- Department of Clinical Laboratory Sciences, Tenri Health Care University, Tenri, Japan.,Department of Infection and Prevention, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
Prochownik EV, Wang H. Normal and Neoplastic Growth Suppression by the Extended Myc Network. Cells 2022; 11:747. [PMID: 35203395 PMCID: PMC8870482 DOI: 10.3390/cells11040747] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 12/20/2022] Open
Abstract
Among the first discovered and most prominent cellular oncogenes is MYC, which encodes a bHLH-ZIP transcription factor (Myc) that both activates and suppresses numerous genes involved in proliferation, energy production, metabolism and translation. Myc belongs to a small group of bHLH-ZIP transcriptional regulators (the Myc Network) that includes its obligate heterodimerization partner Max and six "Mxd proteins" (Mxd1-4, Mnt and Mga), each of which heterodimerizes with Max and largely opposes Myc's functions. More recently, a second group of bHLH-ZIP proteins (the Mlx Network) has emerged that bears many parallels with the Myc Network. It is comprised of the Myc-like factors ChREBP and MondoA, which, in association with the Max-like member Mlx, regulate smaller and more functionally restricted repertoires of target genes, some of which are shared with Myc. Opposing ChREBP and MondoA are heterodimers comprised of Mlx and Mxd1, Mxd4 and Mnt, which also structurally and operationally link the two Networks. We discuss here the functions of these "Extended Myc Network" members, with particular emphasis on their roles in suppressing normal and neoplastic growth. These roles are complex due to the temporal- and tissue-restricted expression of Extended Myc Network proteins in normal cells, their regulation of both common and unique target genes and, in some cases, their functional redundancy.
Collapse
Affiliation(s)
- Edward V. Prochownik
- Division of Hematology/Oncology, The Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
- The Department of Microbiology and Molecular Genetics, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
- The Hillman Cancer Center of UPMC, Pittsburgh, PA 15224, USA
- The Pittsburgh Liver Research Center, Pittsburgh, PA 15224, USA
| | - Huabo Wang
- Division of Hematology/Oncology, The Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
| |
Collapse
|
7
|
Zhang J, Tian X, Yin H, Xiao S, Yi S, Zhang Y, Zeng F. TXNIP induced by MondoA, rather than ChREBP, suppresses cervical cancer cell proliferation, migration and invasion. J Biochem 2020; 167:371-377. [PMID: 31782782 DOI: 10.1093/jb/mvz105] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/10/2019] [Indexed: 01/18/2023] Open
Abstract
Evidence has indicated the associations between thioredoxin-interacting protein (TXNIP) and cancers. However, the role of TXNIP in cervical cancer remains unclear. Hence, this study aims to investigate the role of TXNIP in regulating cervical cancer cell proliferation, migration and invasion. TXNIP expression can be regulated by either MondoA or ChREBP in a cell- or tissue- dependent manner. Thus, we also explored whether TXNIP expression in cervical cancer can be regulated by MondoA or ChREBP. Our results showed that TXNIP expression was decreased in cervical cancer cells (HeLa, SiHa, CaSki, MS751, C-33A). Furthermore, TXNIP overexpression inhibited cell proliferation, migration and invasion in HeLa cells, whereas TXNIP silencing exerted the opposite effect in C-33A cells. Moreover, TXNIP expression could be induced by MondoA, rather than ChREBP in HeLa cells. Additionally, MondoA overexpression inhibited cell proliferation, migration and invasion through upregulating TXNIP in HeLa cells. In summary, TXNIP induced by MondoA, rather than ChREBP, suppresses cervical cancer cell proliferation, migration and invasion. Our findings provide new ideas for the prevention and treatment of cervical cancer.
Collapse
Affiliation(s)
- Junhua Zhang
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, No. 107 West Wenhua Road, Jinan 250012, Shandong Province, China
| | - Xingbo Tian
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Road, Changsha 410013, Hunan Province, China
| | - Huifang Yin
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Road, Changsha 410013, Hunan Province, China
| | - Songshu Xiao
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Road, Changsha 410013, Hunan Province, China
| | - Shuijing Yi
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Road, Changsha 410013, Hunan Province, China
| | - Youzhong Zhang
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, No. 107 West Wenhua Road, Jinan 250012, Shandong Province, China
| | - Fei Zeng
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Road, Changsha 410013, Hunan Province, China
| |
Collapse
|
8
|
Wilde BR, Kaadige MR, Guillen KP, Butterfield A, Welm BE, Ayer DE. Protein synthesis inhibitors stimulate MondoA transcriptional activity by driving an accumulation of glucose 6-phosphate. Cancer Metab 2020; 8:27. [PMID: 33292639 PMCID: PMC7718662 DOI: 10.1186/s40170-020-00233-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/25/2020] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Protein synthesis is regulated by the availability of amino acids, the engagement of growth factor signaling pathways, and adenosine triphosphate (ATP) levels sufficient to support translation. Crosstalk between these inputs is extensive, yet other regulatory mechanisms remain to be characterized. For example, the translation initiation inhibitor rocaglamide A (RocA) induces thioredoxin-interacting protein (TXNIP). TXNIP is a negative regulator of glucose uptake; thus, its induction by RocA links translation to the availability of glucose. MondoA is the principal regulator of glucose-induced transcription, and its activity is triggered by the glycolytic intermediate, glucose 6-phosphate (G6P). MondoA responds to G6P generated by cytoplasmic glucose and mitochondrial ATP (mtATP), suggesting a critical role in the cellular response to these energy sources. TXNIP expression is entirely dependent on MondoA; therefore, we investigated how protein synthesis inhibitors impact its transcriptional activity. METHODS We investigated how translation regulates MondoA activity using cell line models and loss-of-function approaches. We examined how protein synthesis inhibitors effect gene expression and metabolism using RNA-sequencing and metabolomics, respectively. The biological impact of RocA was evaluated using cell lines and patient-derived xenograft organoid (PDxO) models. RESULTS We discovered that multiple protein synthesis inhibitors, including RocA, increase TXNIP expression in a manner that depends on MondoA, a functional electron transport chain and mtATP synthesis. Furthermore, RocA and cycloheximide increase mtATP and G6P levels, respectively, and TXNIP induction depends on interactions between the voltage-dependent anion channel (VDAC) and hexokinase (HK), which generates G6P. RocA treatment impacts the regulation of ~ 1200 genes, and ~ 250 of those genes are MondoA-dependent. RocA treatment is cytotoxic to triple negative breast cancer (TNBC) cell lines and shows preferential cytotoxicity against estrogen receptor negative (ER-) PDxO breast cancer models. Finally, RocA-driven cytotoxicity is partially dependent on MondoA or TXNIP. CONCLUSIONS Our data suggest that protein synthesis inhibitors rewire metabolism, resulting in an increase in mtATP and G6P, the latter driving MondoA-dependent transcriptional activity. Further, MondoA is a critical component of the cellular transcriptional response to RocA. Our functional assays suggest that RocA or similar translation inhibitors may show efficacy against ER- breast tumors and that the levels of MondoA and TXNIP should be considered when exploring these potential treatment options.
Collapse
Affiliation(s)
- Blake R Wilde
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
- Present Address: Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Mohan R Kaadige
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
- Present Address: Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Katrin P Guillen
- Department of Surgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Andrew Butterfield
- Department of Surgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Bryan E Welm
- Department of Surgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Donald E Ayer
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
9
|
Yoshida GJ. Beyond the Warburg Effect: N-Myc Contributes to Metabolic Reprogramming in Cancer Cells. Front Oncol 2020; 10:791. [PMID: 32547946 PMCID: PMC7269178 DOI: 10.3389/fonc.2020.00791] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer cells generate large amounts of lactate derived from glucose regardless of the available oxygen level. Cancer cells finely control ATP synthesis by modulating the uptake of substrates and the activity of enzymes involved in aerobic glycolysis (Warburg effect), which enables them to adapt to the tumor microenvironment. However, increasing evidence suggests that mitochondrial metabolism, including the tricarboxylic acid (TCA) cycle, oxidative phosphorylation (OXPHOS), and glutaminolysis, is paradoxically activated in MYCN-amplified malignancies. Unlike non-amplified cells, MYCN-amplified cancer cells significantly promote OXPHOS-dependent ATP synthesis. Furthermore, tumor cells are differentially dependent on fatty acid β-oxidation (FAO) according to N-Myc status. Therefore, upregulation of FAO-associated enzymes is positively correlated with both N-Myc expression level and poor clinical outcome. This review explores therapeutic strategies targeting cancer stem-like cells for the treatment of tumors associated with MYCN amplification.
Collapse
Affiliation(s)
- Go J Yoshida
- Department of Pathology and Oncology, Juntendo University School of Medicine, Tokyo, Japan.,Department of Immunological Diagnosis, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Wilde BR, Ye Z, Lim TY, Ayer DE. Cellular acidosis triggers human MondoA transcriptional activity by driving mitochondrial ATP production. eLife 2019; 8:40199. [PMID: 30717828 PMCID: PMC6363388 DOI: 10.7554/elife.40199] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/22/2019] [Indexed: 12/12/2022] Open
Abstract
Human MondoA requires glucose as well as other modulatory signals to function in transcription. One such signal is acidosis, which increases MondoA activity and also drives a protective gene signature in breast cancer. How low pH controls MondoA transcriptional activity is unknown. We found that low pH medium increases mitochondrial ATP (mtATP), which is subsequently exported from the mitochondrial matrix. Mitochondria-bound hexokinase transfers a phosphate from mtATP to cytoplasmic glucose to generate glucose-6-phosphate (G6P), which is an established MondoA activator. The outer mitochondrial membrane localization of MondoA suggests that it is positioned to coordinate the adaptive transcriptional response to a cell’s most abundant energy sources, cytoplasmic glucose and mtATP. In response to acidosis, MondoA shows preferential binding to just two targets, TXNIP and its paralog ARRDC4. Because these transcriptional targets are suppressors of glucose uptake, we propose that MondoA is critical for restoring metabolic homeostasis in response to high energy charge.
Collapse
Affiliation(s)
- Blake R Wilde
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, United States
| | - Zhizhou Ye
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, United States
| | - Tian-Yeh Lim
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, United States
| | - Donald E Ayer
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, United States
| |
Collapse
|
11
|
Carabet LA, Rennie PS, Cherkasov A. Therapeutic Inhibition of Myc in Cancer. Structural Bases and Computer-Aided Drug Discovery Approaches. Int J Mol Sci 2018; 20:E120. [PMID: 30597997 PMCID: PMC6337544 DOI: 10.3390/ijms20010120] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/08/2018] [Accepted: 12/21/2018] [Indexed: 12/23/2022] Open
Abstract
Myc (avian myelocytomatosis viral oncogene homolog) represents one of the most sought after drug targets in cancer. Myc transcription factor is an essential regulator of cell growth, but in most cancers it is overexpressed and associated with treatment-resistance and lethal outcomes. Over 40 years of research and drug development efforts did not yield a clinically useful Myc inhibitor. Drugging the "undruggable" is problematic, as Myc inactivation may negatively impact its physiological functions. Moreover, Myc is a disordered protein that lacks effective binding pockets on its surface. It is well established that the Myc function is dependent on dimerization with its obligate partner, Max (Myc associated factor X), which together form a functional DNA-binding domain to activate genomic targets. Herein, we provide an overview of the knowledge accumulated to date on Myc regulation and function, its critical role in cancer, and summarize various strategies that are employed to tackle Myc-driven malignant transformation. We focus on important structure-function relationships of Myc with its interactome, elaborating structural determinants of Myc-Max dimer formation and DNA recognition exploited for therapeutic inhibition. Chronological development of small-molecule Myc-Max prototype inhibitors and corresponding binding sites are comprehensively reviewed and particular emphasis is placed on modern computational drug design methods. On the outlook, technological advancements may soon provide the so long-awaited Myc-Max clinical candidate.
Collapse
Affiliation(s)
- Lavinia A Carabet
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada.
| | - Paul S Rennie
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada.
| | - Artem Cherkasov
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada.
| |
Collapse
|
12
|
Zhang B, Lyu J, Liu Y, Wu C, Yang EJ, Pardeshi L, Tan K, Wong KH, Chen Q, Xu X, Deng CX, Shim JS. BRCA1 deficiency sensitizes breast cancer cells to bromodomain and extra-terminal domain (BET) inhibition. Oncogene 2018; 37:6341-6356. [PMID: 30042414 DOI: 10.1038/s41388-018-0408-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/05/2018] [Accepted: 06/17/2018] [Indexed: 12/25/2022]
Abstract
BRCA1 is a tumor suppressor frequently mutated in breast and ovarian cancer, serving it as a target for therapeutic exploitation. Here, we show that BRCA1 has a synthetic lethality interaction with an epigenetics regulator, bromodomain and extra-terminal domain (BET). BET inhibition led to gene expression changes reversing MYC-dependent transcription repression of a redox regulator, thioredoxin-interacting protein (TXNIP), via switching the promoter occupant from MYC to MondoA:MLX complex. Reversing the MYC-TXNIP axis inhibited thioredoxin activity and elevated cellular oxidative stress, causing DNA damages that are detrimental to BRCA1-deficient breast cancer cells. Tumor xenograft models and breast cancer clinical data analyses further demonstrated an in vivo synthetic lethality interaction and clinical association between BET/TXNIP and BRCA1 deficiency in the survival of breast cancer patients.
Collapse
Affiliation(s)
- Baoyuan Zhang
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, 999078, Macau, SAR, China
| | - Junfang Lyu
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, 999078, Macau, SAR, China
| | - Yifan Liu
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, 999078, Macau, SAR, China
| | - Changjie Wu
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, 999078, Macau, SAR, China
| | - Eun Ju Yang
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, 999078, Macau, SAR, China
| | - Lakhansing Pardeshi
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, 999078, Macau, SAR, China
| | - Kaeling Tan
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, 999078, Macau, SAR, China
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, 999078, Macau, SAR, China
| | - Qiang Chen
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, 999078, Macau, SAR, China
| | - Xiaoling Xu
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, 999078, Macau, SAR, China
| | - Chu-Xia Deng
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, 999078, Macau, SAR, China
| | - Joong Sup Shim
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, 999078, Macau, SAR, China.
| |
Collapse
|
13
|
Ras Suppresses TXNIP Expression by Restricting Ribosome Translocation. Mol Cell Biol 2018; 38:MCB.00178-18. [PMID: 30037981 DOI: 10.1128/mcb.00178-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/16/2018] [Indexed: 12/28/2022] Open
Abstract
Oncogenic Ras upregulates aerobic glycolysis to meet the bioenergetic and biosynthetic demands of rapidly growing cells. In contrast, thioredoxin-interacting protein (TXNIP) is a potent inhibitor of glucose uptake and is frequently downregulated in human cancers. Our laboratory previously discovered that Ras activation suppresses TXNIP transcription and translation. In this study, we developed a system to study how Ras affects TXNIP translation in the absence of transcriptional effects. We show that whereas Ras drives a global increase in protein translation, it suppresses TXNIP protein synthesis by reducing the rate at which ribosomes transit the coding region of TXNIP mRNA. To investigate the underlying mechanism(s), we randomized or optimized the codons in the TXNIP message without altering the TXNIP primary amino acid sequence. Translation from these mRNA variants was still repressed by Ras, implying that mRNA secondary structure, microRNAs (miRNAs), RNA binding proteins, or codon usage does not contribute to the blockade of TXNIP synthesis. Rather, we show that the N terminus of the growing TXNIP polypeptide is the target for Ras-dependent translational repression. Our work demonstrates how Ras suppresses TXNIP translation elongation in the face of a global upregulation of protein synthesis and provides new insight into Ras-dependent metabolic reprogramming.
Collapse
|
14
|
Burdach SEG, Westhoff MA, Steinhauser MF, Debatin KM. Precision medicine in pediatric oncology. Mol Cell Pediatr 2018; 5:6. [PMID: 30171420 PMCID: PMC6119176 DOI: 10.1186/s40348-018-0084-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 08/01/2018] [Indexed: 01/06/2023] Open
Abstract
Outcome in treatment of childhood cancers has improved dramatically since the 1970s. This success was largely achieved by the implementation of cooperative clinical research trial groups that standardized and developed treatment of childhood cancer. Nevertheless, outcome in certain types of malignancies is still unfavorable. Intensification of conventional chemotherapy and radiotherapy improved outcome only marginally at the cost of acute and long-term side effects. Hence, it is necessary to develop targeted therapy strategies.Here, we review the developments and perspectives in precision medicine in pediatric oncology with a special focus on targeted drug therapies like kinase inhibitors and inducers of apoptosis, the impact of cancer genome sequencing and immunotherapy.
Collapse
Affiliation(s)
- Stefan E G Burdach
- Department of Pediatrics and Children's Cancer Research Center (CCRC), Technische Universität München, Koelner Platz 1, 80804, Munich, Germany. .,CCC München-Comprehensive Cancer Center and German Translational Cancer Research Consortium (DKTK), Partner Site Munich, Munich, Germany.
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Eythstr. 24, 89075, Ulm, Germany
| | - Maximilian Felix Steinhauser
- Department of Pediatrics and Children's Cancer Research Center (CCRC), Technische Universität München, Koelner Platz 1, 80804, Munich, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Eythstr. 24, 89075, Ulm, Germany
| |
Collapse
|
15
|
Qu X, Sun J, Zhang Y, Li J, Hu J, Li K, Gao L, Shen L. c-Myc-driven glycolysis via TXNIP suppression is dependent on glutaminase-MondoA axis in prostate cancer. Biochem Biophys Res Commun 2018; 504:415-421. [PMID: 30103944 DOI: 10.1016/j.bbrc.2018.08.069] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 08/07/2018] [Indexed: 12/20/2022]
Abstract
Oncogenic c-Myc-induced metabolic reprogramming triggers cellular dependency on exogenous glucose and glutamine. Understanding how nutrients are used may provide new target for therapeutic intervention. We previously provided an alternate route to c-Myc-driven glucose metabolism via the repression of thioredoxin-interacting protein (TXNIP), which is a potent negative regulator of glucose uptake. Herein, we demonstrate that c-Myc suppression of TXNIP is predominantly through the activation of glutaminolysis via glutaminase (GLS1) in prostate cancer cells. Glutamine depletion blocked c-Myc-dependent reductions of TXNIP and its principal regulator MondoA transcriptional activity. Further, GLS1 inhibition by either siRNA or CB-839 resumed TXNIP expression that was repressed by c-Myc. The TXNIP promoter with mutant E-Box region, which was recognized by MondoA, failed to respond to c-Myc or GLS1, indicating c-Myc repression of TXNIP by GLS1 is predominantly through the blockage of MondoA activity. Especially, ectopic TXNIP expression decreased c-Myc-induce glucose uptake and lead to a broad range of glycolytic target gene suppressions. Thus TXNIP is a key adaptor for c-Myc-driven aerobic glycolysis. Supporting the biological significance of c-Myc and TXNIP, their reciprocal relationship are correlates with patient outcome and contributes to the aggressive phenotype in PCAs.
Collapse
Affiliation(s)
- Xuan Qu
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Jing Sun
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yami Zhang
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Jun Li
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Junbi Hu
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, 710032, China; Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Kai Li
- Department of Clinical Laboratory, General Hospital of Xinjiang Military Command, 830000, China
| | - Lei Gao
- Department of Urology, Wuhan General Hospital of Guangzhou Military Region, Wuhan, Hubei, 430070, China.
| | - Liangliang Shen
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
16
|
Wang H, Dolezal JM, Kulkarni S, Lu J, Mandel J, Jackson LE, Alencastro F, Duncan AW, Prochownik EV. Myc and ChREBP transcription factors cooperatively regulate normal and neoplastic hepatocyte proliferation in mice. J Biol Chem 2018; 293:14740-14757. [PMID: 30087120 DOI: 10.1074/jbc.ra118.004099] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/02/2018] [Indexed: 12/31/2022] Open
Abstract
Analogous to the c-Myc (Myc)/Max family of bHLH-ZIP transcription factors, there exists a parallel regulatory network of structurally and functionally related proteins with Myc-like functions. Two related Myc-like paralogs, termed MondoA and MondoB/carbohydrate response element-binding protein (ChREBP), up-regulate gene expression in heterodimeric association with the bHLH-ZIP Max-like factor Mlx. Myc is necessary to support liver cancer growth, but not for normal hepatocyte proliferation. Here, we investigated ChREBP's role in these processes and its relationship to Myc. Unlike Myc loss, ChREBP loss conferred a proliferative disadvantage to normal murine hepatocytes, as did the combined loss of ChREBP and Myc. Moreover, hepatoblastomas (HBs) originating in myc-/-, chrebp-/-, or myc-/-/chrebp-/- backgrounds grew significantly more slowly. Metabolic studies on livers and HBs in all three genetic backgrounds revealed marked differences in oxidative phosphorylation, fatty acid β-oxidation (FAO), and pyruvate dehydrogenase activity. RNA-Seq of livers and HBs suggested seven distinct mechanisms of Myc-ChREBP target gene regulation. Gene ontology analysis indicated that many transcripts deregulated in the chrebp-/- background encode enzymes functioning in glycolysis, the TCA cycle, and β- and ω-FAO, whereas those dysregulated in the myc-/- background encode enzymes functioning in glycolysis, glutaminolysis, and sterol biosynthesis. In the myc-/-/chrebp-/- background, additional deregulated transcripts included those involved in peroxisomal β- and α-FAO. Finally, we observed that Myc and ChREBP cooperatively up-regulated virtually all ribosomal protein genes. Our findings define the individual and cooperative proliferative, metabolic, and transcriptional roles for the "Extended Myc Network" under both normal and neoplastic conditions.
Collapse
Affiliation(s)
- Huabo Wang
- From the Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC
| | - James M Dolezal
- From the Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC
| | - Sucheta Kulkarni
- From the Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC
| | - Jie Lu
- From the Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC
| | - Jordan Mandel
- From the Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC
| | - Laura E Jackson
- From the Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC
| | | | | | - Edward V Prochownik
- From the Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC, .,the Pittsburgh Liver Center.,the Hillman Cancer Center of UPMC, and.,the Department of Microbiology and Molecular Genetics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15224
| |
Collapse
|
17
|
The MYC transcription factor network: balancing metabolism, proliferation and oncogenesis. Front Med 2018; 12:412-425. [PMID: 30054853 PMCID: PMC7358075 DOI: 10.1007/s11684-018-0650-z] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/21/2018] [Indexed: 12/28/2022]
Abstract
Transcription factor networks have evolved in order to control, coordinate, and separate, the functions of distinct network modules spatially and temporally. In this review we focus on the MYC network (also known as the MAX-MLX Network), a highly conserved super-family of related basic-helix-loop-helix-zipper (bHLHZ) proteins that functions to integrate extracellular and intracellular signals and modulate global gene expression. Importantly the MYC network has been shown to be deeply involved in a broad spectrum of human and other animal cancers. Here we summarize molecular and biological properties of the network modules with emphasis on functional interactions among network members. We suggest that these network interactions serve to modulate growth and metabolism at the transcriptional level in order to balance nutrient demand with supply, to maintain growth homeostasis, and to influence cell fate. Moreover, oncogenic activation of MYC and/or loss of a MYC antagonist, results in an imbalance in the activity of the network as a whole, leading to tumor initiation, progression and maintenance.
Collapse
|
18
|
Walker CJ, Rush CM, Dama P, O’Hern MJ, Cosgrove CM, Gillespie JL, Zingarelli RA, Smith B, Stein ME, Mutch DG, Shakya R, Chang CW, Selvendiran K, Song JW, Cohn DE, Goodfellow PJ. MAX Mutations in Endometrial Cancer: Clinicopathologic Associations and Recurrent MAX p.His28Arg Functional Characterization. J Natl Cancer Inst 2018; 110:517-526. [PMID: 29155953 PMCID: PMC6279289 DOI: 10.1093/jnci/djx238] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/16/2017] [Accepted: 10/10/2017] [Indexed: 12/30/2022] Open
Abstract
Background Genomic studies have revealed that multiple genes are mutated at varying frequency in endometrial cancer (EC); however, the relevance of many of these mutations is poorly understood. An EC-specific recurrent mutation in the MAX transcription factor p.His28Arg was recently discovered. We sought to assess the functional consequences of this hotspot mutation and determine its association with cancer-relevant phenotypes. Methods MAX was sequenced in 509 endometrioid ECs, and associations between mutation status and clinicopathologic features were assessed. EC cell lines stably expressing MAXH28R were established and used for functional experiments. DNA binding was examined using electrophoretic mobility shift assays and chromatin immunoprecipitation. Transcriptional profiling was performed with microarrays. Murine flank (six to 11 mice per group) and intraperitoneal tumor models were used for in vivo studies. Vascularity of xenografts was assessed by MECA-32 immunohistochemistry. The paracrine pro-angiogenic nature of MAXH28R-expressing EC cells was tested using microfluidic HUVEC sprouting assays and VEGFA enzyme-linked immunosorbent assays. All statistical tests were two-sided. Results Twenty-two of 509 tumors harbored mutations in MAX, including 12 tumors with the p.His28Arg mutation. Patients with a MAX mutation had statistically significantly reduced recurrence-free survival (hazard ratio = 4.00, 95% confidence interval = 1.15 to 13.91, P = .03). MAXH28R increased affinity for canonical E-box sequences, and MAXH28R-expressing EC cells dramatically altered transcriptional profiles. MAXH28R-derived xenografts statistically significantly increased vascular area compared with MAXWT and empty vector tumors (P = .003 and P = .008, respectively). MAXH28R-expressing EC cells secreted nearly double the levels of VEGFA compared with MAXWT cells (P = .03, .005, and .005 at 24, 48, and 72 hours, respectively), and conditioned media from MAXH28R cells increased sprouting when applied to HUVECs. Conclusion These data highlight the importance of MAX mutations in EC and point to increased vascularity as one mechanism contributing to clinical aggressiveness of EC.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Amino Acid Substitution/genetics
- Animals
- Animals, Outbred Strains
- Arginine/genetics
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics
- Carcinoma, Endometrioid/epidemiology
- Carcinoma, Endometrioid/genetics
- Carcinoma, Endometrioid/pathology
- Cells, Cultured
- Codon, Nonsense
- Endometrial Neoplasms/epidemiology
- Endometrial Neoplasms/genetics
- Endometrial Neoplasms/pathology
- Female
- Genetic Association Studies
- Genetic Predisposition to Disease
- HEK293 Cells
- Histidine/genetics
- Humans
- Mice
- Mice, Nude
- Middle Aged
- Neoplasm Invasiveness
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
Collapse
Affiliation(s)
| | - Craig M Rush
- James Comprehensive Cancer Center
- Department of Obstetrics and Gynecology
| | - Paola Dama
- James Comprehensive Cancer Center
- Department of Obstetrics and Gynecology
| | - Matthew J O’Hern
- James Comprehensive Cancer Center
- Department of Obstetrics and Gynecology
| | - Casey M Cosgrove
- James Comprehensive Cancer Center
- Department of Obstetrics and Gynecology
| | | | - Roman A Zingarelli
- James Comprehensive Cancer Center
- Department of Obstetrics and Gynecology
| | - Blair Smith
- James Comprehensive Cancer Center
- Department of Obstetrics and Gynecology
| | - Maggie E Stein
- James Comprehensive Cancer Center
- Department of Obstetrics and Gynecology
| | - David G Mutch
- Siteman Cancer Center and the Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO
| | | | | | | | - Jonathan W Song
- James Comprehensive Cancer Center
- Department of Mechanical and Aerospace Engineering The Ohio State University, Columbus, OH
| | - David E Cohn
- James Comprehensive Cancer Center
- Department of Obstetrics and Gynecology
| | - Paul J Goodfellow
- James Comprehensive Cancer Center
- Department of Obstetrics and Gynecology
| |
Collapse
|
19
|
Schaub FX, Dhankani V, Berger AC, Trivedi M, Richardson AB, Shaw R, Zhao W, Zhang X, Ventura A, Liu Y, Ayer DE, Hurlin PJ, Cherniack AD, Eisenman RN, Bernard B, Grandori C. Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas. Cell Syst 2018; 6:282-300.e2. [PMID: 29596783 PMCID: PMC5892207 DOI: 10.1016/j.cels.2018.03.003] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 02/06/2018] [Accepted: 03/02/2018] [Indexed: 12/19/2022]
Abstract
Although the MYC oncogene has been implicated in cancer, a systematic assessment of alterations of MYC, related transcription factors, and co-regulatory proteins, forming the proximal MYC network (PMN), across human cancers is lacking. Using computational approaches, we define genomic and proteomic features associated with MYC and the PMN across the 33 cancers of The Cancer Genome Atlas. Pan-cancer, 28% of all samples had at least one of the MYC paralogs amplified. In contrast, the MYC antagonists MGA and MNT were the most frequently mutated or deleted members, proposing a role as tumor suppressors. MYC alterations were mutually exclusive with PIK3CA, PTEN, APC, or BRAF alterations, suggesting that MYC is a distinct oncogenic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such as immune response and growth factor signaling; chromatin, translation, and DNA replication/repair were conserved pan-cancer. This analysis reveals insights into MYC biology and is a reference for biomarkers and therapeutics for cancers with alterations of MYC or the PMN.
Collapse
Affiliation(s)
- Franz X Schaub
- Cure First, Seattle, WA, USA; SEngine Precision Medicine, Seattle, WA, USA
| | | | - Ashton C Berger
- The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | | | | | - Reid Shaw
- SEngine Precision Medicine, Seattle, WA, USA
| | - Wei Zhao
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaoyang Zhang
- Dana-Farber Cancer Institute, the Broad Institute of Harvard and MIT, and Harvard Medical School, Boston, MA, USA
| | - Andrea Ventura
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yuexin Liu
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Donald E Ayer
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Peter J Hurlin
- Shriners Hospitals for Children Research Center, Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Andrew D Cherniack
- Dana-Farber Cancer Institute, the Broad Institute of Harvard and MIT, and Harvard Medical School, Boston, MA, USA
| | - Robert N Eisenman
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Brady Bernard
- Institute for Systems Biology, Seattle, WA, USA; Providence Health and Services, Portland, OR, USA.
| | - Carla Grandori
- Cure First, Seattle, WA, USA; SEngine Precision Medicine, Seattle, WA, USA.
| |
Collapse
|
20
|
Richards P, Ourabah S, Montagne J, Burnol AF, Postic C, Guilmeau S. MondoA/ChREBP: The usual suspects of transcriptional glucose sensing; Implication in pathophysiology. Metabolism 2017; 70:133-151. [PMID: 28403938 DOI: 10.1016/j.metabol.2017.01.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/21/2017] [Indexed: 12/22/2022]
Abstract
Identification of the Mondo glucose-responsive transcription factors family, including the MondoA and MondoB/ChREBP paralogs, has shed light on the mechanism whereby glucose affects gene transcription. They have clearly emerged, in recent years, as key mediators of glucose sensing by multiple cell types. MondoA and ChREBP have overlapping yet distinct expression profiles, which underlie their downstream targets and separate roles in regulating genes involved in glucose metabolism. MondoA can restrict glucose uptake and influences energy utilization in skeletal muscle, while ChREBP signals energy storage through de novo lipogenesis in liver and white adipose tissue. Because Mondo proteins mediate metabolic adaptations to changing glucose levels, a better understanding of cellular glucose sensing through Mondo proteins will likely uncover new therapeutic opportunities in the context of the imbalanced glucose homeostasis that accompanies metabolic diseases such as type 2 diabetes and cancer. Here, we provide an overview of structural homologies, transcriptional partners as well as the nutrient and hormonal mechanisms underlying Mondo proteins regulation. We next summarize their relative contribution to energy metabolism changes in physiological states and the evolutionary conservation of these pathways. Finally, we discuss their possible targeting in human pathologies.
Collapse
Affiliation(s)
- Paul Richards
- Inserm, U1016, Institut Cochin, Paris, 75014, France; CNRS, UMR 8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Sarah Ourabah
- Inserm, U1016, Institut Cochin, Paris, 75014, France; CNRS, UMR 8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jacques Montagne
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, UMR 9198, F-91190, Gif-sur-Yvette, France
| | - Anne-Françoise Burnol
- Inserm, U1016, Institut Cochin, Paris, 75014, France; CNRS, UMR 8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Catherine Postic
- Inserm, U1016, Institut Cochin, Paris, 75014, France; CNRS, UMR 8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Sandra Guilmeau
- Inserm, U1016, Institut Cochin, Paris, 75014, France; CNRS, UMR 8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
21
|
MNT and Emerging Concepts of MNT-MYC Antagonism. Genes (Basel) 2017; 8:genes8020083. [PMID: 28230739 PMCID: PMC5333072 DOI: 10.3390/genes8020083] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/16/2017] [Indexed: 12/25/2022] Open
Abstract
MYC family proteins play fundamental roles in stem and progenitor cell homeostasis, morphogenesis and cancer. As expected for proteins that profoundly affect the fate of cells, the activities of MYC are regulated at a multitude of levels. One mechanism with the potential to broadly affect the activities of MYC is transcriptional antagonism by a group of MYC-related transcriptional repressors. From this group, the protein MNT has emerged as having perhaps the most far-reaching impact on MYC activities. In this review, we discuss the current understanding of MNT, its regulation and how, as a MYC antagonist, it functions both as a tumor suppressor and facilitator of MYC-driven proliferation and oncogenesis.
Collapse
|
22
|
Multi-omics analyses reveal metabolic alterations regulated by hepatitis B virus core protein in hepatocellular carcinoma cells. Sci Rep 2017; 7:41089. [PMID: 28112229 PMCID: PMC5253728 DOI: 10.1038/srep41089] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 12/15/2016] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection is partly responsible for hepatitis, fatty liver disease and hepatocellular carcinoma (HCC). HBV core protein (HBc), encoded by the HBV genome, may play a significant role in HBV life cycle. However, the function of HBc in the occurrence and development of liver disease is still unclear. To investigate the underlying mechanisms, HBc-transfected HCC cells were characterized by multi-omics analyses. Combining proteomics and metabolomics analyses, our results showed that HBc promoted the expression of metabolic enzymes and the secretion of metabolites in HCC cells. In addition, glycolysis and amino acid metabolism were significantly up-regulated by HBc. Moreover, Max-like protein X (MLX) might be recruited and enriched by HBc in the nucleus to regulate glycolysis pathways. This study provides further insights into the function of HBc in the molecular pathogenesis of HBV-induced diseases and indicates that metabolic reprogramming appears to be a hallmark of HBc transfection.
Collapse
|
23
|
Mondo complexes regulate TFEB via TOR inhibition to promote longevity in response to gonadal signals. Nat Commun 2016; 7:10944. [PMID: 27001890 DOI: 10.1038/ncomms10944] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 02/03/2016] [Indexed: 12/18/2022] Open
Abstract
Germline removal provokes longevity in several species and shifts resources towards survival and repair. Several Caenorhabditis elegans transcription factors regulate longevity arising from germline removal; yet, how they work together is unknown. Here we identify a Myc-like HLH transcription factor network comprised of Mondo/Max-like complex (MML-1/MXL-2) to be required for longevity induced by germline removal, as well as by reduced TOR, insulin/IGF signalling and mitochondrial function. Germline removal increases MML-1 nuclear accumulation and activity. Surprisingly, MML-1 regulates nuclear localization and activity of HLH-30/TFEB, a convergent regulator of autophagy, lysosome biogenesis and longevity, by downregulating TOR signalling via LARS-1/leucyl-transfer RNA synthase. HLH-30 also upregulates MML-1 upon germline removal. Mammalian MondoA/B and TFEB show similar mutual regulation. MML-1/MXL-2 and HLH-30 transcriptomes show both shared and preferential outputs including MDL-1/MAD-like HLH factor required for longevity. These studies reveal how an extensive interdependent HLH transcription factor network distributes responsibility and mutually enforces states geared towards reproduction or survival.
Collapse
|
24
|
Li Y, Liu H, Barta CL, Judge PD, Zhao L, Zhang WJ, Gong S, Beisel KW, He DZZ. Transcription Factors Expressed in Mouse Cochlear Inner and Outer Hair Cells. PLoS One 2016; 11:e0151291. [PMID: 26974322 PMCID: PMC4790917 DOI: 10.1371/journal.pone.0151291] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 02/25/2016] [Indexed: 11/24/2022] Open
Abstract
Regulation of gene expression is essential to determining the functional complexity and morphological diversity seen among different cells. Transcriptional regulation is a crucial step in gene expression regulation because the genetic information is directly read from DNA by sequence-specific transcription factors (TFs). Although several mouse TF databases created from genome sequences and transcriptomes are available, a cell type-specific TF database from any normal cell populations is still lacking. We identify cell type-specific TF genes expressed in cochlear inner hair cells (IHCs) and outer hair cells (OHCs) using hair cell-specific transcriptomes from adult mice. IHCs and OHCs are the two types of sensory receptor cells in the mammalian cochlea. We show that 1,563 and 1,616 TF genes are respectively expressed in IHCs and OHCs among 2,230 putative mouse TF genes. While 1,536 are commonly expressed in both populations, 73 genes are differentially expressed (with at least a twofold difference) in IHCs and 13 are differentially expressed in OHCs. Our datasets represent the first cell type-specific TF databases for two populations of sensory receptor cells and are key informational resources for understanding the molecular mechanism underlying the biological properties and phenotypical differences of these cells.
Collapse
Affiliation(s)
- Yi Li
- Department of Otorhinolaryngology—Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, 68178, United States of America
| | - Huizhan Liu
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, 68178, United States of America
| | - Cody L. Barta
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, 68178, United States of America
| | - Paul D. Judge
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, United States of America
| | - Lidong Zhao
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, 68178, United States of America
- Department of Otorhinolaryngology—Head and Neck Surgery, Chinese PLA General Hospital, Beijing, 100853, China
| | - Weiping J. Zhang
- Department of Pathophysiology, Second Military Medical University, Shanghai, 200433, China
| | - Shusheng Gong
- Department of Otorhinolaryngology—Head and Neck Surgery, Beijing Friendship Hospital, Beijing, China
| | - Kirk W. Beisel
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, 68178, United States of America
| | - David Z. Z. He
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, 68178, United States of America
- * E-mail:
| |
Collapse
|
25
|
Santinon G, Pocaterra A, Dupont S. Control of YAP/TAZ Activity by Metabolic and Nutrient-Sensing Pathways. Trends Cell Biol 2015; 26:289-299. [PMID: 26750334 DOI: 10.1016/j.tcb.2015.11.004] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 11/17/2015] [Accepted: 11/30/2015] [Indexed: 12/26/2022]
Abstract
Metabolism is a fundamental cellular function that can be reprogrammed by signaling pathways and oncogenes to meet cellular requirements. An emerging paradigm is that signaling and transcriptional networks can be in turn regulated by metabolism, allowing cells to coordinate their metabolism and behavior in an integrated manner. The activity of the YAP/TAZ transcriptional coactivators, downstream transducers of the Hippo cascade and powerful pro-oncogenic factors, was recently found to be regulated by metabolic pathways, such as aerobic glycolysis and mevalonate synthesis, and by the nutrient-sensing LKB1-AMPK and TSC-mTOR pathways. We discuss here current data linking YAP/TAZ to metabolism and suggest how this coupling might coordinate nutrient availability with genetic programs that sustain tissue growth, neoplastic cell proliferation, and tumor malignancy.
Collapse
Affiliation(s)
- Giulia Santinon
- Department of Molecular Medicine, University of Padua Medical School, Padua, Italy
| | - Arianna Pocaterra
- Department of Molecular Medicine, University of Padua Medical School, Padua, Italy
| | - Sirio Dupont
- Department of Molecular Medicine, University of Padua Medical School, Padua, Italy.
| |
Collapse
|
26
|
Network regularised Cox regression and multiplex network models to predict disease comorbidities and survival of cancer. Comput Biol Chem 2015; 59 Pt B:15-31. [DOI: 10.1016/j.compbiolchem.2015.08.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 08/21/2015] [Accepted: 08/25/2015] [Indexed: 12/17/2022]
|
27
|
Wilde BR, Ayer DE. Interactions between Myc and MondoA transcription factors in metabolism and tumourigenesis. Br J Cancer 2015; 113:1529-33. [PMID: 26469830 PMCID: PMC4705882 DOI: 10.1038/bjc.2015.360] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/10/2015] [Accepted: 09/15/2015] [Indexed: 12/16/2022] Open
Abstract
Metabolic reprogramming towards aerobic glycolysis is a common feature of
transformed cells and can be driven by a network of transcription factors. It is
well established that c-Myc and hypoxia-inducible factor-1α
(HIF-1α) contribute to metabolic reprogramming by driving the
expression of glycolytic target genes. More recently, the c-Myc-related
transcription factor MondoA has been shown to restrict glucose uptake and
aerobic glycolysis via its induction of thioredoxin-interacting protein (TXNIP).
Three recent studies demonstrate that complex and cancer type-specific
interactions between c-Myc, MondoA and HIF-1α underlie
metabolism, tumourigenesis and drug response. In triple-negative breast cancer,
c-Myc blocks MondoA-dependent activation of TXNIP to stimulate aerobic
glycolysis. In contrast, in neuroblastoma, N-Myc requires MondoA for metabolic
reprogramming and tumourigenesis. Finally, the therapeutic response of
BRAFV600E melanoma cells to vemurafenib requires downregulation
of c-Myc and HIF-1α and upregulation of MondoA-TXNIP, and the
subsequent reprogramming away from aerobic glycolysis. In this minireview we
highlight the findings in these three studies and present a working model to
explain why c-Myc and MondoA function cooperatively in some cancers and
antagonistically in others.
Collapse
Affiliation(s)
- Blake R Wilde
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112-5550, USA
| | - Donald E Ayer
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112-5550, USA
| |
Collapse
|
28
|
Diolaiti D, McFerrin L, Carroll PA, Eisenman RN. Functional interactions among members of the MAX and MLX transcriptional network during oncogenesis. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1849:484-500. [PMID: 24857747 PMCID: PMC4241192 DOI: 10.1016/j.bbagrm.2014.05.016] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 04/23/2014] [Accepted: 05/14/2014] [Indexed: 01/27/2023]
Abstract
The transcription factor MYC and its related family members MYCN and MYCL have been implicated in the etiology of a wide spectrum of human cancers. Compared to other oncoproteins, such as RAS or SRC, MYC is unique because its protein coding region is rarely mutated. Instead, MYC's oncogenic properties are unleashed by regulatory mutations leading to unconstrained high levels of expression. Under both normal and pathological conditions MYC regulates multiple aspects of cellular physiology including proliferation, differentiation, apoptosis, growth and metabolism by controlling the expression of thousands of genes. How a single transcription factor exerts such broad effects remains a fascinating puzzle. Notably, MYC is part of a network of bHLHLZ proteins centered on the MYC heterodimeric partner MAX and its counterpart, the MAX-like protein MLX. This network includes MXD1-4, MNT, MGA, MONDOA and MONDOB proteins. With some exceptions, MXD proteins have been functionally linked to cell cycle arrest and differentiation, while MONDO proteins control cellular metabolism. Although the temporal expression patterns of many of these proteins can differ markedly they are frequently expressed simultaneously in the same cellular context, and potentially bind to the same, or similar DNA consensus sequence. Here we review the activities and interactions among these proteins and propose that the broad spectrum of phenotypes elicited by MYC deregulation is intimately connected to the functions and regulation of the other network members. Furthermore, we provide a meta-analysis of TCGA data suggesting that the coordinate regulation of the network is important in MYC driven tumorigenesis. This article is part of a Special Issue entitled: Myc proteins in cell biology and pathology.
Collapse
Affiliation(s)
- Daniel Diolaiti
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, USA
| | - Lisa McFerrin
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, USA
| | - Patrick A Carroll
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, USA
| | - Robert N Eisenman
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, USA.
| |
Collapse
|
29
|
Gu H, Du J, Neto FC, Carroll PA, Turner S, Chiorean EG, Eisenman RN, Raftery D. Metabolomics method to comprehensively analyze amino acids in different domains. Analyst 2015; 140:2726-34. [PMID: 25699545 PMCID: PMC4380628 DOI: 10.1039/c4an02386b] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amino acids play essential roles in both metabolism and the proteome. Many studies have profiled free amino acids (FAAs) or proteins; however, few have connected the measurement of FAA with individual amino acids in the proteome. In this study, we developed a metabolomics method to comprehensively analyze amino acids in different domains, using two examples of different sample types and disease models. We first examined the responses of FAAs and insoluble-proteome amino acids (IPAAs) to the Myc oncogene in Tet21N human neuroblastoma cells. The metabolic and proteomic amino acid profiles were quite different, even under the same Myc condition, and their combination provided a better understanding of the biological status. In addition, amino acids were measured in 3 domains (FAAs, free and soluble-proteome amino acids (FSPAAs), and IPAAs) to study changes in serum amino acid profiles related to colon cancer. A penalized logistic regression model based on the amino acids from the three domains had better sensitivity and specificity than that from each individual domain. To the best of our knowledge, this is the first study to perform a combined analysis of amino acids in different domains, and indicates the useful biological information available from a metabolomics analysis of the protein pellet. This study lays the foundation for further quantitative tracking of the distribution of amino acids in different domains, with opportunities for better diagnosis and mechanistic studies of various diseases.
Collapse
Affiliation(s)
- Haiwei Gu
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China Institute of Technology, 418 Guanglan Ave., Nanchang, Jiangxi Province 330013, China
| | - Jianhai Du
- Department of Biochemistry, University of Washington, 750 Republican St., Seattle, WA 98109, USA
| | - Fausto Carnevale Neto
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
- Department of Organic Chemistry, Institute of Chemistry, Sao Paulo State University, Rua Francisco Degni 55, Araraquara, Sao Paulo 14800-900, Brazil
| | - Patrick Andrew Carroll
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, MS A2-025, P.O. Box 19024, Seattle, WA, 98109, USA
| | - Sally Turner
- Department of Biochemistry, University of Washington, 750 Republican St., Seattle, WA 98109, USA
| | - E. Gabriela Chiorean
- Department of Medicine, University of Washington, 825 Eastlake Ave East, Seattle, WA 98109, USA
- Indiana University Melvin and Bren Simon Cancer Center, 535 Barnhill Dr, Indianapolis, IN, 46202, USA
| | - Robert N. Eisenman
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, MS A2-025, P.O. Box 19024, Seattle, WA, 98109, USA
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| |
Collapse
|
30
|
Metabolic reprogramming in triple-negative breast cancer through Myc suppression of TXNIP. Proc Natl Acad Sci U S A 2015; 112:5425-30. [PMID: 25870263 DOI: 10.1073/pnas.1501555112] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancers (TNBCs) are aggressive and lack targeted therapies. Understanding how nutrients are used in TNBCs may provide new targets for therapeutic intervention. We demonstrate that the transcription factor c-Myc drives glucose metabolism in TNBC cells but does so by a previously unappreciated mechanism that involves direct repression of thioredoxin-interacting protein (TXNIP). TXNIP is a potent negative regulator of glucose uptake, aerobic glycolysis, and glycolytic gene expression; thus its repression by c-Myc provides an alternate route to c-Myc-driven glucose metabolism. c-Myc reduces TXNIP gene expression by binding to an E-box-containing region in the TXNIP promoter, possibly competing with the related transcription factor MondoA. TXNIP suppression increases glucose uptake and drives a dependence on glycolysis. Ectopic TXNIP expression decreases glucose uptake, reduces cell proliferation, and increases apoptosis. Supporting the biological significance of the reciprocal relationship between c-Myc and TXNIP, a Mychigh/TXNIPlow gene signature correlates with decreased overall survival and decreased metastasis-free survival in breast cancer. The correlation between the Mychigh/TXNIPlow gene signature and poor clinical outcome is evident only in TNBC, not in other breast cancer subclasses. Mutation of TP53, which is a defining molecular feature of TNBC, enhances the correlation between the Mychigh/TXNIPlow gene signature and death from breast cancer. Because Myc drives nutrient utilization and TXNIP restricts glucose availability, we propose that the Mychigh/TXNIPlow gene signature coordinates nutrient utilization with nutrient availability. Further, our data suggest that loss of the p53 tumor suppressor cooperates with Mychigh/TXNIPlow-driven metabolic dysregulation to drive the aggressive clinical behavior of TNBC.
Collapse
|
31
|
Carroll PA, Diolaiti D, McFerrin L, Gu H, Djukovic D, Du J, Cheng PF, Anderson S, Ulrich M, Hurley JB, Raftery D, Ayer DE, Eisenman RN. Deregulated Myc requires MondoA/Mlx for metabolic reprogramming and tumorigenesis. Cancer Cell 2015; 27:271-85. [PMID: 25640402 PMCID: PMC4326605 DOI: 10.1016/j.ccell.2014.11.024] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 09/02/2014] [Accepted: 11/21/2014] [Indexed: 12/16/2022]
Abstract
Deregulated Myc transcriptionally reprograms cell metabolism to promote neoplasia. Here we show that oncogenic Myc requires the Myc superfamily member MondoA, a nutrient-sensing transcription factor, for tumorigenesis. Knockdown of MondoA, or its dimerization partner Mlx, blocks Myc-induced reprogramming of multiple metabolic pathways, resulting in apoptosis. Identification and knockdown of genes coregulated by Myc and MondoA have allowed us to define metabolic functions required by deregulated Myc and demonstrate a critical role for lipid biosynthesis in survival of Myc-driven cancer. Furthermore, overexpression of a subset of Myc and MondoA coregulated genes correlates with poor outcome of patients with diverse cancers. Coregulation of cancer metabolism by Myc and MondoA provides the potential for therapeutics aimed at inhibiting MondoA and its target genes.
Collapse
Affiliation(s)
- Patrick A Carroll
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, MS A2-025, P.O. Box 19024, Seattle, WA 98109-1024, USA
| | - Daniel Diolaiti
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, MS A2-025, P.O. Box 19024, Seattle, WA 98109-1024, USA
| | - Lisa McFerrin
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, MS A2-025, P.O. Box 19024, Seattle, WA 98109-1024, USA
| | - Haiwei Gu
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican Street, Room S148, P.O. Box 358057, Seattle, WA 98109-8057, USA
| | - Danijel Djukovic
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican Street, Room S148, P.O. Box 358057, Seattle, WA 98109-8057, USA
| | - Jianhai Du
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Pei Feng Cheng
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, MS A2-025, P.O. Box 19024, Seattle, WA 98109-1024, USA
| | - Sarah Anderson
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, MS A2-025, P.O. Box 19024, Seattle, WA 98109-1024, USA
| | - Michelle Ulrich
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, MS A2-025, P.O. Box 19024, Seattle, WA 98109-1024, USA
| | - James B Hurley
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Department of Ophthalmology, University of Washington, Seattle, WA 98195, USA
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican Street, Room S148, P.O. Box 358057, Seattle, WA 98109-8057, USA; Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
| | - Donald E Ayer
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| | - Robert N Eisenman
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, MS A2-025, P.O. Box 19024, Seattle, WA 98109-1024, USA.
| |
Collapse
|
32
|
Abstract
Mammalian target of rapamycin (mTOR) integrates multiple signals, including nutrient status, growth factor availability, and stress, to regulate cellular and organismal growth. How mTOR regulates transcriptional programs in response to these diverse stimuli is poorly understood. MondoA and its obligate transcription partner Mlx are basic helix-loop-helix leucine zipper (bHLHZip) transcription factors that sense and execute a glucose-responsive transcriptional program. MondoA-Mlx complexes activate expression of thioredoxin-interacting protein (TXNIP), which is a potent inhibitor of cellular glucose uptake and aerobic glycolysis. Both mTOR and MondoA are central regulators of glucose metabolism, yet whether they interact physically or functionally is unknown. We show that inhibition of mTOR induces MondoA-dependent expression of TXNIP, coinciding with reduced glucose uptake. Mechanistically, mTOR binds to MondoA in the cytoplasm and prevents MondoA-Mlx complex formation, restricting MondoA's nuclear entry and reducing TXNIP expression. Further, we show that mTOR inhibitors and reactive oxygen species (ROS) regulate interaction between MondoA and mTOR in an opposing manner. Like mTOR's suppression of the MondoA-TXNIP axis, MondoA can also suppress mTOR complex 1 (mTORC1) activity via its direct transcriptional regulation of TXNIP. Collectively, these studies reveal a regulatory relationship between mTOR and the MondoA-TXNIP axis that we propose contributes to glucose homeostasis.
Collapse
|
33
|
Grifoni D, Bellosta P. Drosophila Myc: A master regulator of cellular performance. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:570-81. [PMID: 25010747 DOI: 10.1016/j.bbagrm.2014.06.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 06/26/2014] [Accepted: 06/30/2014] [Indexed: 11/25/2022]
Abstract
The identification of the Drosophila homolog of the human MYC oncogene has fostered a series of studies aimed to address its functions in development and cancer biology. Due to its essential roles in many fundamental biological processes it is hard to imagine a molecular mechanism in which MYC function is not required. For this reason, the easily manipulated Drosophila system has greatly helped in the dissection of the genetic and molecular pathways that regulate and are regulated by MYC function. In this review, we focus on studies of MYC in the fruitfly with particular emphasis on metabolism and cell competition, highlighting the contributions of this model system in the last decade to our understanding of MYC's complex biological nature. This article is part of a Special Issue entitled: Myc proteins in cell biology and pathology.
Collapse
Affiliation(s)
- Daniela Grifoni
- Department of "Farmacia e Biotecnologie", University of Bologna, Via Selmi 3, 40126 Bologna, Italy.
| | - Paola Bellosta
- Department of "Bioscienze", University of Milan, Via Celoria 26, 20133 Milan, Italy.
| |
Collapse
|
34
|
Gabay M, Li Y, Felsher DW. MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harb Perspect Med 2014; 4:4/6/a014241. [PMID: 24890832 DOI: 10.1101/cshperspect.a014241] [Citation(s) in RCA: 620] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The MYC proto-oncogene has been implicated in the pathogenesis of most types of human tumors. MYC activation alone in many normal cells is restrained from causing tumorigenesis through multiple genetic and epigenetically controlled checkpoint mechanisms, including proliferative arrest, apoptosis, and cellular senescence. When pathologically activated in a permissive epigenetic and/or genetic context, MYC bypasses these mechanisms, enforcing many of the "hallmark" features of cancer, including relentless tumor growth associated with DNA replication and transcription, cellular proliferation and growth, protein synthesis, and altered cellular metabolism. MYC mandates tumor cell fate, by inducing stemness and blocking cellular senescence and differentiation. Additionally, MYC orchestrates changes in the tumor microenvironment, including the activation of angiogenesis and suppression of the host immune response. Provocatively, brief or even partial suppression of MYC back to its physiological levels of activation can result in the restoration of intrinsic checkpoint mechanisms, resulting in acute and sustained tumor regression, associated with tumor cells undergoing proliferative arrest, differentiation, senescence, and apoptosis, as well as remodeling of the tumor microenvironment, recruitment of an immune response, and shutdown of angiogenesis. Hence, tumors appear to be "addicted" to MYC because of both tumor cell-intrinsic, cell-autonomous and host-dependent, immune cell-dependent mechanisms. Both the trajectory and persistence of many human cancers require sustained MYC activation. Multiscale mathematical modeling may be useful to predict when tumors will be addicted to MYC. MYC is a hallmark molecular feature of both the initiation and maintenance of tumorigenesis.
Collapse
Affiliation(s)
- Meital Gabay
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, California 94305
| | - Yulin Li
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, California 94305
| | - Dean W Felsher
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
35
|
Link JM, Hurlin PJ. The activities of MYC, MNT and the MAX-interactome in lymphocyte proliferation and oncogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:554-62. [PMID: 24731854 DOI: 10.1016/j.bbagrm.2014.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/25/2014] [Accepted: 04/04/2014] [Indexed: 12/29/2022]
Abstract
The MYC family of proteins plays essential roles in embryonic development and in oncogenesis. Efforts over the past 30 years to define the transcriptional activities of MYC and how MYC functions to promote proliferation have produced evolving models of MYC function. One picture that has emerged of MYC and its partner protein MAX is of a transcription factor complex with a seemingly unique ability to stimulate the transcription of genes that are epigenetically poised for transcription and to amplify the transcription of actively transcribed genes. During lymphocyte activation, MYC is upregulated and stimulates a pro-proliferative program in part through the upregulation of a wide variety of metabolic effector genes that facilitate cell growth and cell cycle progression. MYC upregulation simultaneously sensitizes cells to apoptosis and activated lymphocytes and lymphoma cells have pro-survival attributes that allow MYC-driven proliferation to prevail. For example, the MAX-interacting protein MNT is upregulated in activated lymphocytes and was found to protect lymphocytes from MYC-dependent apoptosis. Here we review the activities of MYC, MNT and other MAX interacting proteins in the setting of T and B cell activation and oncogenesis. This article is part of a Special Issue entitled: Myc proteins in cell biology and pathology.
Collapse
Affiliation(s)
- Jason M Link
- Shriners Hospitals for Children Portland, 3101 SW Sam Jackson Park Road, Portland, OR 97239, USA; Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | - Peter J Hurlin
- Shriners Hospitals for Children Portland, 3101 SW Sam Jackson Park Road, Portland, OR 97239, USA; Department of Cell and Developmental Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
36
|
Cermelli S, Jang IS, Bernard B, Grandori C. Synthetic lethal screens as a means to understand and treat MYC-driven cancers. Cold Spring Harb Perspect Med 2014; 4:4/3/a014209. [PMID: 24591535 DOI: 10.1101/cshperspect.a014209] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although therapeutics against MYC could potentially be used against a wide range of human cancers, MYC-targeted therapies have proven difficult to develop. The convergence of breakthroughs in human genomics and in gene silencing using RNA interference (RNAi) have recently allowed functional interrogation of the genome and systematic identification of synthetic lethal interactions with hyperactive MYC. Here, we focus on the pathways that have emerged through RNAi screens and present evidence that a subset of genes showing synthetic lethality with MYC are significantly interconnected and linked to chromatin and transcriptional processes, as well as to DNA repair and cell cycle checkpoints. Other synthetic lethal interactions with MYC point to novel pathways and potentially broaden the repertoire of targeted therapies. The elucidation of MYC synthetic lethal interactions is still in its infancy, and how these interactions may be influenced by tissue-specific programs and by concurrent genetic change will require further investigation. Nevertheless, we predict that these studies may lead the way to novel therapeutic approaches and new insights into the role of MYC in cancer.
Collapse
Affiliation(s)
- Silvia Cermelli
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | | | | | | |
Collapse
|
37
|
Conacci-Sorrell M, McFerrin L, Eisenman RN. An overview of MYC and its interactome. Cold Spring Harb Perspect Med 2014; 4:a014357. [PMID: 24384812 DOI: 10.1101/cshperspect.a014357] [Citation(s) in RCA: 326] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review is intended to provide a broad outline of the biological and molecular functions of MYC as well as of the larger protein network within which MYC operates. We present a view of MYC as a sensor that integrates multiple cellular signals to mediate a broad transcriptional response controlling many aspects of cell behavior. We also describe the larger transcriptional network linked to MYC with emphasis on the MXD family of MYC antagonists. Last, we discuss evidence that the network has evolved for millions of years, dating back to the emergence of animals.
Collapse
|
38
|
Abstract
Drosophila contains a single MYC gene. Like its vertebrate homologs, it encodes a transcription factor that activates many targets, including prominently genes involved in ribosome biogenesis and translation. This activity makes Myc a central regulator of growth and/or proliferation of many cell types, such as imaginal disc cells, polyploid cells, stem cells, and blood cells. Importantly, not only does Myc act cell autonomously but it also affects the fate of adjacent cells and tissues. This potential of Myc is harnessed by many different signaling pathways, involving, among others, Wg, Dpp, Hpo, ecdysone, insulin, and mTOR.
Collapse
Affiliation(s)
- Peter Gallant
- Julius-Maximilians-Universität Würzburg, Lehrstuhl für Biochemie und Molekularbiologie, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|