1
|
Haneya A, Lanmüller P, Panholzer B, Sommer W, Kuliczkowski W, Sokolski M, Przybylski R, Schmack B, Ali-Hasan-Al-Saegh S, Takemoto S, Zayat R, Werner N. Optimizing outcomes in heart transplantation: multidisciplinary Heart Teams and mechanical circulatory support for primary graft dysfunction. Eur Heart J Suppl 2025; 27:iv55-iv61. [PMID: 40302843 PMCID: PMC12036520 DOI: 10.1093/eurheartjsupp/suaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Heart transplantation (HTx) is a definitive treatment for selected patients with advanced heart failure. However, primary graft dysfunction (PGD), a severe early complication, is a major cause of post-HTx morbidity and mortality. This paper explores the pathophysiology, diagnostic approaches, and management strategies for PGD, with a particular focus on temporary mechanical circulatory support (MCS) devices such as venoarterial extracorporeal membrane oxygenation and Impella. It also highlights the essential role of the multidisciplinary Heart Team in optimizing outcomes through patient-tailored MCS selection and timely intervention.
Collapse
Affiliation(s)
- Assad Haneya
- Department of Cardiothoracic Surgery, Heart Centre Trier, Barmherzigen Brueder Hospital, Nordallee 1, Trier 54292, Germany
| | - Pia Lanmüller
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité, Augustenburger Platz 1, Berlin 13353, Germany
- Charité-Universitätsmedizin Berlin, Department of Cardiothoracic and Vascular Surgery, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, Berlin 13353, Germany
| | - Bernd Panholzer
- Department for Cardiac Surgery, UKSH Campus Kiel, Arnold-Heller-Straße 3, Haus C, Kiel 24105, Germany
| | - Wiebke Sommer
- Department for Cardiac Surgery, UKSH Campus Kiel, Arnold-Heller-Straße 3, Haus C, Kiel 24105, Germany
| | - Wiktor Kuliczkowski
- Institute for Heart Diseases, Wroclaw Medical University, Borowska Street 213, 50-556 Wroclaw, Poland
| | - Mateusz Sokolski
- Faculty of Medicine, Institute of Heart Diseases, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Roman Przybylski
- Cardiochirurgy and Transplantology, Wroclaw Medical University, Borowska Street 213, 50-556 Wroclaw, Poland
| | - Bastian Schmack
- Department of Cardiothoracic Transplant and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover 30625, Germany
| | - Sadeq Ali-Hasan-Al-Saegh
- Department of Cardiothoracic Transplant and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover 30625, Germany
| | - Sho Takemoto
- Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, 13th Street, Building 149, Charlestown, MA 02129, USA
| | - Rachad Zayat
- Department of Cardiothoracic Surgery, Heart Centre Trier, Barmherzigen Brueder Hospital, Nordallee 1, Trier 54292, Germany
| | - Nikos Werner
- Heart Centre Trier, Barmherzigen Brueder Hospital, Internal Medicine III/Cardiology, Nordallee 1, Trier 54292, Germany
| |
Collapse
|
2
|
Grundy EE, Shaw LC, Wang L, Lee AV, Argueta JC, Powell DJ, Ostrowski M, Jones RB, Cruz CRY, Gordish-Dressman H, Chappell NP, Bollard CM, Chiappinelli KB. A T cell receptor specific for an HLA-A*03:01-restricted epitope in the endogenous retrovirus ERV-K-Env exhibits limited recognition of its cognate epitope. Mob DNA 2024; 15:19. [PMID: 39385229 PMCID: PMC11462856 DOI: 10.1186/s13100-024-00333-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
Transposable elements (TEs) are often expressed at higher levels in tumor cells than normal cells, implicating these genomic regions as an untapped pool of tumor-associated antigens. In ovarian cancer (OC), protein from the TE ERV-K is frequently expressed by tumor cells. Here we determined whether the targeting of previously identified epitope in the envelope gene (env) of ERV-K resulted in target antigen specificity against cancer cells. We found that transducing healthy donor T cells with an ERV-K-Env-specific T cell receptor construct resulted in antigen specificity only when co-cultured with HLA-A*03:01 B lymphoblastoid cells. Furthermore, in vitro priming of several healthy donors with this epitope of ERV-K-Env did not result in target antigen specificity. These data suggest that the T cell receptor is a poor candidate for targeting this specific ERV-K-Env epitope and has limited potential as a T cell therapy for OC.
Collapse
Affiliation(s)
- Erin E Grundy
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, USA
- The George Washington University Cancer Center, Washington, DC, USA
- The Integrated Biomedical Sciences at the George Washington University, Washington, DC, USA
| | - Lauren C Shaw
- Department of Pathology and Laboratory Medicine, Center for Cellular Immunotherapies, Perelman School of Medicine, Ovarian Cancer Research Center, The University of Pennsylvania, Philadelphia, PA, USA
| | - Loretta Wang
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, USA
- The George Washington University Cancer Center, Washington, DC, USA
| | - Abigail V Lee
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, USA
- The George Washington University Cancer Center, Washington, DC, USA
- The Integrated Biomedical Sciences at the George Washington University, Washington, DC, USA
| | - James Castro Argueta
- The George Washington School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Daniel J Powell
- Department of Pathology and Laboratory Medicine, Center for Cellular Immunotherapies, Perelman School of Medicine, Ovarian Cancer Research Center, The University of Pennsylvania, Philadelphia, PA, USA
| | - Mario Ostrowski
- Department of Medicine, University of Toronto, Toronto, Canada
| | - R Brad Jones
- Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY, USA
| | - C Russell Y Cruz
- The George Washington University Cancer Center, Washington, DC, USA
- The Integrated Biomedical Sciences at the George Washington University, Washington, DC, USA
- Center for Cancer and Immunology, , Children's National Hospital, Washington, DC, United States
| | - Heather Gordish-Dressman
- The George Washington School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
- The Center for Translational Research, Children's National Hospital, Washington, DC, USA
| | | | - Catherine M Bollard
- The George Washington University Cancer Center, Washington, DC, USA
- The Integrated Biomedical Sciences at the George Washington University, Washington, DC, USA
- Center for Cancer and Immunology, , Children's National Hospital, Washington, DC, United States
| | - Katherine B Chiappinelli
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, USA.
- The George Washington University Cancer Center, Washington, DC, USA.
- The Integrated Biomedical Sciences at the George Washington University, Washington, DC, USA.
| |
Collapse
|
3
|
Gui Z, Al Moussawy M, Sanders SM, Abou-Daya KI. Innate Allorecognition in Transplantation: Ancient Mechanisms With Modern Impact. Transplantation 2024; 108:1524-1531. [PMID: 38049941 PMCID: PMC11188633 DOI: 10.1097/tp.0000000000004847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 12/06/2023]
Abstract
Through the effective targeting of the adaptive immune system, solid organ transplantation became a life-saving therapy for organ failure. However, beyond 1 y of transplantation, there is little improvement in transplant outcomes. The adaptive immune response requires the activation of the innate immune system. There are no modalities for the specific targeting of the innate immune system involvement in transplant rejection. However, the recent discovery of innate allorecognition and innate immune memory presents novel targets in transplantation that will increase our understanding of organ rejection and might aid in improving transplant outcomes. In this review, we look at the latest developments in the study of innate allorecognition and innate immune memory in transplantation.
Collapse
Affiliation(s)
- Zeping Gui
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Mouhamad Al Moussawy
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Steven M. Sanders
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Khodor I. Abou-Daya
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
4
|
Grundy EE, Shaw LC, Wang L, Powell DJ, Ostrowski M, Jones RB, Cruz CRY, Gordish-Dressman H, Bollard CM, Chiappinelli KB. Limited Immunogenicity of an HLA-A*03:01-restricted Epitope of Erv-k-env in Non-hiv-1 Settings: Implications for Adoptive Cell Therapy in Cancer. RESEARCH SQUARE 2024:rs.3.rs-4432372. [PMID: 38854052 PMCID: PMC11160923 DOI: 10.21203/rs.3.rs-4432372/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Repetitive elements (REs) are often expressed at higher levels in tumor cells than normal cells, implicating these genomic regions as an untapped pool of tumor-associated antigens. In ovarian cancer (OC), protein from the RE ERV-K is frequently expressed by tumor cells. Here we determined whether the targeting of a previously identified immunogenic epitope in the envelope gene (env) of ERV-K resulted in target antigen specificity in non-HIV-1 settings. We found that transducing healthy donor T cells with an ERV-K-Env-specific T cell receptor construct resulted in antigen specificity only when co-cultured with HLA-A*03:01 B lymphoblastoid cells. Furthermore, these transduced T cells were not specific for HLA-A*03:01 + OC cells nor for the cognate peptide in HLA-matched systems from multiple healthy donors. These data suggest that the ERV-K-Env epitope recognized by this T cell receptor is of low immunogenicity and has limited potential as a T cell target for OC.
Collapse
Affiliation(s)
| | | | | | | | | | - R Brad Jones
- Weill Cornell Graduate School of Medical Medical Sciences
| | | | | | | | | |
Collapse
|
5
|
Abbas N, You K, Getachew A, Wu F, Hussain M, Huang X, Chen Y, Pan T, Li Y. Kupffer cells abrogate homing and repopulation of allogeneic hepatic progenitors in injured liver site. Stem Cell Res Ther 2024; 15:48. [PMID: 38378583 PMCID: PMC10877762 DOI: 10.1186/s13287-024-03656-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Allogeneic hepatocyte transplantation is an emerging approach to treat acute liver defects. However, durable engraftment of the transplanted cells remains a daunting task, as they are actively cleared by the recipient's immune system. Therefore, a detailed understanding of the innate or adaptive immune cells-derived responses against allogeneic transplanted hepatic cells is the key to rationalize cell-based therapies. METHODS Here, we induced an acute inflammatory regenerative niche (3-96 h) on the surface of the liver by the application of cryo-injury (CI) to systematically evaluate the innate immune response against transplanted allogeneic hepatic progenitors in a sustained micro-inflammatory environment. RESULTS The resulting data highlighted that the injured site was significantly repopulated by alternating numbers of innate immune cells, including neutrophils, monocytes and Kupffer cells (KCs), from 3 to 96 h. The transplanted allo-HPs, engrafted 6 h post-injury, were collectively eliminated by the innate immune response within 24 h of transplantation. Selective depletion of the KCs demonstrated a delayed recruitment of monocytes from day 2 to day 6. In addition, the intrasplenic engraftment of the hepatic progenitors 54 h post-transplantation was dismantled by KCs, while a time-dependent better survival and translocation of the transplanted cells into the injured site could be observed in samples devoid of KCs. CONCLUSION Overall, this study provides evidence that KCs ablation enables a better survival and integration of allo-HPs in a sustained liver inflammatory environment, having implications for rationalizing the cell-based therapeutic interventions against liver defects.
Collapse
Affiliation(s)
- Nasir Abbas
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Centre for Regenerative Medicine and Health (CRMH), Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong, Hong Kong SAR, China
| | - Kai You
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Anteneh Getachew
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, USA
| | - Feima Wu
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Muzammal Hussain
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Xinping Huang
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yan Chen
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Tingcai Pan
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong Province, China
| | - Yinxiong Li
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China.
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou, 510530, China.
| |
Collapse
|
6
|
Tiwari A, Mukherjee S. Role of Complement-dependent Cytotoxicity Crossmatch and HLA Typing in Solid Organ Transplant. Rev Recent Clin Trials 2024; 19:34-52. [PMID: 38155466 DOI: 10.2174/0115748871266738231218145616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Solid organ transplantation is a life-saving medical operation that has progressed greatly because of developments in diagnostic tools and histocompatibility tests. Crossmatching for complement-dependent cytotoxicity (CDC) and human leukocyte antigen (HLA) typing are two important methods for checking graft compatibility and reducing the risk of graft rejection. HLA typing and CDC crossmatching are critical in kidney, heart, lung, liver, pancreas, intestine, and multi-organ transplantation. METHODS A systematic literature search was conducted on the internet, using PubMed, Scopus, and Google Scholar databases, to identify peer-reviewed publications about solid organ transplants, HLA typing, and CDC crossmatching. CONCLUSION Recent advances in HLA typing have allowed for high-resolution evaluation, epitope matching, and personalized therapy methods. Genomic profiling, next-generation sequencing, and artificial intelligence have improved HLA typing precision, resulting in better patient outcomes. Artificial intelligence (AI) driven virtual crossmatching and predictive algorithms have eliminated the requirement for physical crossmatching in the context of CDC crossmatching, boosting organ allocation and transplant efficiency. This review elaborates on the importance of HLA typing and CDC crossmatching in solid organ transplantation.
Collapse
Affiliation(s)
- Arpit Tiwari
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India
| | - Sayali Mukherjee
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India
| |
Collapse
|
7
|
Frank ML, Lu K, Erdogan C, Han Y, Hu J, Wang T, Heymach JV, Zhang J, Reuben A. T-Cell Receptor Repertoire Sequencing in the Era of Cancer Immunotherapy. Clin Cancer Res 2023; 29:994-1008. [PMID: 36413126 PMCID: PMC10011887 DOI: 10.1158/1078-0432.ccr-22-2469] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/07/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022]
Abstract
T cells are integral components of the adaptive immune system, and their responses are mediated by unique T-cell receptors (TCR) that recognize specific antigens from a variety of biological contexts. As a result, analyzing the T-cell repertoire offers a better understanding of immune responses and of diseases like cancer. Next-generation sequencing technologies have greatly enabled the high-throughput analysis of the TCR repertoire. On the basis of our extensive experience in the field from the past decade, we provide an overview of TCR sequencing, from the initial library preparation steps to sequencing and analysis methods and finally to functional validation techniques. With regards to data analysis, we detail important TCR repertoire metrics and present several computational tools for predicting antigen specificity. Finally, we highlight important applications of TCR sequencing and repertoire analysis to understanding tumor biology and developing cancer immunotherapies.
Collapse
Affiliation(s)
- Meredith L. Frank
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas
| | - Kaylene Lu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Can Erdogan
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Rice University, Houston, Texas
| | - Yi Han
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jian Hu
- The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tao Wang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, Texas
| | - John V. Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexandre Reuben
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas
| |
Collapse
|
8
|
Lim TY, Perpiñán E, Londoño MC, Miquel R, Ruiz P, Kurt AS, Kodela E, Cross AR, Berlin C, Hester J, Issa F, Douiri A, Volmer FH, Taubert R, Williams E, Demetris AJ, Lesniak A, Bensimon G, Lozano JJ, Martinez-Llordella M, Tree T, Sánchez-Fueyo A. Low dose interleukin-2 selectively expands circulating regulatory T cells but fails to promote liver allograft tolerance in humans. J Hepatol 2023; 78:153-164. [PMID: 36087863 DOI: 10.1016/j.jhep.2022.08.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND & AIMS CD4+CD25+Foxp3+ regulatory T cells (Tregs) are essential to maintain immunological tolerance and have been shown to promote liver allograft tolerance in both rodents and humans. Low-dose IL-2 (LDIL-2) can expand human endogenous circulating Tregs in vivo, but its role in suppressing antigen-specific responses and promoting Treg trafficking to the sites of inflammation is unknown. Likewise, whether LDIL-2 facilitates the induction of allograft tolerance has not been investigated in humans. METHODS We conducted a clinical trial in stable liver transplant recipients 2-6 years post-transplant to determine the capacity of LDIL-2 to suppress allospecific immune responses and allow for the complete discontinuation of maintenance immunosuppression (ClinicalTrials.gov NCT02949492). One month after LDIL-2 was initiated, those exhibiting at least a 2-fold increase in circulating Tregs gradually discontinued immunosuppression over a 4-month period while continuing LDIL-2 for a total treatment duration of 6 months. RESULTS All participants achieved a marked and sustained increase in circulating Tregs. However, this was not associated with the preferential expansion of donor-reactive Tregs and did not promote the accumulation of intrahepatic Tregs. Furthermore, LDIL-2 induced a marked IFNγ-orchestrated transcriptional response in the liver even before immunosuppression weaning was initiated. The trial was terminated after the first 6 participants failed to reach the primary endpoint owing to rejection requiring reinstitution of immunosuppression. CONCLUSIONS The expansion of circulating Tregs in response to LDIL-2 is not sufficient to control alloimmunity and to promote liver allograft tolerance, due, at least in part, to off-target effects that increase liver immunogenicity. Our trial provides unique insight into the mechanisms of action of immunomodulatory therapies such as LDIL-2 and their limitations in promoting alloantigen-specific effects and immunological tolerance. CLINICAL TRIALS REGISTRATION The study is registered at ClinicalTrials.gov (NCT02949492). IMPACT AND IMPLICATIONS The administration of low-dose IL-2 is an effective way of increasing the number of circulating regulatory T cells (Tregs), an immunosuppressive lymphocyte subset that is key for the establishment of immunological tolerance, but its use to promote allograft tolerance in the setting of clinical liver transplantation had not been explored before. In liver transplant recipients on tacrolimus monotherapy, low-dose IL-2 effectively expanded circulating Tregs but did not increase the number of Tregs with donor specificity, nor did it promote their trafficking to the transplanted liver. Low-dose IL-2 did not facilitate the discontinuation of tacrolimus and elicited, as an off-target effect, an IFNγ-orchestrated inflammatory response in the liver that resembled T cell-mediated rejection. These results, supporting an unexpected role for IL-2 in regulating the immunogenicity of the liver, highlight the need to carefully evaluate systemic immunoregulatory strategies with investigations that are not restricted to the blood compartment and involve target tissues such as the liver.
Collapse
Affiliation(s)
- Tiong Y Lim
- Institute of Liver Studies, King's College Hospital, Medical Research Council (MRC) Centre for Transplantation, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Elena Perpiñán
- Institute of Liver Studies, King's College Hospital, Medical Research Council (MRC) Centre for Transplantation, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Maria-Carlota Londoño
- Institute of Liver Studies, King's College Hospital, Medical Research Council (MRC) Centre for Transplantation, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK; Liver Unit, Hospital Clínic Barcelona, IDIBAPS, CIBERehd, Barcelona, Spain
| | - Rosa Miquel
- Institute of Liver Studies, King's College Hospital, Medical Research Council (MRC) Centre for Transplantation, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK; Liver Histopathology Laboratory, King's College Hospital, London, UK
| | - Paula Ruiz
- Institute of Liver Studies, King's College Hospital, Medical Research Council (MRC) Centre for Transplantation, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Ada S Kurt
- Institute of Liver Studies, King's College Hospital, Medical Research Council (MRC) Centre for Transplantation, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Elisavet Kodela
- Institute of Liver Studies, King's College Hospital, Medical Research Council (MRC) Centre for Transplantation, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Amy R Cross
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Claudia Berlin
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Joanna Hester
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Fadi Issa
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Abdel Douiri
- School of Population Health and Environmental Sciences, King's College London, London, UK
| | - Felix H Volmer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Richard Taubert
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Evangelia Williams
- Department of Immunobiology, School of Immunology & Microbial Sciences (SIMS), King's College London, London, UK
| | | | - Andrew Lesniak
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gilbert Bensimon
- Département de Pharmacologie Clinique, Hôpital de la Pitié-Salpêtrière et UPMC Pharmacologie, Paris-Sorbonne Université, Paris, France; Laboratoire de Biostatistique, Epidémiologie Clinique, Santé Publique Innovation et Méthodologie (BESPIM), CHU-Nîmes, Nîmes, France
| | - Juan José Lozano
- Bioinformatic Platform, Biomedical Research Center in Hepatic and Digestive Diseases (CIBEREHD), Carlos III Health Institute, Barcelona, Spain
| | - Marc Martinez-Llordella
- Institute of Liver Studies, King's College Hospital, Medical Research Council (MRC) Centre for Transplantation, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Tim Tree
- Department of Immunobiology, School of Immunology & Microbial Sciences (SIMS), King's College London, London, UK
| | - Alberto Sánchez-Fueyo
- Institute of Liver Studies, King's College Hospital, Medical Research Council (MRC) Centre for Transplantation, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| |
Collapse
|
9
|
Muacevic A, Adler JR. Classic and Current Opinions in Human Organ and Tissue Transplantation. Cureus 2022; 14:e30982. [PMID: 36337306 PMCID: PMC9624478 DOI: 10.7759/cureus.30982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2022] [Indexed: 11/30/2022] Open
Abstract
Graft tolerance is a pathophysiological condition heavily reliant on the dynamic interaction of the innate and adaptive immune systems. Genetic polymorphism determines immune responses to tissue/organ transplantation, and intricate humoral and cell-mediated mechanisms control these responses. In transplantation, the clinician's goal is to achieve a delicate equilibrium between the allogeneic immune response, undesired effects of the immunosuppressive drugs, and the existing morbidities that are potentially life-threatening. Transplant immunopathology involves sensitization, effector, and apoptosis phases which recruit and engages immunological cells like natural killer cells, lymphocytes, neutrophils, and monocytes. Similarly, these cells are involved in the transfer of normal or genetically engineered T cells. Advances in tissue transplantation would involve a profound knowledge of the molecular mechanisms that underpin the respective immunopathology involved and the design of precision medicines that are safe and effective.
Collapse
|
10
|
Charmetant X, Chen CC, Hamada S, Goncalves D, Saison C, Rabeyrin M, Rabant M, Duong van Huyen JP, Koenig A, Mathias V, Barba T, Lacaille F, le Pavec J, Brugière O, Taupin JL, Chalabreysse L, Mornex JF, Couzi L, Graff-Dubois S, Jeger-Madiot R, Tran-Dinh A, Mordant P, Paidassi H, Defrance T, Morelon E, Badet L, Nicoletti A, Dubois V, Thaunat O. Inverted direct allorecognition triggers early donor-specific antibody responses after transplantation. Sci Transl Med 2022; 14:eabg1046. [PMID: 36130013 DOI: 10.1126/scitranslmed.abg1046] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The generation of antibodies against donor-specific major histocompatibility complex (MHC) antigens, a type of donor-specific antibodies (DSAs), after transplantation requires that recipient's allospecific B cells receive help from T cells. The current dogma holds that this help is exclusively provided by the recipient's CD4+ T cells that recognize complexes of recipient's MHC II molecules and peptides derived from donor-specific MHC alloantigens, a process called indirect allorecognition. Here, we demonstrated that, after allogeneic heart transplantation, CD3ε knockout recipient mice lacking T cells generate a rapid, transient wave of switched alloantibodies, predominantly directed against MHC I molecules. This is due to the presence of donor CD4+ T cells within the graft that recognize intact recipient's MHC II molecules expressed by B cell receptor-activated allospecific B cells. Indirect evidence suggests that this inverted direct pathway is also operant in patients after transplantation. Resident memory donor CD4+ T cells were observed in perfusion liquids of human renal and lung grafts and acquired B cell helper functions upon in vitro stimulation. Furthermore, T follicular helper cells, specialized in helping B cells, were abundant in mucosa-associated lymphoid tissue of lung and intestinal grafts. In the latter, more graft-derived passenger T cells correlated with the detection of donor T cells in recipient's circulation; this, in turn, was associated with an early transient anti-MHC I DSA response and worse transplantation outcomes. We conclude that this inverted direct allorecognition is a possible explanation for the early transient anti-MHC DSA responses frequently observed after lung or intestinal transplantations.
Collapse
Affiliation(s)
- Xavier Charmetant
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Chien-Chia Chen
- Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Sarah Hamada
- French National Blood Service (EFS), HLA Laboratory, 69150 Décines, France
| | - David Goncalves
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Carole Saison
- French National Blood Service (EFS), HLA Laboratory, 69150 Décines, France
| | - Maud Rabeyrin
- Department of Pathology, Hospices Civils de Lyon, Groupement Hospitalier Est, 69500 Bron, France
| | - Marion Rabant
- Pathology Department, Assistance Publique-Hôpitaux de Paris, Hôpital Necker, 75015 Paris, France
| | | | - Alice Koenig
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), 69008 Lyon, France
- Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, 69003 Lyon, France
| | - Virginie Mathias
- French National Blood Service (EFS), HLA Laboratory, 69150 Décines, France
| | - Thomas Barba
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Florence Lacaille
- Pediatric Gastroenterology-Hepatology-Nutrition Unit, Hôpital Universitaire Necker-Enfants malades, 75015 Paris, France
| | - Jérôme le Pavec
- Department of Pulmonology and Lung Transplantation, Marie Lannelongue Hospital, 92350 Le Plessis Robinson, France
| | - Olivier Brugière
- Pulmonology Department, Adult Cystic Fibrosis Centre and Lung Transplantation Department, Foch Hospital, 92150 Suresnes, France
| | - Jean-Luc Taupin
- Laboratory of Immunology and Histocompatibility, Hôpital Saint-Louis APHP, 75010 Paris, France
- INSERM U976 Institut de Recherche Saint-Louis, Université Paris Diderot, 75010 Paris, France
| | - Lara Chalabreysse
- Department of Pathology, Hospices Civils de Lyon, Groupement Hospitalier Est, 69500 Bron, France
| | - Jean-François Mornex
- Université de Lyon, Université Lyon 1, INRAE, IVPC, UMR754, 69000 Lyon, France
- Department of Pneumology, GHE, Hospices Civils de Lyon, 69000 Lyon, France
| | - Lionel Couzi
- Department of Nephrology, Transplantation, Dialysis, Apheresis, Pellegrin Hospital, 33000 Bordeaux, France
| | - Stéphanie Graff-Dubois
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), 75013 Paris, France
| | - Raphaël Jeger-Madiot
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), 75013 Paris, France
| | - Alexy Tran-Dinh
- Université de Paris, LVTS, INSERM U1148, 75018 Paris, France
| | - Pierre Mordant
- Department of Vascular and Thoracic Surgery, Assistance Publique-Hôpitaux de Paris, Bichat-Claude Bernard Hospital, 75018 Paris, France
| | - Helena Paidassi
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Thierry Defrance
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Emmanuel Morelon
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), 69008 Lyon, France
- Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, 69003 Lyon, France
| | - Lionel Badet
- Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), 69008 Lyon, France
- Department of Urology and Transplantation Surgery, Hospices Civils de Lyon, Edouard Herriot Hospital, 69003 Lyon, France
| | | | - Valérie Dubois
- French National Blood Service (EFS), HLA Laboratory, 69150 Décines, France
| | - Olivier Thaunat
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), 69008 Lyon, France
- Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, 69003 Lyon, France
| |
Collapse
|
11
|
Wang X, Wang K, Yu M, Velluto D, Hong X, Wang B, Chiu A, Melero-Martin JM, Tomei AA, Ma M. Engineered immunomodulatory accessory cells improve experimental allogeneic islet transplantation without immunosuppression. SCIENCE ADVANCES 2022; 8:eabn0071. [PMID: 35867788 PMCID: PMC9307254 DOI: 10.1126/sciadv.abn0071] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 06/08/2022] [Indexed: 05/05/2023]
Abstract
Islet transplantation has been established as a viable treatment modality for type 1 diabetes. However, the side effects of the systemic immunosuppression required for patients often outweigh its benefits. Here, we engineer programmed death ligand-1 and cytotoxic T lymphocyte antigen 4 immunoglobulin fusion protein-modified mesenchymal stromal cells (MSCs) as accessory cells for islet cotransplantation. The engineered MSCs (eMSCs) improved the outcome of both syngeneic and allogeneic islet transplantation in diabetic mice and resulted in allograft survival for up to 100 days without any systemic immunosuppression. Immunophenotyping revealed reduced infiltration of CD4+ or CD8+ T effector cells and increased infiltration of T regulatory cells within the allografts cotransplanted with eMSCs compared to controls. The results suggest that the eMSCs can induce local immunomodulation and may be applicable in clinical islet transplantation to reduce or minimize the need of systemic immunosuppression and ameliorate its negative impact.
Collapse
Affiliation(s)
- Xi Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Kai Wang
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Ming Yu
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Diana Velluto
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Xuechong Hong
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Bo Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Alan Chiu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Juan M. Melero-Martin
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Alice A. Tomei
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL 33146, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
12
|
Li P, Feng M, Hu X, Zhang C, Zhu J, Xu G, Li L, Zhao Y. Biological evaluation of acellular bovine bone matrix treated with NaOH. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:58. [PMID: 35838844 PMCID: PMC9287214 DOI: 10.1007/s10856-022-06678-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
We mainly proceed from the view of biological effect to study the acellular bovine bone matrix (ABBM) by the low concentration of hydrogen oxidation. After cleaning the bovine bone routinely, it was cleaned with different concentrations of NaOH and stained with hematoxylin-eosin (HE) to observe the effect of decellulization. The effect of bovine bone matrix treated with NaOH were observed by optical microscopy and scanning electron microscopy (SEM), and compared by DNA residue detection. Cell toxicity was also evaluated in MC3T3-E1 cells by CCK-8. For the in vitro osteogenesis detection, alkaline phosphatase (ALP) staining and alizarin red (AR) staining were performed in MC3T3-E1 cells. And the in vivo experiment, Micro CT, HE and Masson staining were used to observe whether the osteogenic effect of the materials treated with 1% NaOH solution was affected at 6 and 12 weeks. After the bovine bone was decellularized with different concentrations of NaOH solution, HE staining showed that ultrasonic cleaning with 1% NaOH solution for 30 min had the best effect of decellularization. The SEM showed that ABBM treated with 1% NaOH solution had few residual cells on the surface of the three-dimensional porous compared to ABBM treated with conventional chemical reagents. DNA residues and cytotoxicity of ABBM treated with 1% NaOH were both reduced. The results of ALP staining and AR staining showed that ABBM treated with 1% NaOH solution had no effect on the osteogenesis effect. The results of micro-CT, HE staining and Masson staining in animal experiments also showed that ABBM treated with 1% NaOH solution had no effect on the osteogenesis ability. The decellularization treatment of ABBM with the low concentration of NaOH can be more cost-effective, effectively remove the residual cellular components, without affecting the osteogenic ability. Our work may provide a novelty thought and a modified method to applicate the acellular bovine bone matrix clinically better. Graphical abstract.
Collapse
Affiliation(s)
- Pengfei Li
- Institute of Orthopedics, Fourth Medical Center of the General Hospital of CPLA, 100048, Beijing, PR China
- Beijing Engineering Research Center of Orthopaedic Implants, 100048, Beijing, PR China
| | - Mengchun Feng
- Institute of Orthopedics, Fourth Medical Center of the General Hospital of CPLA, 100048, Beijing, PR China
- Beijing Engineering Research Center of Orthopaedic Implants, 100048, Beijing, PR China
| | - Xiantong Hu
- Institute of Orthopedics, Fourth Medical Center of the General Hospital of CPLA, 100048, Beijing, PR China
- Beijing Engineering Research Center of Orthopaedic Implants, 100048, Beijing, PR China
| | - Chunli Zhang
- Institute of Orthopedics, Fourth Medical Center of the General Hospital of CPLA, 100048, Beijing, PR China
- Beijing Engineering Research Center of Orthopaedic Implants, 100048, Beijing, PR China
| | - Jialiang Zhu
- Institute of Orthopedics, Fourth Medical Center of the General Hospital of CPLA, 100048, Beijing, PR China
- Beijing Engineering Research Center of Orthopaedic Implants, 100048, Beijing, PR China
| | - Gang Xu
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, 116011, Dalian, PR China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Dalian, 116011, Liaoning Province, PR China.
| | - Li Li
- Institute of Orthopedics, Fourth Medical Center of the General Hospital of CPLA, 100048, Beijing, PR China.
- Beijing Engineering Research Center of Orthopaedic Implants, 100048, Beijing, PR China.
| | - Yantao Zhao
- Institute of Orthopedics, Fourth Medical Center of the General Hospital of CPLA, 100048, Beijing, PR China.
- Beijing Engineering Research Center of Orthopaedic Implants, 100048, Beijing, PR China.
- State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, 710032, Xi'an, PR China.
| |
Collapse
|
13
|
Kidpun P, Ruanglertboon W, Chalongsuk R. State-of-the-art knowledge on the regulation of advanced therapy medicinal products. Per Med 2022; 19:251-261. [PMID: 35293224 DOI: 10.2217/pme-2021-0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Advanced therapy medicinal products (ATMPs) constitute therapeutic agents based on obtained cells, tissues or genes representing a novel treatment opportunity in medicine. In addition, ATMPs are administered into the cells or tissues of humans from the patient's own cells, donors, or genetically modified cells. Recently, the field of developing ATMPs has become a point of attention due to the clinical efficacy expected in defeating incurable diseases such as cancers and neurodegenerative disorders. Currently, there are two modes regarding the distribution of ATMPs. First, ATMPs that might be legally authorized for marketing. Second, the patients are able to access unapproved ATMPs through the hospital exemption (HE) or clinical practice program or through the compassionate use and expanded access program. The aim of this review is to discuss state-of-the-art knowledge on the regulation of ATMPs and provide regulatory recommendations.
Collapse
Affiliation(s)
- Patcharaphun Kidpun
- Department of Community Pharmacy, Faculty of Pharmacy, Silpakorn University, Sanam Chandra Palace Campus, Nakhon Pathom, Thailand
| | - Warit Ruanglertboon
- Discipline of Pharmacology, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Rapeepun Chalongsuk
- Department of Community Pharmacy, Faculty of Pharmacy, Silpakorn University, Sanam Chandra Palace Campus, Nakhon Pathom, Thailand
| |
Collapse
|
14
|
Dubouchet L, Todorov H, Seurinck R, Vallet N, Van Gassen S, Corneau A, Blanc C, Zouali H, Boland A, Deleuze JF, Ingram B, de Latour RP, Saeys Y, Socié G, Michonneau D. Operational tolerance after hematopoietic stem cell transplantation is characterized by distinct transcriptional, phenotypic, and metabolic signatures. Sci Transl Med 2022; 14:eabg3083. [PMID: 35196024 DOI: 10.1126/scitranslmed.abg3083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The mechanisms underlying operational tolerance after hematopoietic stem cell transplantation in humans are poorly understood. We studied two independent cohorts of patients who underwent allogeneic hematopoietic stem cell transplantation from human leukocyte antigen-identical siblings. Primary tolerance was associated with long-lasting reshaping of the recipients' immune system compared to their healthy donors with an increased proportion of regulatory T cell subsets and decreased T cell activation, proliferation, and migration. Transcriptomics profiles also identified a role for nicotinamide adenine dinucleotide biosynthesis in the regulation of immune cell functions. We then compared individuals with operational tolerance and nontolerant recipients at the phenotypic, transcriptomic, and metabolomic level. We observed alterations centered on CD38+-activated T and B cells in nontolerant patients. In tolerant patients, cell subsets with regulatory functions were prominent. RNA sequencing analyses highlighted modifications in the tolerant patients' transcriptomic profiles, particularly with overexpression of the ectoenzyme NT5E (encoding CD73), which could counterbalance CD38 enzymatic functions by producing adenosine. Further, metabolomic analyses suggested a central role of androgens in establishing operational tolerance. These data were confirmed using an integrative approach to evaluating the immune landscape associated with operational tolerance. Thus, balance between a CD38-activated immune state and CD73-related production of adenosine may be a key regulator of operational tolerance.
Collapse
Affiliation(s)
| | - Helena Todorov
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Applied Mathematics, Computer Science and Statistics, Ghent University, 9052 Ghent, Belgium
| | - Ruth Seurinck
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Applied Mathematics, Computer Science and Statistics, Ghent University, 9052 Ghent, Belgium
| | | | - Sofie Van Gassen
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Applied Mathematics, Computer Science and Statistics, Ghent University, 9052 Ghent, Belgium
| | - Aurélien Corneau
- Plateforme de Cytométrie de la Pitié-Salpétrière (CyPS), UMS037-PASS, Sorbonne Université-Faculté de Médecine, F-75013 Paris, France
| | - Catherine Blanc
- Plateforme de Cytométrie de la Pitié-Salpétrière (CyPS), UMS037-PASS, Sorbonne Université-Faculté de Médecine, F-75013 Paris, France
| | - Habib Zouali
- Centre d'étude du polymorphisme humain, 75010 Paris, France
| | - Anne Boland
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, 91057 Evry, France
| | - Jean-François Deleuze
- Centre d'étude du polymorphisme humain, 75010 Paris, France.,Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, 91057 Evry, France
| | | | - Regis Peffault de Latour
- Hematology Transplantation, Saint Louis Hospital, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | - Yvan Saeys
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Applied Mathematics, Computer Science and Statistics, Ghent University, 9052 Ghent, Belgium
| | - Gérard Socié
- Université de Paris, INSERM U976, F-75010 Paris, France.,Hematology Transplantation, Saint Louis Hospital, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | - David Michonneau
- Université de Paris, INSERM U976, F-75010 Paris, France.,Hematology Transplantation, Saint Louis Hospital, 1 Avenue Claude Vellefaux, 75010 Paris, France
| |
Collapse
|
15
|
Song C, Wang L, Li Q, Liao B, Qiao W, Li Q, Dong N, Li L. Generation of individualized immunocompatible endothelial cells from HLA-I-matched human pluripotent stem cells. Stem Cell Res Ther 2022; 13:48. [PMID: 35109922 PMCID: PMC8812039 DOI: 10.1186/s13287-022-02720-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/16/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Endothelial cells (ECs) derived from human-induced pluripotent stem cell (iPSC) are a valuable cell resource for cardiovascular regeneration. To avoid time-consuming preparation from primary autologous cells, the allogeneic iPSC-ECs are being expected to become "off-the-shelf" cell products. However, allorejection caused by HLA mismatching is a major barrier for this strategy. Although the "hypoimmunogenic" iPSCs could be simply generated by inhibition of HLA-I expression via β-2 microglobulin knockout (B2M KO), the deletion of HLA-I expression will activate natural killer (NK) cells, which kill the HLA-I negative cells. To inhibit NK activation, we proposed to generate HLA-matched iPSCs based on patient's HLA genotyping by HLA exchanging approach to express the required HLA allele. METHODS To establish a prototype of HLA exchanging system, the expression of HLA-I molecules of iPSCs was inhibited by CRISPR/Cas9-mediated B2M KO, and then HLA-A*11:01 allele, as a model molecule, was introduced into B2M KO iPSCs by lentiviral gene transfer. HLA-I-modified iPSCs were tested for their pluripotency and ability to differentiate into ECs. The stimulation of iPSC-EC to allogeneic T and NK cells was detected by respective co-culture of PBMC-EC and NK-EC. Finally, the iPSC-ECs were used as the seeding cells to re-endothelialize the decellularized valves. RESULTS We generated the iPSCs only expressed one HLA-A allele (HLA-A *11:01) by B2M KO plus HLA gene transfer. These HLA-I-modified iPSCs maintained pluripotency and furthermore were successfully differentiated into functional ECs assessed by tube formation assay. Single HLA-A*11:01-matched iPSC-ECs significantly less induced the allogeneic response of CD8+ T cell and NK cells expressing matched HLA-A*11:01 and other HLA-A,-B and -C alleles. These cells were successfully used to re-endothelialize the decellularized valves. CONCLUSIONS In summary, a simple HLA-I exchanging system has been created by efficient HLA engineering of iPSCs to evade both of the alloresponse of CD8+ T cells and the activation of NK cells. This technology has been applied to generate iPSC-ECs for the engineering of cellular heart valves. Our strategy should be extremely useful if the "off-the-shelf" and "non-immunogenic" allogeneic iPSCs were created for the common HLA alleles.
Collapse
Affiliation(s)
- Chanchan Song
- Institute of Clinical Oncology, Research Center of Cancer Diagnosis and Therapy, and Department of Clinical Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Linlin Wang
- Guangzhou Future Homo Sapiens Institute of Biomedicine and Health (GFBH), Guangzhou, China.,Guangzhou Regenerative Medicine Research Center, Future Homo Sapiens Institute of Regenerative Medicine Co., Ltd (FHIR), Guangzhou, China
| | - Qingyang Li
- Institute of Clinical Oncology, Research Center of Cancer Diagnosis and Therapy, and Department of Clinical Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Baoyi Liao
- Institute of Clinical Oncology, Research Center of Cancer Diagnosis and Therapy, and Department of Clinical Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Weihua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Li
- Guangzhou Future Homo Sapiens Institute of Biomedicine and Health (GFBH), Guangzhou, China.,Guangzhou Regenerative Medicine Research Center, Future Homo Sapiens Institute of Regenerative Medicine Co., Ltd (FHIR), Guangzhou, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Liangping Li
- Institute of Clinical Oncology, Research Center of Cancer Diagnosis and Therapy, and Department of Clinical Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
16
|
Wonderlich ER, Reece MD, Kulpa DA. Ex Vivo Differentiation of Resting CD4+ T Lymphocytes Enhances Detection of Replication Competent HIV-1 in Viral Outgrowth Assays. Methods Mol Biol 2022; 2407:315-331. [PMID: 34985673 DOI: 10.1007/978-1-0716-1871-4_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Quantifying the number of cells harboring inducible and replication competent HIV-1 provirus is critical to evaluating HIV-1 cure interventions, but precise quantification of the latent reservoir has proven to be technically challenging. Existing protocols to quantify the frequency of replication-competent HIV-1 in resting CD4+ T cells from long-term ART treated individuals have helped to investigate the dynamics of reservoir stability, however these approaches have significant barriers to the induction of HIV-1 expression required to effectively evaluate the intact reservoir. Differentiation of CD4+ T cells to an effector memory phenotype is a successful strategy for promoting latency reversal in vitro, and significantly enhances the performance and sensitivity of viral outgrowth assays.
Collapse
Affiliation(s)
| | - Monica D Reece
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, and Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Deanna A Kulpa
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, and Yerkes National Primate Research Center, Atlanta, GA, USA.
| |
Collapse
|
17
|
Failing Heart Transplants and Rejection-A Cellular Perspective. J Cardiovasc Dev Dis 2021; 8:jcdd8120180. [PMID: 34940535 PMCID: PMC8708043 DOI: 10.3390/jcdd8120180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022] Open
Abstract
The median survival of patients with heart transplants is relatively limited, implying one of the most relevant questions in the field—how to expand the lifespan of a heart allograft? Despite optimal transplantation conditions, we do not anticipate a rise in long-term patient survival in near future. In order to develop novel strategies for patient monitoring and specific therapies, it is critical to understand the underlying pathological mechanisms at cellular and molecular levels. These events are driven by innate immune response and allorecognition driven inflammation, which controls both tissue damage and repair in a spatiotemporal context. In addition to immune cells, also structural cells of the heart participate in this process. Novel single cell methods have opened new avenues for understanding the dynamics driving the events leading to allograft failure. Here, we review current knowledge on the cellular composition of a normal heart, and cellular mechanisms of ischemia-reperfusion injury (IRI), acute rejection and cardiac allograft vasculopathy (CAV) in the transplanted hearts. We highlight gaps in current knowledge and suggest future directions, in order to improve cellular and molecular understanding of failing heart allografts.
Collapse
|
18
|
Charmetant X, Bachelet T, Déchanet-Merville J, Walzer T, Thaunat O. Innate (and Innate-like) Lymphoid Cells: Emerging Immune Subsets With Multiple Roles Along Transplant Life. Transplantation 2021; 105:e322-e336. [PMID: 33859152 DOI: 10.1097/tp.0000000000003782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Transplant immunology is currently largely focused on conventional adaptive immunity, particularly T and B lymphocytes, which have long been considered as the only cells capable of allorecognition. In this vision, except for the initial phase of ischemia/reperfusion, during which the role of innate immune effectors is well established, the latter are largely considered as "passive" players, recruited secondarily to amplify graft destruction processes during rejection. Challenging this prevalent dogma, the recent progresses in basic immunology have unraveled the complexity of the innate immune system and identified different subsets of innate (and innate-like) lymphoid cells. As most of these cells are tissue-resident, they are overrepresented among passenger leukocytes. Beyond their role in ischemia/reperfusion, some of these subsets have been shown to be capable of allorecognition and/or of regulating alloreactive adaptive responses, suggesting that these emerging immune players are actively involved in most of the life phases of the grafts and their recipients. Drawing upon the inventory of the literature, this review synthesizes the current state of knowledge of the role of the different innate (and innate-like) lymphoid cell subsets during ischemia/reperfusion, allorecognition, and graft rejection. How these subsets also contribute to graft tolerance and the protection of chronically immunosuppressed patients against infectious and cancerous complications is also examined.
Collapse
Affiliation(s)
- Xavier Charmetant
- CIRI, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Lyon, France
| | - Thomas Bachelet
- Clinique Saint-Augustin-CTMR, ELSAN, Bordeaux, France
- Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
| | | | - Thierry Walzer
- CIRI, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Lyon, France
| | - Olivier Thaunat
- CIRI, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Lyon, France
- Department of Transplantation, Nephrology and Clinical Immunology, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
- Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| |
Collapse
|
19
|
Abdelsamed HA, Lakkis FG. The role of self-peptides in direct T cell allorecognition. J Clin Invest 2021; 131:154096. [PMID: 34720090 DOI: 10.1172/jci154096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Direct allorecognition, the ability of host T cells to recognize intact allogeneic MHC molecules on transplanted tissues, is often assumed to be less dependent on the peptide bound to the MHC molecule than are other antigen recognition pathways. In this issue of the JCI, Son et al. provide unequivocal, in vivo evidence that direct allorecognition depends on the self-peptides bound to the non-self MHC molecule. The authors demonstrate that the induction of allospecific tolerance required the presentation of self-peptides by the non-self MHC molecule, and that only a handful of these peptides accounted for a sizeable proportion of the immunogenicity of the MHC antigen. These are important findings for transplant immunologists because they provide molecular insights into the biology of direct allorecognition, the prime driver of the alloimmune response to MHC-mismatched grafts, and much-needed tools, peptide-MHC multimers, to track and study polyclonal alloreactive T cells.
Collapse
Affiliation(s)
- Hossam A Abdelsamed
- Thomas E. Starzl Transplantation Institute, Department of Surgery.,Pittsburgh Liver Research Center
| | - Fadi G Lakkis
- Thomas E. Starzl Transplantation Institute, Department of Surgery.,Department of Immunology, and.,Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
20
|
Mismatch in SIRPα, a regulatory protein in innate immunity, is associated with chronic GVHD in hematopoietic stem cell transplantation. Blood Adv 2021; 5:3407-3417. [PMID: 34495313 DOI: 10.1182/bloodadvances.2021004307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/04/2021] [Indexed: 12/18/2022] Open
Abstract
Recent compelling evidence showed that innate immune effector cells could recognize allogeneic grafts and prime an adaptive immune response. Signal regulatory protein α (SIRPα) is an immunoglobulin superfamily receptor that is expressed on myeloid cells; the interaction between SIRPα and its ubiquitously expressed ligand CD47 elicits an inhibitory signal that suppresses macrophage phagocytic function. Additional studies showed that donor-recipient mismatch in SIRPα variants might activate monocytic allorecognition, possibly as the result of non-self SIRPα-CD47 interaction. However, the frequency of SIRPα variation and its role in hematopoietic stem cell transplantation (HSCT) remains unexplored. We studied 350 patients with acute myeloid leukemia/myelodysplastic syndrome who underwent HLA-matched related HSCT and found that SIRPα allelic mismatches were present in 39% of transplantation pairs. SIRPα variant mismatch was associated with a significantly higher rate of chronic graft-versus-host disease (GVHD; hazard ratio [HR], 1.5; P = .03), especially de novo chronic GVHD (HR, 2.0; P = .01), after adjusting for other predictors. Those with mismatched SIRPα had a lower relapse rate (HR, 0.6; P = .05) and significantly longer relapse-free survival (RFS; HR, 0.6; P = .04). Notably, the effect of SIRPα variant mismatch on relapse protection was most pronounced early after HSCT and in patients who were not in remission at HSCT (cumulative incidence, 73% vs 54%; HR, 0.5; P = .01). These findings show that SIRPα variant mismatch is associated with HSCT outcomes, possibly owing to innate allorecognition. SIRPα variant matching could provide valuable information for donor selection and risk stratification in HSCT.
Collapse
|
21
|
Padma AM, Alsheikh AB, Song MJ, Akouri R, Akyürek LM, Oltean M, Brännström M, Hellström M. Immune response after allogeneic transplantation of decellularized uterine scaffolds in the rat. Biomed Mater 2021; 16. [PMID: 33946053 DOI: 10.1088/1748-605x/abfdfe] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/04/2021] [Indexed: 11/11/2022]
Abstract
Data on how the immune system reacts to decellularized scaffolds after implantation is scarce and difficult to interpret due to many heterogeneous parameters such as tissue-type match, decellularization method and treatment application. The engraftment of these scaffolds must prove safe and that they remain inert to the recipient's immune system to enable successful translational approaches and potential future clinical evaluation. Herein, we investigated the immune response after the engraftment of three decellularized scaffold types that previously showed potential to repair a uterine injury in the rat. Protocol (P) 1 and P2 were based on Triton-X100 and generated scaffolds containing 820 ng mg-1and 33 ng mg-1donor DNA per scaffold weight, respectively. Scaffolds obtained with a sodium deoxycholate-based protocol (P3) contained 160 ng donor DNA per mg tissue. The total number of infiltrating cells, and the population of CD45+leukocytes, CD4+T-cells, CD8a+cytotoxic T-cells, CD22+B-cells, NCR1+NK-cells, CD68+and CD163+macrophages were quantified on days 5, 15 and 30 after a subcutaneous allogenic (Lewis to Sprague Dawley) transplantation. Gene expression for the pro-inflammatory cytokines INF-γ, IL-1β, IL-2, IL-6 and TNF were also examined. P1 scaffolds triggered an early immune response that may had been negative for tissue regeneration but it was stabilized after 30 d. Conversely, P3 initiated a delayed immune response that appeared negative for scaffold survival. P2 scaffolds were the least immunogenic and remained similar to autologous tissue implants. Hence, an effective decellularization protocol based on a mild detergent was advantageous from an immunological perspective and appears the most promising for futurein vivouterus bioengineering applications.
Collapse
Affiliation(s)
- Arvind Manikantan Padma
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-413 45, Sweden.,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - Ahmed Baker Alsheikh
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-413 45, Sweden.,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - Min Jong Song
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-413 45, Sweden.,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden.,Department of Obstetrics and Gynecology, Yeouido St Mary's Hospital, The Catholic University of Korea, 10, 63-ro, Yeongdeungpo-gu, Seoul 07345, Republic of Korea
| | - Randa Akouri
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-413 45, Sweden.,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - Levent M Akyürek
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - Mihai Oltean
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-413 45, Sweden.,Department of Surgery, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-413 45, Sweden
| | - Mats Brännström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-413 45, Sweden.,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden.,Stockholm IVF-EUGIN, Hammarby allé 93, 120 63, Stockholm, Sweden
| | - Mats Hellström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-413 45, Sweden.,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden
| |
Collapse
|
22
|
Peltier D, Radosevich M, Ravikumar V, Pitchiaya S, Decoville T, Wood SC, Hou G, Zajac C, Oravecz-Wilson K, Sokol D, Henig I, Wu J, Kim S, Taylor A, Fujiwara H, Sun Y, Rao A, Chinnaiyan AM, Goldstein DR, Reddy P. RNA-seq of human T cells after hematopoietic stem cell transplantation identifies Linc00402 as a regulator of T cell alloimmunity. Sci Transl Med 2021; 13:13/585/eaaz0316. [PMID: 33731431 PMCID: PMC8589011 DOI: 10.1126/scitranslmed.aaz0316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/11/2020] [Accepted: 01/27/2021] [Indexed: 01/26/2023]
Abstract
Mechanisms governing allogeneic T cell responses after solid organ and allogeneic hematopoietic stem cell transplantation (HSCT) are incompletely understood. To identify lncRNAs that regulate human donor T cells after clinical HSCT, we performed RNA sequencing on T cells from healthy individuals and donor T cells from three different groups of HSCT recipients that differed in their degree of major histocompatibility complex (MHC) mismatch. We found that lncRNA differential expression was greatest in T cells after MHC-mismatched HSCT relative to T cells after either MHC-matched or autologous HSCT. Differential expression was validated in an independent patient cohort and in mixed lymphocyte reactions using ex vivo healthy human T cells. We identified Linc00402, an uncharacterized lncRNA, among the lncRNAs differentially expressed between the mismatched unrelated and matched unrelated donor T cells. We found that Linc00402 was conserved and exhibited an 88-fold increase in human T cells relative to all other samples in the FANTOM5 database. Linc00402 was also increased in donor T cells from patients who underwent allogeneic cardiac transplantation and in murine T cells. Linc00402 was reduced in patients who subsequently developed acute graft-versus-host disease. Linc00402 enhanced the activity of ERK1 and ERK2, increased FOS nuclear accumulation, and augmented expression of interleukin-2 and Egr-1 after T cell receptor engagement. Functionally, Linc00402 augmented the T cell proliferative response to an allogeneic stimulus but not to a nominal ovalbumin peptide antigen or polyclonal anti-CD3/CD28 stimulus. Thus, our studies identified Linc00402 as a regulator of allogeneic T cell function.
Collapse
Affiliation(s)
- Daniel Peltier
- Division of Hematology and Oncology, Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Molly Radosevich
- Division of Hematology and Oncology, Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Visweswaran Ravikumar
- Department of Computational Medicine & Bioinformatics, Biostatistics, Radiation Oncology, and Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA, 48109
| | | | - Thomas Decoville
- Division of Hematology and Oncology, Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Sherri C. Wood
- Department of Internal Medicine, Ann Arbor, MI, USA, 48109
| | - Guoqing Hou
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA, 48109
| | - Cynthia Zajac
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA, 48109
| | - Katherine Oravecz-Wilson
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA, 48109
| | - David Sokol
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA, 48109
| | - Israel Henig
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA, 48109
| | - Julia Wu
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA, 48109
| | - Stephanie Kim
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA, 48109
| | - Austin Taylor
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA, 48109
| | - Hideaki Fujiwara
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA, 48109
| | - Yaping Sun
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA, 48109
| | - Arvind Rao
- Department of Computational Medicine & Bioinformatics, Biostatistics, Radiation Oncology, and Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Arul M. Chinnaiyan
- Michigan Center for Translational Pathology, Department of Pathology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, USA, 48109
| | - Daniel R. Goldstein
- Department of Internal Medicine, Institute of Gerontology, Department of Microbiology and Immunology, Program of Michigan Biology of Cardiovascular Aging, Ann Arbor, MI, USA, 48109
| | - Pavan Reddy
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA, 48109.,Corresponding Author: Pavan Reddy,
| |
Collapse
|
23
|
Mo F, Mamonkin M, Brenner MK, Heslop HE. Taking T-Cell Oncotherapy Off-the-Shelf. Trends Immunol 2021; 42:261-272. [PMID: 33536140 PMCID: PMC7914205 DOI: 10.1016/j.it.2021.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/27/2022]
Abstract
Banked allogeneic or 'off-the-shelf' (OTS) T cells from healthy human donors are being developed to address the limitations of autologous cell therapies. Potential challenges of OTS T cell therapies are associated with their allogeneic origin and the possibility of graft-versus-host disease (GvHD) and host-versus-graft immune reactions. While the risk of GvHD from OTS T cells has been proved to be manageable in clinical studies, approaches to prevent immune rejection of OTS cells are at an earlier stage of development. We provide an overview of strategies to generate OTS cell therapies and mitigate alloreactivity-associated adverse events, with a focus on recent advances for preventing immune rejection.
Collapse
Affiliation(s)
- Feiyan Mo
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA; Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Maksim Mamonkin
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA; Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA; Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA; Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
24
|
Hoerster K, Uhrberg M, Wiek C, Horn PA, Hanenberg H, Heinrichs S. HLA Class I Knockout Converts Allogeneic Primary NK Cells Into Suitable Effectors for "Off-the-Shelf" Immunotherapy. Front Immunol 2021; 11:586168. [PMID: 33584651 PMCID: PMC7878547 DOI: 10.3389/fimmu.2020.586168] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/04/2020] [Indexed: 11/13/2022] Open
Abstract
Cellular immunotherapy using chimeric antigen receptors (CARs) so far has almost exclusively used autologous peripheral blood-derived T cells as immune effector cells. However, harvesting sufficient numbers of T cells is often challenging in heavily pre-treated patients with malignancies and perturbed hematopoiesis and perturbed hematopoiesis. Also, such a CAR product will always be specific for the individual patient. In contrast, NK cell infusions can be performed in non-HLA-matched settings due to the absence of alloreactivity of these innate immune cells. Still, the infused NK cells are subject to recognition and rejection by the patient's immune system, thereby limiting their life-span in vivo and undermining the possibility for multiple infusions. Here, we designed genome editing and advanced lentiviral transduction protocols to render primary human NK cells unsusceptible/resistant to an allogeneic response by the recipient's CD8+ T cells. After knocking-out surface expression of HLA class I molecules by targeting the B2M gene via CRISPR/Cas9, we also co-expressed a single-chain HLA-E molecule, thereby preventing NK cell fratricide of B2M-knockout (KO) cells via "missing self"-induced lysis. Importantly, these genetically engineered NK cells were functionally indistinguishable from their unmodified counterparts with regard to their phenotype and their natural cytotoxicity towards different AML cell lines. In co-culture assays, B2M-KO NK cells neither induced immune responses of allogeneic T cells nor re-activated allogeneic T cells which had been expanded/primed using irradiated PBMNCs of the respective NK cell donor. Our study demonstrates the feasibility of genome editing in primary allogeneic NK cells to diminish their recognition and killing by mismatched T cells and is an important prerequisite for using non-HLA-matched primary human NK cells as readily available, "off-the-shelf" immune effectors for a variety of immunotherapy indications in human cancer.
Collapse
Affiliation(s)
- Keven Hoerster
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Markus Uhrberg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University, Düsseldorf, Germany
| | - Constanze Wiek
- Department of Otorhinolaryngology & Head/Neck Surgery, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Peter A. Horn
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Essen, Germany
| | - Helmut Hanenberg
- Department of Otorhinolaryngology & Head/Neck Surgery, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Department of Pediatrics III, University Children’s Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Stefan Heinrichs
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Essen, Germany
| |
Collapse
|
25
|
McGinnis CS, Siegel DA, Xie G, Hartoularos G, Stone M, Ye CJ, Gartner ZJ, Roan NR, Lee SA. No detectable alloreactive transcriptional responses under standard sample preparation conditions during donor-multiplexed single-cell RNA sequencing of peripheral blood mononuclear cells. BMC Biol 2021; 19:10. [PMID: 33472616 PMCID: PMC7816397 DOI: 10.1186/s12915-020-00941-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/13/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Single-cell RNA sequencing (scRNA-seq) provides high-dimensional measurements of transcript counts in individual cells. However, high assay costs and artifacts associated with analyzing samples across multiple sequencing runs limit the study of large numbers of samples. Sample multiplexing technologies such as MULTI-seq and antibody hashing using single-cell multiplexing kit (SCMK) reagents (BD Biosciences) use sample-specific sequence tags to enable individual samples to be sequenced in a pooled format, markedly lowering per-sample processing and sequencing costs while minimizing technical artifacts. Critically, however, pooling samples could introduce new artifacts, partially negating the benefits of sample multiplexing. In particular, no study to date has evaluated whether pooling peripheral blood mononuclear cells (PBMCs) from unrelated donors under standard scRNA-seq sample preparation conditions (e.g., 30 min co-incubation at 4 °C) results in significant changes in gene expression resulting from alloreactivity (i.e., response to non-self). The ability to demonstrate minimal to no alloreactivity is crucial to avoid confounded data analyses, particularly for cross-sectional studies evaluating changes in immunologic gene signatures. RESULTS Here, we applied the 10x Genomics scRNA-seq platform to MULTI-seq and/or SCMK-labeled PBMCs from a single donor with and without pooling with PBMCs from unrelated donors for 30 min at 4 °C. We did not detect any alloreactivity signal between mixed and unmixed PBMCs across a variety of metrics, including alloreactivity marker gene expression in CD4+ T cells, cell type proportion shifts, and global gene expression profile comparisons using Gene Set Enrichment Analysis and Jensen-Shannon Divergence. These results were additionally mirrored in publicly-available scRNA-seq data generated using a similar experimental design. Moreover, we identified confounding gene expression signatures linked to PBMC preparation method (e.g., Trima apheresis), as well as SCMK sample classification biases against activated CD4+ T cells which were recapitulated in two other SCMK-incorporating scRNA-seq datasets. CONCLUSIONS We demonstrate that (i) mixing PBMCs from unrelated donors under standard scRNA-seq sample preparation conditions (e.g., 30 min co-incubation at 4 °C) does not cause an allogeneic response, and (ii) that Trima apheresis and PBMC sample multiplexing using SCMK reagents can introduce undesirable technical artifacts into scRNA-seq data. Collectively, these observations establish important benchmarks for future cross-sectional immunological scRNA-seq experiments.
Collapse
Affiliation(s)
- Christopher S McGinnis
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - David A Siegel
- Department of Medicine, Division of HIV/AIDS, UCSF, San Francisco, CA, USA
| | - Guorui Xie
- Gladstone Institute of Virology, San Francisco, CA, USA
- Department of Urology, UCSF, San Francisco, CA, USA
| | - George Hartoularos
- Institute for Human Genetics, UCSF, San Francisco, CA, USA
- Graduate Program in Biological and Medical Informatics, UCSF, San Francisco, CA, USA
| | - Mars Stone
- Department of Laboratory Medicine, UCSF, San Francisco, CA, USA
- Vitalant Research Institute, UCSF, San Francisco, CA, USA
| | - Chun J Ye
- Institute for Human Genetics, UCSF, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Chan Zuckerberg BioHub, UCSF, San Francisco, CA, USA
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg BioHub, UCSF, San Francisco, CA, USA
- Center for Cellular Construction, UCSF, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Nadia R Roan
- Gladstone Institute of Virology, San Francisco, CA, USA.
- Department of Urology, UCSF, San Francisco, CA, USA.
| | - Sulggi A Lee
- Department of Medicine, Division of HIV/AIDS, UCSF, San Francisco, CA, USA.
| |
Collapse
|
26
|
Olimpiadi YB, Brownson KE, Kahn JA, Kim B, Han H, Khemichian S, Fong TL, Kang I, Terando A, Lang JE. Treatment and Outcomes of Early Stage Breast Cancer in Patients with Hepatic Dysfunction. J Surg Res 2020; 256:212-219. [PMID: 32711178 PMCID: PMC7854813 DOI: 10.1016/j.jss.2020.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/08/2020] [Accepted: 06/16/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND There exists a dogma of surgical nihilism for patients with cirrhosis and breast cancer causing de-escalation of surgery and impacting survival. We hypothesized that breast cancer surgery would not result in a significant change in the Model for End-Stage Liver Disease-Sodium (MELD-Na) scores before and after surgery. METHODS We performed a single institutional retrospective review of medical records between January 2013 and July 2019 of patients with concurrent cirrhosis and breast cancer. We used the nonparametric Friedman test to compare differences in MELD-Na scores. RESULTS Eight patients with both cirrhosis and breast cancer were identified. Median follow-up was 30.5 mo. Half of the patients had Child-Pugh class A cirrhosis and half had Child-Pugh class B cirrhosis. Six (75%) patients underwent lumpectomy and two (25%) underwent mastectomy. There was no statistically significant difference (P = 0.66) in median MELD-Na score before surgery (16) and after surgery (18). Two (25%) patients experienced postoperative complications. Three patients were listed for liver transplantation. Of three listed patients, two (25%) patients underwent successful liver transplantation after breast surgery. One (12.5%) patient died without transplant. Three (37.5%) patients were alive for more than 5 y after breast cancer diagnosis without evidence of cancer recurrence. The eighth patient has remained breast cancer free for more than 6 mo since her surgery. CONCLUSIONS Surgery for patients with Child-Pugh class A and B cirrhosis and early stage breast cancer did not result in a significant change in MELD-Na score before and after surgery, suggesting that selected patients may benefit from breast cancer surgery with curative intent.
Collapse
Affiliation(s)
- Yuliya B Olimpiadi
- Division of Breast, Endocrine and Soft Tissue Surgery, Department of Surgery, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Kirstyn E Brownson
- Division of Breast, Endocrine and Soft Tissue Surgery, Department of Surgery, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Jeffrey A Kahn
- Liver Transplant Program, Division of Gastrointestinal and Liver Diseases, University of Southern California, Los Angeles, California
| | - Brian Kim
- Liver Transplant Program, Division of Gastrointestinal and Liver Diseases, University of Southern California, Los Angeles, California
| | - Hyosun Han
- Liver Transplant Program, Division of Gastrointestinal and Liver Diseases, University of Southern California, Los Angeles, California
| | - Saro Khemichian
- Liver Transplant Program, Division of Gastrointestinal and Liver Diseases, University of Southern California, Los Angeles, California
| | - Tse-Ling Fong
- Liver Transplant Program, Division of Gastrointestinal and Liver Diseases, University of Southern California, Los Angeles, California
| | - Irene Kang
- Division of Medical Oncology, Department of Medicine, University of Southern California, Los Angeles, California
| | - Alicia Terando
- Division of Breast, Endocrine and Soft Tissue Surgery, Department of Surgery, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Julie E Lang
- Division of Breast, Endocrine and Soft Tissue Surgery, Department of Surgery, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California.
| |
Collapse
|
27
|
Pathogen-reduced PRP blocks T-cell activation, induces Treg cells, and promotes TGF-β expression by cDCs and monocytes in mice. Blood Adv 2020; 4:5547-5561. [PMID: 33166410 DOI: 10.1182/bloodadvances.2020002867] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023] Open
Abstract
Alloimmunization against platelet-rich plasma (PRP) transfusions can lead to complications such as platelet refractoriness or rejection of subsequent transfusions and transplants. In mice, pathogen reduction treatment of PRP with UVB light and riboflavin (UV+R) prevents alloimmunization and appears to induce partial antigen-specific tolerance to subsequent transfusions. Herein, the in vivo responses of antigen-presenting cells and T cells to transfusion with UV+R-treated allogeneic PRP were evaluated to understand the cellular immune responses leading to antigen-specific tolerance. Mice that received UV+R-treated PRP had significantly increased transforming growth factor β (TGF-β) expression by CD11b+ CD4+ CD11cHi conventional dendritic cells (cDCs) and CD11bHi monocytes (P < .05). While robust T-cell responses to transfusions with untreated allogeneic PRP were observed (P < .05), these were blocked by UV+R treatment. Mice given UV+R-treated PRP followed by untreated PRP showed an early significant (P < .01) enrichment in regulatory T (Treg) cells and associated TGF-β production as well as diminished effector T-cell responses. Adoptive transfer of T-cell-enriched splenocytes from mice given UV+R-treated PRP into naive recipients led to a small but significant reduction of CD8+ T-cell responses to subsequent allogeneic transfusion. These data demonstrate that pathogen reduction with UV+R induces a tolerogenic profile by way of CD11b+ CD4+ cDCs, monocytes, and induction of Treg cells, blocking T-cell activation and reducing secondary T-cell responses to untreated platelets in vivo.
Collapse
|
28
|
Franco S, Noureddine A, Guo J, Keth J, Paffett ML, Brinker CJ, Serda RE. Direct Transfer of Mesoporous Silica Nanoparticles between Macrophages and Cancer Cells. Cancers (Basel) 2020; 12:cancers12102892. [PMID: 33050177 PMCID: PMC7600949 DOI: 10.3390/cancers12102892] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
Macrophages line the walls of microvasculature, extending processes into the blood flow to capture foreign invaders, including nano-scale materials. Using mesoporous silica nanoparticles (MSNs) as a model nano-scale system, we show the interplay between macrophages and MSNs from initial uptake to intercellular trafficking to neighboring cells along microtubules. The nature of cytoplasmic bridges between cells and their role in the cell-to-cell transfer of nano-scale materials is examined, as is the ability of macrophages to function as carriers of nanomaterials to cancer cells. Both direct administration of nanoparticles and adoptive transfer of nanoparticle-loaded splenocytes in mice resulted in abundant localization of nanomaterials within macrophages 24 h post-injection, predominately in the liver. While heterotypic, trans-species nanomaterial transfer from murine macrophages to human HeLa cervical cancer cells or A549 lung cancer cells was robust, transfer to syngeneic 4T1 breast cancer cells was not detected in vitro or in vivo. Cellular connections and nanomaterial transfer in vivo were rich among immune cells, facilitating coordinated immune responses.
Collapse
Affiliation(s)
- Stefan Franco
- Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA; (S.F.); (J.G.); (J.K.)
| | - Achraf Noureddine
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131, USA; (A.N.); (C.J.B.)
| | - Jimin Guo
- Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA; (S.F.); (J.G.); (J.K.)
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131, USA; (A.N.); (C.J.B.)
| | - Jane Keth
- Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA; (S.F.); (J.G.); (J.K.)
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131, USA; (A.N.); (C.J.B.)
| | - Michael L. Paffett
- Fluorescence Microscopy Shared Resource, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA;
| | - C. Jeffrey Brinker
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131, USA; (A.N.); (C.J.B.)
| | - Rita E. Serda
- Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA; (S.F.); (J.G.); (J.K.)
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131, USA; (A.N.); (C.J.B.)
- Correspondence: ; Tel.: +1-505−272−7698
| |
Collapse
|
29
|
Lu X, Ru Y, Chu C, Lv Y, Gao Y, Jia Z, Huang Y, Zhang Y, Zhao S. Lentivirus-mediated IL-10-expressing Bone Marrow Mesenchymal Stem Cells promote corneal allograft survival via upregulating lncRNA 003946 in a rat model of corneal allograft rejection. Theranostics 2020; 10:8446-8467. [PMID: 32724480 PMCID: PMC7381730 DOI: 10.7150/thno.31711] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 06/10/2020] [Indexed: 12/16/2022] Open
Abstract
Rationale: Corneal transplantation is an effective treatment to corneal blindness. However, the immune rejection imperils corneal allograft survival. An interventional modality is urgently needed to inhibit immune rejection and promote allograft survival. In our previous study, subconjunctival injections of bone marrow-derived mesenchymal stem cells (BM-MSCs) into a rat model of corneal allograft rejection extended allograft survival for 2 d. In this study, we sought to generate IL-10-overexpressing BM-MSCs, aiming to boost the survival-promoting effects of BM-MSCs on corneal allografts and explore the molecular and cellular mechanisms underlying augmented protection. Methods: A population of IL-10-overexpressing BM-MSCs (designated as IL-10-BM-MSCs) were generated by lentivirus transduction and FACS purification. The self-renewal, multi-differentiation, and immunoinhibitory capabilities of IL-10-BM-MSCs were examined by conventional assays. The IL-10-BM-MSCs were subconjunctivally injected into the model of corneal allograft rejection, and the allografts were monitored on a daily basis. The expression profiling of long noncoding RNA (lncRNA) in the allografts was revealed by RNA sequencing and verified by quantitative real-time PCR. The infiltrating immune cell type predominantly upregulating the lncRNA expression was identified by RNAscope in situ hybridization. The function of the upregulated lncRNA was proved by loss- and gain-of-function experiments both in vivo and in vitro. Results: The IL-10-BM-MSCs possessed an enhanced immunoinhibitory capability and unabated self-renewal and multi-differentiation potentials as compared to plain BM-MSCs. The subconjunctivally injected IL-10-BM-MSCs reduced immune cell infiltration and doubled allograft survival time (20 d) as compared to IL-10 protein or plain BM-MSCs in the corneal allograft rejection model. Further, IL-10-BM-MSCs significantly upregulated lncRNA 003946 expression in CD68+ macrophages infiltrating corneal allografts. Silencing and overexpressing lncRNA 003946 in macrophage cultures abolished and mimicked the IL-10-BM-MSCs' suppressing effects on the macrophages' antigen presentation, respectively. In parallel, knocking down and overexpressing the lncRNA in vivo abrogated and simulated the survival-promoting effects of IL-10-BM-MSCs on corneal allografts, respectively. Conclusion: The remarkable protective effects of IL-10-BM-MSCs support further developing them into an effective interventional modality against corneal allograft rejection. IL-10-BM-MSCs promote corneal allograft survival mainly through upregulating a novel lncRNA expression in graft-infiltrating CD68+ macrophages. LncRNA, for the first time, is integrated into an IL-10-BM-MSC-driven immunomodulatory axis against the immune rejection to corneal allograft.
Collapse
|
30
|
Xie CB, Jiang B, Qin L, Tellides G, Kirkiles-Smith NC, Jane-wit D, Pober JS. Complement-activated interferon-γ-primed human endothelium transpresents interleukin-15 to CD8+ T cells. J Clin Invest 2020; 130:3437-3452. [PMID: 32191642 PMCID: PMC7324183 DOI: 10.1172/jci135060] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/11/2020] [Indexed: 12/13/2022] Open
Abstract
Alloantibodies in presensitized transplant candidates deposit complement membrane attack complexes (MACs) on graft endothelial cells (ECs), increasing risk of CD8+ T cell-mediated acute rejection. We recently showed that human ECs endocytose MACs into Rab5+ endosomes, creating a signaling platform that stabilizes NF-κB-inducing kinase (NIK) protein. Endosomal NIK activates both noncanonical NF-κB signaling to synthesize pro-IL-1β and an NLRP3 inflammasome to process and secrete active IL-1β. IL-1β activates ECs, increasing recruitment and activation of alloreactive effector memory CD4+ T (Tem) cells. Here, we report that IFN-γ priming induced nuclear expression of IL-15/IL-15Rα complexes in cultured human ECs and that MAC-induced IL-1β stimulated translocation of IL-15/IL-15Rα complexes to the EC surface in a canonical NF-κB-dependent process in which IL-15/IL-15Rα transpresentation increased activation and maturation of alloreactive CD8+ Tem cells. Blocking NLRP3 inflammasome assembly, IL-1 receptor, or IL-15 on ECs inhibited the augmented CD8+ Tem cell responses, indicating that this pathway is not redundant. Adoptively transferred alloantibody and mouse complement deposition induced IL-15/IL-15Rα expression by human ECs lining human coronary artery grafts in immunodeficient mice, and enhanced intimal CD8+ T cell infiltration, which was markedly reduced by inflammasome inhibition, linking alloantibody to acute rejection. Inhibiting MAC signaling may similarly limit other complement-mediated pathologies.
Collapse
Affiliation(s)
| | - Bo Jiang
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Vascular Surgery, First Hospital of China Medical University, Shenyang, China
| | - Lingfeng Qin
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, USA
| | - George Tellides
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Dan Jane-wit
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
31
|
Wonderlich ER, Subramanian K, Cox B, Wiegand A, Lackman-Smith C, Bale MJ, Stone M, Hoh R, Kearney MF, Maldarelli F, Deeks SG, Busch MP, Ptak RG, Kulpa DA. Effector memory differentiation increases detection of replication-competent HIV-l in resting CD4+ T cells from virally suppressed individuals. PLoS Pathog 2019; 15:e1008074. [PMID: 31609991 PMCID: PMC6812841 DOI: 10.1371/journal.ppat.1008074] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 10/24/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022] Open
Abstract
Studies have demonstrated that intensive ART alone is not capable of eradicating HIV-1, as the virus rebounds within a few weeks upon treatment interruption. Viral rebound may be induced from several cellular subsets; however, the majority of proviral DNA has been found in antigen experienced resting CD4+ T cells. To achieve a cure for HIV-1, eradication strategies depend upon both understanding mechanisms that drive HIV-1 persistence as well as sensitive assays to measure the frequency of infected cells after therapeutic interventions. Assays such as the quantitative viral outgrowth assay (QVOA) measure HIV-1 persistence during ART by ex vivo activation of resting CD4+ T cells to induce latency reversal; however, recent studies have shown that only a fraction of replication-competent viruses are inducible by primary mitogen stimulation. Previous studies have shown a correlation between the acquisition of effector memory phenotype and HIV-1 latency reversal in quiescent CD4+ T cell subsets that harbor the reservoir. Here, we apply our mechanistic understanding that differentiation into effector memory CD4+ T cells more effectively promotes HIV-1 latency reversal to significantly improve proviral measurements in the QVOA, termed differentiation QVOA (dQVOA), which reveals a significantly higher frequency of the inducible HIV-1 replication-competent reservoir in resting CD4+ T cells.
Collapse
Affiliation(s)
| | | | - Bryan Cox
- Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
| | - Ann Wiegand
- HIV DRP, NCI at Frederick, NIH, Frederick, Maryland, United States of America
| | | | - Michael J Bale
- HIV DRP, NCI at Frederick, NIH, Frederick, Maryland, United States of America
| | - Mars Stone
- Vitalant Research Institute, San Francisco, California, United States of America.,Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Rebecca Hoh
- University of California, San Francisco (UCSF), San Francisco, California, United States of America
| | - Mary F Kearney
- HIV DRP, NCI at Frederick, NIH, Frederick, Maryland, United States of America
| | - Frank Maldarelli
- HIV DRP, NCI at Frederick, NIH, Frederick, Maryland, United States of America
| | - Steven G Deeks
- University of California, San Francisco (UCSF), San Francisco, California, United States of America
| | - Michael P Busch
- Vitalant Research Institute, San Francisco, California, United States of America.,Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Roger G Ptak
- Southern Research, Frederick, Maryland, United States of America
| | - Deanna A Kulpa
- Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
32
|
Mueller FB, Yang H, Lubetzky M, Verma A, Lee JR, Dadhania DM, Xiang JZ, Salvatore SP, Seshan SV, Sharma VK, Elemento O, Suthanthiran M, Muthukumar T. Landscape of innate immune system transcriptome and acute T cell-mediated rejection of human kidney allografts. JCI Insight 2019; 4:128014. [PMID: 31292297 PMCID: PMC6629252 DOI: 10.1172/jci.insight.128014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/28/2019] [Indexed: 12/22/2022] Open
Abstract
Acute rejection of human allografts has been viewed mostly through the lens of adaptive immunity, and the intragraft landscape of innate immunity genes has not been characterized in an unbiased fashion. We performed RNA sequencing of 34 kidney allograft biopsy specimens from 34 adult recipients; 16 were categorized as Banff acute T cell-mediated rejection (TCMR) and 18 as normal. Computational analysis of intragraft mRNA transcriptome identified significantly higher abundance of mRNA for pattern recognition receptors in TCMR compared with normal biopsies, as well as increased expression of mRNAs for cytokines, chemokines, interferons, and caspases. Intragraft levels of calcineurin mRNA were higher in TCMR biopsies, suggesting underimmunosuppression compared with normal biopsies. Cell-type-enrichment analysis revealed higher abundance of dendritic cells and macrophages in TCMR biopsies. Damage-associated molecular patterns, the endogenous ligands for pattern recognition receptors, as well markers of DNA damage were higher in TCMR. mRNA expression patterns supported increased calcium flux and indices of endoplasmic, cellular oxidative, and mitochondrial stress were higher in TCMR. Expression of mRNAs in major metabolic pathways was decreased in TCMR. Our global and unbiased transcriptome profiling identified heightened expression of innate immune system genes during an episode of TCMR in human kidney allografts.
Collapse
Affiliation(s)
| | - Hua Yang
- Division of Nephrology and Hypertension, Department of Medicine
| | - Michelle Lubetzky
- Division of Nephrology and Hypertension, Department of Medicine
- Department of Transplantation Medicine
| | - Akanksha Verma
- Department of Physiology and Biophysics, Caryl and Israel Englander Institute for Precision Medicine, Institute for Computational Biomedicine
| | - John R. Lee
- Division of Nephrology and Hypertension, Department of Medicine
- Department of Transplantation Medicine
| | - Darshana M. Dadhania
- Division of Nephrology and Hypertension, Department of Medicine
- Department of Transplantation Medicine
| | - Jenny Z. Xiang
- Genomics Resources Core Facility, Department of Microbiology and Immunology; and
| | - Steven P. Salvatore
- Division of Renal Pathology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College/NewYork–Presbyterian Hospital, New York, New York, USA
| | - Surya V. Seshan
- Division of Renal Pathology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College/NewYork–Presbyterian Hospital, New York, New York, USA
| | - Vijay K. Sharma
- Division of Nephrology and Hypertension, Department of Medicine
| | - Olivier Elemento
- Department of Physiology and Biophysics, Caryl and Israel Englander Institute for Precision Medicine, Institute for Computational Biomedicine
| | - Manikkam Suthanthiran
- Division of Nephrology and Hypertension, Department of Medicine
- Department of Transplantation Medicine
| | - Thangamani Muthukumar
- Division of Nephrology and Hypertension, Department of Medicine
- Department of Transplantation Medicine
| |
Collapse
|
33
|
Chekalin E, Rubanovich A, Tatarinova TV, Kasianov A, Bender N, Chekalina M, Staub K, Koepke N, Rühli F, Bruskin S, Morozova I. Changes in Biological Pathways During 6,000 Years of Civilization in Europe. Mol Biol Evol 2019; 36:127-140. [PMID: 30376122 DOI: 10.1093/molbev/msy201] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The beginning of civilization was a turning point in human evolution. With increasing separation from the natural environment, mankind stimulated new adaptive reactions in response to new environmental factors. In this paper, we describe direct signs of these reactions in the European population during the past 6,000 years. By comparing whole-genome data between Late Neolithic/Bronze Age individuals and modern Europeans, we revealed biological pathways that are significantly differently enriched in nonsynonymous single nucleotide polymorphisms in these two groups and which therefore could be shaped by cultural practices during the past six millennia. They include metabolic transformations, immune response, signal transduction, physical activity, sensory perception, reproduction, and cognitive functions. We demonstrated that these processes were influenced by different types of natural selection. We believe that our study opens new perspectives for more detailed investigations about when and how civilization has been modifying human genomes.
Collapse
Affiliation(s)
- Evgeny Chekalin
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Alexandr Rubanovich
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana V Tatarinova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.,Department of Biology, University of La Verne, La Verne, CA.,A. A. Kharkevich Institute for Information Transmission Problems, Moscow, Russia.,Department of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
| | - Artem Kasianov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.,Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Nicole Bender
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Marina Chekalina
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Kaspar Staub
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Nikola Koepke
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Frank Rühli
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Sergey Bruskin
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Irina Morozova
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
34
|
Tong C, Xia J, Xie B, Li M, Du F, Li C, Li Y, Shan Z, Qi Z. Immunogenicity analysis of decellularized cardiac scaffolds after transplantation into rats. Regen Med 2019; 14:447-464. [PMID: 31070505 DOI: 10.2217/rme-2018-0139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: Cardiac extracellular matrix (cECM) scaffolds are promising biomaterials for clinical applications. Our aim is to determine the immunogenicity of decellularized scaffolds from different sources for use as artificial organs during organ transplantation. Materials & methods: We transplanted Lewis rats with syngeneic (Lewis rat cECM), allogeneic (BN rat cECM) or xenogeneic (hamster cECM) decellularized cardiac scaffolds. Acute vascular and cellular rejection was quantified by immunohistochemistry and immune cell infiltration. Results: BN rat and hamster hearts were rejected following transplantation. BN and hamster cECMs had similarly low immunogenicity compared with Lewis rat cECMs and did not lead to increased rejection. Conclusion: We found that scaffolds from all sources did not induce vascular or cellular rejection and exhibited low immunogenicity.
Collapse
Affiliation(s)
- Cailing Tong
- School of Life Science, Xiamen University, Fujian, 361102, China.,Organ Transplantation Institute, Medical College, Xiamen University, Fujian, 361102, China.,Key Laboratory of Organ & Tissue Regeneration, Fujian Province, Fujian, 61102, China
| | - Junjie Xia
- Organ Transplantation Institute, Medical College, Xiamen University, Fujian, 361102, China.,Key Laboratory of Organ & Tissue Regeneration, Fujian Province, Fujian, 61102, China
| | - Baiyi Xie
- Organ Transplantation Institute, Medical College, Xiamen University, Fujian, 361102, China.,Key Laboratory of Organ & Tissue Regeneration, Fujian Province, Fujian, 61102, China
| | - Minghui Li
- Organ Transplantation Institute, Medical College, Xiamen University, Fujian, 361102, China.,Key Laboratory of Organ & Tissue Regeneration, Fujian Province, Fujian, 61102, China
| | - Feifei Du
- Organ Transplantation Institute, Medical College, Xiamen University, Fujian, 361102, China.,Key Laboratory of Organ & Tissue Regeneration, Fujian Province, Fujian, 61102, China
| | - Cheng Li
- Organ Transplantation Institute, Medical College, Xiamen University, Fujian, 361102, China.,Key Laboratory of Organ & Tissue Regeneration, Fujian Province, Fujian, 61102, China
| | - Yaguang Li
- Organ Transplantation Institute, Medical College, Xiamen University, Fujian, 361102, China.,Key Laboratory of Organ & Tissue Regeneration, Fujian Province, Fujian, 61102, China
| | - Zhonggui Shan
- Department of Cardiac Surgery, The First Affiliated Hospital of Xiamen University, Fujian, 361003, China
| | - Zhongquan Qi
- Organ Transplantation Institute, Medical College, Xiamen University, Fujian, 361102, China.,Key Laboratory of Organ & Tissue Regeneration, Fujian Province, Fujian, 61102, China
| |
Collapse
|
35
|
Fleischhauer K, Hsu KC, Shaw BE. Prevention of relapse after allogeneic hematopoietic cell transplantation by donor and cell source selection. Bone Marrow Transplant 2018; 53:1498-1507. [PMID: 29795435 PMCID: PMC7286200 DOI: 10.1038/s41409-018-0218-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 03/16/2018] [Accepted: 03/24/2018] [Indexed: 01/27/2023]
Abstract
Allogeneic hematopoietic cell transplantation (HCT) is the most established form of cancer immunotherapy and has been successfully applied for the treatment and cure of otherwise lethal neoplastic blood disorders. Cancer immune surveillance is mediated to a large extent by alloreactive T and natural killer (NK) cells recognizing genetic differences between patient and donor. Profound insights into the biology of these effector cells has been obtained over recent years and used for the development of innovative strategies for intelligent donor selection, aiming for improved graft-versus-leukemia effect without unmanageable graft-versus-host disease. The cellular composition of the stem cell source plays a major role in modulating these effects. This review summarizes the current state-of the-art of donor selection according to HLA, NK alloreactivity and stem cell source.
Collapse
Affiliation(s)
- Katharina Fleischhauer
- Institute for Experimental Cellular Therapy, University Hospital Essen, Essen, Germany.
- German Cancer Consortium, Heidelberg, Germany.
| | - Katharine C Hsu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology Program, Sloan Kettering Institute, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Bronwen E Shaw
- Center for International Blood and Marrow Transplant Research (CIBMTR), Froedtert & the Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
36
|
Kanda Y, Takeuchi A, Ozawa M, Kurosawa Y, Kawamura T, Bogdanova D, Iioka H, Kondo E, Kitazawa Y, Ueta H, Matsuno K, Kinashi T, Katakai T. Visualizing the Rapid and Dynamic Elimination of Allogeneic T Cells in Secondary Lymphoid Organs. THE JOURNAL OF IMMUNOLOGY 2018; 201:1062-1072. [PMID: 29925676 DOI: 10.4049/jimmunol.1700219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/21/2018] [Indexed: 12/17/2022]
Abstract
Allogeneic organ transplants are rejected by the recipient immune system within several days or weeks. However, the rejection process of allogeneic T (allo-T) cells is poorly understood. In this study, using fluorescence-based monitoring and two-photon live imaging in mouse adoptive transfer system, we visualized the fate of allo-T cells in the in vivo environment and showed rapid elimination in secondary lymphoid organs (SLOs). Although i.v. transferred allo-T cells efficiently entered host SLOs, including lymph nodes and the spleen, ∼70% of the cells had disappeared within 24 h. At early time points, allo-T cells robustly migrated in the T cell area, whereas after 8 h, the numbers of arrested cells and cell fragments were dramatically elevated. Apoptotic breakdown of allo-T cells released a large amount of cell debris, which was efficiently phagocytosed and cleared by CD8+ dendritic cells. Rapid elimination of allo-T cells was also observed in nu/nu recipients. Depletion of NK cells abrogated allo-T cell reduction only in a specific combination of donor and recipient genetic backgrounds. In addition, F1 hybrid transfer experiments showed that allo-T cell killing was independent of the missing-self signature typically recognized by NK cells. These suggest the presence of a unique and previously uncharacterized modality of allorecognition by the host immune system. Taken together, our findings reveal an extremely efficient and dynamic process of allogeneic lymphocyte elimination in SLOs, which could not be recapitulated in vitro and is distinct from the rejection of solid organ and bone marrow transplants.
Collapse
Affiliation(s)
- Yasuhiro Kanda
- Department of Immunology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan
| | - Arata Takeuchi
- Department of Immunology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan
| | - Madoka Ozawa
- Department of Immunology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan.,Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Yoichi Kurosawa
- Department of Immunology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan
| | - Toshihiko Kawamura
- Department of Immunology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan
| | - Dana Bogdanova
- Department of Immunology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan
| | - Hidekazu Iioka
- Department of Molecular and Cellular Pathology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan; and
| | - Eisaku Kondo
- Department of Molecular and Cellular Pathology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan; and
| | - Yusuke Kitazawa
- Department of Anatomy (Macro), Dokkyo Medical University, Mibu, Shimotsuga, Tochigi 321-0293, Japan
| | - Hisashi Ueta
- Department of Anatomy (Macro), Dokkyo Medical University, Mibu, Shimotsuga, Tochigi 321-0293, Japan
| | - Kenjiro Matsuno
- Department of Anatomy (Macro), Dokkyo Medical University, Mibu, Shimotsuga, Tochigi 321-0293, Japan
| | - Tatsuo Kinashi
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Tomoya Katakai
- Department of Immunology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan;
| |
Collapse
|
37
|
Abstract
Human immunodeficiency virus (HIV) carries abundant human cell proteins, particularly human leukocyte antigen (HLA) molecules when the virus leaves host cells. Immunization in macaques with HLAs protects the animals from simian immunodeficiency virus infection. This finding offers an alternative approach to the development of HLA molecule-based HIV vaccines. Decades of studies have enhanced a great deal of our understanding of the mechanisms of allo-immune response-mediated anti-HIV immunity. These include cell-mediated immunity, innate immunity, and antibody response. These studies provided a rationale for the future design of effective HIV vaccines.
Collapse
Affiliation(s)
- Yufei Wang
- Mucosal Immunology Unit, Dental Institute, Kings College London, Guy's Campus, London Bridge, London, SE1 9RT, UK
| |
Collapse
|
38
|
Hughes AD, Lakkis FG, Oberbarnscheidt MH. Four-Dimensional Imaging of T Cells in Kidney Transplant Rejection. J Am Soc Nephrol 2018; 29:1596-1600. [PMID: 29654214 DOI: 10.1681/asn.2017070800] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Kidney transplantation is the treatment of choice for ESRD but is complicated by the response of the recipient's immune system to nonself histocompatibility antigens on the graft, resulting in rejection. Multiphoton intravital microscopy, referred to as four-dimensional imaging because it records dynamic events in three-dimensional tissue volumes, has emerged as a powerful tool to study immunologic processes in living animals. Here, we will review advances in understanding the complex mechanisms of T cell-mediated rejection made possible by four-dimensional imaging of mouse renal allografts. We will summarize recent data showing that activated (effector) T cell migration to the graft is driven by cognate antigen presented by dendritic cells that surround and penetrate peritubular capillaries, and that T cell-dendritic cell interactions persist in the graft over time, maintaining the immune response in the tissue.
Collapse
Affiliation(s)
- Andrew D Hughes
- Thomas E. Starzl Transplantation Institute, Department of Surgery.,Physician Scientist Training Program
| | - Fadi G Lakkis
- Thomas E. Starzl Transplantation Institute, Department of Surgery.,Department of Immunology.,Division of Renal-Electrolyte, Department of Medicine, and
| | - Martin H Oberbarnscheidt
- Thomas E. Starzl Transplantation Institute, Department of Surgery, .,Department of Immunology.,Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
39
|
Tecklenborg J, Clayton D, Siebert S, Coley SM. The role of the immune system in kidney disease. Clin Exp Immunol 2018; 192:142-150. [PMID: 29453850 DOI: 10.1111/cei.13119] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2018] [Indexed: 02/06/2023] Open
Abstract
The immune system and the kidneys are closely linked. In health the kidneys contribute to immune homeostasis, while components of the immune system mediate many acute forms of renal disease and play a central role in progression of chronic kidney disease. A dysregulated immune system can have either direct or indirect renal effects. Direct immune-mediated kidney diseases are usually a consequence of autoantibodies directed against a constituent renal antigen, such as collagen IV in anti-glomerular basement membrane disease. Indirect immune-mediated renal disease often follows systemic autoimmunity with immune complex formation, but can also be due to uncontrolled activation of the complement pathways. Although the range of mechanisms of immune dysregulation leading to renal disease is broad, the pathways leading to injury are similar. Loss of immune homeostasis in renal disease results in perpetual immune cell recruitment and worsening damage to the kidney. Uncoordinated attempts at tissue repair, after immune-mediated disease or non-immune mediated injury, result in fibrosis of structures important for renal function, leading eventually to kidney failure. As renal disease often manifests clinically only when substantial damage has already occurred, new diagnostic methods and indeed treatments must be identified to inhibit further progression and promote appropriate tissue repair. Studying cases in which immune homeostasis is re-established may reveal new treatment possibilities.
Collapse
Affiliation(s)
- J Tecklenborg
- School of Medicine, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - D Clayton
- School of Medicine, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - S Siebert
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - S M Coley
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
40
|
Liu R, Merola J, Manes TD, Qin L, Tietjen GT, López-Giráldez F, Broecker V, Fang C, Xie C, Chen PM, Kirkiles-Smith NC, Jane-Wit D, Pober JS. Interferon-γ converts human microvascular pericytes into negative regulators of alloimmunity through induction of indoleamine 2,3-dioxygenase 1. JCI Insight 2018. [PMID: 29515027 DOI: 10.1172/jci.insight.97881] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Early acute rejection of human allografts is mediated by circulating alloreactive host effector memory T cells (TEM). TEM infiltration typically occurs across graft postcapillary venules and involves sequential interactions with graft-derived endothelial cells (ECs) and pericytes (PCs). While the role of ECs in allograft rejection has been extensively studied, contributions of PCs to this process are largely unknown. This study aimed to characterize the effects and mechanisms of interactions between human PCs and allogeneic TEM. We report that unstimulated PCs, like ECs, can directly present alloantigen to TEM, but while IFN-γ-activated ECs (γ-ECs) show increased ability to stimulate alloreactive T cells, IFN-γ-activated PCs (γ-PCs) instead suppress TEM proliferation but not cytokine production or signaling. RNA sequencing analysis of PCs, γ-PCs, ECs, and γ-ECs reveal induction of indoleamine 2,3-dioxygenase 1 (IDO1) in γ-PCs to significantly higher levels than in γ-ECs that correlates with tryptophan depletion in vitro. Consistently, shRNA knockdown of IDO1 markedly reduces γ-PC-mediated immunoregulatory effects. Furthermore, human PCs express IDO1 in a skin allograft rejection humanized mouse model and in human renal allografts with acute T cell-mediated rejection. We conclude that immunosuppressive properties of human PCs are not intrinsic but instead result from IFN-γ-induced IDO1-mediated tryptophan depletion.
Collapse
Affiliation(s)
| | - Jonathan Merola
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Lingfeng Qin
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Gregory T Tietjen
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Verena Broecker
- Department of Histopathology, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Caodi Fang
- Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | | | | | | | - Dan Jane-Wit
- Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
41
|
Lakkis FG, Li XC. Innate allorecognition by monocytic cells and its role in graft rejection. Am J Transplant 2018; 18:289-292. [PMID: 28722285 PMCID: PMC5775052 DOI: 10.1111/ajt.14436] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 07/07/2017] [Accepted: 07/11/2017] [Indexed: 01/25/2023]
Abstract
Innate recognition of microbial products and danger molecules by monocytes and macrophages has been well established; this is mediated primarily by pattern-recognition receptors and is central to the activation of innate and adaptive immune cells required for productive immunity. Whether monocytes and macrophages are equipped with an allorecognition system that allows them to respond directly to allogeneic grafts is a topic of much debate. Recent studies provide compelling evidence that these cells can recognize allogeneic entities and that they mediate graft rejection via direct cytotoxicity and priming of alloreactive T cells. In addition, these studies have uncovered a mechanism of innate allorecognition based on detection of the polymorphic molecule signal regulatory protein α (SIRPα) on donor cells. Further understanding of innate allorecognition and its consequences would provide essential insight into allograft rejection and lead to better therapies for transplant patients.
Collapse
Affiliation(s)
- Fadi G. Lakkis
- Thomas E. Starzl Transplantation Institute, Departments of Surgery, Immunology, and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A,To whom correspondence should be addressed:
| | - Xian C. Li
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, Texas, U.S.A
| |
Collapse
|
42
|
Abstract
PURPOSE To delineate and compare the kinetics of corneal angiogenesis after high-risk (HR) versus low-risk (LR) corneal transplantation. METHODS In mice, intrastromal sutures were placed in the recipient graft bed 2 weeks before allogeneic transplantation to induce angiogenesis and amplify the risk of graft rejection. Control (LR) graft recipients did not undergo suture placement, and thus the host bed remained avascular at the time of transplantation. Graft hemangiogenesis and opacity scores were evaluated for 8 weeks by slit-lamp biomicroscopy. Immunohistochemistry was used to measure CD31 (blood vessels) and LYVE-1 (lymphatic vessels) cells. RESULTS Biphasic kinetics were observed for hemangiogenesis in both HR and LR transplant recipients using clinical and immunohistochemical assessments. The biphasic kinetics were composed of a rise-fall (phase 1) followed by a second rise (phase 2) in the degree of vessels. Compared with LR recipients, HR recipients showed higher hemangiogenesis (whole cornea and graft) throughout 8 weeks. Analyzing grafts revealed sustained presence of lymphatic vessels in HR recipients; however, lymphatic neovessels regressed in LR recipients 2 weeks posttransplantation. In contrast to HR host beds, the LR host bed microenvironment cannot sustain the growth of lymphatic neovessels in allografts, whereas it can sustain continued hemangiogenesis. CONCLUSIONS The sustained presence of lymphatic vessels in HR host beds can facilitate host immunity against allografts and is likely associated with ongoing higher risk of rejection of these grafts in the long term, suggesting that therapeutic interventions targeting inflammation and lymphatic vessels need to be sustained long term in the HR corneal transplant setting.
Collapse
|
43
|
Fleischhauer K, Shaw BE. HLA-DP in unrelated hematopoietic cell transplantation revisited: challenges and opportunities. Blood 2017; 130:1089-1096. [PMID: 28667011 DOI: 10.1182/blood-2017-03-742346] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/17/2017] [Indexed: 11/20/2022] Open
Abstract
When considering HLA-matched hematopoietic cell transplantation (HCT), sibling and unrelated donors (UDs) are biologically different because UD-HCT is typically performed across HLA-DP disparities absent in sibling HCT. Mismatched HLA-DP is targeted by direct alloreactive T cell responses with important implications for graft-versus-host disease and graft-versus-leukemia. This concise review details special features of HLA-DP as model antigens for clinically permissive mismatches mediating limited T-cell alloreactivity with minimal toxicity, and describes future avenues for their exploitation in cellular immunotherapy of malignant blood disorders.
Collapse
Affiliation(s)
- Katharina Fleischhauer
- Institute for Experimental Cellular Therapy, Essen University Hospital, Essen, Germany
- German Cancer Consortium, Heidelberg, Germany; and
| | - Bronwen E Shaw
- Center for International Blood and Marrow Transplant Research, Froedtert & The Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
44
|
Dai H, Friday AJ, Abou-Daya KI, Williams AL, Mortin-Toth S, Nicotra ML, Rothstein DM, Shlomchik WD, Matozaki T, Isenberg JS, Oberbarnscheidt MH, Danska JS, Lakkis FG. Donor SIRPα polymorphism modulates the innate immune response to allogeneic grafts. Sci Immunol 2017; 2:2/12/eaam6202. [PMID: 28783664 DOI: 10.1126/sciimmunol.aam6202] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 05/15/2017] [Indexed: 12/16/2022]
Abstract
Mice devoid of T, B, and natural killer (NK) cells distinguish between self and allogeneic nonself despite the absence of an adaptive immune system. When challenged with an allograft, they mount an innate response characterized by accumulation of mature, monocyte-derived dendritic cells (DCs) that produce interleukin-12 and present antigen to T cells. However, the molecular mechanisms by which the innate immune system detects allogeneic nonself to generate these DCs are not known. To address this question, we studied the innate response of Rag2-/- γc-/- mice, which lack T, B, and NK cells, to grafts from allogeneic donors. By positional cloning, we identified that donor polymorphism in the gene encoding signal regulatory protein α (SIRPα) is a key modulator of the recipient's innate allorecognition response. Donors that differed from the recipient in one or both Sirpa alleles elicited an innate alloresponse. The response was mediated by binding of donor SIRPα to recipient CD47 and was modulated by the strength of the SIRPα-CD47 interaction. Therefore, sensing SIRPα polymorphism by CD47 provides a molecular mechanism by which the innate immune system distinguishes between self and allogeneic nonself independently of T, B, and NK cells.
Collapse
Affiliation(s)
- Hehua Dai
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Andrew J Friday
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Khodor I Abou-Daya
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Amanda L Williams
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Steven Mortin-Toth
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, Ontario M5G1X8, Canada
| | - Matthew L Nicotra
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - David M Rothstein
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Warren D Shlomchik
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Takashi Matozaki
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Kobe 650-0017, Japan
| | - Jeffrey S Isenberg
- Heart, Lung, Blood, and Vascular Medicine Institute and Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Martin H Oberbarnscheidt
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, Ontario M5G1X8, Canada
| | - Jayne S Danska
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, Ontario M5G1X8, Canada. .,Departments of Immunology and Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S1A8, Canada
| | - Fadi G Lakkis
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA. .,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
45
|
Abstract
Alloreactive T lymphocytes are the primary mediators of allograft rejection. The size and diversity of the HLA-alloreactive T cell repertoire has thus far precluded the ability to follow these T cells and thereby to understand their fate in human transplant recipients. This review summarizes the history, challenges, and recent advances in the study of alloreactive T cells. We highlight the historical development of assays to measure alloreactivity and discuss how high-throughput T cell receptor (TCR) sequencing-based assays can provide a new window into the fate of alloreactive T cells in human transplant recipients. A specific approach combining a classical in vitro assay, the mixed lymphocyte reaction, with deep T cell receptor sequencing is described as a tool to track the donor-reactive T cell repertoire for any specific HLA-mismatched donor-recipient pair. This assay can provide mechanistic insights and has potential as a noninvasive, highly specific biomarker for rejection and tolerance.
Collapse
|
46
|
Wekerle T, Segev D, Lechler R, Oberbauer R. Strategies for long-term preservation of kidney graft function. Lancet 2017; 389:2152-2162. [PMID: 28561006 DOI: 10.1016/s0140-6736(17)31283-7] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/13/2017] [Accepted: 03/16/2017] [Indexed: 12/21/2022]
Abstract
Kidney transplantation has become a routine procedure in the treatment of patients with kidney failure, and requires collaboration of experts from different disciplines, such as nephrology, surgery, immunology, pathology, infectious disease medicine, cardiology, and oncology. Grafts can be obtained from deceased or living donors, with different logistical requirements and implications for long-term graft patency. 1-year graft survival rates are greater than 95% in many centres but improvement of long-term function remains a challenge. New developments in molecular immunology and computational biology have increased precision of donor and recipient matching of HLA and non-HLA compatibility. Individual omics-wide molecular diagnostics, extracorporeal therapies, and drug developments allow for precise individual decision making and treatment. Tolerance induction by mixed chimerism without toxic conditioning and with a low risk of graft versus host disease is a visionary but realistic goal. Some of these innovations are already used in modern transplant centres and will allow advancement in long-term allograft preservation.
Collapse
Affiliation(s)
- Thomas Wekerle
- Department of Surgery, Section of Transplantation Immunology, Medical University of Vienna, Vienna, Austria
| | - Dorry Segev
- Department of Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Robert Lechler
- MRC Centre for Transplantation, King's College London, London, UK
| | - Rainer Oberbauer
- Department of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
47
|
Zhuang Q, Liu Q, Divito SJ, Zeng Q, Yatim KM, Hughes AD, Rojas-Canales DM, Nakao A, Shufesky WJ, Williams AL, Humar R, Hoffman RA, Shlomchik WD, Oberbarnscheidt MH, Lakkis FG, Morelli AE. Graft-infiltrating host dendritic cells play a key role in organ transplant rejection. Nat Commun 2016; 7:12623. [PMID: 27554168 PMCID: PMC4999515 DOI: 10.1038/ncomms12623] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 07/19/2016] [Indexed: 12/24/2022] Open
Abstract
Successful engraftment of organ transplants has traditionally relied on preventing the activation of recipient (host) T cells. Once T-cell activation has occurred, however, stalling the rejection process becomes increasingly difficult, leading to graft failure. Here we demonstrate that graft-infiltrating, recipient (host) dendritic cells (DCs) play a key role in driving the rejection of transplanted organs by activated (effector) T cells. We show that donor DCs that accompany heart or kidney grafts are rapidly replaced by recipient DCs. The DCs originate from non-classical monocytes and form stable, cognate interactions with effector T cells in the graft. Eliminating recipient DCs reduces the proliferation and survival of graft-infiltrating T cells and abrogates ongoing rejection or rejection mediated by transferred effector T cells. Therefore, host DCs that infiltrate transplanted organs sustain the alloimmune response after T-cell activation has already occurred. Targeting these cells provides a means for preventing or treating rejection.
Collapse
Affiliation(s)
- Quan Zhuang
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.,Center for Organ Transplantation, 3rd Xiangya Hospital, Central South University, Changsha 410083, China
| | - Quan Liu
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.,Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Sherrie J Divito
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Qiang Zeng
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Karim M Yatim
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Andrew D Hughes
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.,Physician Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Darling M Rojas-Canales
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - A Nakao
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - William J Shufesky
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Amanda L Williams
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Rishab Humar
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Rosemary A Hoffman
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Warren D Shlomchik
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Martin H Oberbarnscheidt
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Fadi G Lakkis
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Adrian E Morelli
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| |
Collapse
|
48
|
Manes TD, Pober JS. Significant Differences in Antigen-Induced Transendothelial Migration of Human CD8 and CD4 T Effector Memory Cells. Arterioscler Thromb Vasc Biol 2016; 36:1910-8. [PMID: 27444200 DOI: 10.1161/atvbaha.116.308039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 07/11/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Circulating human T effector memory cell (TEM) recognition of nonself MHC (major histocompatibility complex) molecules on allograft endothelial cells can initiate graft rejection despite elimination of professional antigen-presenting cells necessary for naive T-cell activation. Our previous studies of CD4 TEM have established that engagement of the T-cell receptor not only activates T cells but also triggers transendothelial migration (TEM) by a process that is distinct from that induced by activating chemokine receptors on T cells, being slower, requiring microtubule-organizing center-directed cytolytic granule polarization to and release from the leading edge of the T cell, and requiring engagement of proteins of the endothelial cell lateral border recycling compartment. Although CD4 TEM may contribute to acute allograft rejection, the primary effectors are alloreactive CD8 TEM. Whether and how T-cell receptor engagement affects TEM of human CD8 TEM is unknown. APPROACH AND RESULTS We modeled TEM of CD8 TEM across cultured human microvascular endothelial cells engineered to present superantigen under conditions of venular shear stress in vitro in a flow chamber. Here, we report that T-cell receptor engagement can also induce TEM of this population that similarly differs from chemokine receptor-driven TEM with regard to kinetics, morphological manifestations, and microtubule-organizing center dynamics as with CD4 TEM. However, CD8 TEM do not require either cytolytic granule release or interactions with proteins of the lateral border recycling compartment. CONCLUSIONS These results imply that therapeutic strategies designed to inhibit T-cell receptor-driven recruitment based on targeting granule release or components of the lateral border recycling compartment will not affect CD8 TEM and are unlikely to block acute rejection in the clinic.
Collapse
Affiliation(s)
- Thomas D Manes
- From the Department of Immunobiology, Yale University School of Medicine, New Haven, CT.
| | - Jordan S Pober
- From the Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
49
|
Ochando J, Kwan WH, Ginhoux F, Hutchinson JA, Hashimoto D, Collin M. The Mononuclear Phagocyte System in Organ Transplantation. Am J Transplant 2016; 16:1053-69. [PMID: 26602545 DOI: 10.1111/ajt.13627] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/04/2015] [Accepted: 11/08/2015] [Indexed: 01/25/2023]
Abstract
The mononuclear phagocyte system (MPS) comprises monocytes, macrophages and dendritic cells (DCs). Over the past few decades, classification of the cells of the MPS has generated considerable controversy. Recent studies into the origin, developmental requirements and function of MPS cells are beginning to solve this problem in an objective manner. Using high-resolution genetic analyses and fate-mapping studies, three main mononuclear phagocyte lineages have been defined, namely, macrophage populations established during embryogenesis, monocyte-derived cells that develop during adult life and DCs. These subsets and their diverse subsets have specialized functions that are largely conserved between species, justifying the introduction of a new, universal scheme of nomenclature and providing the framework for therapeutic manipulation of immune responses in the clinic. In this review, we have commented on the implications of this novel MPS classification in solid organ transplantation.
Collapse
Affiliation(s)
- J Ochando
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - W-H Kwan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - F Ginhoux
- Singapore Immunology Network (SIgN), A*STAR, 8A Biomedical Grove, Singapore, Singapore
| | - J A Hutchinson
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - D Hashimoto
- Department of Hematology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - M Collin
- Institute of Cellular Medicine, Newcastle University, Newcastle, UK
| |
Collapse
|
50
|
Ochando J, Kwan WH, Ginhoux F, Hutchinson JA, Hashimoto D, Collin M. The Mononuclear Phagocyte System in Organ Transplantation. Am J Transplant 2016. [DOI: 10.1111/ajt.13627 and 21=21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- J. Ochando
- Department of Oncological Sciences; Icahn School of Medicine at Mount Sinai; New York NY
| | - W.-H. Kwan
- Department of Microbiology; Icahn School of Medicine at Mount Sinai; New York NY
| | - F. Ginhoux
- Singapore Immunology Network (SIgN), A*STAR, 8A Biomedical Grove; Singapore Singapore
| | - J. A. Hutchinson
- Department of Surgery; University Hospital Regensburg; Regensburg Germany
| | - D. Hashimoto
- Department of Hematology; Hokkaido University Graduate School of Medicine; Sapporo Japan
| | - M. Collin
- Institute of Cellular Medicine; Newcastle University; Newcastle UK
| |
Collapse
|