1
|
Xiao Y, Yuan J, Yang C, Xiong J, Deng L, Liang Q, He C, Li L, He F, Huang X. 125I Radioactive Particles Drive Protective Autophagy in Hepatocellular Carcinoma by Upregulating ATG9B. J Clin Transl Hepatol 2023; 11:360-368. [PMID: 36643035 PMCID: PMC9817064 DOI: 10.14218/jcth.2022.00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/27/2022] [Accepted: 05/10/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND AND AIMS 125I radioactive particles implantation have demonstrated efficacy in eradicating hepatocellular carcinoma (HCC). However, progressive resistance of HCC to 125I radioactive particles has limited its wide clinical application. METHODS We investigated the cellular responses to 125I radioactive particles treatment and autophagy-related 9B (ATG9B) silencing in HCC cell lines and Hep3B xenografted tumor model using Cell Counting Kit-8 reagent, western blotting, immunofluorescence, flow cytometry, transmission electron microscopy and immunohistochemistry. RESULTS In this study, we demonstrated that 125I radioactive particles induced cell apoptosis and protective autophagy of HCC in vitro and in vivo. Inhibition of autophagy enhanced the radiosensitivity of HCC to 125I radioactive particles. Moreover, 125I radioactive particles induced autophagy by upregulating ATG9B, with increased expression level of LC3B and decreased expression level of p62. Furthermore, ATG9B silencing downregulated LC3B expression and upregulated p62 expression and enhanced radiosensitivity of HCC to 125I radioactive particles in vitro and in vivo. CONCLUSIONS Inhibition of ATG9B enhanced the antitumor effects of 125I particle radiation against HCC in vitro and in vivo. Our findings suggest that 125I particle radiation plus chloroquine or/and the ATG9B inhibitor may be a novel therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Yunhua Xiao
- Department of Nuclear Medicine, the First Affiliated Hospital of Army Medical University, Army Medical University, Chongqing, China
| | - Jing Yuan
- Department of Radiology, Army Medical Center, Chongqing, China
| | - Chongshuang Yang
- Department of Nuclear Medicine, the First Affiliated Hospital of Army Medical University, Army Medical University, Chongqing, China
| | - Junru Xiong
- Department of Nuclear Medicine, the First Affiliated Hospital of Army Medical University, Army Medical University, Chongqing, China
| | - Liangyu Deng
- Department of Nuclear Medicine, the First Affiliated Hospital of Army Medical University, Army Medical University, Chongqing, China
| | - Qinghua Liang
- Department of Nuclear Medicine, the First Affiliated Hospital of Army Medical University, Army Medical University, Chongqing, China
| | - Chuang He
- Department of Nuclear Medicine, the First Affiliated Hospital of Army Medical University, Army Medical University, Chongqing, China
| | - Liangshan Li
- Department of Nuclear Medicine, the First Affiliated Hospital of Army Medical University, Army Medical University, Chongqing, China
| | - Fengtian He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
- Correspondence to: Fengtian He, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, No. 30 Gaotanyan, Shapingba, Chongqing 400038, China. ORCID: https://orcid.org/0000-0002-1689-6281. Tel: +86-23-68771348, Fax: +86-23-68752262, E-mail: mailto:; Xuequan Huang, Department of Nuclear Medicine, the First Affiliated Hospital of Army Medical University, Army Medical University, No.30 Gaotanyan, Shapingba, Chongqing 400038, China. ORCID: https://orcid.org/0000-0002-0807-5563. Tel: +86-13629774403, Fax: +86-23-68765018, E-mail:
| | - Xuequan Huang
- Department of Nuclear Medicine, the First Affiliated Hospital of Army Medical University, Army Medical University, Chongqing, China
- Correspondence to: Fengtian He, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, No. 30 Gaotanyan, Shapingba, Chongqing 400038, China. ORCID: https://orcid.org/0000-0002-1689-6281. Tel: +86-23-68771348, Fax: +86-23-68752262, E-mail: mailto:; Xuequan Huang, Department of Nuclear Medicine, the First Affiliated Hospital of Army Medical University, Army Medical University, No.30 Gaotanyan, Shapingba, Chongqing 400038, China. ORCID: https://orcid.org/0000-0002-0807-5563. Tel: +86-13629774403, Fax: +86-23-68765018, E-mail:
| |
Collapse
|
2
|
Ryan FJ, Ma Y, Ashander LM, Kvopka M, Appukuttan B, Lynn DJ, Smith JR. Transcriptomic Responses of Human Retinal Vascular Endothelial Cells to Inflammatory Cytokines. Transl Vis Sci Technol 2022; 11:27. [PMID: 36018584 PMCID: PMC9428361 DOI: 10.1167/tvst.11.8.27] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Purpose Molecular profiling of human retinal endothelial cells provides opportunities to understand the roles of this cell population in maintenance of the blood-ocular barrier, and its involvements in diverse retinal vasculopathies. We aimed to generate a transcriptome of human retinal endothelial cells in the unstimulated state, and following treatment with inflammatory cytokines linked to cell dysfunction. Methods Endothelial cells were isolated from retinae of five human cadaveric donors, and treated for 60 minutes and 24 hours with interleukin-1β or tumor necrosis factor-α, or exposed to medium alone for the same intervals. Expression of intercellular adhesion molecule-1 was measured by RT-qPCR to confirm cytokine-induced activation of the cells. RNA was sequenced on the Illumina NovaSeq 6000 platform. Reads were aligned to the human GRCh38 genome, and reads that aligned to Ensembl-annotated genes were counted. Quality control of sequencing was performed with FastQC, and sequences were classified by Kraken. Results A human retinal endothelial cell RNA-sequencing dataset with mean of 99% reads aligned to the human genome was produced as raw RNA sequence data (FASTQ files) and processed read data (XLSX files). Multidimensional scaling analysis showed a strong donor effect, which was readily controlled by ComBat. Conclusions Our dataset may be useful for human retinal endothelial cell transcriptomic assemblies, functional gene annotating and/or gene expression and enrichment analyses, as well as cross-dataset harmonization. Translational Relevance The molecular profile of the human retinal endothelium is a source of candidate biologic targets for retinal vasculopathies.
Collapse
Affiliation(s)
- Feargal J Ryan
- Precision Medicine Theme, South Australian Health & Medical Research Institute, Adelaide, Australia.,Flinders University College of Medicine and Public Health, Adelaide, Australia
| | - Yuefang Ma
- Flinders University College of Medicine and Public Health, Adelaide, Australia
| | - Liam M Ashander
- Flinders University College of Medicine and Public Health, Adelaide, Australia
| | - Michael Kvopka
- Flinders University College of Medicine and Public Health, Adelaide, Australia
| | - Binoy Appukuttan
- Flinders University College of Medicine and Public Health, Adelaide, Australia
| | - David J Lynn
- Precision Medicine Theme, South Australian Health & Medical Research Institute, Adelaide, Australia.,Flinders University College of Medicine and Public Health, Adelaide, Australia
| | - Justine R Smith
- Flinders University College of Medicine and Public Health, Adelaide, Australia
| |
Collapse
|
3
|
Kang W, Du L, Liang Q, Zhang R, Lv C, Ge S. Transcriptome analysis reveals the mechanism of stromal cell-derived factor-1 and exendin-4 synergistically promoted periodontal ligament stem cells osteogenic differentiation. PeerJ 2021; 9:e12091. [PMID: 34532163 PMCID: PMC8404574 DOI: 10.7717/peerj.12091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/09/2021] [Indexed: 11/20/2022] Open
Abstract
Stromal cell-derived factor-1 (SDF-1) and Exendin-4 (EX-4) play beneficial roles in promoting periodontal ligament stem cells (PDLSCs) osteogenic differentiation, while the detailed mechanism has not been clarified. In this study, we aimed to evaluate the biological mechanism of SDF-1 and EX-4 alone or synergistic application in regulating PDLSCs differentiation by RNA-sequencing (RNA-seq). A total of 110, 116 and 109 differentially expressed genes (DEGs) were generated in osteogenic medium induced PDLSCs treated by SDF-1, EX-4, and SDF-1+EX-4, respectively. The DEGs in SDF-1 group were enriched in signal transduction related signaling pathways; the DEGs in EX-4 group were enriched in metabolism and biosynthesis-related pathways; and the DEGs generated in SDF-1+EX-4 group were mainly enriched in RNA polymerase II transcription, cell differentiation, chromatin organization, protein phosphorylation pathways. Based on Venn analysis, a total of 37 specific DEGs were identified in SDF-1+EX-4 group, which were mainly enriched in negative regulation of autophagy and cellular component disassembly signaling pathways. Short time-series expression miner (STEM) analysis grouped all expressed genes of PDLSCs into 49 clusters according to the dynamic expression patterns and 25 genes, including NRSN2, CHD9, TUBA1A, distributed in 10 gene clusters in SDF-1+EX-4 treated PDLSCs were significantly up-regulated compared with the SDF-1 and EX-4 alone groups. The gene set enrichment analysis indicated that SDF-1 could amplify the role of EX-4 in regulating varied signaling pathways, such as type II diabetes mellitus and insulin signaling pathways; while EX-4 could aggravate the effect of SDF-1 on PDLSCs biological roles via regulating primary immunodeficiency, tight junction signaling pathways. In summary, our study confirmed that SDF-1 and EX-4 combined application could enhance PDLSCs biological activity and promote PDLSCs osteogenic differentiation by regulating the metabolism, biosynthesis and immune-related signaling pathways.
Collapse
Affiliation(s)
- Wenyan Kang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Lingqian Du
- Department of Stomatology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qianyu Liang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Rui Zhang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Chunxu Lv
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Shaohua Ge
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| |
Collapse
|
4
|
Transcriptomics in Trichoderma reesei. Methods Mol Biol 2020. [PMID: 33165792 DOI: 10.1007/978-1-0716-1048-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Transcriptomics is a powerful technique to study gene expression. The main purpose of transcriptome studies in the filamentous fungus Trichoderma reesei is the analysis of differentially expressed genes as a transcriptional response of the genome to different environmental stimuli or physiological conditions such as sugar availability, nitrogen metabolism, pH response, and oxidative stress, among others. Here we describe the full protocol of RNA sequencing methodology from RNA isolation to data analysis in order to access the T. reesei transcriptome.
Collapse
|
5
|
Schumacker ST, Coppage KR, Enke RA. RNA sequencing analysis of the human retina and associated ocular tissues. Sci Data 2020; 7:199. [PMID: 32581312 PMCID: PMC7314755 DOI: 10.1038/s41597-020-0541-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 06/02/2020] [Indexed: 11/08/2022] Open
Abstract
The retina is a stratified layer of sensory neurons lining the posterior portion of the eye. In humans, fine detail and color vision are enabled by the macula, a central region of the retina dense in cone photoreceptors (PRs). Achromatic low light and peripheral vision are facilitated by rod PRs found with increasing density outside the macula in the peripheral retina. The outer retina is nourished by choroidal blood flow regulated by a single layer of intervening retinal pigment epithelial (RPE) cells. Existing human retinal transcriptome projects have been critical for studying aspects of retinal development and disease however, there are currently no publicly available data sets accurately describing the aging human central retina, peripheral retina, and supporting RPE/choroid. Here we used Illumina RNA sequencing (RNA-seq) analysis to characterize the mRNA transcriptome of rod and cone PR-enriched human retina as well as supporting macular RPE/choroid tissue. These data will be valuable to the vision research community for characterizing global changes in gene expression in clinically relevant ocular tissues.
Collapse
Affiliation(s)
- Scott T Schumacker
- Department of Biology, James Madison University, Harrisonburg, VA, 22807, USA
| | - Krista R Coppage
- Department of Biology, James Madison University, Harrisonburg, VA, 22807, USA
| | - Ray A Enke
- Department of Biology, James Madison University, Harrisonburg, VA, 22807, USA.
- Center for Genome & Metagenome Studies, James Madison University, Harrisonburg, VA, 22807, USA.
| |
Collapse
|
6
|
Impacts of ciliary neurotrophic factor on the retinal transcriptome in a mouse model of photoreceptor degeneration. Sci Rep 2020; 10:6593. [PMID: 32313077 PMCID: PMC7171121 DOI: 10.1038/s41598-020-63519-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/01/2020] [Indexed: 01/13/2023] Open
Abstract
Ciliary neurotrophic factor (CNTF) has been tested in clinical trials for human retinal degeneration due to its potent neuroprotective effects in various animal models. To decipher CNTF-triggered molecular events in the degenerating retina, we performed high-throughput RNA sequencing analyses using the Rds/Prph2 (P216L) transgenic mouse as a preclinical model for retinitis pigmentosa. In the absence of CNTF treatment, transcriptome alterations were detected at the onset of rod degeneration compared with wild type mice, including reduction of key photoreceptor transcription factors Crx, Nrl, and rod phototransduction genes. Short-term CNTF treatments caused further declines of photoreceptor transcription factors accompanied by marked decreases of both rod- and cone-specific gene expression. In addition, CNTF triggered acute elevation of transcripts in the innate immune system and growth factor signaling. These immune responses were sustained after long-term CNTF exposures that also affected neuronal transmission and metabolism. Comparisons of transcriptomes also uncovered common pathways shared with other retinal degeneration models. Cross referencing bulk RNA-seq with single-cell RNA-seq data revealed the CNTF responsive cell types, including Müller glia, rod and cone photoreceptors, and bipolar cells. Together, these results demonstrate the influence of exogenous CNTF on the retinal transcriptome landscape and illuminate likely CNTF impacts in degenerating human retinas.
Collapse
|
7
|
Kerr K, McAneney H, Smyth L, Flanagan C, Silvestri J, Nesbitt MA, Wooster C, McKnight AJ. Systematic review of differential methylation in rare ophthalmic diseases. BMJ Open Ophthalmol 2019; 4:e000342. [PMID: 31799411 PMCID: PMC6861117 DOI: 10.1136/bmjophth-2019-000342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/11/2019] [Accepted: 10/07/2019] [Indexed: 12/29/2022] Open
Abstract
Rare ophthalmic diseases have a devastating impact on a patient's vision and consequently negatively affect their independence, ability to work and overall quality of life. Methylation is an important emerging biomarker of disease and may improve understanding of rare ophthalmic disorders. This systematic review sought to identify and evaluate literature on methylation and rare ophthalmic disease. MEDLINE, EMBASE, PubMed, Cochrane Database of Systematic Reviews and grey literature resources were searched for publications prior to 20 August 2019. Articles written in English which featured key terms such as 'methylation' and rare ophthalmic diseases were included. Titles, abstracts, keywords and full texts of publications were screened, as well as reference lists for reverse citations and Web of Science 'cited reference search' for forward citation searching. Study characteristics were extracted, and methodological rigour appraised using a standardised template. Fourteen articles were selected for full inclusion. Rare ophthalmic conditions include congenital fibrosis of extraocular muscles, retinitis pigmentosa, Fuchs endothelial corneal dystrophy, granular corneal dystrophy, choroideraemia, brittle cornea syndrome, retinopathy of prematurity, keratoconus and congenital cataracts. Outcomes include identification of methylation as contributor to disease and identification of potential novel therapeutic targets. The studies included were heterogeneous with no scope for meta-analysis following review; a narrative synthesis was undertaken. Differential methylation has been identified in a small number of rare ophthalmic diseases and few studies have been performed to date. Further multiomic research will improve understanding of rare eye diseases and hopefully lead to improved provision of diagnostic/prognostic biomarkers, and help identify novel therapeutic targets.
Collapse
Affiliation(s)
- Katie Kerr
- Centre for Public Health, Institute of Clinical Sciences B, Royal Victoria Hospital, Queen's University Belfast School of Medicine, Dentistry and Biomedical Sciences, Belfast, UK
| | - Helen McAneney
- Centre for Public Health, Institute of Clinical Sciences B, Royal Victoria Hospital, Queen's University Belfast School of Medicine, Dentistry and Biomedical Sciences, Belfast, UK
| | - Laura Smyth
- Centre for Public Health, Institute of Clinical Sciences B, Royal Victoria Hospital, Queen's University Belfast School of Medicine, Dentistry and Biomedical Sciences, Belfast, UK
| | - Cheryl Flanagan
- The 100,000 Genomes Project Team, Belfast Health and Social Care Trust, Belfast, UK
| | - Julie Silvestri
- Department of Ophthalmology, Belfast Health and Social Care Trust, Belfast, UK
| | - Micheal Andrew Nesbitt
- School of Biomedical Sciences, Biomedical Sciences Research Institute, Ulster University, Belfast, UK
| | - Christopher Wooster
- Centre for Public Health, Institute of Clinical Sciences B, Royal Victoria Hospital, Queen's University Belfast School of Medicine, Dentistry and Biomedical Sciences, Belfast, UK
| | - Amy Jayne McKnight
- Centre for Public Health, Institute of Clinical Sciences B, Royal Victoria Hospital, Queen's University Belfast School of Medicine, Dentistry and Biomedical Sciences, Belfast, UK
| |
Collapse
|
8
|
Cai C, Yang L, Tang Y, Wang H, He Y, Jiang H, Zhou K. Prediction of Overall Survival in Gastric Cancer Using a Nine-lncRNA. DNA Cell Biol 2019; 38:1005-1012. [PMID: 31335180 DOI: 10.1089/dna.2019.4832] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Congbo Cai
- Emergency Department, Ningbo Yinzhou No. 2 Hospital, Ningbo, China
| | - Lei Yang
- Emergency Department, Ningbo Yinzhou No. 2 Hospital, Ningbo, China
| | - Yeli Tang
- Emergency Department, Ningbo Yinzhou No. 2 Hospital, Ningbo, China
| | - Houxing Wang
- Emergency Department, Ningbo Yinzhou No. 2 Hospital, Ningbo, China
| | - Yi He
- Gastroenterology Department, Ningbo No. 9 Hospital, Ningbo, China
| | - Honggang Jiang
- Gastroenterology Department, Ningbo No. 9 Hospital, Ningbo, China
| | - Kena Zhou
- Gastroenterology Department, Ningbo No. 9 Hospital, Ningbo, China
| |
Collapse
|
9
|
Harding P, Moosajee M. The Molecular Basis of Human Anophthalmia and Microphthalmia. J Dev Biol 2019; 7:jdb7030016. [PMID: 31416264 PMCID: PMC6787759 DOI: 10.3390/jdb7030016] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 12/16/2022] Open
Abstract
Human eye development is coordinated through an extensive network of genetic signalling pathways. Disruption of key regulatory genes in the early stages of eye development can result in aborted eye formation, resulting in an absent eye (anophthalmia) or a small underdeveloped eye (microphthalmia) phenotype. Anophthalmia and microphthalmia (AM) are part of the same clinical spectrum and have high genetic heterogeneity, with >90 identified associated genes. By understanding the roles of these genes in development, including their temporal expression, the phenotypic variation associated with AM can be better understood, improving diagnosis and management. This review describes the genetic and structural basis of eye development, focusing on the function of key genes known to be associated with AM. In addition, we highlight some promising avenues of research involving multiomic approaches and disease modelling with induced pluripotent stem cell (iPSC) technology, which will aid in developing novel therapies.
Collapse
Affiliation(s)
| | - Mariya Moosajee
- UCL Institute of Ophthalmology, London EC1V 9EL, UK.
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK.
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.
| |
Collapse
|
10
|
Tingting C, Shizhou Y, Songfa Z, Junfen X, Weiguo L, Xiaodong C, Xing X. Human papillomavirus 16E6/E7 activates autophagy via Atg9B and LAMP1 in cervical cancer cells. Cancer Med 2019; 8:4404-4416. [PMID: 31215164 PMCID: PMC6675746 DOI: 10.1002/cam4.2351] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUNDS Although the role of high-risk human papillomavirus (HPV) E6 and E7 in cellular malignant transformation has been elucidated, the function of both genes in cellular homeostasis is still unknown. Autophagy functions in maintenance of cellular homeostasis play a key role in the initiation and development of cancer and infectious disease. METHODS Cervical cancer cell lines SiHa and CaSki were utilized in this study. RESULTS We found that HPV 16E6/E7 (16E6/E7) downregulation inhibited autophagy, and consequently suppressed cell proliferation and promoted early apoptosis. Transcriptome sequencing demonstrated that Atg9B and LAMP1 were downregulated in 16E6/E7 knockdown cells. Gene function experiments revealed that 16E6/E7 downregulation depressed Atg9B and LAMP1, and Atg9B and LAMP1 overexpression compensated, at least partially, autophagy blockage induced by 16E6/E7 knockdown. Immunoprecipitation assay showed that 16E7 interacted with Atg9B and dual-luciferase reporter system revealed that 16E6 most likely regulated -1750 to -2000 nt in Atg9B and -1800 to -2000 nt in LAMP1 promoter region. CONCLUSIONS Our findings verified that 16E6/E7 activated autophagy via accelerating autophagosome formation and degradation, and Atg9B and LAMP1 were involved in the process of 16E6/E7 modulating autophagy, suggesting that targeting autophagy may be a potential approach in cervical cancer therapeutics.
Collapse
Affiliation(s)
- Chen Tingting
- Department of Gynecologic OncologyWomen's Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Yang Shizhou
- Department of Gynecologic OncologyWomen's Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Zhang Songfa
- Department of Gynecologic OncologyWomen's Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Xu Junfen
- Department of Gynecologic OncologyWomen's Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Lu Weiguo
- Department of Gynecologic OncologyWomen's Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Cheng Xiaodong
- Department of Gynecologic OncologyWomen's Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Xie Xing
- Department of Gynecologic OncologyWomen's Hospital, Zhejiang University School of MedicineHangzhouChina
| |
Collapse
|
11
|
Li T, Gao J, Zhao X, Ma Y. Digital gene expression analyses of mammary glands from meat ewes naturally infected with clinical mastitis. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181604. [PMID: 31417691 PMCID: PMC6689637 DOI: 10.1098/rsos.181604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/04/2019] [Indexed: 05/06/2023]
Abstract
Clinical mastitis in sheep has gravely restrained production performance for a long time. Knowledge of mechanisms of its pathogenesis and resistance in meat sheep mammary gland with clinical mastitis are not yet understood, especially for clinical mastitis caused by natural infection. In this work, RNA-sequencing was firstly used to screen the differentially expressed genes (DEGs) in clinical mastitic mammary tissues (CMMTs) when compared with healthy mammary tissues (HMTs) from meat sheep flocks. We identified 420 DEGs including 316 upregulated and 104 downregulated genes in CMMTs. Gene ontology annotation revealed these DEGs were mainly engaged in immune response and inflammation response. Pathway enrichment showed they were primarily enriched in pathways relevant to inflammation, immune response and metabolism. Alternative splicing analysis showed most common differential splicing genes in CMMTs and HMTs were implicated in immune response. Immunostaining for three immune response-related proteins encoded by DEGs were mainly observed in mammary epithelium from both CMMTs and HMTs, and their positive signals were more intensive in CMMTs than those in HMTs. These findings provide experimental basis and reference for further researching the molecular genetic mechanisms, particularly immune defence mechanisms, of sheep mammary gland during clinical mastitis.
Collapse
Affiliation(s)
- Taotao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Jianfeng Gao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| |
Collapse
|
12
|
Kerr K, McAneney H, McKnight AJ. Protocol for a scoping review of multi-omic analysis for rare diseases. BMJ Open 2019; 9:e026278. [PMID: 31061034 PMCID: PMC6501961 DOI: 10.1136/bmjopen-2018-026278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/22/2019] [Accepted: 03/07/2019] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION The development of next generation sequencing technology has enabled cost-efficient, large scale, multiple 'omic' analysis, including epigenomic, genomic, metabolomic, phenomic, proteomic and transcriptomic research. These integrated approaches hold significant promise for rare disease research, with the potential to aid biomarker discovery, improve our understanding of disease pathogenesis and identify novel therapeutic targets. In this paper we outline a systematic approach for a scoping review designed to evaluate what primary research has been performed to date on multi-omics and rare disease. METHODS AND ANALYSIS This protocol was designed using the Joanna Briggs Institute methodology for scoping reviews. Databases to be searched will include: MEDLINE, EMBASE, PubMed, Web of Science, Scopus and Google Scholar for primary studies relevant to the key terms 'multi-omics' and 'rare disease', published prior to 30th December 2018. Grey literature databases GreyLit and OpenGrey will also be searched, as well as reverse citation screening of relevant articles and forward citation searching using Web of Science Cited Reference Search Tool. Data extraction will be performed using customised forms and a narrative synthesis of the results will be presented. ETHICS AND DISSEMINATION As a secondary analysis study with no primary data generated, this scoping review does not require ethical approval. We anticipate this review will highlight a gap in rare disease research and provide direction for novel research. The completed review will be submitted for publication in peer-reviewed journals and presented at relevant conferences discussing rare disease research and/or molecular strategies.
Collapse
Affiliation(s)
- Katie Kerr
- Centre for Public Health, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Helen McAneney
- Centre for Public Health, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Amy Jayne McKnight
- Centre for Public Health, Queen's University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
13
|
Yao B, Zhang M, Liu M, Lu B, Leng X, Hu Y, Zhao D, Zhao YU. Identification of the miRNA-mRNA regulatory network of antler growth centers. J Biosci 2019; 44:11. [PMID: 30837362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Antler growth is a unique event compared to other growth and development processes in mammals. Antlers grow extremely fast during the rapid growth stage when growth rate peaks at 2 cm per day. Antler growth is driven by a specific endochondral ossification process in the growth center that is in the distal region of the antler tip. In this study, we used state-of-art RNA-seq technology to analyze the expression profiles of mRNAs and miRNAs during antler growth. Our results indicated that the expression levels of multiple genes involved in chondrogenesis and endochondral ossification, including Fn1, Sox9, Col2a1, Acan, Col9a1, Col11a1, Hapln1, Wwp2, Fgfr3, Comp, Sp7 and Ihh, were significantly increased at the rapid growth stage. Our results also indicated that there were multiple differentially expressed miRNAs interacting with differentially expressed genes with opposite expression patterns. Furthermore, some of the miRNAs, including miR-3072-5p, miR-1600, miR-34-5p, miR-6889-5p and miR-6729-5p, simultaneously interacted with and controlled multiple genes involved in the process of chondrogenesis and endochondral ossification. Therefore, we established a miRNA-mRNA regulatory network by identifying miRNAs and their target genes that were differentially expressed in the antler growth centers by comparing the rapid growth stage and the initial growth stage.
Collapse
Affiliation(s)
- Baojin Yao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
He W, Wang B, Li Q, Yao Q, Jia X, Song R, Li S, Zhang JA. Aberrant Expressions of Co-stimulatory and Co-inhibitory Molecules in Autoimmune Diseases. Front Immunol 2019; 10:261. [PMID: 30842773 PMCID: PMC6391512 DOI: 10.3389/fimmu.2019.00261] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/29/2019] [Indexed: 12/26/2022] Open
Abstract
Co-signaling molecules include co-stimulatory and co-inhibitory molecules and play important roles in modulating immune responses. The roles of co-signaling molecules in autoimmune diseases have not been clearly defined. We assessed the expressions of co-stimulatory and co-inhibitory molecules in autoimmune diseases through a bioinformatics-based study. By using datasets of whole-genome transcriptome, the expressions of 54 co-stimulatory or co-inhibitory genes in common autoimmune diseases were analyzed using Robust rank aggregation (RRA) method. Nineteen array datasets and 6 RNA-seq datasets were included in the RRA discovery study and RRA validation study, respectively. Significant genes were further validated in several autoimmune diseases including Graves' disease (GD). RRA discovery study suggested that CD160 was the most significant gene aberrantly expressed in autoimmune diseases (Adjusted P = 5.9E-12), followed by CD58 (Adjusted P = 5.7E-06) and CD244 (Adjusted P = 9.5E-05). RRA validation study also identified CD160 as the most significant gene aberrantly expressed in autoimmune diseases (Adjusted P = 5.9E-09). We further found that the aberrant expression of CD160 was statistically significant in multiple autoimmune diseases including GD (P < 0.05), and CD160 had a moderate role in diagnosing those autoimmune diseases. Flow cytometry confirmed that CD160 was differentially expressed on the surface of CD8+ T cells between GD patients and healthy controls (P = 0.002), which proved the aberrant expression of CD160 in GD at the protein level. This study suggests that CD160 is the most significant co-signaling gene aberrantly expressed in autoimmune diseases. Treatment strategy targeting CD160-related pathway may be promising for the therapy of autoimmune diseases.
Collapse
Affiliation(s)
- Weiwei He
- Department of Endocrinology, Affiliated Hospital of Yanan Medical University, Yanan, China
| | - Bin Wang
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Qian Li
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Qiuming Yao
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Xi Jia
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Ronghua Song
- Department of Endocrinology and Rheumatology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Sheli Li
- Department of Endocrinology, Affiliated Hospital of Yanan Medical University, Yanan, China
| | - Jin-An Zhang
- Department of Endocrinology and Rheumatology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
15
|
|
16
|
Wang Q, Chen M, Zhang W. A two-component signal transduction system contributes to the virulence of Riemerella anatipestifer. J Vet Sci 2018; 19:260-270. [PMID: 29284206 PMCID: PMC5879074 DOI: 10.4142/jvs.2018.19.2.260] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/25/2017] [Accepted: 11/24/2017] [Indexed: 11/20/2022] Open
Abstract
Similar to other studies of bacterial pathogens, current studies of the pathogenesis of Riemerella anatipestifer (RA) are focused mainly on in vitro culture conditions. To elucidate further the pathogenesis of RA in vivo, bacterial RNA was extracted from overnight tryptic soy broth cultures (in vitro) and from the blood of infected ducks (in vivo) for comparative RNA sequencing analysis. In total, 682 upregulated genes were identified in vivo. Among the upregulated genes, a signal transduction response regulator (ArsR) and a signal transduction histidine kinase (SthK) were predicted to be located on the same operon. A mutant was constructed by deletion of both of these genes. Duck infection tests showed that genes ArsR and SthK were related to the virulence of the pathogen in vivo. Differentially expressed genes identified by comparison of in vitro and in vivo conditions provided an insight into the physiological process of RA infection and provided an opportunity to identify additional virulence factors.
Collapse
Affiliation(s)
- Qing Wang
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Mianmian Chen
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Zhang
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
17
|
Jiang H, Liang L, Qin J, Lu Y, Li B, Wang Y, Lin C, Zhou Q, Feng S, Yip SH, Xu F, Lai EY, Wang J, Chen J. Functional networks of aging markers in the glomeruli of IgA nephropathy: a new therapeutic opportunity. Oncotarget 2018; 7:33616-26. [PMID: 27127888 PMCID: PMC5085107 DOI: 10.18632/oncotarget.9033] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 04/11/2016] [Indexed: 12/12/2022] Open
Abstract
IgA nephropathy(IgAN) is the most common primary glomerular disease in China. Primary infections always occur before IgAN. However, the pathology of IgAN is still unclear. Previously we found that LL37, a protein secreted by senescent cells, was specific for the progression of IgAN, and also played a role in the neutrophil function. So we hypothesized that the infiltration of neutrophils, inflammation factors, and aging markers, which were modulated by functional networks, induced the immune response and renal injury. RNA-Sequencing (RNA-seq) can be used to study the whole transcriptome and detect splicing variants that are expressed in a specific cell type or tissue. We separate glomerulus from the renal biopsy tissues. After RNA extraction, the sequences were analyzed with Illumina HiSeq 2000/2500. 381 genes with differential expression between the IgAN patients and the healthy controls were identified. Only PLAU, JUN, and FOS were related to DNA damage, telomere dysfunction-induced aging markers, neutrophil function and IgA nephropathy. The networks showed the possibility of these genes being connected. We conclude that DNA damage and telomere dysfunction could play important roles in IgA nephropathy. In addition, neutrophils are also important factors in this disease. The networks of these markers showed the mechanism pathways that are involved in the duration of the occurrence and progression of IgA nephropathy and might be a new therapeutic opportunity for disease treatment.
Collapse
Affiliation(s)
- Hong Jiang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, P.R. China.,Kidney Disease Immunology Laboratory, The Third Grade Laboratory, State Administration Of Traditional Chinese Medicine Of China, Hangzhou, P.R. China.,Key Laboratory Of Multiple Organ Transplantation, Ministry Of Health, Key Laboratory Of Nephropathy, Zhejiang, P.R. China
| | - Ludan Liang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, P.R. China.,Kidney Disease Immunology Laboratory, The Third Grade Laboratory, State Administration Of Traditional Chinese Medicine Of China, Hangzhou, P.R. China.,Key Laboratory Of Multiple Organ Transplantation, Ministry Of Health, Key Laboratory Of Nephropathy, Zhejiang, P.R. China
| | - Jing Qin
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yingying Lu
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, P.R. China.,Kidney Disease Immunology Laboratory, The Third Grade Laboratory, State Administration Of Traditional Chinese Medicine Of China, Hangzhou, P.R. China.,Key Laboratory Of Multiple Organ Transplantation, Ministry Of Health, Key Laboratory Of Nephropathy, Zhejiang, P.R. China
| | - Bingjue Li
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, P.R. China.,Kidney Disease Immunology Laboratory, The Third Grade Laboratory, State Administration Of Traditional Chinese Medicine Of China, Hangzhou, P.R. China.,Key Laboratory Of Multiple Organ Transplantation, Ministry Of Health, Key Laboratory Of Nephropathy, Zhejiang, P.R. China
| | - Yucheng Wang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, P.R. China.,Kidney Disease Immunology Laboratory, The Third Grade Laboratory, State Administration Of Traditional Chinese Medicine Of China, Hangzhou, P.R. China.,Key Laboratory Of Multiple Organ Transplantation, Ministry Of Health, Key Laboratory Of Nephropathy, Zhejiang, P.R. China
| | - Chuan Lin
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, P.R. China.,Kidney Disease Immunology Laboratory, The Third Grade Laboratory, State Administration Of Traditional Chinese Medicine Of China, Hangzhou, P.R. China.,Key Laboratory Of Multiple Organ Transplantation, Ministry Of Health, Key Laboratory Of Nephropathy, Zhejiang, P.R. China
| | - Qin Zhou
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, P.R. China.,Kidney Disease Immunology Laboratory, The Third Grade Laboratory, State Administration Of Traditional Chinese Medicine Of China, Hangzhou, P.R. China.,Key Laboratory Of Multiple Organ Transplantation, Ministry Of Health, Key Laboratory Of Nephropathy, Zhejiang, P.R. China
| | - Shi Feng
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, P.R. China.,Kidney Disease Immunology Laboratory, The Third Grade Laboratory, State Administration Of Traditional Chinese Medicine Of China, Hangzhou, P.R. China.,Key Laboratory Of Multiple Organ Transplantation, Ministry Of Health, Key Laboratory Of Nephropathy, Zhejiang, P.R. China
| | - Shun H Yip
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Feng Xu
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - En Yin Lai
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Junwen Wang
- Centre for Genomic Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.,School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, P.R. China.,Kidney Disease Immunology Laboratory, The Third Grade Laboratory, State Administration Of Traditional Chinese Medicine Of China, Hangzhou, P.R. China.,Key Laboratory Of Multiple Organ Transplantation, Ministry Of Health, Key Laboratory Of Nephropathy, Zhejiang, P.R. China
| |
Collapse
|
18
|
Chen L, Sun F, Yang X, Jin Y, Shi M, Wang L, Shi Y, Zhan C, Wang Q. Correlation between RNA-Seq and microarrays results using TCGA data. Gene 2017; 628:200-204. [PMID: 28734892 DOI: 10.1016/j.gene.2017.07.056] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/20/2017] [Accepted: 07/19/2017] [Indexed: 02/05/2023]
Abstract
RNA sequencing (RNA-Seq) and microarray are two of the most commonly used high-throughput technologies for transcriptome profiling; however, they both have their own inherent strengths and limitations. This research aims to analyze the correlation between microarrays and RNA-Seq detection of transcripts in the same tissue sample to explore the reproducibility between the techniques. Using data of RNA-Seq v2 and three different microarrays provided by The Cancer Genome Atlas, 11,120 genes of 111 lung squamous cell carcinoma samples were simultaneously detected by the four methods. Then we analyzed the Pearson correlation between microarrays and RNA-Seq. Finally, in the six comparison results, 9984 (89.8%) genes, irrespective of which two methods were used, simultaneously showed the existence of correlation, whereas only 83 (0.1%) genes proved to have no significant correlation in either comparison. In addition, the comparisons between 3266 (29.3%) genes showed high correlation (R≥0.8) in all six comparisons, only for 1643 (14.8%) genes correlation were not as high in either comparison. Meanwhile, transcripts with extreme high or low expression levels were more highly discrepant across the methods. In conclusion, we found that, for most transcripts, the results obtained by RNA-Seq and microarrays were highly reproducible.
Collapse
Affiliation(s)
- Li Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 20032, China; Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Fenghao Sun
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 20032, China
| | - Xiaodong Yang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 20032, China
| | - Yulin Jin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 20032, China
| | - Mengkun Shi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 20032, China
| | - Lin Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 20032, China
| | - Yu Shi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 20032, China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 20032, China.
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 20032, China.
| |
Collapse
|
19
|
Fan Q, Liu B. Identification of a RNA-Seq Based 8-Long Non-Coding RNA Signature Predicting Survival in Esophageal Cancer. Med Sci Monit 2016; 22:5163-5172. [PMID: 28028307 PMCID: PMC5216666 DOI: 10.12659/msm.902615] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Accumulating evidence suggests the involvement of long non-coding RNAs (lncRNAs) as oncogenic or tumor suppressive regulators in the development of various cancers. In the present study, we aimed to identify a lncRNA signature based on RNA sequencing (RNA-seq) data to predict survival in esophageal cancer. Material/Methods The RNA-seq lncRNA expression data and clinical information were downloaded from The Cancer Genome Atlas (TCGA) database. Differentially expressed lncRNAs were screened out between esophageal cancer and normal tissues. Univariate and multivariate Cox regression analysis were performed to establish a lncRNA-related prognostic model. Receiver operating characteristic (ROC) analysis was conducted to test the sensitivity and specificity of the model. GO (gene ontology) functional and KEGG pathway enrichment analyses were performed for mRNAs co-expressed with the lncRNAs to explore the potential functions of the prognostic lncRNAs. Results A total of 265 differentially expressed lncRNAs were identified between esophageal cancer and normal tissues. After univariate and multivariate Cox regression analysis, eight lncRNAs (GS1-600G8.5, LINC00365, CTD-2357A8.3, RP11-705O24.1, LINC01554, RP1-90J4.1, RP11-327J17.1, and LINC00176) were finally screened out to establish a predictive model by which patients could be classified into high-risk and low-risk groups with significantly different overall survival. Further analysis indicated independent prognostic capability of the 8-lncRNA signature from other clinicopathological factors. ROC curve analysis demonstrated good performance of the 8-lncRNA signature. Functional enrichment analysis showed that the prognostic lncRNAs were mainly associated with esophageal cancer related biological processes such as regulation of glucose metabolic process and amino acid and lipids metabolism. Conclusions Our study developed a novel candidate model providing additional and more powerful prognostic information beyond conventional clinicopathological factors for survival prediction of esophageal cancer patients. Moreover, it also brings us new insights into the molecular mechanisms underlying esophageal cancer.
Collapse
Affiliation(s)
- Qiaowei Fan
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Bingrong Liu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| |
Collapse
|