1
|
Zeidler T, Ros A, Roch S, Jacobs A, Geist J, Brinker A. Non-random mating behaviour between diverging littoral and pelagic three-spined sticklebacks in an invasive population from Upper Lake Constance. ROYAL SOCIETY OPEN SCIENCE 2025; 12:241252. [PMID: 39816745 PMCID: PMC11732402 DOI: 10.1098/rsos.241252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/16/2024] [Accepted: 11/25/2024] [Indexed: 01/18/2025]
Abstract
Adaptive divergence and increased genetic differentiation among populations can lead to reproductive isolation. In Lake Constance, Germany, a population of invasive three-spined stickleback (Gasterosteus aculeatus) is currently diverging into littoral and pelagic ecotypes, which both nest in the littoral zone. We hypothesized that assortative mating behaviour contributes to reproductive isolation between these ecotypes and performed a behavioural experiment in which females could choose between two nest-guarding males. Behaviour was recorded, and data on traits relevant to mate choice were collected. Both females of the same and different ecotypes were courted with equal vigour. However, there was a significant interaction effect of male and female ecotypes on the level of aggression in females. Littoral females were more aggressive towards pelagic males, and pelagic females were more aggressive towards littoral males. This indicates rejection of males of different ecotypes in spite of the fact that littoral males were larger, more intensely red-coloured and more aggressive than the pelagic males-all mating traits female sticklebacks generally select for. This study documents the emergence of behavioural barriers during early divergence in an invasive and rapidly diversifying stickleback population and discusses their putative role in facilitating reproductive isolation and adaptive radiation within this species.
Collapse
Affiliation(s)
- Tobias Zeidler
- Fisheries Research Station Baden-Württemberg, Argenweg 50/1, 88085 Langenargen, Germany
| | - Albert Ros
- Fisheries Research Station Baden-Württemberg, Argenweg 50/1, 88085 Langenargen, Germany
| | - Samuel Roch
- Fisheries Research Station Baden-Württemberg, Argenweg 50/1, 88085 Langenargen, Germany
| | - Arne Jacobs
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, GlasgowG12 8QQ, UK
| | - Juergen Geist
- Department of Life Science Systems, Aquatic Systems Biology Unit, Technical University of Munich, TUM School of Life Sciences, Mühlenweg 22, 85354 Freising, Germany
| | - Alexander Brinker
- Fisheries Research Station Baden-Württemberg, Argenweg 50/1, 88085 Langenargen, Germany
- University of Constance, Institute for Limnology, Mainaustraße 252, 78464 Konstanz, Germany
| |
Collapse
|
2
|
Yadav P, Seth RK, Reynolds SE. A sperm-activating trypsin-like protease from the male reproductive tract of Spodoptera litura: Proteomic identification, sequence characterization, gene expression profile, RNAi and the effects of ionizing radiation. JOURNAL OF INSECT PHYSIOLOGY 2024; 156:104664. [PMID: 38897288 DOI: 10.1016/j.jinsphys.2024.104664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/15/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Like other lepidopteran insects, males of the tobacco cutworm moth, Spodoptera litura produce two kinds of spermatozoa, eupyrene (nucleate) and apyrene (anucleate) sperm. Formed in the testis, both kinds of sperm are released into the male reproductive tract in an immature form and are stored in the duplex region of the tract. Neither type of sperm is motile at this stage. When stored apyrene sperm from the duplex are treated in vitro with an extract of the prostatic region of the male tract, or with mammalian trypsin, they become motile; activation is greater and achieved more rapidly with increasing concentration of extract or enzyme. The activating effect of prostatic extract is blocked by soybean trypsin inhibitor (SBTI), also in a dose-dependent way. These results suggest that the normal sperm-activating process is due to an endogenous trypsin-like protease produced in the prostatic region. Proteomic analysis of S. litura prostatic extracts revealed a Trypsin-Like Serine Protease, TLSP, molecular weight 27 kDa, whose 199-residue amino acid sequence is identical to that of a predicted protein from the S. litura genome and is highly similar to predicted proteins encoded by genes in the genomes of several other noctuid moth species. Surprisingly, TLSP is only distantly related to Serine Protease 2 (initiatorin) of the silkmoth, Bombyx mori, the only identified lepidopteran protein so far shown to activate sperm. TLSP has features typical of secreted proteins, probably being synthesized as an inactive precursor zymogen, which is later activated by proteolytic cleavage. cDNA was synthesized from total RNA extracted from the prostatic region and was used to examine TLSP expression using qPCR. tlsp mRNA was expressed in both the prostatic region and the accessory glands of the male tract. Injection of TLSP-specific dsRNA into adult males caused a significant reduction after 24 h in tlsp mRNA levels in both locations. The number of eggs laid by females mated to adult males that were given TLSP dsRNA in 10 % honey solution, and the fertility (% hatched) of the eggs were reduced. Injecting pupae with TLSP dsRNA caused the later activation of apyrene sperm motility by adult male prostatic extracts to be significantly reduced compared to controls. Exposure of S. litura pupae to ionizing radiation significantly reduced expression of tlsp mRNA in the prostatic part and accessory gland of irradiated males in both the irradiated generation and also in their (unirradiated) F1 progeny. The implications of these findings for the use of the inherited sterility technique for the control of S. litura and other pest Lepidoptera are discussed.
Collapse
Affiliation(s)
- Priya Yadav
- Department of Zoology, University of Delhi, Delhi 110007, India.
| | - Rakesh K Seth
- Department of Zoology, University of Delhi, Delhi 110007, India.
| | - Stuart E Reynolds
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK; Milner Centre for Evolution, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
3
|
Sato T, Sugiyama T, Sekijima T. Mating in the cold. Prolonged sperm storage provides opportunities for forced copulation by male bats during winter. Front Physiol 2023; 14:1241470. [PMID: 37745243 PMCID: PMC10511888 DOI: 10.3389/fphys.2023.1241470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
In a wide range of heterothermic mammals, hibernation interrupts the reproductive cycle by forcing reproductive delays. In hibernating bats with delayed fertilization, an opportunity for sperm competition is enhanced by extending a time-window between copulations and fertilization. In order to achieve greater fertilization success, males are expected to show adaptations for sperm competition by increasing their opportunities for mating over an extended period. We aimed to clarify the physiological and behavioral characteristics of male bats experiencing increased risks of sperm competition. We investigated the characteristics of the reproductive cycle of the little horseshoe bat (Rhinolophus cornutus), and examined whether males retain reproductive physiology related to sexual behavior, and attempt to copulate with females even during the hibernation period. Field observations and histological examinations of the reproductive cycle confirmed that females, having mated in the autumn, store spermatozoa in the uterus during hibernation and give birth in the early summer to just one offspring per year, thus males face a low certainty of successful fertilization. Although their testes regressed rapidly and their testosterone levels were lower during winter than in autumn, males stored motile spermatozoa in their cauda epididymides from autumn throughout the winter. During hibernation, we found that males occasionally aroused from torpor and attempted to mate forcibly with torpid females. Forced copulations appear to increase a male's chances of obtaining a mate while avoiding pre-copulatory female choice. Epididymal sperm storage could be advantageous for males in allowing them to extend their potential mating period even though their testes have regressed. We also found that some hibernating nulliparous females were ready for fertilization in spring after hibernation, whereas few parous females appeared in the same roost. In contrast to males, forced copulations would be maladaptive for females because they cannot opt for higher-quality males while in torpor. Females that have experienced sexual coercion when young may subsequently avoid hibernacula where adult males are present.
Collapse
Affiliation(s)
- Takahiro Sato
- Graduate School of Technology, Industrial, and Social Sciences, Tokushima University, Tokushima, Japan
- Faculty of Agriculture, Niigata University, Niigata, Japan
| | | | | |
Collapse
|
4
|
Romero-Haro AÁ, Pérez-Rodríguez L, Tschirren B. Increased male-induced harm in response to female-limited selection: interactive effects between intra- and interlocus sexual conflict? Proc Biol Sci 2023; 290:20230140. [PMID: 37122249 PMCID: PMC10130724 DOI: 10.1098/rspb.2023.0140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 03/22/2023] [Indexed: 05/02/2023] Open
Abstract
Interlocus sexual conflict (IRSC) occurs because of shared interactions that have opposite effects on male and female fitness. Typically, it is assumed that loci involved in IRSC have sex-limited expression and are thus not directly affected by selective pressures acting on the other sex. However, if loci involved in IRSC have pleiotropic effects in the other sex, intersexual selection can shape the evolutionary dynamics of conflict escalation and resolution, as well as the evolution of reproductive traits linked to IRSC loci, and vice versa. Here we used an artificial selection approach in Japanese quail (Coturnix japonica) to test if female-limited selection on reproductive investment affects the amount of harm caused by males during mating. We found that males originating from lines selected for high female reproductive investment caused more oxidative damage in the female reproductive tract than males originating from lines selected for low female reproductive investment. This male-induced damage was specific to the oviduct and not found in other female tissues, suggesting that it was ejaculate-mediated. Our results suggest that intersexual selection shapes the evolution of IRSC and that male-induced harm may contribute to the maintenance of variation in female reproductive investment.
Collapse
Affiliation(s)
- Ana Ángela Romero-Haro
- Centre for Ecology and Conservation, University of Exeter, Penryn TR10 9FE, UK
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Lorenzo Pérez-Rodríguez
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Barbara Tschirren
- Centre for Ecology and Conservation, University of Exeter, Penryn TR10 9FE, UK
| |
Collapse
|
5
|
Decanter N, Normand R, Souissi A, Labbé C, Edeline E, Evanno G. Sperm competition experiments reveal low prezygotic postmating isolation between parasitic and nonparasitic lamprey ecotypes. Ecol Evol 2023; 13:e9970. [PMID: 37021081 PMCID: PMC10067809 DOI: 10.1002/ece3.9970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
The role of postmating sexual selection as a potential reproductive barrier in speciation is not well understood. Here, we studied the effects of sperm competition and cryptic female choice as putative postmating barriers in two lamprey ecotypes with a partial reproductive isolation. The European river lamprey Lampetra fluviatilis is anadromous and parasitic of other fish species, whereas the brook lamprey Lampetra planeri is freshwater resident and nonparasitic. We measured sperm traits in both ecotypes and designed sperm competition experiments to test the occurrence of cryptic female choice. We also performed sperm competition experiments either at equal semen volume or equal sperm number to investigate the role of sperm velocity on fertilization success. We observed distinct sperm traits between ecotypes with a higher sperm concentration and a lower sperm velocity for L. planeri compared with L. fluviatilis. The outcomes of sperm competition reflected these differences in sperm traits, and there was no evidence for cryptic female choice irrespective of female ecotype. At equal semen volume, L. planeri males had a higher fertilization success than L. fluviatilis and vice versa at equal sperm number. Our results demonstrate that different sperm traits between ecotypes can influence the male reproductive success and thus gene flow between L. planeri and L. fluviatilis. However, postmating prezygotic barriers are absent and thus cannot explain the partial reproductive isolation between ecotypes.
Collapse
Affiliation(s)
- Nolwenn Decanter
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMERRennesFrance
| | - Romane Normand
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMERRennesFrance
| | - Ahmed Souissi
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMERRennesFrance
| | - Catherine Labbé
- INRAE, UMR1037 LPGP, Fish Physiology and GenomicsCampus de Beaulieu35000RennesFrance
| | - Eric Edeline
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMERRennesFrance
| | - Guillaume Evanno
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMERRennesFrance
| |
Collapse
|
6
|
van Gammeren S, Lang M, Rücklin M, Schilthuizen M. No evidence for asymmetric sperm deposition in a species with asymmetric male genitalia. PeerJ 2022; 10:e14225. [PMID: 36447515 PMCID: PMC9701498 DOI: 10.7717/peerj.14225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022] Open
Abstract
Background Asymmetric genitalia have repeatedly evolved in animals, yet the underlying causes for their evolution are mostly unknown. The fruit fly Drosophila pachea has asymmetric external genitalia and an asymmetric phallus with a right-sided phallotrema (opening for sperm release). The complex of female and male genitalia is asymmetrically twisted during copulation and males adopt a right-sided copulation posture on top of the female. We wished to investigate if asymmetric male genital morphology and a twisted gentitalia complex may be associated with differential allocation of sperm into female sperm storage organs. Methods We examined the internal complex of female and male reproductive organs by micro-computed tomography and synchrotron X-ray tomography before, during and after copulation. In addition, we monitored sperm aggregation states and timing of sperm transfer during copulation by premature interruption of copulation at different time-points. Results The asymmetric phallus is located at the most caudal end of the female abdomen during copulation. The female reproductive tract, in particular the oviduct, re-arranges during copulation. It is narrow in virgin females and forms a broad vesicle at 20 min after the start of copulation. Sperm transfer into female sperm storage organs (spermathecae) was only in a minority of examined copulation trials (13/64). Also, we found that sperm was mainly transferred early, at 2-4 min after the start of copulation. We did not detect a particular pattern of sperm allocation in the left or right spermathecae. Sperm adopted a granular or filamentous aggregation state in the female uterus and spermathecae, respectively. Discussion No evidence for asymmetric sperm deposition was identified that could be associated with asymmetric genital morphology or twisted complexing of genitalia. Male genital asymmetry may potentially have evolved as a consequence of a complex internal alignment of reproductive organs during copulation in order to optimize low sperm transfer rates.
Collapse
Affiliation(s)
| | - Michael Lang
- Université Paris Cité, CNRS - Institut Jacques Monod, Paris, France,Institut Diversité, Ecologie et Evolution du Vivant (IDEEV), Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | - Menno Schilthuizen
- Naturalis Biodiversity Center, Leiden, The Netherlands,Institute for Biology, Leiden University, Leiden, Netherlands
| |
Collapse
|
7
|
Vujić V, Milovanović J, Jovanović Z, Dudić B, Makarov S, Pavković-Lučić S, Ilić B. Morphology and mating behaviour in the millipede Megaphyllum unilineatum (C.L. Koch, 1838) (Myriapoda, Diplopoda, Julida) under laboratory conditions. CONTRIBUTIONS TO ZOOLOGY 2022. [DOI: 10.1163/18759866-bja10033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Although morphological variation may have an effect on behaviour, there are only a few studies on julid millipedes in which the influence of the variability of some morphological traits on mating success has been explored. Hence, objectives of this study were to investigate mating behaviour in laboratory conditions and identify traits that could possibly be the target of pre-copulatory selection in the julid species Megaphyllum unilineatum. Behavioural sequences were quantified in three types of tests: a mating arena test, a female choice test, and a male choice test. Although the number of contacts with the first chosen partner (from the mating arena test) was greater than with newly offered individuals in choice tests, values of the sexual selection coefficient did not statistically confirm this preference. In addition, analyses of linear measurements (trunk height and width, length of the whole body, antennae, walking legs, and gonopod flagella) in individuals of different mating status were also conducted, as well as geometric morphometric analyses of size and shape of the antennae, heads, walking legs, and gonopod promeres and opisthomeres in such individuals. Antennal length and shape, head shape, and the walking legs shape, differed significantly, depending on the mating status of females. In males of different mating status, statistical significance was established only in the promere centroid size. The differences in certain behavioural sequences in M. unilineatum are similar to those previously reported in M. bosniense, while such similarity is not detected with respect to morphological variation in the mentioned species.
Collapse
Affiliation(s)
- Vukica Vujić
- Faculty of Biology, Institute of Zoology, University of Belgrade, Studentski Trg 16, 11000, Belgrade, Serbia,
| | - Jelena Milovanović
- Faculty of Biology, Institute of Zoology, University of Belgrade, Studentski Trg 16, 11000, Belgrade, Serbia
| | - Zvezdana Jovanović
- Faculty of Biology, Institute of Zoology, University of Belgrade, Studentski Trg 16, 11000, Belgrade, Serbia
| | - Boris Dudić
- Faculty of Biology, Institute of Zoology, University of Belgrade, Studentski Trg 16, 11000, Belgrade, Serbia
| | - Slobodan Makarov
- Faculty of Biology, Institute of Zoology, University of Belgrade, Studentski Trg 16, 11000, Belgrade, Serbia
| | - Sofija Pavković-Lučić
- Faculty of Biology, Institute of Zoology, University of Belgrade, Studentski Trg 16, 11000, Belgrade, Serbia
| | - Bojan Ilić
- Faculty of Biology, Institute of Zoology, University of Belgrade, Studentski Trg 16, 11000, Belgrade, Serbia
| |
Collapse
|
8
|
Hopkins BR, Perry JC. The evolution of sex peptide: sexual conflict, cooperation, and coevolution. Biol Rev Camb Philos Soc 2022; 97:1426-1448. [PMID: 35249265 PMCID: PMC9256762 DOI: 10.1111/brv.12849] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/17/2022]
Abstract
A central paradigm in evolutionary biology is that the fundamental divergence in the fitness interests of the sexes (‘sexual conflict’) can lead to both the evolution of sex‐specific traits that reduce fitness for individuals of the opposite sex, and sexually antagonistic coevolution between the sexes. However, clear examples of traits that evolved in this way – where a single trait in one sex demonstrably depresses the fitness of members of the opposite sex, resulting in antagonistic coevolution – are rare. The Drosophila seminal protein ‘sex peptide’ (SP) is perhaps the most widely cited example of a trait that appears to harm females while benefitting males. Transferred in the ejaculate by males during mating, SP triggers profound and wide‐ranging changes in female behaviour and physiology. Early studies reported that the transfer of SP enhances male fitness while depressing female fitness, providing the foundations for the widespread view that SP has evolved to manipulate females for male benefit. Here, we argue that this view is (i) a simplification of a wider body of contradictory empirical research, (ii) narrow with respect to theory describing the origin and maintenance of sexually selected traits, and (iii) hard to reconcile with what we know of the evolutionary history of SP's effects on females. We begin by charting the history of thought regarding SP, both at proximate (its production, function, and mechanism of action) and ultimate (its fitness consequences and evolutionary history) levels, reviewing how studies of SP were central to the development of the field of sexual conflict. We describe a prevailing paradigm for SP's evolution: that SP originated and continues to evolve to manipulate females for male benefit. In contrast to this view, we argue on three grounds that the weight of evidence does not support the view that receipt of SP decreases female fitness: (i) results from studies of SP's impact on female fitness are mixed and more often neutral or positive, with fitness costs emerging only under nutritional extremes; (ii) whether costs from SP are appreciable in wild‐living populations remains untested; and (iii) recently described confounds in genetic manipulations of SP raise the possibility that measures of the costs and benefits of SP have been distorted. Beyond SP's fitness effects, comparative and genetic data are also difficult to square with the idea that females suffer fitness costs from SP. Instead, these data – from functional and evolutionary genetics and the neural circuitry of female responses to SP – suggest an evolutionary history involving the evolution of a dedicated SP‐sensing apparatus in the female reproductive tract that is likely to have evolved because it benefits females, rather than harms them. We end by exploring theory and evidence that SP benefits females by functioning as a signal of male quality or of sperm receipt and storage (or both). The expanded view of the evolution of SP that we outline recognises the context‐dependent and fluctuating roles played by both cooperative and antagonistic selection in the origin and maintenance of reproductive traits.
Collapse
Affiliation(s)
- Ben R. Hopkins
- Department of Evolution and Ecology University of California – Davis One Shields Avenue Davis CA 95616 U.S.A
| | - Jennifer C. Perry
- School of Biological Sciences University of East Anglia Norwich NR4 7TJ U.K
| |
Collapse
|
9
|
Hitchcock TJ, Gardner A. Sex-biased demography modulates male harm across the genome. Proc Biol Sci 2021; 288:20212237. [PMID: 34933602 PMCID: PMC8692969 DOI: 10.1098/rspb.2021.2237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/26/2021] [Indexed: 11/22/2022] Open
Abstract
Recent years have seen an explosion of theoretical and empirical interest in the role that kin selection plays in shaping patterns of sexual conflict, with a particular focus on male harming traits. However, this work has focused solely on autosomal genes, and as such it remains unclear how demography modulates the evolution of male harm loci occurring in other portions of the genome, such as sex chromosomes and cytoplasmic elements. To investigate this, we extend existing models of sexual conflict for application to these different modes of inheritance. We first analyse the general case, revealing how sex-specific relatedness, reproductive value and the intensity of local competition combine to determine the potential for male harm. We then analyse a series of demographically explicit models, to assess how dispersal, overlapping generations, reproductive skew and the mechanism of population regulation affect sexual conflict across the genome, and drive conflict between nuclear and cytoplasmic genes. We then explore the effects of sex biases in these demographic parameters, showing how they may drive further conflicts between autosomes and sex chromosomes. Finally, we outline how different crossing schemes may be used to identify signatures of these intragenomic conflicts.
Collapse
Affiliation(s)
| | - Andy Gardner
- School of Biology, University of St Andrews, St Andrews KY16 9TH, UK
| |
Collapse
|
10
|
Lough-Stevens M, Ghione CR, Urness M, Hobbs A, Sweeney CM, Dean MD. Male-derived copulatory plugs enhance implantation success in female Mus musculus. Biol Reprod 2021; 104:684-694. [PMID: 33355341 PMCID: PMC7962766 DOI: 10.1093/biolre/ioaa228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Among a wide diversity of sexually reproducing species, male ejaculates coagulate to form what has been termed a copulatory plug. A number of functions have been attributed to copulatory plugs, including the inhibition of female remating and the promotion of ejaculate movement. Here we demonstrate that copulatory plugs also influence the likelihood of implantation, which occurs roughly 4 days after copulation in mice. Using a bead transfer method to control for differences in ejaculate retention and fertilization rates, we show that implantation rates significantly drop among females mated to genetically engineered males incapable of forming plugs (because they lack functional transglutaminase 4, the main enzyme responsible for its formation). Surprisingly, this result does not correlate with differences in circulating progesterone levels among females, an important hormone involved in implantation. We discuss three models that connect male-derived copulatory plugs to implantation success, including the hypothesis that plugs contribute to a threshold amount of stimulation required for females to become receptive to implantation.
Collapse
Affiliation(s)
- Michael Lough-Stevens
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Caleb R Ghione
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Matthew Urness
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Adelaide Hobbs
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Colleen M Sweeney
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Matthew D Dean
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
11
|
Manat Y, Lund-Hansen KK, Katsianis G, Abbott JK. Female-limited X-chromosome evolution effects on male pre- and post-copulatory success. Biol Lett 2021; 17:20200915. [PMID: 33653095 DOI: 10.1098/rsbl.2020.0915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Intralocus sexual conflict arises when the expression of shared alleles at a single locus generates opposite fitness effects in each sex (i.e. sexually antagonistic alleles), preventing each sex from reaching its sex-specific optimum. Despite its importance to reproductive success, the relative contribution of intralocus sexual conflict to male pre- and post-copulatory success is not well-understood. Here, we used a female-limited X-chromosome (FLX) evolution experiment in Drosophila melanogaster to limit the inheritance of the X-chromosome to the matriline, eliminating possible counter-selection in males and allowing the X-chromosome to accumulate female-benefit alleles. After more than 100 generations of FLX evolution, we studied the effect of the evolved X-chromosome on male attractiveness and sperm competitiveness. We found a non-significant increase in attractiveness and decrease in sperm offence ability in males expressing the evolved X-chromosomes, but a significant increase in their ability to avoid displacement by other males' sperm. This is consistent with a trade-off between these traits, perhaps mediated by differences in body size, causing a small net reduction in overall male fitness in the FLX lines. These results indicate that the X-chromosome in D. melanogaster is subject to selection via intralocus sexual conflict in males.
Collapse
Affiliation(s)
- Yesbol Manat
- Department of Biology, Section for Evolutionary Ecology, Lund University, Lund 223 62, Sweden.,The Biomedical Research Center, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Katrine K Lund-Hansen
- Department of Biology, Section for Evolutionary Ecology, Lund University, Lund 223 62, Sweden
| | - Georgios Katsianis
- Department of Biology, Section for Evolutionary Ecology, Lund University, Lund 223 62, Sweden
| | - Jessica K Abbott
- Department of Biology, Section for Evolutionary Ecology, Lund University, Lund 223 62, Sweden
| |
Collapse
|
12
|
Wigby S, Brown NC, Allen SE, Misra S, Sitnik JL, Sepil I, Clark AG, Wolfner MF. The Drosophila seminal proteome and its role in postcopulatory sexual selection. Philos Trans R Soc Lond B Biol Sci 2020; 375:20200072. [PMID: 33070726 DOI: 10.1098/rstb.2020.0072] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Postcopulatory sexual selection (PCSS), comprised of sperm competition and cryptic female choice, has emerged as a widespread evolutionary force among polyandrous animals. There is abundant evidence that PCSS can shape the evolution of sperm. However, sperm are not the whole story: they are accompanied by seminal fluid substances that play many roles, including influencing PCSS. Foremost among seminal fluid models is Drosophila melanogaster, which displays ubiquitous polyandry, and exhibits intraspecific variation in a number of seminal fluid proteins (Sfps) that appear to modulate paternity share. Here, we first consolidate current information on the identities of D. melanogaster Sfps. Comparing between D. melanogaster and human seminal proteomes, we find evidence of similarities between many protein classes and individual proteins, including some D. melanogaster Sfp genes linked to PCSS, suggesting evolutionary conservation of broad-scale functions. We then review experimental evidence for the functions of D. melanogaster Sfps in PCSS and sexual conflict. We identify gaps in our current knowledge and areas for future research, including an enhanced identification of PCSS-related Sfps, their interactions with rival sperm and with females, the role of qualitative changes in Sfps and mechanisms of ejaculate tailoring. This article is part of the theme issue 'Fifty years of sperm competition'.
Collapse
Affiliation(s)
- Stuart Wigby
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, UK.,Faculty Biology, Applied Zoology, Technische Universität Dresden, 01069 Dresden, Germany
| | - Nora C Brown
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Sarah E Allen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Snigdha Misra
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Jessica L Sitnik
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Irem Sepil
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
13
|
Parker GA. Conceptual developments in sperm competition: a very brief synopsis. Philos Trans R Soc Lond B Biol Sci 2020; 375:20200061. [PMID: 33070727 DOI: 10.1098/rstb.2020.0061] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The past half century has seen the development of the field of post-ejaculatory sexual selection, the sequel to sexual selection for mate-acquisition (pre-ejaculatory) described by Darwin. In richness and diversity of adaptations, post-ejaculatory selection rivals that of pre-ejaculatory sexual selection. Anisogamy-and hence two sexes-likely arose by primeval gamete competition, and sperm competition remains a major force maintaining high sperm numbers. The post-ejaculatory equivalent of male-male competition for matings, sperm competition was an intense ancestral form of sexual selection, typically weakening as mobility and internal fertilization developed in many taxa, when some expenditure became diverted into pre-ejaculatory competition. Sperm competition theory has been relatively successful in explaining variation in relative testes size and sperm numbers per ejaculate and is becoming more successful in explaining variation in sperm phenotype. Sperm competition has generated many other male adaptations such as seminal fluid proteins that variously modify female reproduction towards male interests, and copulatory plugs, prolonged copulations and post-ejaculatory guarding behaviour that reduce female remating probability, many of which result in sexual conflict. This short survey of conceptual developments is intended as a broad overview, mainly as a primer for new researchers. This article is part of the theme issue 'Fifty years of sperm competition'.
Collapse
Affiliation(s)
- Geoff A Parker
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
| |
Collapse
|
14
|
Kerwin P, Yuan J, von Philipsborn AC. Female copulation song is modulated by seminal fluid. Nat Commun 2020; 11:1430. [PMID: 32188855 PMCID: PMC7080721 DOI: 10.1038/s41467-020-15260-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 02/29/2020] [Indexed: 01/23/2023] Open
Abstract
In most animal species, males and females communicate during sexual behavior to negotiate reproductive investments. Pre-copulatory courtship may settle if copulation takes place, but often information exchange and decision-making continue beyond that point. Here, we show that female Drosophila sing by wing vibration in copula. This copulation song is distinct from male courtship song and requires neurons expressing the female sex determination factor DoublesexF. Copulation song depends on transfer of seminal fluid components of the male accessory gland. Hearing female copulation song increases the reproductive success of a male when he is challenged by competition, suggesting that auditory cues from the female modulate male ejaculate allocation. Our findings reveal an unexpected fine-tuning of reproductive decisions during a multimodal copulatory dialog. The discovery of a female-specific acoustic behavior sheds new light on Drosophila mating, sexual dimorphisms of neuronal circuits and the impact of seminal fluid molecules on nervous system and behavior.
Collapse
Affiliation(s)
- Peter Kerwin
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Hoegh-Guldbergsgade 10, 8000, Aarhus, Denmark
| | - Jiasheng Yuan
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Hoegh-Guldbergsgade 10, 8000, Aarhus, Denmark
| | - Anne C von Philipsborn
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Hoegh-Guldbergsgade 10, 8000, Aarhus, Denmark.
| |
Collapse
|
15
|
Mouginot P, Uhl G. Females of a cannibalistic spider control mutilation of their genitalia by males. Behav Ecol 2019. [DOI: 10.1093/beheco/arz127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
When females can mate multiply, the interests of both sexes over female remating may not coincide, leading to selection for adaptations and counteradaptations in males and females. In several orb-weaving spiders, males damage external structures of the female genitalia during copulation, which hinders the female from remating. We investigated whether females have control over the mutilation of their genitalia in the orb-weaving spider Larinia jeskovi. We found that female sexual cannibalism during copulation reduced the number of insertions a male was able to perform and hence limited the probability of genital mutilation by the male. Genital mutilation did not differ between treatments in which females experienced different availabilities of other males before the mating trial: males absent, males near the female (“vicinity group”), and males in the female’s web (“web group”). However, traits of the mating male (size, condition) were significantly correlated with the occurrence of cannibalism during mating in “web” and “vicinity” treatments. These results suggest that females have control over mutilation by an early termination of mating, can respond to the availability of potential mates and can alter the probability of mutilation according to certain male traits. Female sexual cannibalism may represent a counteradaptation to genital mutilation allowing females to mate multiply.
Collapse
Affiliation(s)
- Pierick Mouginot
- General and Systematic Zoology, Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | - Gabriele Uhl
- General and Systematic Zoology, Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| |
Collapse
|
16
|
Tourmente M, Archer CR, Hosken DJ. Complex interactions between sperm viability and female fertility. Sci Rep 2019; 9:15366. [PMID: 31653962 PMCID: PMC6814814 DOI: 10.1038/s41598-019-51672-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 10/03/2019] [Indexed: 12/03/2022] Open
Abstract
Sperm viability is a major male fitness component, with higher sperm viability associated with enhanced sperm competitiveness. While many studies have focussed on sperm viability from the male fitness standpoint, its impact on female fitness is less clear. Here we used a panel of 32 isogenic Drosophila simulans lines to test for genetic variation in sperm viability (percentage of viable cells). We then tested whether sperm viability affected female fitness by mating females to males from low or high sperm viability genotypes. We found significant variation in sperm viability among genotypes, and consistent with this, sperm viability was highly repeatable within genotypes. Additionally, females mated to high sperm viability males laid more eggs in the first seven hours after mating, and produced more offspring in total. However, the early increase in oviposition did not result in more offspring in the 8 hours following mating, suggesting that mating with high sperm-viability genotypes leads to egg wastage for females shortly after copulation. Although mating with high sperm-viability males resulted in higher female fitness in the long term, high quality ejaculates would result in a short-term female fitness penalty, or at least lower realised fitness, potentially generating sexual conflict over optimal sperm viability.
Collapse
Affiliation(s)
- Maximiliano Tourmente
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom.
| | - C Ruth Archer
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom.,Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - David J Hosken
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
| |
Collapse
|
17
|
Ruschel TP, Bianchi FM, Campos LA. Genital coupling, morphology and evolution of male holding structures in Cicadinae (Hemiptera: Cicadidae). Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Male and female genitalia include some of the most complex and morphologically diverse structures in Metazoa. Ornamentations in genitalia have been studied in several groups, and a variety of functional roles have been proposed. Although complex features of the genitalia have been observed in internal genitalia in cicadas, their functions have not yet been elucidated. These ornamentations, together with precopulatory sexual selection, make cicadas good models for evolutionary studies on genital coupling. We explore the structural interaction of male and female genitalia in Guyalna bonaerensis (Berg) (Cicadinae) and the morphology of male ornamentations in Cicadinae generally. We group these ornamentations into two traits according to their inferred function: anchoring or gripping. We analyse the theca and vesica of 24 species and perform ancestral trait reconstruction under maximum likelihood and stochastic mapping on a Bayesian tree. Ornamentations of the male vesica and the female seminal ampoule possibly ensure male attachment by working as an active lock to avoid the premature termination of intercourse. These ornamentations emerged independently in different lineages in Cicadinae, reinforcing the suggestion that they are important adaptations to achieve complete copulation. Our results foster questions for the field of sexual selection and associated mechanisms shaping the evolution of male and female genitalia.
Collapse
Affiliation(s)
- Tatiana Petersen Ruschel
- Programa de Pós-Graduação em Biologia Animal, Departamento de Zoologia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, Porto Alegre, RS, Brazil
| | - Filipe Michels Bianchi
- Programa de Pós-Graduação em Biologia Animal, Departamento de Zoologia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, Porto Alegre, RS, Brazil
| | - Luiz Alexandre Campos
- Programa de Pós-Graduação em Biologia Animal, Departamento de Zoologia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, Porto Alegre, RS, Brazil
| |
Collapse
|
18
|
Civetta A, Ranz JM. Genetic Factors Influencing Sperm Competition. Front Genet 2019; 10:820. [PMID: 31572439 PMCID: PMC6753916 DOI: 10.3389/fgene.2019.00820] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/08/2019] [Indexed: 12/26/2022] Open
Abstract
Females of many different species often mate with multiple males, creating opportunities for competition among their sperm. Although originally unappreciated, sperm competition is now considered a central form of post-copulatory male–male competition that biases fertilization. Assays of differences in sperm competitive ability between males, and interactions between females and males, have made it possible to infer some of the main mechanisms of sperm competition. Nevertheless, classical genetic approaches have encountered difficulties in identifying loci influencing sperm competitiveness while functional and comparative genomic methodologies, as well as genetic variant association studies, have uncovered some interesting candidate genes. We highlight how the systematic implementation of approaches that incorporate gene perturbation assays in experimental competitive settings, together with the monitoring of progeny output or sperm features and behavior, has allowed the identification of genes unambiguously linked to sperm competitiveness. The emerging portrait from 45 genes (33 from fruit flies, 8 from rodents, 2 from nematodes, and 2 from ants) is their remarkable breadth of biological roles exerted through males and females, the non-preponderance of sperm genes, and their overall pleiotropic nature.
Collapse
Affiliation(s)
- Alberto Civetta
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada
| | - José M Ranz
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, United States
| |
Collapse
|
19
|
Kasimatis KR, Moerdyk-Schauwecker MJ, Phillips PC. Auxin-Mediated Sterility Induction System for Longevity and Mating Studies in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2018; 8:2655-2662. [PMID: 29880556 PMCID: PMC6071612 DOI: 10.1534/g3.118.200278] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/06/2018] [Indexed: 11/18/2022]
Abstract
The ability to control both the means and timing of sexual reproduction provides a powerful tool to understand not only fertilization but also life history trade-offs resulting from sexual reproduction. However, precisely controlling fertilization has proved a major challenge across model systems. An ideal sterility induction system should be external, non-toxic, and reversible. Using the auxin-inducible degradation system targeting the spe-44 gene within the nematode Caenorhabditis elegans, we designed a means of externally inducing spermatogenesis arrest. We show that exposure to auxin during larval development induces both hermaphrodite self-sterility and male sterility. Moreover, male sterility can be reversed upon cessation of auxin exposure. The sterility induction system developed here has multiple applications in the fields of spermatogenesis and mating systems evolution. Importantly, this system is also a highly applicable tool for aging studies. In particular, we show that auxin-induced self-sterility is comparable to the commonly used chemically-induced FUdR sterility, while offering multiple benefits, including being less labor intensive, being non-toxic, and avoiding compound interactions with other experimental treatments.
Collapse
Affiliation(s)
- Katja R Kasimatis
- Institute of Ecology and Evolution, 5289 University of Oregon, University of Oregon, Eugene, OR 97403
| | | | - Patrick C Phillips
- Institute of Ecology and Evolution, 5289 University of Oregon, University of Oregon, Eugene, OR 97403
| |
Collapse
|
20
|
Fea M, Holwell GI. Exaggerated male legs increase mating success by reducing disturbance to females in the cave wētā Pachyrhamma waitomoensis. Proc Biol Sci 2018; 285:20180401. [PMID: 29875300 PMCID: PMC6015848 DOI: 10.1098/rspb.2018.0401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/16/2018] [Indexed: 11/12/2022] Open
Abstract
Mate guarding is a widespread behaviour resulting from sperm competition and conflict over optimal remating rates. It is a key way in which males exhibit differential mating investment, and represents a complex interplay between mating effort, intrasexual competition, opportunity costs and sexual conflict. Nevertheless, although there are many examples of exaggerated male structures used to fight rivals, few animals have developed specialized male morphological adaptations for directly sheltering females from disturbance by non-rivals. Here we report on the use of sexually dimorphic, elongated male hind legs, which are used to guard females in the New Zealand cave wētā Pachyrhamma waitomoensis (Orthoptera: Rhaphidophoridae). We found that male hind legs alongside the female failed to deter rivals from accessing her or disrupting copulation. However, they did reduce the disturbance to females from other, non-rival animals such as juveniles and heterospecifics. Males with longer hind legs were more effective in reducing disturbance, and remained with females for longer. Longer guarding periods also led to higher numbers of matings between pairs. Models of males with artificially altered hind leg dimensions also showed a benefit to greater leg length, and artificially altering the disturbance rate to females also had a significant effect on pair duration. Our results indicate that nuisance disturbance to females may play an important role in driving sexual selection on male leg length and its exaggeration in this species.
Collapse
Affiliation(s)
- Murray Fea
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Gregory I Holwell
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
21
|
Tsuboko-Ishii S, Burton RS. Sex-specific rejection in mate-guarding pair formation in the intertidal copepod, Tigriopus californicus. PLoS One 2017; 12:e0183758. [PMID: 28832683 PMCID: PMC5568411 DOI: 10.1371/journal.pone.0183758] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/10/2017] [Indexed: 12/16/2022] Open
Abstract
Securing a potential mate is one of the most important processes in sexual reproduction of animals. Intertidal copepods of the genus Tigriopus show mate-guarding behavior where a male captures a female and continues to clasp her for up to two weeks prior to copulation. Although these copepods form a mate-guarding pair between a male and a female with high accuracy, interactions between the sexes in pair formation have not been well described and the mechanism allowing successful male-female pair formation is not yet understood. In this study, we performed experiments with Tigriopus californicus to analyze the behavior of both a capturer (male) and a captured individual (female or male) in formation of a guarding pair. While capturer males were attracted by both females and males, capture of virgin males was terminated in a significantly shorter time than that of virgin females. However, when presented freshly killed females or males, regardless of the sex of the body, capturer males continued to clasp the body for a comparable time as in an attempt on a living female. Our results suggest that a sex-specific rejection signal actively sent by captured males prevents male-male pair formation. Experiments also suggest that mated females reject an attempt of pair formation. To our knowledge, this is the first study to suggest involvement of active rejection by a captured individual in facilitation of reproductively successful male-female guarding pair formation in the genus Tigriopus.
Collapse
Affiliation(s)
- Satomi Tsuboko-Ishii
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, United States of America
- * E-mail:
| | - Ronald S. Burton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
22
|
Denis B, Claisse G, Le Rouzic A, Wicker-Thomas C, Lepennetier G, Joly D. Male accessory gland proteins affect differentially female sexual receptivity and remating in closely related Drosophila species. JOURNAL OF INSECT PHYSIOLOGY 2017; 99:67-77. [PMID: 28342762 DOI: 10.1016/j.jinsphys.2017.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/17/2017] [Accepted: 03/18/2017] [Indexed: 06/06/2023]
Abstract
In sexual species, mating success depends on the male's capacity to find sexual partners and on female receptivity to mating. Mating is under evolutionary constraints to prevent interspecific mating and to maximize the reproductive success of both sexes. In Drosophila melanogaster, female receptivity to mating is mainly controlled by Sex peptide (SP, i.e. Acp70A) produced by the male accessory glands with other proteins (Acps). The transfer of SP during copulation dramatically reduces female receptivity to mating and prevents remating with other males. To date, female postmating responses are well-known in D. melanogaster but have been barely investigated in closely-related species or strains exhibiting different mating systems (monoandrous versus polyandrous). Here, we describe the diversity of mating systems in two strains of D. melanogaster and the three species of the yakuba complex. Remating delay and sexual receptivity were measured in cross-experiments following SP orthologs or Acp injections within females. Interestingly, we discovered strong differences between the two strains of D. melanogaster as well as among the three species of the yakuba complex. These results suggest that reproductive behavior is under the control of complex sexual interactions between the sexes and evolves rapidly, even among closely-related species.
Collapse
Affiliation(s)
- Béatrice Denis
- Laboratoire Evolution, Génomes, Comportement, Ecologie, CNRS, IRD, Univ Paris-Sud and Université Paris-Saclay, F-91198 Gif-sur-Yvette, France.
| | - Gaëlle Claisse
- Laboratoire Evolution, Génomes, Comportement, Ecologie, CNRS, IRD, Univ Paris-Sud and Université Paris-Saclay, F-91198 Gif-sur-Yvette, France.
| | - Arnaud Le Rouzic
- Laboratoire Evolution, Génomes, Comportement, Ecologie, CNRS, IRD, Univ Paris-Sud and Université Paris-Saclay, F-91198 Gif-sur-Yvette, France.
| | - Claude Wicker-Thomas
- Laboratoire Evolution, Génomes, Comportement, Ecologie, CNRS, IRD, Univ Paris-Sud and Université Paris-Saclay, F-91198 Gif-sur-Yvette, France.
| | - Gildas Lepennetier
- Laboratoire Evolution, Génomes, Comportement, Ecologie, CNRS, IRD, Univ Paris-Sud and Université Paris-Saclay, F-91198 Gif-sur-Yvette, France.
| | - Dominique Joly
- Laboratoire Evolution, Génomes, Comportement, Ecologie, CNRS, IRD, Univ Paris-Sud and Université Paris-Saclay, F-91198 Gif-sur-Yvette, France.
| |
Collapse
|
23
|
Chen Q, Yan W, Duan E. Epigenetic inheritance of acquired traits through sperm RNAs and sperm RNA modifications. Nat Rev Genet 2016; 17:733-743. [PMID: 27694809 PMCID: PMC5441558 DOI: 10.1038/nrg.2016.106] [Citation(s) in RCA: 345] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Once deemed heretical, emerging evidence now supports the notion that the inheritance of acquired characteristics can occur through ancestral exposures or experiences and that certain paternally acquired traits can be 'memorized' in the sperm as epigenetic information. The search for epigenetic factors in mammalian sperm that transmit acquired phenotypes has recently focused on RNAs and, more recently, RNA modifications. Here, we review insights that have been gained from studying sperm RNAs and RNA modifications, and their roles in influencing offspring phenotypes. We discuss the possible mechanisms by which sperm become acquisitive following environmental-somatic-germline interactions, and how they transmit paternally acquired phenotypes by shaping early embryonic development.
Collapse
Affiliation(s)
- Qi Chen
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada 89512, USA
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada 89512, USA
| | - Enkui Duan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
24
|
Malouines C. Counter-perfume: using pheromones to prevent female remating. Biol Rev Camb Philos Soc 2016; 92:1570-1581. [PMID: 27554169 DOI: 10.1111/brv.12296] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 07/12/2016] [Accepted: 07/15/2016] [Indexed: 11/26/2022]
Abstract
Strong selection to secure paternity in polyandrous species leads to the evolution of numerous chemicals in the male's seminal content. These include antiaphrodisiac pheromones, which are transmitted from the male to the female during mating to render her unattractive to subsequent males. An increasing number of species have been shown to use these chemicals. Herein, I examine the taxonomic distribution of species using antiaphrodisiac pheromones, the selection pressures driving their evolution in both males and females, and the ecological interactions in which these pheromones are involved. The literature review shows a highly skewed distribution of antiaphrodisiac use; all species currently known to use them are insects with the exception of the garter snakes Thamnophis sirtalis parietalis and T. radix. Nonetheless, many taxa have not yet been tested for the presence of antiaphrodisiacs, in groups both closely and distantly related to species known to express them. Within the Insecta, there have been multiple cases of convergent evolution of antiaphrodisiac pheromones using different chemical compounds and methods of transmission. Antiaphrodisiacs usually benefit males, but their effect on females is variable as they can either prevent them from mating multiple times or help them reduce male harassment when they are unreceptive. Some indirect costs of antiaphrodisiacs also impact both males and females, but more research is needed to determine how general this pattern is. Additional research is also important to understand how antiaphrodisiacs interact with the reproductive biology and sexual communication in different species.
Collapse
Affiliation(s)
- Clara Malouines
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, U.S.A
| |
Collapse
|
25
|
Chirault M, Van de Zande L, Hidalgo K, Chevrier C, Bressac C, Lécureuil C. The spatio-temporal partitioning of sperm by males of the prospermatogenic parasitoid Nasonia vitripennis is in line with its gregarious lifestyle. JOURNAL OF INSECT PHYSIOLOGY 2016; 91-92:10-17. [PMID: 27269614 DOI: 10.1016/j.jinsphys.2016.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 06/01/2016] [Accepted: 06/03/2016] [Indexed: 06/06/2023]
Abstract
Male fitness depends on the number of lifetime progeny of their mates and could be constrained by the chance of finding a mate, lifespan and temporal patterns of sperm production and allocation. Here, we used the parasitic wasp Nasonia vitripennis with a two-week lifespan and a gregarious lifestyle, to analyze how the reproductive system is organized to allocate spermatozoa over consecutive matings. Results show that spermatogenesis is synchronized and completed one day before emergence so that males emerge with a full sperm complement. We also found a regulation of spermatozoa transfer between testis and seminal vesicles that allows males to partition small ejaculates over multiple matings. Overall, this study shows that for N. vitripennis, male fertilization potential is determined (1) at the pupal stage, when spermatogenesis takes place to generate a complete life-long stock, (2) on emergence, when transport of spermatozoa from testes to seminal vesicles is initiated and (3) in adulthood, during which spermatozoa are partitioned over successive copulations. Such life history-traits are consistent with the gregarious lifestyle of N. vitripennis.
Collapse
Affiliation(s)
- Marlène Chirault
- Institut de Recherche sur la Biologie de l'Insecte UMR 7261 CNRS - Université François-Rabelais, UFR Sciences et Techniques, Parc Grandmont, Tours, France
| | - Louis Van de Zande
- GELIFES (Groningen Institute for Evolutionary Life Sciences), University of Groningen, The Netherlands
| | - Kevin Hidalgo
- Institut de Recherche sur la Biologie de l'Insecte UMR 7261 CNRS - Université François-Rabelais, UFR Sciences et Techniques, Parc Grandmont, Tours, France
| | - Claude Chevrier
- Institut de Recherche sur la Biologie de l'Insecte UMR 7261 CNRS - Université François-Rabelais, UFR Sciences et Techniques, Parc Grandmont, Tours, France
| | - Christophe Bressac
- Institut de Recherche sur la Biologie de l'Insecte UMR 7261 CNRS - Université François-Rabelais, UFR Sciences et Techniques, Parc Grandmont, Tours, France
| | - Charlotte Lécureuil
- Institut de Recherche sur la Biologie de l'Insecte UMR 7261 CNRS - Université François-Rabelais, UFR Sciences et Techniques, Parc Grandmont, Tours, France.
| |
Collapse
|
26
|
|
27
|
Abstract
The capacity for sperm storage within the female reproductive tract occurs widely across all groups of vertebrate species and is exceptionally well developed in some reptiles (maximum duration seven years) and fishes (maximum duration >1 year). Although there are many reports on both the occurrence of female sperm storage in diverse species and its adaptive benefits, few studies have been directed toward explaining the mechanisms involved. In this article we review recent findings in birds and mammals in an effort to develop hypotheses that could be translated into research applications in animal breeding technologies. There are pockets of evidence to suggest that the local epithelial cells, sometimes arranged as sperm storage tubules, can respond to spermatozoa by producing heat shock proteins as well as providing an environment rich in antioxidants. Moreover, the local immune system seems to tolerate the arrival of spermatozoa, while retaining the ability to combat the arrival of infectious microorganisms.
Collapse
Affiliation(s)
- William V Holt
- Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Sheffield S10 2SF, United Kingdom; ;
| | - Alireza Fazeli
- Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Sheffield S10 2SF, United Kingdom; ;
| |
Collapse
|
28
|
Kimura K, Chiba S. The direct cost of traumatic secretion transfer in hermaphroditic land snails: individuals stabbed with a love dart decrease lifetime fecundity. Proc Biol Sci 2015; 282:20143063. [PMID: 25761713 DOI: 10.1098/rspb.2014.3063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Several taxa of simultaneously hermaphroditic land snails exhibit a conspicuous mating behaviour, the so-called shooting of love darts. During mating, such land snail species transfer a specific secretion by stabbing a mating partner's body with the love dart. It has been shown that sperm donors benefit from this traumatic secretion transfer, because the secretions manipulate the physiology of a sperm recipient and increase the donors' fertilization success. However, it is unclear whether reception of dart shooting is costly to the recipients. Therefore, the effect of sexual conflict and antagonistic arms races on the evolution of traumatic secretion transfer in land snails is still controversial. To examine this effect, we compared lifetime fecundity and longevity between the individuals that received and did not receive dart shooting from mating partners in Bradybaena pellucida. Our experiments showed that the dart-receiving snails suffered reduction in lifetime fecundity and longevity. These results suggest that the costly mating behaviour, dart shooting, generates conflict between sperm donors and recipients and that sexually antagonistic arms races have contributed to the diversification of the morphological and behavioural traits relevant to dart shooting. Our findings also support theories suggesting a violent escalation of sexual conflict in hermaphroditic animals.
Collapse
Affiliation(s)
- Kazuki Kimura
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Kawauchi 41, Aoba-ku, Sendai 980-0862, Japan
| | - Satoshi Chiba
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Kawauchi 41, Aoba-ku, Sendai 980-0862, Japan
| |
Collapse
|
29
|
Sirot LK, Wong A, Chapman T, Wolfner MF. Sexual conflict and seminal fluid proteins: a dynamic landscape of sexual interactions. Cold Spring Harb Perspect Biol 2014; 7:a017533. [PMID: 25502515 DOI: 10.1101/cshperspect.a017533] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Sexual reproduction requires coordinated contributions from both sexes to proceed efficiently. However, the reproductive strategies that the sexes adopt often have the potential to give rise to sexual conflict because they can result in divergent, sex-specific costs and benefits. These conflicts can occur at many levels, from molecular to behavioral. Here, we consider sexual conflict mediated through the actions of seminal fluid proteins. These proteins provide many excellent examples in which to trace the operation of sexual conflict from molecules through to behavior. Seminal fluid proteins are made by males and provided to females during mating. As agents that can modulate egg production at several steps, as well as reproductive behavior, sperm "management," and female feeding, activity, and longevity, the actions of seminal proteins are prime targets for sexual conflict. We review these actions in the context of sexual conflict. We discuss genomic signatures in seminal protein (and related) genes that are consistent with current or previous sexual conflict. Finally, we note promising areas for future study and highlight real-world practical situations that will benefit from understanding the nature of sexual conflicts mediated by seminal proteins.
Collapse
Affiliation(s)
- Laura K Sirot
- Department of Biology, College of Wooster, Wooster, Ohio 44691
| | - Alex Wong
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| |
Collapse
|
30
|
Abstract
Hermaphrodites combine the male and female sex functions into a single individual, either sequentially or simultaneously. This simple fact means that they exhibit both similarities and differences in the way in which they experience, and respond to, sexual conflict compared to separate-sexed organisms. Here, we focus on clarifying how sexual conflict concepts can be adapted to apply to all anisogamous sexual systems and review unique (or especially important) aspects of sexual conflict in hermaphroditic animals. These include conflicts over the timing of sex change in sequential hermaphrodites, and in simultaneous hermaphrodites, over both sex roles and the postmating manipulation of the sperm recipient by the sperm donor. Extending and applying sexual conflict thinking to hermaphrodites can identify general evolutionary principles and help explain some of the unique reproductive diversity found among animals exhibiting this widespread but to date understudied sexual system.
Collapse
Affiliation(s)
- Lukas Schärer
- Evolutionary Biology, Zoological Institute, University of Basel, 4051 Basel, Switzerland
| | - Tim Janicke
- Centre d'Écologie Fonctionnelle et Évolutive, CNRS UMR 5175, 34293 Montpellier Cedex 05, France
| | - Steven A Ramm
- Evolutionary Biology, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
31
|
Abstract
Sexual cannibalism is a well-known example for sexual conflict and has many facets that determine the costs and benefits for the cannibal and the victim. Here, I focus on species in which sexual cannibalism is a general component of a mating system in which males invest maximally in mating with a single (monogyny) or two (bigyny) females. Sexual cannibalism can be a male strategy to maximize paternity and a female strategy to prevent paternity monopolization by any or a particular male. Considerable variation exists between species (1) in the potential of males to monopolize females, and (2) in the success of females in preventing monopolization by males. This opens up exciting future possibilities to investigate sexually antagonistic coevolution in a largely unstudied mating system.
Collapse
Affiliation(s)
- Jutta M Schneider
- Zoological Institute & Museum, Biocentre Grindel, University of Hamburg, Hamburg, Germany
| |
Collapse
|
32
|
Parker GA. The sexual cascade and the rise of pre-ejaculatory (Darwinian) sexual selection, sex roles, and sexual conflict. Cold Spring Harb Perspect Biol 2014; 6:a017509. [PMID: 25147177 DOI: 10.1101/cshperspect.a017509] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
After brief historic overviews of sexual selection and sexual conflict, I argue that pre-ejaculatory sexual selection (the form of sexual selection discussed by Darwin) arose at a late stage in an inevitable succession of transitions flowing from the early evolution of syngamy to the evolution of copulation and sex roles. If certain conditions were met, this "sexual cascade" progressed inevitably, if not, sexual strategy remained fixed at a given stage. Prolonged evolutionary history of intense sperm competition/selection under external fertilization preceded the rise of advanced mobility, which generated pre-ejaculatory sexual selection, followed on land by internal fertilization and reduced sperm competition in the form of postcopulatory sexual selection. I develop a prospective model of the early evolution of mobility, which, as Darwin realized, was the catalyst for pre-ejaculatory sexual selection. Stages in the cascade should be regarded as consequential rather than separate phenomena and, as such, invalidate much current opposition to Darwin-Bateman sex roles. Potential for sexual conflict occurs throughout, greatly increasing later in the cascade, reaching its peak under precopulatory sexual selection when sex roles become highly differentiated.
Collapse
Affiliation(s)
- Geoff A Parker
- Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| |
Collapse
|