1
|
Shibu P, Ra D, Robins JE, Joseph S, Anteraper S. Terra Incognita - Contributions of the Olivo-Cerebellar System to Autism Spectrum Disorder. CEREBELLUM (LONDON, ENGLAND) 2025; 24:93. [PMID: 40316858 DOI: 10.1007/s12311-025-01843-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/20/2025] [Indexed: 05/04/2025]
Abstract
The inferior olivary nuclei (ION), a key component of the olivo-cerebellar system, remain understudied in autism spectrum disorder (ASD) research despite evident cerebellar involvement. This perspective piece aims to elucidate the critical role of the ION in cerebellar microcircuitry and its potential implications in ASD pathophysiology. We review the olivo- cerebellar system and the structural and functional alterations of the ION in autism, highlighting findings from neuroanatomical, neuroimaging, and behavioral studies. ION disruptions, although underexplored, may have a major role in the symptomatology of ASD, particularly higher-order cognitive abilities, rapid stimuli processing, and motor coordination. Specifically, we highlight how anomalies in olivary neuron morphology and olivo-cerebellar connectivity patterns may underlie deficits in temporal processing and motor learning observed in ASD. Furthermore, we discuss the challenges in brainstem imaging and recent advancements in ultra-high field (UHF) 7 T MRI technology, as standard neuroimaging techniques. As these neuroimaging techniques continue to evolve, further investigation of the functional territories of the ION holds promise for providing essential understandings into ASD processes and may lead to pioneering therapeutic options targeting this crucial brainstem area.
Collapse
Affiliation(s)
- Pranav Shibu
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Daniel Ra
- Program in Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Jemima Elise Robins
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | | | - Sheeba Anteraper
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Nagaeva E, Turconi G, Mätlik K, Segerstråle M, Olfat S, Iivanainen V, Taira T, Andressoo JO. Motor learning is regulated by postnatal GDNF levels in Purkinje cells. Neuroscience 2025; 576:27-41. [PMID: 40254124 DOI: 10.1016/j.neuroscience.2025.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 04/08/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
Purkinje cells (PCs), the sole output neurons of the cerebellar cortex, are crucial for cerebellum-dependent motor learning. In cerebellar ataxia, reduction in motor function and learning associates with decreased spontaneous activity of PCs. Thus, understanding what molecules regulate PCs activity is important. Previously, we demonstrated that a ubiquitous 2-fold increase of endogenous glial cell line-derived neurotrophic factor (GDNF) improves motor function in adult mice and motor learning and coordination in aged mice. However, since GDNF impacts many organ systems the underlying mechanism remained elusive. Here we utilize GDNF Hypermorphic, conditional GDNF Hypermorphic and conditional knock-out mouse models to reveal that up to a 2-fold increase in endogenous GDNF, specifically in PCs postnatally, is sufficient to enhance motor learning. We find that improved motor learning associates with increased glutamatergic input to PCs and with elevated spontaneous firing rate of PCs, opposite to cerebellar ataxia where reduction in motor function and learning associates with decreased spontaneous activity of PCs. Analysis of the human cerebellum revealed that normal interindividual variation in GDNF expression levels falls in the same variation range as studied in the mouse models, suggesting that interindividual variation in PC GDNF levels may contribute to interindividual variation in PC function. Collectively, our findings reveal how a relatively small change in postnatal GDNF expression level within the physiological range in one cell type, the PCs, affects motor learning. Thus, drugs enhancing postnatal GDNF expression in PCs or cerebellar GDNF signaling may have potential in treating cerebellar ataxias, making an interesting topic for future studies.
Collapse
Affiliation(s)
- Elina Nagaeva
- Department of Pharmacology, Faculty of Medicine & Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Giorgio Turconi
- Department of Pharmacology, Faculty of Medicine & Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Kärt Mätlik
- Department of Pharmacology, Faculty of Medicine & Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Mikael Segerstråle
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Soophie Olfat
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden
| | - Vilma Iivanainen
- Department of Pharmacology, Faculty of Medicine & Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Tomi Taira
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Finland
| | - Jaan-Olle Andressoo
- Department of Pharmacology, Faculty of Medicine & Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
3
|
Thieme A, Rubarth K, van der Veen R, Müller J, Faber J, Barkhoff M, Minnerop M, Elben S, Huvermann D, Erdlenbruch F, Berlijn AM, Sulzer P, Reetz K, Dogan I, Jacobi H, Aktories JE, Batsikadze G, Liu Q, Frank B, Köhrmann M, Wondzinski E, Siebler M, Konczak J, Synofzik M, Klockgether T, Konietschke F, Röske S, Timmann D. Optimizing selectivity of the Cerebellar Cognitive Affective Syndrome Scale by use of correction formulas, and validation of its German version. J Neurol 2025; 272:343. [PMID: 40244543 PMCID: PMC12006234 DOI: 10.1007/s00415-025-13083-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND Cerebellar disease may result in Cerebellar Cognitive Affective Syndrome (CCAS). The CCAS-Scale, designed to screen for CCAS, has been validated in English Hoche (Brain 141:248-270, 2018) and adapted to other languages. METHODS Here, the German CCAS-Scale Thieme (Neurol Res Pract 2:39, 2020) was validated in 209 patients with cerebellar disorders and 232 healthy controls. Correction formulas for the outcome parameters [failed test items (range: 1-10) and sum raw score (range: 0-120)] were developed, controlling for age, education, and sex effects. Diagnostic accuracy and reliability were assessed. RESULTS Correction formulas improved selectivity in controls, reducing false positives (failed items: 40%; sum score: 13% vs. original method Hoche (Brain 141:248-270, 2018): 67%), while maintaining moderate sensitivity (failed items: 69%; sum score: 48% vs. original method Hoche (Brain 141:248-270, 2018): 87%). Word fluency tests differentiated best between patients and controls, while other items did not. Internal consistency (α = 0.71) was acceptable. Removal of word fluency tests worsened it. Retest and interrater reliability were high [intraclass correlation coefficients (ICC): 0.77-0.95]. However, these ICCs yielded a large minimal detectable change (MDC; 2.2-2.4 failed items, 9.5-11.4 raw score points) in patients, limiting the use of the CCAS-Scale in follow-up examinations. CONCLUSION The correction formulas improved diagnostic accuracy of the CCAS-Scale, particularly for the sum raw score. Therefore, we recommend using the corrected sum raw score for evaluation instead of the uncorrected number of failed items, proposed originally Hoche (Brain 141:248-270, 2018). Some test items, however, did not differentiate well between patients and controls and MDCs were large, highlighting the need for refined CCAS assessment instruments as progression or treatment outcomes.
Collapse
Affiliation(s)
- Andreas Thieme
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany.
| | - Kerstin Rubarth
- Institute of Biometry and Clinical Epidemiology, Charité University Medicine Berlin, Corporate Member of Freie University Berlin, Berlin, Germany
| | - Raquel van der Veen
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Johanna Müller
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Jennifer Faber
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, Bonn University Hospital, Rheinische Friedrich-Wilhelms University Bonn, Bonn, Germany
| | - Miriam Barkhoff
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Martina Minnerop
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM- 1), Research Center Jülich, Jülich, Germany
| | - Saskia Elben
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Dana Huvermann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
- Faculty of Mathematics and Natural Sciences, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Friedrich Erdlenbruch
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Adam M Berlijn
- Institute of Neuroscience and Medicine (INM- 1), Research Center Jülich, Jülich, Germany
- Faculty of Mathematics and Natural Sciences, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Patricia Sulzer
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, Eberhard-Karls University Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE) Tübingen, Helmholtz Association, Tübingen, Germany
| | - Kathrin Reetz
- JARA-BRAIN Institute, Molecular Neuroscience and Neuroimaging, Research Center Jülich, Jülich, Germany
- Department of Neurology, Aachen University Hospital, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Imis Dogan
- JARA-BRAIN Institute, Molecular Neuroscience and Neuroimaging, Research Center Jülich, Jülich, Germany
- Department of Neurology, Aachen University Hospital, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Heike Jacobi
- Department of Neurology, Heidelberg University Hospital, Ruprecht-Karls University Heidelberg, Heidelberg, Germany
| | - Julia-Elisabeth Aktories
- Department of Neurology, Heidelberg University Hospital, Ruprecht-Karls University Heidelberg, Heidelberg, Germany
| | - Giorgi Batsikadze
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Qi Liu
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Benedikt Frank
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Martin Köhrmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Elke Wondzinski
- Department of Neurology and Neurorehabilitation, MediClin Rhein/Ruhr, Essen, Germany
| | - Mario Siebler
- Department of Neurology and Neurorehabilitation, MediClin Rhein/Ruhr, Essen, Germany
| | - Jürgen Konczak
- School of Kinesiology, University of Minnesota, Minneapolis, USA
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, Eberhard-Karls University Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE) Tübingen, Helmholtz Association, Tübingen, Germany
| | | | - Frank Konietschke
- Institute of Biometry and Clinical Epidemiology, Charité University Medicine Berlin, Corporate Member of Freie University Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Sandra Röske
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| |
Collapse
|
4
|
Khanmohammadi S, Ehsani F, Bagheri R, Jaberzadeh S. Compared motor learning effects of motor cortical and cerebellar repetitive transcranial magnetic stimulation during a serial reaction time task in older adults. Sci Rep 2025; 15:12447. [PMID: 40216873 PMCID: PMC11992138 DOI: 10.1038/s41598-025-95859-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
Repeated transcranial magnetic stimulation (rTMS) is a technique used to enhance motor learning in older adults. Some studies have shown that applying rTMS to the primary motor cortex (M1) and the cerebellum enhances motor learning. This study investigates the effects of M1 rTMS and cerebellar rTMS on motor learning in older adults. Seventy healthy older participants were randomly divided into M1, cerebellar rTMS, and sham rTMS groups. Participants completed the Serial Reaction Time Task (SRTT), while receiving 10 min of 10 Hz rTMS, with the sham group receiving inactive stimulation. Reaction time (RT) and error rate (ER) were recorded before, immediately, and 48 h post-task. RT and ER decreased immediately after the SRTT in all groups (P < 0.001). Both intervention groups showed greater online motor learning than the sham group (P < 0.05). Additionally, both intervention groups exhibited offline motor learning and learning consolidation with more significant changes in the cerebellar-rTMS group during lasting time (P < 0.03), whereas the sham rTMS group could not maintain motor learning (P > 0.05). The findings suggest that both M1 and cerebellar rTMS enhance motor learning in healthy older adults, with cerebellar rTMS being more effective in consolidating motor learning.
Collapse
Affiliation(s)
- Saeid Khanmohammadi
- Department of Physiotherapy, School of Rehabilitation Sciences, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Ehsani
- Neuromuscular Rehabilitation Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| | - Rasool Bagheri
- Neuromuscular Rehabilitation Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Shapour Jaberzadeh
- Non-invasive Brain Stimulation & Neuroplasticity Laboratory, Department of Physiotherapy, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| |
Collapse
|
5
|
Schmitt O. Relationships and representations of brain structures, connectivity, dynamics and functions. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111332. [PMID: 40147809 DOI: 10.1016/j.pnpbp.2025.111332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/20/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025]
Abstract
The review explores the complex interplay between brain structures and their associated functions, presenting a diversity of hierarchical models that enhances our understanding of these relationships. Central to this approach are structure-function flow diagrams, which offer a visual representation of how specific neuroanatomical structures are linked to their functional roles. These diagrams are instrumental in mapping the intricate connections between different brain regions, providing a clearer understanding of how functions emerge from the underlying neural architecture. The study details innovative attempts to develop new functional hierarchies that integrate structural and functional data. These efforts leverage recent advancements in neuroimaging techniques such as fMRI, EEG, MEG, and PET, as well as computational models that simulate neural dynamics. By combining these approaches, the study seeks to create a more refined and dynamic hierarchy that can accommodate the brain's complexity, including its capacity for plasticity and adaptation. A significant focus is placed on the overlap of structures and functions within the brain. The manuscript acknowledges that many brain regions are multifunctional, contributing to different cognitive and behavioral processes depending on the context. This overlap highlights the need for a flexible, non-linear hierarchy that can capture the brain's intricate functional landscape. Moreover, the study examines the interdependence of these functions, emphasizing how the loss or impairment of one function can impact others. Another crucial aspect discussed is the brain's ability to compensate for functional deficits following neurological diseases or injuries. The investigation explores how the brain reorganizes itself, often through the recruitment of alternative neural pathways or the enhancement of existing ones, to maintain functionality despite structural damage. This compensatory mechanism underscores the brain's remarkable plasticity, demonstrating its ability to adapt and reconfigure itself in response to injury, thereby ensuring the continuation of essential functions. In conclusion, the study presents a system of brain functions that integrates structural, functional, and dynamic perspectives. It offers a robust framework for understanding how the brain's complex network of structures supports a wide range of cognitive and behavioral functions, with significant implications for both basic neuroscience and clinical applications.
Collapse
Affiliation(s)
- Oliver Schmitt
- Medical School Hamburg - University of Applied Sciences and Medical University - Institute for Systems Medicine, Am Kaiserkai 1, Hamburg 20457, Germany; University of Rostock, Department of Anatomy, Gertrudenstr. 9, Rostock, 18055 Rostock, Germany.
| |
Collapse
|
6
|
Hoang H, Tsutsumi S, Matsuzaki M, Kano M, Toyama K, Kitamura K, Kawato M. Predictive reward-prediction errors of climbing fiber inputs integrate modular reinforcement learning with supervised learning. PLoS Comput Biol 2025; 21:e1012899. [PMID: 40096178 PMCID: PMC11957396 DOI: 10.1371/journal.pcbi.1012899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 03/31/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025] Open
Abstract
Although the cerebellum is typically associated with supervised learning algorithms, it also exhibits extensive involvement in reward processing. In this study, we investigated the cerebellum's role in executing reinforcement learning algorithms, with a particular emphasis on essential reward-prediction errors. We employed the Q-learning model to accurately reproduce the licking responses of mice in a Go/No-go auditory-discrimination task. This method enabled the calculation of reinforcement learning variables, such as reward, predicted reward, and reward-prediction errors in each learning trial. Through tensor component analysis of two-photon Ca2+ imaging data from more than 6,000 Purkinje cells, we found that climbing fiber inputs of the two distinct components, which were specifically activated during Go and No-go cues in the learning process, showed an inverse relationship with predictive reward-prediction errors. Assuming bidirectional parallel-fiber Purkinje-cell synaptic plasticity, we constructed a cerebellar neural-network model with 5,000 spiking neurons of granule cells, Purkinje cells, cerebellar nuclei neurons, and inferior olive neurons. The network model qualitatively reproduced distinct changes in licking behaviors, climbing-fiber firing rates, and their synchronization during discrimination learning separately for Go/No-go conditions. We found that Purkinje cells in the two components could develop specific motor commands for their respective auditory cues, guided by the predictive reward-prediction errors from their climbing fiber inputs. These results indicate a possible role of context-specific actors in modular reinforcement learning, integrating with cerebellar supervised learning capabilities.
Collapse
Affiliation(s)
- Huu Hoang
- Neural Information Analysis Laboratories, Advanced Telecommunications Research Institute International, Kyoto, Japan
| | - Shinichiro Tsutsumi
- Laboratory for Multi-scale Biological Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| | | | - Masanobu Kano
- Department of Neurophysiology, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| | - Keisuke Toyama
- Neural Information Analysis Laboratories, Advanced Telecommunications Research Institute International, Kyoto, Japan
| | - Kazuo Kitamura
- Department of Neurophysiology, University of Yamanashi, Yamanashi, Japan
| | - Mitsuo Kawato
- Computational Neuroscience Laboratories, Advanced Telecommunications Research Institute International, Kyoto, Japan
| |
Collapse
|
7
|
Sasaki K, Sakurai N, Yoshida N, Oishi M, Kasai S, Kodama N. Identification of Brain Activation Areas in Response to Active Tactile Stimulation by Gripping a Stress Ball. Brain Sci 2025; 15:264. [PMID: 40149784 PMCID: PMC11940405 DOI: 10.3390/brainsci15030264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/22/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Research on pleasant tactile perception has primarily focused on C-tactile fibers found in hairy skin, with the forearm and face as common study sites. Recent findings of these fibers in hairless skin, such as the palms, have sparked interest in tactile stimulation on the hands. While studies have examined comfort and brain activity in passive touch, active touch remains underexplored. This study aimed to investigate differences in pleasant sensation and brain activity during active touch with stress balls of varying hardness. METHODS Forty healthy women participated. Using functional magnetic resonance imaging (fMRI), brain activity was measured as participants alternated between gripping stress balls of soft, medium, and hard hardness and resting without a ball. Participants rated hardness and comfort on a 9-point scale. RESULTS Soft stress balls were perceived as soft and comfortable, activating the thalamus and left insular cortex while reducing activity in the right insular cortex. Medium stress balls elicited similar perceptions and thalamic activation but with reduced right insular cortex activity. Hard stress balls caused discomfort, activating the insular cortex, thalamus, and amygdala while reducing anterior cingulate cortex activity. CONCLUSIONS Soft stress balls may reduce aversive stimuli through perceived comfort, while hard stress balls may induce discomfort and are unlikely to alleviate stress.
Collapse
Affiliation(s)
- Kei Sasaki
- Department of Radiological Technology, Faculty of Medical Technology, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata 950-3198, Japan; (K.S.); (N.S.); (N.Y.); (S.K.)
| | - Noriko Sakurai
- Department of Radiological Technology, Faculty of Medical Technology, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata 950-3198, Japan; (K.S.); (N.S.); (N.Y.); (S.K.)
| | - Nobukiyo Yoshida
- Department of Radiological Technology, Faculty of Medical Technology, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata 950-3198, Japan; (K.S.); (N.S.); (N.Y.); (S.K.)
| | - Misuzu Oishi
- Graduate School of Health and Welfare, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata 950-3198, Japan;
| | - Satoshi Kasai
- Department of Radiological Technology, Faculty of Medical Technology, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata 950-3198, Japan; (K.S.); (N.S.); (N.Y.); (S.K.)
| | - Naoki Kodama
- Department of Radiological Technology, Faculty of Medical Technology, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata 950-3198, Japan; (K.S.); (N.S.); (N.Y.); (S.K.)
| |
Collapse
|
8
|
Welch JF, Cretney BR, Mitchell GS, Balanos GM. Ventilatory long-term facilitation at rest increases the feedforward contribution to subsequent exercise ventilatory responses. J Appl Physiol (1985) 2025; 138:426-438. [PMID: 39772752 DOI: 10.1152/japplphysiol.00737.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
The respiratory control system exhibits neural plasticity, adjusting future ventilatory responses based on experience. We tested the hypothesis that ventilatory long-term facilitation induced by hypercapnic acute intermittent hypoxia (AIH) at rest enhances subsequent ventilatory responses to steady-state exercise. Fourteen healthy adults (age = 27 ± 5 yr; 7 males) participated in the study. On day 1, pulmonary function testing was performed. On days 2 and 3, in a pseudorandomized counterbalanced order, participants were exposed to AIH or Sham; AIH consisted of 15, 1-min hypoxic episodes with 1.5-min room air intervals. Mild hypercapnia (end-tidal Pco2 clamped ∼3 mmHg above baseline) was sustained throughout AIH and Sham and for 40 min after. Approximately 20-30 min later, participants performed continuous mild to moderate constant-load cycle exercise in room air at 30, 60, and 90 W for 5 min each. Inspired minute ventilation (V̇i) increased by 3.6 ± 1.2 L·min-1 after AIH versus baseline and was significantly greater than Sham (P = 0.013), signifying the onset of ventilatory long-term facilitation. Although V̇i during subsequent steady-state exercise was not significantly different between AIH and Sham (P = 0.511), the slope of the relationship between V̇i and CO2 production rate (i.e., the system gain) and the calculated feedforward exercise gain were significantly increased (P = 0.021 and P < 0.001, respectively). Consequently, end-tidal Pco2 was regulated ∼1 mmHg lower across all exercise workloads after AIH versus Sham (P = 0.006). Thus, ventilatory plasticity induced at rest alters future ventilatory responses to mild or moderate steady-state exercise.NEW & NOTEWORTHY We demonstrate that by inducing ventilatory long-term facilitation (LTF) at rest, subsequent ventilatory responses to mild or moderate exercise are altered. When ventilatory LTF was induced via hypercapnic acute intermittent hypoxia, the feedforward contribution to exercise hyperpnea increased, accompanied by marginal increases in the overall system response and decreases in end-tidal Pco2. Thus, respiratory motor plasticity at rest can "spill over" to other physiological states, including mild or moderate steady-state exercise.
Collapse
Affiliation(s)
- Joseph F Welch
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Brighton R Cretney
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Centre, Department of Physical Therapy, McKnight Brain Institute, University of Florida, Gainesville, Florida, United States
| | - George M Balanos
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
9
|
Flierman NA, Koay SA, van Hoogstraten WS, Ruigrok TJH, Roelfsema P, Badura A, De Zeeuw CI. Encoding of cerebellar dentate neuron activity during visual attention in rhesus macaques. eLife 2025; 13:RP99696. [PMID: 39819496 PMCID: PMC11737872 DOI: 10.7554/elife.99696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025] Open
Abstract
The role of cerebellum in controlling eye movements is well established, but its contribution to more complex forms of visual behavior has remained elusive. To study cerebellar activity during visual attention we recorded extracellular activity of dentate nucleus (DN) neurons in two non-human primates (NHPs). NHPs were trained to read the direction indicated by a peripheral visual stimulus while maintaining fixation at the center, and report the direction of the cue by performing a saccadic eye movement into the same direction following a delay. We found that single-unit DN neurons modulated spiking activity over the entire time course of the task, and that their activity often bridged temporally separated intra-trial events, yet in a heterogeneous manner. To better understand the heterogeneous relationship between task structure, behavioral performance, and neural dynamics, we constructed a behavioral, an encoding, and a decoding model. Both NHPs showed different behavioral strategies, which influenced the performance. Activity of the DN neurons reflected the unique strategies, with the direction of the visual stimulus frequently being encoded long before an upcoming saccade. Moreover, the latency of the ramping activity of DN neurons following presentation of the visual stimulus was shorter in the better performing NHP. Labeling with the retrograde tracer Cholera Toxin B in the recording location in the DN indicated that these neurons predominantly receive inputs from Purkinje cells in the D1 and D2 zones of the lateral cerebellum as well as neurons of the principal olive and medial pons, all regions known to connect with neurons in the prefrontal cortex contributing to planning of saccades. Together, our results highlight that DN neurons can dynamically modulate their activity during a visual attention task, comprising not only sensorimotor but also cognitive attentional components.
Collapse
Affiliation(s)
- Nico A Flierman
- Netherlands Institute for NeuroscienceAmsterdamNetherlands
- Department of Neuroscience, Erasmus MCRotterdamNetherlands
| | - Sue Ann Koay
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Tom JH Ruigrok
- Department of Neuroscience, Erasmus MCRotterdamNetherlands
| | - Pieter Roelfsema
- Netherlands Institute for NeuroscienceAmsterdamNetherlands
- Department of Integrative Neurophysiology, VU UniversityAmsterdamNetherlands
- Department of Psychiatry, Academic Medical CentreAmsterdamNetherlands
| | | | - Chris I De Zeeuw
- Netherlands Institute for NeuroscienceAmsterdamNetherlands
- Department of Neuroscience, Erasmus MCRotterdamNetherlands
| |
Collapse
|
10
|
Salem IH, Blais M, Zuluaga-Sánchez VM, Rouleau L, Becker EBE, Dupré N. ARSACS: Clinical Features, Pathophysiology and iPS-Derived Models. CEREBELLUM (LONDON, ENGLAND) 2025; 24:24. [PMID: 39753868 DOI: 10.1007/s12311-024-01777-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/30/2025]
Abstract
Autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is an early-onset neurodegenerative disease caused by mutations in the SACS gene. The first two mutations were identified in French Canadian populations 20 years ago. The disease is now known as one of the most frequent recessive ataxias worldwide. Prominent features include cerebellar ataxia, pyramidal spasticity, and neuropathy. Neuropathological findings revealed cerebellar atrophy of the superior cerebellar vermis and the anterior vermis associated with Purkinje cell death, pyramidal degeneration, cortical atrophy, loss of motor neurons, and demyelinating neuropathy. No effective therapy is available for ARSACS patients but, in the last two decades, there have been significant advances in our understanding of the disease. New approaches in ARSACS, such as the reprogramming of induced pluripotent stem cells derived from patients, open exciting perspectives of discoveries. Several research questions are now emerging. Here, we review the clinical features of ARSACS as well as the cerebellar aspects of the disease, with an emphasis on recent fields of investigation.
Collapse
Affiliation(s)
- Ikhlass Haj Salem
- Axe neurosciences du CHU de Québec - Université Laval, Quebec, QC, Canada
| | - Mathieu Blais
- Axe neurosciences du CHU de Québec - Université Laval, Quebec, QC, Canada
| | - Valeria M Zuluaga-Sánchez
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, United Kingdom
| | - Laurence Rouleau
- Axe neurosciences du CHU de Québec - Université Laval, Quebec, QC, Canada
| | - Esther B E Becker
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, United Kingdom
| | - Nicolas Dupré
- Axe neurosciences du CHU de Québec - Université Laval, Quebec, QC, Canada.
- Faculty of Medicine, Department of Medicine, Université Laval, Quebec, QC, Canada.
| |
Collapse
|
11
|
Okasha A, Şengezer S, Kılınç H, Pourreza E, Fincan C, Yılmaz T, Boran HE, Cengiz B, Yozgatlıgil C, Gürses S, Turgut AE, Arıkan KB, Ünal B, Ünal Ç, Günendi Z, Zinnuroğlu M, Çağlayan HZB. Investigations of motor performance with neuromodulation and exoskeleton using leader-follower modality: a tDCS study. Exp Brain Res 2024; 242:2677-2689. [PMID: 39365300 DOI: 10.1007/s00221-024-06938-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
This study investigates how the combination of robot-mediated haptic interaction and cerebellar neuromodulation can improve task performance and promote motor skill development in healthy individuals using a robotic exoskeleton worn on the index finger. The authors propose a leader-follower type of mirror game where participants can follow a leader in a two-dimensional virtual reality environment while the exoskeleton tracks the index finger motion using an admittance filter. The game requires two primary learning phases: the initial phase focuses on mastering the pinching interface, while the second phase centers on predicting the leader's movements. Cerebral transcranial direct current stimulation (tDCS) with anodal polarity is applied to the subjects during the game. It is shown that the subjects' performance improves as they play the game. The combination of tDCS with finger exoskeleton significantly enhances task performance. Our research indicates that modulation of the cerebellum during the mirror game improves the motor skills of healthy individuals. The results also indicate potential uses for motor neurorehabilitation in hemiplegia patients.
Collapse
Affiliation(s)
- Amr Okasha
- Department of Mechanical Engineering, Middle East Technical University, Ankara, Türkiye.
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Türkiye.
| | - Saba Şengezer
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Türkiye
| | - Hasan Kılınç
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Türkiye
| | - Elmira Pourreza
- Department of Clinical and Experimental Sciences, Università degli Studi di Brescia, Brescia, Italy
| | - Ceren Fincan
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Türkiye
| | - Tunahan Yılmaz
- Department of Mechanical Engineering, Middle East Technical University, Ankara, Türkiye
| | - Hürrem E Boran
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Türkiye
- Department of Neurology, Gazi University, Ankara, Türkiye
| | - Bülent Cengiz
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Türkiye
- Department of Neurology, Gazi University, Ankara, Türkiye
| | - Ceylan Yozgatlıgil
- Department of Statistics, Middle East Technical University, Ankara, Türkiye
| | - Senih Gürses
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Türkiye
- Department of Engineering Sciences, Middle East Technical University, Ankara, Türkiye
| | - Ali E Turgut
- Department of Mechanical Engineering, Middle East Technical University, Ankara, Türkiye
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Türkiye
| | - Kutluk B Arıkan
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Türkiye.
- Department of Biomedical Engineering, Ankara University, Ankara, Türkiye.
| | - Bengi Ünal
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Türkiye
- Department of Psychology, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Çağrı Ünal
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Türkiye
- Department of Psychology, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Zafer Günendi
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Türkiye
- Department of Physical Medicine and Rehabilitation, Gazi University, Ankara, Türkiye
| | - Murat Zinnuroğlu
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Türkiye
- Department of Physical Medicine and Rehabilitation, Gazi University, Ankara, Türkiye
| | - Hale Z B Çağlayan
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Türkiye
- Department of Neurology, Gazi University, Ankara, Türkiye
| |
Collapse
|
12
|
Estradera-Bel M, La Touche R, Pro-Marín D, Cuenca-Martínez F, Paris-Alemany A, Grande-Alonso M. Exploring temporal congruence in motor imagery and movement execution in non-specific chronic low back pain. Brain Cogn 2024; 182:106227. [PMID: 39454412 DOI: 10.1016/j.bandc.2024.106227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/24/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Chronic non-specific low back pain (NSCLBP) is linked to sensorimotor dysfunctions and altered motor planning, likely due to neuroplastic changes. Motor imagery (MI) and movement execution share neural pathways, but the relationship between imagined and executed movements in NSCLBP patients remains underexplored. This study aimed to assess the temporal congruence between imagined and executed movements in NSCLBP sufferers, with secondary goals of investigating group differences in movement chronometry, psychological well-being, and disability, as well as possible correlations among these factors. Fifty-six participants, including 28 NSCLBP patients and 28 asymptomatic subjects (AS), performed lumbar flexion and Timed Up and Go (TUG) tasks. NSCLBP patients showed significant temporal incongruence in both tasks, executing movements more slowly than imagined, whereas AS displayed incongruence only in the TUG task. NSCLBP patients also took longer to imagine and execute lumbar flexion movements compared to AS, with correlations observed between execution delays, higher disability, and greater fear of movement. The findings highlight a lack of temporal congruence in NSCLBP patients, especially in lumbar flexion, emphasizing the complex relationship between chronic pain, motor ability, and psychological factors. These results suggest that integrated treatment approaches addressing cognitive and emotional aspects are crucial for managing NSCLBP.
Collapse
Affiliation(s)
- Manuel Estradera-Bel
- Unidad de Trastornos Musculoesqueléticos, Instituto de Rehabilitación Funcional (IRF) La Salle, Centro Superior Estudios Universitarios (CSEU) La Salle, Universidad Autónoma de Madrid, Madrid, Spain
| | - Roy La Touche
- Motion in Brains Research Group, Centro Superior de Estudios Universitarios (CSEU) La Salle, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Dolor Craneofacial y Neuromusculoesquelético (INDCRAN), Madrid, Spain; Departamento de Fisioterapia, Centro Superior de Estudios Universitarios (CSEU) La Salle, Universidad Autónoma de Madrid, Madrid, Spain
| | - Diego Pro-Marín
- Unidad de Trastornos Musculoesqueléticos, Instituto de Rehabilitación Funcional (IRF) La Salle, Centro Superior Estudios Universitarios (CSEU) La Salle, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ferran Cuenca-Martínez
- Department of Physiotherapy, University of Valencia, Gascó Oliag n° 5, Valencia 46010, Spain
| | - Alba Paris-Alemany
- Motion in Brains Research Group, Centro Superior de Estudios Universitarios (CSEU) La Salle, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Dolor Craneofacial y Neuromusculoesquelético (INDCRAN), Madrid, Spain; Departamento de Radiología, Rehabilitación y Fisioterapia. Facultad de Enfermería, Fisioterapia y Podología. Universidad Complutense de Madrid, Madrid, Spain.
| | - Mónica Grande-Alonso
- Universidad de Alcalá, Facultad de Medicina, Departamento de Cirugía, Ciencias Médicas y Sociales, Alcalá de Henares, Spain
| |
Collapse
|
13
|
Valle-Bautista R, Olivera-Acevedo M, Horta-Brussolo VR, Díaz NF, Ávila-González D, Molina-Hernández A. From songbird to humans: The multifaceted roles of FOXP2 in speech and motor learning. Neurosci Biobehav Rev 2024; 167:105936. [PMID: 39510218 DOI: 10.1016/j.neubiorev.2024.105936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/24/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
Motor learning involves a complex network of brain structures and is crucial for tasks like speech. The cerebral cortex, subcortical nuclei, and cerebellum are involved in motor learning and vocalization. Vocal learning has been demonstrated across species. However, it is a task that should be further studied and reevaluated, particularly in species considered non-vocal learners, to potentially uncover new insights. FOXP2, a transcription factor, has been implicated in speech learning and execution. Several variants have been involved in speech and cognitive impairments; the most studied is the R553H, found in the KE family, where more than half of the members show verbal dyspraxia. Brain FOXP2 expression shows consistent patterns across species in regions associated with motor learning and execution. Animal models expressing mutated FOXP2 showed impaired motor learning and vocalization. Genes regulated by FOXP2 are related to neural differentiation, connectivity, and synaptic plasticity, indicating its role in brain development and function. This review explores the intricate relationship between FOXP2, motor learning, and speech in an anatomical and functional context.
Collapse
Affiliation(s)
- Rocío Valle-Bautista
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
| | - Monserrath Olivera-Acevedo
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico; Instituto Tecnológico de Monterrey Campus Ciudad de México, Escuela de Medicina y Ciencias de la Salud, Colombia
| | - Victoria Regina Horta-Brussolo
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico; Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, CINVESTAV-IPN, Ciudad de México, México
| | - Néstor Fabián Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
| | - Daniela Ávila-González
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
| | - Anayansi Molina-Hernández
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico.
| |
Collapse
|
14
|
Roth RH, Muniak MA, Huang CJ, Hwang FJ, Sun Y, Min C, Mao T, Ding JB. Thalamic integration of basal ganglia and cerebellar circuits during motor learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621388. [PMID: 39554076 PMCID: PMC11565971 DOI: 10.1101/2024.10.31.621388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The ability to control movement and learn new motor skills is one of the fundamental functions of the brain. The basal ganglia (BG) and the cerebellum (CB) are two key brain regions involved in controlling movement, and neuronal plasticity within these two regions is crucial for acquiring new motor skills. However, how these regions interact to produce a cohesive unified motor output remains elusive. Here, we discovered that a subset of neurons in the motor thalamus receive converging synaptic inputs from both BG and CB. By performing multi-site fiber photometry in mice learning motor tasks, we found that motor thalamus neurons integrate BG and CB signals and show distinct movement-related activity. Lastly, we found a critical role of these thalamic neurons and their BG and CB inputs in motor learning and control. These results identify the thalamic convergence of BG and CB and its crucial role in integrating movement signals.
Collapse
Affiliation(s)
- Richard H Roth
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Michael A Muniak
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Charles J Huang
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Fuu-Jiun Hwang
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Yue Sun
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Cierra Min
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Tianyi Mao
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jun B Ding
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
- The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
- Lead contact
| |
Collapse
|
15
|
Barr J, Vangel R, Kanel P, Roytman S, Pongmala C, Albin RL, Scott PJH, Bohnen NI. Topography of Cholinergic Nerve Terminal Vulnerability and Balance Self-Efficacy in Parkinson's Disease. J Integr Neurosci 2024; 23:178. [PMID: 39344233 DOI: 10.31083/j.jin2309178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/23/2024] [Accepted: 06/28/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Postural instability and gait disturbances (PIGD) represent a significant cause of disability in Parkinson's disease (PD). Cholinergic system dysfunction has been implicated in falls in PD. The occurrence of falls typically results in fear of falling (FoF) that in turn may lead to poorer balance self-efficacy. Balance self-efficacy refers to one's level of confidence in their ability to balance while completing activities of daily living like getting dressed, bathing, and walking. Lower self-efficacy, or greater FoF during these activities is a function of motor, cognitive, and emotional impairments and may impact quality of life in PD. Unlike known cholinergic reduction, especially in the right lateral geniculate and caudate nuclei, little is known about the role of cholinergic transporters in FoF or mobility self-efficacy in PD. METHODS [18F]fluoroethoxybenzovesamicol ([18F]FEOBV) positron emission tomography (PET) studies were conducted to assess vesicular acetylcholine transporter (VAChT) expression in 126 patients with PD (male (m) = 95, female (f) = 31). Participants had a mean age of 67.3 years (standard deviation (SD) = 7.1) and median Hoehn Yahr stage of 2.5. Patients also completed the Short Falls Efficacy Scale (sFES-I) as a survey measure of concerns about falling. [18F]FEOBV data were processed in Statistical Parametric Mapping (SPM) using a voxel-wise regression model with sFES-I scores as the outcome measure. RESULTS Reduced [18F]FEOBV binding in tectum, metathalamic (lateral more than medial geniculate nuclei), thalamus proper, bilateral mesiotemporal (hippocampal, parahippocampal, fusiform gyri and fimbriae), and right cerebellar lobule VI significantly associated with higher sFES-I scores (p < 0.05, family-wise error (FWE) correction after Threshold-Free Cluster Enhancement (TFCE)). CONCLUSIONS Unlike the more limited involvement of the brainstem-thalamic complex and caudate nuclei cholinergic topography associated with falls in PD, cholinergic reductions in the extended connectivity between the thalamic complex and the temporal limbic system via the fimbriae associates with FoF. Additional cholinergic changes were seen in the cerebellum. The temporal limbic system plays a role not only in episodic memory but also in spatial navigation, scene and contextual (e.g., emotional) processing. Findings may augur novel therapeutic approaches to treat poor mobility self-efficacy in PD. CLINICAL TRIAL REGISTRATION No: NCT02458430. Registered 18 March, 2015, https://www. CLINICALTRIALS gov/study/NCT02458430; No: NCT05459753. Registered 01 July, 2022, https://www. CLINICALTRIALS gov/study/NCT05459753.
Collapse
Affiliation(s)
- Jaimie Barr
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Functional Neuroimaging, Cognitive, and Mobility Laboratory, University of Michigan, Ann Arbor, MI 48106, USA
| | - Robert Vangel
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Functional Neuroimaging, Cognitive, and Mobility Laboratory, University of Michigan, Ann Arbor, MI 48106, USA
| | - Prabesh Kanel
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Functional Neuroimaging, Cognitive, and Mobility Laboratory, University of Michigan, Ann Arbor, MI 48106, USA
- Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI 48109, USA
- Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stiven Roytman
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Functional Neuroimaging, Cognitive, and Mobility Laboratory, University of Michigan, Ann Arbor, MI 48106, USA
| | - Chatkaew Pongmala
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Functional Neuroimaging, Cognitive, and Mobility Laboratory, University of Michigan, Ann Arbor, MI 48106, USA
| | - Roger L Albin
- Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI 48109, USA
- Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
- Neurology Service and GRECC, VA Ann Arbor Healthcare System (VAAAHS), Ann Arbor, MI 48105, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicolaas I Bohnen
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Functional Neuroimaging, Cognitive, and Mobility Laboratory, University of Michigan, Ann Arbor, MI 48106, USA
- Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI 48109, USA
- Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
- Neurology Service and GRECC, VA Ann Arbor Healthcare System (VAAAHS), Ann Arbor, MI 48105, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
16
|
Onimus O, Arrivet F, Souza INDO, Bertrand B, Castel J, Luquet S, Mothet JP, Heck N, Gangarossa G. The gut-brain vagal axis scales hippocampal memory processes and plasticity. Neurobiol Dis 2024; 199:106569. [PMID: 38885849 DOI: 10.1016/j.nbd.2024.106569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
The vagus nerve serves as an interoceptive relay between the body and the brain. Despite its well-established role in feeding behaviors, energy metabolism, and cognitive functions, the intricate functional processes linking the vagus nerve to the hippocampus and its contribution to learning and memory dynamics remain still elusive. Here, we investigated whether and how the gut-brain vagal axis contributes to hippocampal learning and memory processes at behavioral, functional, cellular, and molecular levels. Our results indicate that the integrity of the vagal axis is essential for long-term recognition memories, while sparing other forms of memory. In addition, by combing multi-scale approaches, our findings show that the gut-brain vagal tone exerts a permissive role in scaling intracellular signaling events, gene expressions, hippocampal dendritic spines density as well as functional long-term plasticities (LTD and LTP). These results highlight the critical role of the gut-brain vagal axis in maintaining the spontaneous and homeostatic functions of hippocampal ensembles and in regulating their learning and memory functions. In conclusion, our study provides comprehensive insights into the multifaceted involvement of the gut-brain vagal axis in shaping time-dependent hippocampal learning and memory dynamics. Understanding the mechanisms underlying this interoceptive body-brain neuronal communication may pave the way for novel therapeutic approaches in conditions associated with cognitive decline, including neurodegenerative disorders.
Collapse
Affiliation(s)
- Oriane Onimus
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Faustine Arrivet
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine, Institut de Biologie Paris Seine, F-75005 Paris, France
| | - Isis Nem de Oliveira Souza
- Biophotonics and Synapse Physiopathology Team, Laboratoire LuMIn UMR9024 Université Paris-Saclay, ENS Paris-Saclay, CNRS, CentraleSupelec, 91190 Gif-sur-Yvette, France; Laboratory of Molecular Pharmacology, Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, Brazil
| | - Benoit Bertrand
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Julien Castel
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Serge Luquet
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Jean-Pierre Mothet
- Biophotonics and Synapse Physiopathology Team, Laboratoire LuMIn UMR9024 Université Paris-Saclay, ENS Paris-Saclay, CNRS, CentraleSupelec, 91190 Gif-sur-Yvette, France
| | - Nicolas Heck
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine, Institut de Biologie Paris Seine, F-75005 Paris, France
| | - Giuseppe Gangarossa
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France; Institut Universitaire de France, France.
| |
Collapse
|
17
|
Fiocchi FR, van Dorp NES, Dijkhuizen S, van den Berg M, Wong A, De Zeeuw CI, Boele HJ. Discrimination training affects stimulus generalization in mice during Pavlovian eyeblink conditioning. Front Behav Neurosci 2024; 18:1446991. [PMID: 39247713 PMCID: PMC11377223 DOI: 10.3389/fnbeh.2024.1446991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/15/2024] [Indexed: 09/10/2024] Open
Abstract
The delicate balance between discrimination and generalization of responses is crucial for survival in our ever-changing environment. In particular, it is important to understand how stimulus discrimination affects the level of stimulus generalization. For example, when we use non-differential training for Pavlovian eyeblink conditioning to investigate generalization of cerebellar-related eyelid motor responses, we find generalization effects on amount, amplitude and timing of the conditioned responses. However, it is unknown what the generalization effects are following differential training. We trained mice to close their eyelids to a 10 kHz tone with an air-puff as the reinforcing stimulus (CS+), while alternatingly exposing them to a tone frequency of either 4 kHz, 9 kHz or 9.5 kHz without the air-puff (CS-) during the training blocks. We tested the generalization effects during the expression of the responses after the training period with tones ranging from 2 kHz to 20 kHz. Our results show that the level of generalization tended to positively correlate with the difference between the CS+ and the CS- training stimuli. These effects of generalization were found for the probability, amplitude but not for the timing of the conditioned eyelid responses. These data indicate the specificity of the generalization effects following differential versus non-differential training, highlighting the relevance of discrimination learning for stimulus generalization.
Collapse
Affiliation(s)
- Francesca Romana Fiocchi
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, Netherlands
- Department of Psychiatry, Washington University in St. Louis, Saint Louis, MO, United States
| | - Nikki E S van Dorp
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, Netherlands
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | | | | | - Aaron Wong
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, Netherlands
- Royal Dutch Academy of Arts & Science (KNAW), Netherland Institute for Neuroscience, Amsterdam, Netherlands
| | - Henk-Jan Boele
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, Netherlands
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| |
Collapse
|
18
|
Bossi S, Daniel H, McLean H. Interplay between metabotropic glutamate type 4 and adenosine type 1 receptors modulate synaptic transmission in the cerebellar cortex. Front Pharmacol 2024; 15:1406238. [PMID: 39211784 PMCID: PMC11358600 DOI: 10.3389/fphar.2024.1406238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
The synapses between parallel fibers and Purkinje cells play a pivotal role in cerebellar function. They are intricately governed by a variety of presynaptic receptors, notably by type 4 metabotropic glutamate (mGlu4) receptors and type 1 adenosine (A1) receptors both of which curtail glutamate release upon activation. Despite their pivotal role in regulating synaptic transmission within the cerebellar cortex, functional interactions between mGlu4 and A1 receptors have remained relatively unexplored. To bridge this gap, our study delves into how mGlu4 receptor activity influences A1 receptor-mediated alterations in excitatory transmission. Employing a combination of whole-cell patch clamp recordings of Purkinje cells and parallel fiber presynaptic fluorometric calcium measurements in acute rat and mouse cerebellar cortical slices, our results reveal functional interactions between these receptor types. These findings hold implications for understanding potential roles of these presynaptic receptors in neuroprotection during pathophysiological conditions characterized by elevated glutamate and adenosine levels.
Collapse
Affiliation(s)
- Simon Bossi
- *Correspondence: Simon Bossi, ; Heather McLean,
| | | | - Heather McLean
- Institut des Neurosciences (NeuroPSI) UMR9197 CNRS, Université Paris-Saclay, Saclay, France
| |
Collapse
|
19
|
Roth RH, Ding JB. Cortico-basal ganglia plasticity in motor learning. Neuron 2024; 112:2486-2502. [PMID: 39002543 PMCID: PMC11309896 DOI: 10.1016/j.neuron.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 07/15/2024]
Abstract
One key function of the brain is to control our body's movements, allowing us to interact with the world around us. Yet, many motor behaviors are not innate but require learning through repeated practice. Among the brain's motor regions, the cortico-basal ganglia circuit is particularly crucial for acquiring and executing motor skills, and neuronal activity in these regions is directly linked to movement parameters. Cell-type-specific adaptations of activity patterns and synaptic connectivity support the learning of new motor skills. Functionally, neuronal activity sequences become structured and associated with learned movements. On the synaptic level, specific connections become potentiated during learning through mechanisms such as long-term synaptic plasticity and dendritic spine dynamics, which are thought to mediate functional circuit plasticity. These synaptic and circuit adaptations within the cortico-basal ganglia circuitry are thus critical for motor skill acquisition, and disruptions in this plasticity can contribute to movement disorders.
Collapse
Affiliation(s)
- Richard H Roth
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| | - Jun B Ding
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
20
|
Bartelt LC, Fakhri M, Adamek G, Trybus M, Samelak-Czajka A, Jackowiak P, Fiszer A, Lowe CB, La Spada AR, Switonski PM. Antibody-assisted selective isolation of Purkinje cell nuclei from mouse cerebellar tissue. CELL REPORTS METHODS 2024; 4:100816. [PMID: 38981474 PMCID: PMC11294835 DOI: 10.1016/j.crmeth.2024.100816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/08/2024] [Accepted: 06/17/2024] [Indexed: 07/11/2024]
Abstract
We developed a method that utilizes fluorescent labeling of nuclear envelopes alongside cytometry sorting for the selective isolation of Purkinje cell (PC) nuclei. Beginning with SUN1 reporter mice, we GFP-tagged envelopes to confirm that PC nuclei could be accurately separated from other cell types. We then developed an antibody-based protocol to make PC nuclear isolation more robust and adaptable to cerebellar tissues of any genotypic background. Immunofluorescent labeling of the nuclear membrane protein RanBP2 enabled the isolation of PC nuclei from C57BL/6 cerebellum. By analyzing the expression of PC markers, nuclear size, and nucleoli number, we confirmed that our method delivers a pure fraction of PC nuclei. To demonstrate its applicability, we isolated PC nuclei from spinocerebellar ataxia type 7 (SCA7) mice and identified transcriptional changes in known and new disease-associated genes. Access to pure PC nuclei offers insights into PC biology and pathology, including the nature of selective neuronal vulnerability.
Collapse
Affiliation(s)
- Luke C Bartelt
- University Program in Genetics & Genomics, Duke University Medical Center, Durham, NC 27710, USA; Departments of Pathology & Laboratory Medicine, Neurology, Biological Chemistry, and Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA; Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Mouad Fakhri
- Department of Neuronal Cell Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Grazyna Adamek
- Department of Neuronal Cell Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Magdalena Trybus
- Laboratory of Single Cell Analyses, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Anna Samelak-Czajka
- Laboratory of Single Cell Analyses, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Paulina Jackowiak
- Laboratory of Single Cell Analyses, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Agnieszka Fiszer
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Craig B Lowe
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Albert R La Spada
- Departments of Pathology & Laboratory Medicine, Neurology, Biological Chemistry, and Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA; Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA; UCI Center for Neurotherapeutics, University of California, Irvine, Irvine, CA 92697, USA.
| | - Pawel M Switonski
- Department of Neuronal Cell Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland.
| |
Collapse
|
21
|
Voerman S, Broersen R, Swagemakers SMA, De Zeeuw CI, van der Spek PJ. Plasticity mechanisms of genetically distinct Purkinje cells. Bioessays 2024; 46:e2400008. [PMID: 38697917 DOI: 10.1002/bies.202400008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024]
Abstract
Despite its uniform appearance, the cerebellar cortex is highly heterogeneous in terms of structure, genetics and physiology. Purkinje cells (PCs), the principal and sole output neurons of the cerebellar cortex, can be categorized into multiple populations that differentially express molecular markers and display distinctive physiological features. Such features include action potential rate, but also their propensity for synaptic and intrinsic plasticity. However, the precise molecular and genetic factors that correlate with the differential physiological properties of PCs remain elusive. In this article, we provide a detailed overview of the cellular mechanisms that regulate PC activity and plasticity. We further perform a pathway analysis to highlight how molecular characteristics of specific PC populations may influence their physiology and plasticity mechanisms.
Collapse
Affiliation(s)
- Stijn Voerman
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Robin Broersen
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Sigrid M A Swagemakers
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Peter J van der Spek
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
22
|
Todd NPM, Govender S, Keller PE, Colebatch JG. Electrophysiological Activity from the Eye Muscles, Cerebellum and Cerebrum During Reflexive (Classical Pavlovian) Versus Voluntary (Ivanov-Smolensky) Eye-Blink Conditioning. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1086-1100. [PMID: 37840094 PMCID: PMC11102391 DOI: 10.1007/s12311-023-01613-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/02/2023] [Indexed: 10/17/2023]
Abstract
We report an experiment to investigate the role of the cerebellum and cerebrum in motor learning of timed movements. Eleven healthy human subjects were recruited to perform two experiments, the first was a classical eye-blink conditioning procedure with an auditory tone as conditional stimulus (CS) and vestibular unconditional stimulus (US) in the form of a double head-tap. In the second experiment, subjects were asked to blink voluntarily in synchrony with the double head-tap US preceded by a CS, a form of Ivanov-Smolensky conditioning in which a command or instruction is associated with the US. Electrophysiological recordings were made of extra-ocular EMG and EOG at infra-ocular sites (IO1/2), EEG from over the frontal eye fields (C3'/C4') and from over the posterior fossa over the cerebellum for the electrocerebellogram (ECeG). The behavioural outcomes of the experiments showed weak reflexive conditioning for the first experiment despite the double tap but robust, well-synchronised voluntary conditioning for the second. Voluntary conditioned blinks were larger than the reflex ones. For the voluntary conditioning experiment, a contingent negative variation (CNV) was also present in the EEG leads prior to movement, and modulation of the high-frequency EEG occurred during movement. US-related cerebellar activity was prominent in the high-frequency ECeG for both experiments, while conditioned response-related cerebellar activity was additionally present in the voluntary conditioning experiment. These results demonstrate a role for the cerebellum in voluntary (Ivanov-Smolensky) as well as in reflexive (classical Pavlovian) conditioning.
Collapse
Affiliation(s)
- Neil P M Todd
- UNSW Clinical School, Randwick Campus, Sydney, NSW, 2052, Australia.
- Department of Psychology, University of Exeter, Exeter, EX4 4QC, UK.
| | - Sendhil Govender
- Neuroscience Research Australia, UNSW, Sydney, NSW, 2052, Australia
| | - Peter E Keller
- MARCS Institute for Brain, Behaviour and Development, Western Sydney University Penrith, Kingswood, NSW, 2751, Australia
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, 8000, Aarhus, Denmark
| | - James G Colebatch
- UNSW Clinical School, Randwick Campus, Sydney, NSW, 2052, Australia
- Neuroscience Research Australia, UNSW, Sydney, NSW, 2052, Australia
| |
Collapse
|
23
|
Miyazaki H, Nishioka S, Yamanaka T, Abe M, Imamura Y, Miyasaka T, Kakuda N, Oohashi T, Shimogori T, Yamakawa K, Ikawa M, Nukina N. Generation and characterization of cerebellar granule neurons specific knockout mice of Golli-MBP. Transgenic Res 2024; 33:99-117. [PMID: 38684589 PMCID: PMC11176102 DOI: 10.1007/s11248-024-00382-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/02/2024] [Indexed: 05/02/2024]
Abstract
Golli-myelin basic proteins, encoded by the myelin basic protein gene, are widely expressed in neurons and oligodendrocytes in the central nervous system. Further, prior research has shown that Golli-myelin basic protein is necessary for myelination and neuronal maturation during central nervous system development. In this study, we established Golli-myelin basic protein-floxed mice to elucidate the cell-type-specific effects of Golli-myelin basic protein knockout through the generation of conditional knockout mice (Golli-myelin basic proteinsfl/fl; E3CreN), in which Golli-myelin basic proteins were specifically deleted in cerebellar granule neurons, where Golli-myelin basic proteins are expressed abundantly in wild-type mice. To investigate the role of Golli-myelin basic proteins in cerebellar granule neurons, we further performed histopathological analyses of these mice, with results indicating no morphological changes or degeneration of the major cellular components of the cerebellum. Furthermore, behavioral analysis showed that Golli-myelin basic proteinsfl/fl; E3CreN mice were healthy and did not display any abnormal behavior. These results suggest that the loss of Golli-myelin basic proteins in cerebellar granule neurons does not lead to cerebellar perturbations or behavioral abnormalities. This mouse model could therefore be employed to analyze the effect of Golli-myelin basic protein deletion in specific cell types of the central nervous system, such as other neuronal cells and oligodendrocytes, or in lymphocytes of the immune system.
Collapse
Grants
- 16K07005 Grants-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan
- 16H06276 Grants-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan
- 17H01564 Grants-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan
- 20ek0109310h0003 AMED
- The Center for Baby Science, Doshisha University
- Takeda Science Foundation
- Ichiro Kanehara Foundation for the Promotion of Medical Sciences and Medical Care
- Okayama University
Collapse
Affiliation(s)
- Haruko Miyazaki
- Laboratory of Structural Neuropathology, Graduate School of Brain Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe-shi, Kyoto, 610-0394, Japan.
- Department of Molecular Biology and Biochemistry, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Saki Nishioka
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomoyuki Yamanaka
- Laboratory of Structural Neuropathology, Graduate School of Brain Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe-shi, Kyoto, 610-0394, Japan
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata, 951-8585, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata, 951-8585, Japan
| | - Yukio Imamura
- Laboratory of Structural Neuropathology, Graduate School of Brain Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe-shi, Kyoto, 610-0394, Japan
| | - Tomohiro Miyasaka
- Faculty of Life and Medical Sciences, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe-shi, Kyoto, 610-0394, Japan
| | - Nobuto Kakuda
- Faculty of Life and Medical Sciences, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe-shi, Kyoto, 610-0394, Japan
| | - Toshitaka Oohashi
- Department of Molecular Biology and Biochemistry, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Tomomi Shimogori
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Kazuhiro Yamakawa
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
- Department of Neurodevelopmental Disorder Genetics, Institute of Brain Sciences, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Nobuyuki Nukina
- Laboratory of Structural Neuropathology, Graduate School of Brain Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe-shi, Kyoto, 610-0394, Japan.
| |
Collapse
|
24
|
Olivo G, Persson J, Hedenius M. Exploring brain plasticity in developmental dyslexia through implicit sequence learning. NPJ SCIENCE OF LEARNING 2024; 9:37. [PMID: 38802367 PMCID: PMC11130236 DOI: 10.1038/s41539-024-00250-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
Developmental dyslexia (DD) is defined as difficulties in learning to read even with normal intelligence and adequate educational guidance. Deficits in implicit sequence learning (ISL) abilities have been reported in children with DD. We investigated brain plasticity in a group of 17 children with DD, compared with 18 typically developing (TD) children, after two sessions of training on a serial reaction time (SRT) task with a 24-h interval. Our outcome measures for the task were: a sequence-specific implicit learning measure (ISL), entailing implicit recognition and learning of sequential associations; and a general visuomotor skill learning measure (GSL). Gray matter volume (GMV) increased, and white matter volume (WMV) decreased from day 1 to day 2 in cerebellar areas regardless of group. A moderating effect of group was found on the correlation between WMV underlying the left precentral gyrus at day 2 and the change in ISL performance, suggesting the use of different underlying learning mechanisms in DD and TD children during the ISL task. Moreover, DD had larger WMV in the posterior thalamic radiation compared with TD, supporting previous reports of atypical development of this structure in DD. Further studies with larger sample sizes are warranted to validate these results.
Collapse
Affiliation(s)
- Gaia Olivo
- University of Gothenburg, Department of Psychology, Haraldsgatan 1, 405 03, Göteborg, Sweden.
- Karolinska Institute, Department of Neurobiology, Care Sciences and Society, Aging Research Center, Tomtebodavägen 18a, SE-171 65, Solna, Sweden.
| | - Jonas Persson
- Karolinska Institute, Department of Neurobiology, Care Sciences and Society, Aging Research Center, Tomtebodavägen 18a, SE-171 65, Solna, Sweden
- Center for Life-span Developmental Research (LEADER), School of Law, Psychology, and Social Work, Örebro University, Örebro, Sweden
| | - Martina Hedenius
- Uppsala University, Department of Public Health and Caring Sciences, Biomedical Center, Husargatan 3, 751 22, Uppsala, Sweden
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Gävlegatan 22, 11330, Stockholm, Sweden
| |
Collapse
|
25
|
Lokossou HA, Rabuffo G, Bernard M, Bernard C, Viola A, Perles-Barbacaru TA. Impact of the day/night cycle on functional connectome in ageing male and female mice. Neuroimage 2024; 290:120576. [PMID: 38490583 DOI: 10.1016/j.neuroimage.2024.120576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024] Open
Abstract
To elucidate how time of day, sex, and age affect functional connectivity (FC) in mice, we aimed to examine whether the mouse functional connectome varied with the day/night cycle and whether it depended on sex and age. We explored C57Bl6/J mice (6♀ and 6♂) at mature age (5 ± 1 months) and middle-age (14 ± 1 months). Each mouse underwent Blood Oxygen-Level-Dependent (BOLD) resting-state functional MRI (rs-fMRI) on a 7T scanner at four different times of the day, two under the light condition and two under the dark condition. Data processing consisted of group independent component analysis (ICA) and region-level analysis using resting-state networks (RSNs) derived from literature. Linear mixed-effect models (LMEM) were used to assess the effects of sex, lighting condition and their interactions for each RSN obtained with group-ICA (RSNs-GICA) and six bilateral RSNs adapted from literature (RSNs-LIT). Our study highlighted new RSNs in mice related to day/night alternation in addition to other networks already reported in the literature. In mature mice, we found sex-related differences in brain activation only in one RSNs-GICA comprising the cortical, hippocampal, midbrain and cerebellar regions of the right hemisphere. In males, brain activity was significantly higher in the left hippocampus, the retrosplenial cortex, the superior colliculus, and the cerebellum regardless of lighting condition; consistent with the role of these structures in memory formation and integration, sleep, and sex-differences in memory processing. Experimental constraints limited the analysis to the impact of light/dark cycle on the RSNs for middle-aged females. We detected significant activation in the pineal gland during the dark condition, a finding in line with the nocturnal activity of this gland. For the analysis of RSNs-LIT, new variables "sexage" (sex and age combined) and "edges" (pairs of RSNs) were introduced. FC was calculated as the Pearson correlation between two RSNs. LMEM revealed no effect of sexage or lighting condition. The FC depended on the edges, but there were no interaction effects between sexage, lighting condition and edges. Interaction effects were detected between i) sex and lighting condition, with higher FC in males under the dark condition, ii) sexage and edges with higher FC in male brain regions related to vision, memory, and motor action. We conclude that time of day and sex should be taken into account when designing, analyzing, and interpreting functional imaging studies in rodents.
Collapse
Affiliation(s)
- Houéfa Armelle Lokossou
- Centre for Magnetic Resonance in Biology and Medicine, CRMBM UMR 7339, Aix-Marseille University-CNRS, Marseille, France; Institute of Systems Neuroscience, INS UMR 1106, Aix-Marseille University-INSERM, Marseille, France.
| | - Giovanni Rabuffo
- Institute of Systems Neuroscience, INS UMR 1106, Aix-Marseille University-INSERM, Marseille, France
| | - Monique Bernard
- Centre for Magnetic Resonance in Biology and Medicine, CRMBM UMR 7339, Aix-Marseille University-CNRS, Marseille, France
| | - Christophe Bernard
- Institute of Systems Neuroscience, INS UMR 1106, Aix-Marseille University-INSERM, Marseille, France.
| | - Angèle Viola
- Centre for Magnetic Resonance in Biology and Medicine, CRMBM UMR 7339, Aix-Marseille University-CNRS, Marseille, France
| | | |
Collapse
|
26
|
Geminiani A, Casellato C, Boele HJ, Pedrocchi A, De Zeeuw CI, D’Angelo E. Mesoscale simulations predict the role of synergistic cerebellar plasticity during classical eyeblink conditioning. PLoS Comput Biol 2024; 20:e1011277. [PMID: 38574161 PMCID: PMC11060558 DOI: 10.1371/journal.pcbi.1011277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 04/30/2024] [Accepted: 02/12/2024] [Indexed: 04/06/2024] Open
Abstract
According to the motor learning theory by Albus and Ito, synaptic depression at the parallel fibre to Purkinje cells synapse (pf-PC) is the main substrate responsible for learning sensorimotor contingencies under climbing fibre control. However, recent experimental evidence challenges this relatively monopolistic view of cerebellar learning. Bidirectional plasticity appears crucial for learning, in which different microzones can undergo opposite changes of synaptic strength (e.g. downbound microzones-more likely depression, upbound microzones-more likely potentiation), and multiple forms of plasticity have been identified, distributed over different cerebellar circuit synapses. Here, we have simulated classical eyeblink conditioning (CEBC) using an advanced spiking cerebellar model embedding downbound and upbound modules that are subject to multiple plasticity rules. Simulations indicate that synaptic plasticity regulates the cascade of precise spiking patterns spreading throughout the cerebellar cortex and cerebellar nuclei. CEBC was supported by plasticity at the pf-PC synapses as well as at the synapses of the molecular layer interneurons (MLIs), but only the combined switch-off of both sites of plasticity compromised learning significantly. By differentially engaging climbing fibre information and related forms of synaptic plasticity, both microzones contributed to generate a well-timed conditioned response, but it was the downbound module that played the major role in this process. The outcomes of our simulations closely align with the behavioural and electrophysiological phenotypes of mutant mice suffering from cell-specific mutations that affect processing of their PC and/or MLI synapses. Our data highlight that a synergy of bidirectional plasticity rules distributed across the cerebellum can facilitate finetuning of adaptive associative behaviours at a high spatiotemporal resolution.
Collapse
Affiliation(s)
- Alice Geminiani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Claudia Casellato
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Digital Neuroscience Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Henk-Jan Boele
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
- Neuroscience Institute, Princeton University, Washington Road, Princeton, New Jersey, United States of America
| | - Alessandra Pedrocchi
- NearLab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Digital Neuroscience Center, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
27
|
McElroy CL, Wang B, Zhang H, Jin K. Cerebellum and Aging: Update and Challenges. Aging Dis 2024; 15:2345-2360. [PMID: 38502583 PMCID: PMC11567260 DOI: 10.14336/ad.2024.0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/20/2024] [Indexed: 03/21/2024] Open
Abstract
The cerebellum plays a vital role in the aging process. With the aging of the cerebellum, there is a decline in balance and motor function, particularly fine motor skills, and an increased risk of falling. However, in recent years, numerous studies have revealed that the cerebellum has several roles besides balance and fine motor skills, such as cognitive function and memory. It also plays a role in many neurodegenerative diseases. Interestingly, the cerebellum ages more rapidly than other brain regions, including the hippocampus. With increasing studies reporting that the cerebellum has a more prominent and interconnected role in the brain, it is essential to understand why aging affects it more, leading to solutions to help curb the accelerated decline. Here, we summarize the cerebellum's function and look at how it ages at the cellular, molecular, and functional levels. Additionally, we explore the the effects of alcoholism on the aging cerebellum as well as the role of the cerebellum in diseases such as Alzheimer's, Parkinson's, and Multiple Sclerosis.
Collapse
Affiliation(s)
| | | | | | - Kunlin Jin
- Department of Pharmacology and Neuroscience, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
28
|
Aliyari H, Sahraei H, Menhaj MB, Kazemi M, Vahidi B, Hosseinian SH. Environmental Effect of High-voltage Towers on the Cerebellum and Cognitive Impairments in the Monkey. Basic Clin Neurosci 2024; 15:185-198. [PMID: 39228444 PMCID: PMC11367210 DOI: 10.32598/bcn.2021.1340.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/22/2021] [Accepted: 04/12/2021] [Indexed: 09/05/2024] Open
Abstract
Introduction Today, high-voltage (HV) lines create a pernicious environment for humans living or working in the vicinity and even under these lines. The male rhesus monkey is used to investigate the effects of fields produced by HV towers. This study examines the function and level of impact in rhesus monkeys' brains from the cerebellum's cognitive, biological, and structural perspective. Methods Two monkeys have been used, one as a control and the second as a test. The monkey under test was subjected to a simulated HV electrical field of 3 kV/m, 4 hours a day, for 1 month. Behavioral tests were performed using a device designed and built for this purpose. Concentration analysis of adrenocorticotropic hormones (ACTH) and inspection of glucocorticoid receptor gene's (GR) expression were performed by the reverse transcription polymerase chain reaction method. Changes in cerebellar anatomy were examined with magnetic resonance imaging (MRI). All tests were performed before and after the study period and compared with the control monkey. Results Cognitive tests showed a significant reduction for the monkey exposed to the HV electrical field in the first week after imposition compared with the same time before. Also, the expression of the GR gene decreased, and the concentration of ACTH hormone in plasma increased. Surveying the level of cerebral MRI images did not show any difference, but hemorrhage was evident in a part of the cerebellum. Conclusion The tested monkey's cognitive, biological, and MRI results showed a decrease in visual learning and memory indices.
Collapse
Affiliation(s)
- Hamed Aliyari
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, United States
| | - Hedayat Sahraei
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Bagher Menhaj
- Department of Electrical Engineering, School of Electrical, Computer & Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Masoomeh Kazemi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Behrooz Vahidi
- Department of Electrical Engineering, School of Electrical, Computer & Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Seyed Hossein Hosseinian
- Department of Electrical Engineering, School of Electrical, Computer & Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
29
|
Parras GG, Delgado-García JM, López-Ramos JC, Gruart A, Leal-Campanario R. Cerebellar interpositus nucleus exhibits time-dependent errors and predictive responses. NPJ SCIENCE OF LEARNING 2024; 9:12. [PMID: 38409163 PMCID: PMC10897197 DOI: 10.1038/s41539-024-00224-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 02/13/2024] [Indexed: 02/28/2024]
Abstract
Learning is a functional state of the brain that should be understood as a continuous process, rather than being restricted to the very moment of its acquisition, storage, or retrieval. The cerebellum operates by comparing predicted states with actual states, learning from errors, and updating its internal representation to minimize errors. In this regard, we studied cerebellar interpositus nucleus (IPn) functional capabilities by recording its unitary activity in behaving rabbits during an associative learning task: the classical conditioning of eyelid responses. We recorded IPn neurons in rabbits during classical eyeblink conditioning using a delay paradigm. We found that IPn neurons reduce error signals across conditioning sessions, simultaneously increasing and transmitting spikes before the onset of the unconditioned stimulus. Thus, IPn neurons generate predictions that optimize in time and shape the conditioned eyeblink response. Our results are consistent with the idea that the cerebellum works under Bayesian rules updating the weights using the previous history.
Collapse
Grants
- DOC-00309 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia)
- BIO-122 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia)
- PID2021-122446NB-100 Ministerio de Economía y Competitividad (Ministry of Economy and Competitiveness)
Collapse
Affiliation(s)
- Gloria G Parras
- Division of Neurosciences, Universidad Pablo de Olavide, Seville, Spain.
| | | | | | - Agnès Gruart
- Division of Neurosciences, Universidad Pablo de Olavide, Seville, Spain
| | | |
Collapse
|
30
|
Sasaki K, Sakurai N, Yuguchi Y, Kasai S, Kodama N. Identification of areas of the brain activated by active stimulation in hairless skin. Behav Brain Res 2024; 458:114758. [PMID: 37952686 DOI: 10.1016/j.bbr.2023.114758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
In the past few decades, neuroscientists have studied the physiological basis of pleasant touch. Unmyelinated low-threshold mechanoreceptors are central to the study of the physiological basis of pleasant touch. Research on pleasant stimuli has mostly focused on passive stimuli, and the brain activation sites for active pleasant stimuli are not clear. Therefore, the purpose of this study was to identify brain activation sites during active pleasant stimulation of hairless skin using functional magnetic resonance imaging. Forty-two healthy subjects aged 19 years or older were asked to actively grasp in five stimulus tasks. The comfort and sensations that occurred during the tasks were investigated using a questionnaire. Significant activation was found in the middle frontal gyrus when the hair ball and slime ball were grasped, while there was significant activation in the amygdala when grasping a squeeze ball compared to the tennis ball. In a questionnaire survey of the subjects, there was a significant difference in the comfort score between the tennis ball and the squeeze ball, but no significant correlation was found between the comfort scores and the brain sites of activation. Therefore, although active stimulation with the squeeze ball significantly activated the amygdala, it was not clear that the amygdala was significantly activated by active pleasant stimulation. In the future, it will be necessary to investigate the texture of the squeeze ball in more detail, and to increase the number of subjects for further study.
Collapse
Affiliation(s)
- Kei Sasaki
- Graduate School of Health and Welfare, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata 950-3198, Japan
| | - Noriko Sakurai
- Department of Radiological Technology, Faculty of Medical Technology, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata 950-3198, Japan
| | - Yukina Yuguchi
- Graduate School of Health and Welfare, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata 950-3198, Japan
| | - Satoshi Kasai
- Department of Radiological Technology, Faculty of Medical Technology, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata 950-3198, Japan
| | - Naoki Kodama
- Department of Radiological Technology, Faculty of Medical Technology, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata 950-3198, Japan.
| |
Collapse
|
31
|
van Hoogstraten WS, Lute MCC, Liu Z, Broersen R, Mangili L, Kros L, Gao Z, Wang X, van den Maagdenberg AMJM, De Zeeuw CI. Disynaptic Inhibitory Cerebellar Control Over Caudal Medial Accessory Olive. eNeuro 2024; 11:ENEURO.0262-23.2023. [PMID: 38242692 PMCID: PMC10875979 DOI: 10.1523/eneuro.0262-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/07/2023] [Accepted: 12/27/2023] [Indexed: 01/21/2024] Open
Abstract
The olivocerebellar system, which is critical for sensorimotor performance and learning, functions through modules with feedback loops. The main feedback to the inferior olive comes from the cerebellar nuclei (CN), which are predominantly GABAergic and contralateral. However, for the subnucleus d of the caudomedial accessory olive (cdMAO), a crucial region for oculomotor and upper body movements, the source of GABAergic input has yet to be identified. Here, we demonstrate the existence of a disynaptic inhibitory projection from the medial CN (MCN) to the cdMAO via the superior colliculus (SC) by exploiting retrograde, anterograde, and transsynaptic viral tracing at the light microscopic level as well as anterograde classical and viral tracing combined with immunocytochemistry at the electron microscopic level. Retrograde tracing in Gad2-Cre mice reveals that the cdMAO receives GABAergic input from the contralateral SC. Anterograde transsynaptic tracing uncovered that the SC neurons receiving input from the contralateral MCN provide predominantly inhibitory projections to contralateral cdMAO, ipsilateral to the MCN. Following ultrastructural analysis of the monosynaptic projection about half of the SC terminals within the contralateral cdMAO are GABAergic. The disynaptic GABAergic projection from the MCN to the ipsilateral cdMAO mirrors that of the monosynaptic excitatory projection from the MCN to the contralateral cdMAO. Thus, while completing the map of inhibitory inputs to the olivary subnuclei, we established that the MCN inhibits the cdMAO via the contralateral SC, highlighting a potential push-pull mechanism in directional gaze control that appears unique in terms of laterality and polarity among olivocerebellar modules.
Collapse
Affiliation(s)
| | - Marit C C Lute
- Department of Neuroscience, Erasmus MC, Rotterdam 3015 GD, The Netherlands
- Netherlands Institute for Neuroscience, Amsterdam 1105 BA, The Netherlands
| | - Zhiqiang Liu
- Department of Neuroscience, Erasmus MC, Rotterdam 3015 GD, The Netherlands
| | - Robin Broersen
- Department of Neuroscience, Erasmus MC, Rotterdam 3015 GD, The Netherlands
| | - Luca Mangili
- Department of Neuroscience, Erasmus MC, Rotterdam 3015 GD, The Netherlands
| | - Lieke Kros
- Department of Neuroscience, Erasmus MC, Rotterdam 3015 GD, The Netherlands
| | - Zhenyu Gao
- Department of Neuroscience, Erasmus MC, Rotterdam 3015 GD, The Netherlands
| | - Xiaolu Wang
- Department of Neuroscience, Erasmus MC, Rotterdam 3015 GD, The Netherlands
| | - Arn M J M van den Maagdenberg
- Departments of Neurology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
- Human Genetics, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam 3015 GD, The Netherlands
- Netherlands Institute for Neuroscience, Amsterdam 1105 BA, The Netherlands
| |
Collapse
|
32
|
Cullen KE. Internal models of self-motion: neural computations by the vestibular cerebellum. Trends Neurosci 2023; 46:986-1002. [PMID: 37739815 PMCID: PMC10591839 DOI: 10.1016/j.tins.2023.08.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/15/2023] [Accepted: 08/25/2023] [Indexed: 09/24/2023]
Abstract
The vestibular cerebellum plays an essential role in maintaining our balance and ensuring perceptual stability during activities of daily living. Here I examine three key regions of the vestibular cerebellum: the floccular lobe, anterior vermis (lobules I-V), and nodulus and ventral uvula (lobules X-IX of the posterior vermis). These cerebellar regions encode vestibular information and combine it with extravestibular signals to create internal models of eye, head, and body movements, as well as their spatial orientation with respect to gravity. To account for changes in the external environment and/or biomechanics during self-motion, the neural mechanisms underlying these computations are continually updated to ensure accurate motor behavior. To date, studies on the vestibular cerebellum have predominately focused on passive vestibular stimulation, whereas in actuality most stimulation is the result of voluntary movement. Accordingly, I also consider recent research exploring these computations during active self-motion and emerging evidence establishing the cerebellum's role in building predictive models of self-generated movement.
Collapse
Affiliation(s)
- Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
33
|
Iosif CI, Bashir ZI, Apps R, Pickford J. Cerebellar Prediction and Feeding Behaviour. CEREBELLUM (LONDON, ENGLAND) 2023; 22:1002-1019. [PMID: 36121552 PMCID: PMC10485105 DOI: 10.1007/s12311-022-01476-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Given the importance of the cerebellum in controlling movements, it might be expected that its main role in eating would be the control of motor elements such as chewing and swallowing. Whilst such functions are clearly important, there is more to eating than these actions, and more to the cerebellum than motor control. This review will present evidence that the cerebellum contributes to homeostatic, motor, rewarding and affective aspects of food consumption.Prediction and feedback underlie many elements of eating, as food consumption is influenced by expectation. For example, circadian clocks cause hunger in anticipation of a meal, and food consumption causes feedback signals which induce satiety. Similarly, the sight and smell of food generate an expectation of what that food will taste like, and its actual taste will generate an internal reward value which will be compared to that expectation. Cerebellar learning is widely thought to involve feed-forward predictions to compare expected outcomes to sensory feedback. We therefore propose that the overarching role of the cerebellum in eating is to respond to prediction errors arising across the homeostatic, motor, cognitive, and affective domains.
Collapse
Affiliation(s)
- Cristiana I Iosif
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| | - Zafar I Bashir
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Richard Apps
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Jasmine Pickford
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| |
Collapse
|
34
|
Zolboot N, Xiao Y, Du JX, Ghanem MM, Choi SY, Junn MJ, Zampa F, Huang Z, MacRae IJ, Lippi G. MicroRNAs are necessary for the emergence of Purkinje cell identity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.560023. [PMID: 37808721 PMCID: PMC10557743 DOI: 10.1101/2023.09.28.560023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Brain computations are dictated by the unique morphology and connectivity of neuronal subtypes, features established by closely timed developmental events. MicroRNAs (miRNAs) are critical for brain development, but current technologies lack the spatiotemporal resolution to determine how miRNAs instruct the steps leading to subtype identity. Here, we developed new tools to tackle this major gap. Fast and reversible miRNA loss-of-function revealed that miRNAs are necessary for cerebellar Purkinje cell (PC) differentiation, which previously appeared miRNA-independent, and resolved distinct miRNA critical windows in PC dendritogenesis and climbing fiber synaptogenesis, key determinants of PC identity. To identify underlying mechanisms, we generated a mouse model, which enables precise mapping of miRNAs and their targets in rare cell types. With PC-specific maps, we found that the PC-enriched miR-206 drives exuberant dendritogenesis and modulates synaptogenesis. Our results showcase vastly improved approaches for dissecting miRNA function and reveal that many critical miRNA mechanisms remain largely unexplored. Highlights Fast miRNA loss-of-function with T6B impairs postnatal Purkinje cell developmentReversible T6B reveals critical miRNA windows for dendritogenesis and synaptogenesisConditional Spy3-Ago2 mouse line enables miRNA-target network mapping in rare cellsPurkinje cell-enriched miR-206 regulates its unique dendritic and synaptic morphology.
Collapse
|
35
|
Hoang H, Tsutsumi S, Matsuzaki M, Kano M, Kawato M, Kitamura K, Toyama K. Dynamic organization of cerebellar climbing fiber response and synchrony in multiple functional components reduces dimensions for reinforcement learning. eLife 2023; 12:e86340. [PMID: 37712651 PMCID: PMC10531405 DOI: 10.7554/elife.86340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/13/2023] [Indexed: 09/16/2023] Open
Abstract
Cerebellar climbing fibers convey diverse signals, but how they are organized in the compartmental structure of the cerebellar cortex during learning remains largely unclear. We analyzed a large amount of coordinate-localized two-photon imaging data from cerebellar Crus II in mice undergoing 'Go/No-go' reinforcement learning. Tensor component analysis revealed that a majority of climbing fiber inputs to Purkinje cells were reduced to only four functional components, corresponding to accurate timing control of motor initiation related to a Go cue, cognitive error-based learning, reward processing, and inhibition of erroneous behaviors after a No-go cue. Changes in neural activities during learning of the first two components were correlated with corresponding changes in timing control and error learning across animals, indirectly suggesting causal relationships. Spatial distribution of these components coincided well with boundaries of Aldolase-C/zebrin II expression in Purkinje cells, whereas several components are mixed in single neurons. Synchronization within individual components was bidirectionally regulated according to specific task contexts and learning stages. These findings suggest that, in close collaborations with other brain regions including the inferior olive nucleus, the cerebellum, based on anatomical compartments, reduces dimensions of the learning space by dynamically organizing multiple functional components, a feature that may inspire new-generation AI designs.
Collapse
Affiliation(s)
- Huu Hoang
- ATR Neural Information Analysis LaboratoriesKyotoJapan
| | | | | | - Masanobu Kano
- Department of Neurophysiology, The University of TokyoTokyoJapan
- International Research Center for Neurointelligence (WPI-IRCN), The University of TokyoTokyoJapan
| | - Mitsuo Kawato
- ATR Brain Information Communication Research Laboratory GroupKyotoJapan
| | - Kazuo Kitamura
- Department of Neurophysiology, University of YamanashiKofuJapan
| | | |
Collapse
|
36
|
Chen Y, Li W. Rapid eye movement sleep contributes to the formation of new axonal varicosities in mouse cerebellar parallel fibers after motor training. Neurosci Lett 2023; 810:137349. [PMID: 37327855 DOI: 10.1016/j.neulet.2023.137349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Synaptic structural plasticity is essential for the development, learning and memory. It is well established that sleep plays important roles in synaptic plasticity after motor learning. In cerebellar cortex, parallel fibers of granule cells make excitatory synapses to the dendrites of Purkinje cells. However, the synaptic structural dynamics between parallel and Purkinje cells after motor training and the function of sleep in cerebellar synaptic plasticity remain unclear. Here, we used two-photon microscopy to examine presynaptic axonal structural dynamics at parallel fiber-Purkinje cell synapses and investigated the effect of REM sleep in synaptic plasticity of mouse cerebellar cortex following motor training. We found that motor training induces higher formation of new axonal varicosities in cerebellar parallel fibers. Our results also indicate that calcium activities of granule cells significantly increase during REM sleep, and REM sleep deprivation prevents motor training-induced formation of axonal varicosities in parallel fibers, suggesting that higher calcium activity of granule cells was crucial for promoting newly formed axonal varicosities after motor training. Together, these findings reveal the effect of motor training on parallel fiber presynaptic structural modification and the important role of REM sleep in synaptic plasticity in cerebellar cortex.
Collapse
Affiliation(s)
- Yu Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Wei Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
37
|
Blot FGC, White JJ, van Hattem A, Scotti L, Balaji V, Adolfs Y, Pasterkamp RJ, De Zeeuw CI, Schonewille M. Purkinje cell microzones mediate distinct kinematics of a single movement. Nat Commun 2023; 14:4358. [PMID: 37468512 PMCID: PMC10356806 DOI: 10.1038/s41467-023-40111-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
The classification of neuronal subpopulations has significantly advanced, yet its relevance for behavior remains unclear. The highly organized flocculus of the cerebellum, known to fine-tune multi-axial eye movements, is an ideal substrate for the study of potential functions of neuronal subpopulations. Here, we demonstrate that its recently identified subpopulations of 9+ and 9- Purkinje cells exhibit an intermediate Aldolase C expression and electrophysiological profile, providing evidence for a graded continuum of intrinsic properties among PC subpopulations. By identifying and utilizing two Cre-lines that genetically target these floccular domains, we show with high spatial specificity that these subpopulations of Purkinje cells participate in separate micromodules with topographically organized connections. Finally, optogenetic excitation of the respective subpopulations results in movements around the same axis in space, yet with distinct kinematic profiles. These results indicate that Purkinje cell subpopulations integrate in discrete circuits and mediate particular parameters of single movements.
Collapse
Affiliation(s)
| | - Joshua J White
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Amy van Hattem
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Licia Scotti
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Vaishnavi Balaji
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Youri Adolfs
- Department of Translational Neuroscience, University Medical Center Utrecht, Brain Center, Utrecht University, Utrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Utrecht, Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | | |
Collapse
|
38
|
Hwang HM, Kawasawa YI, Basha A, Mohammad S, Ito M, Hashimoto-Torii K. Fatty acid metabolism changes in association with neurobehavioral deficits in animal models of fetal alcohol spectrum disorders. Commun Biol 2023; 6:736. [PMID: 37460609 DOI: 10.1038/s42003-023-05127-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
Fetal alcohol spectrum disorders (FASD) show behavioral problems due to prenatal alcohol exposure (PAE). A previous study reports changes in gene expressions linked to fatty acid (FA) metabolism in the cerebral cortex of the PAE mouse model. We find an increase of palmitic acid and arachidonic acid in phospholipid in the cerebral cortex of PAE at postnatal day 30. The increase of palmitic acid is consistent with increase of the producing enzyme, Fasn (fatty acid synthase). Decrease of 26:6 FA is also consistent with the increase of the enzyme which uses 26:6 as a substrate for making very long chain FAs, Elovl4 (elongation of very long chain fatty acids protein 4). However, there is no increase in the elongated products. Rather, lipid droplets (LDs) accumulated in the brain. Although FA-associated metabolic measurements are not affected by PAE, the abundance of FA-related gut microbiota is altered. This suggests that the gut microbiome could serve as a tool to facilitate uncovering the brain pathophysiology of FASD and a potential target to mitigate neurobehavioral problems.
Collapse
Affiliation(s)
- Hye Mee Hwang
- Center for Neuroscience Research, The Children's Research Institute, Children's National Hospital, Washington, DC, USA
- The Institute for Biomedical Sciences, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Yuka Imamura Kawasawa
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, USA
- Department of Biochemistry and Molecular Biology, Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Aiesha Basha
- Center for Neuroscience Research, The Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Shahid Mohammad
- Center for Neuroscience Research, The Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Mariko Ito
- Center for Neuroscience Research, The Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, The Children's Research Institute, Children's National Hospital, Washington, DC, USA.
- Departments of Pediatrics, and Pharmacology & Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA.
| |
Collapse
|
39
|
Schmitt O, Eipert P, Wang Y, Kanoke A, Rabiller G, Liu J. Connectome-based prediction of functional impairment in experimental stroke models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539601. [PMID: 37205373 PMCID: PMC10187266 DOI: 10.1101/2023.05.05.539601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Experimental rat models of stroke and hemorrhage are important tools to investigate cerebrovascular disease pathophysiology mechanisms, yet how significant patterns of functional impairment induced in various models of stroke are related to changes in connectivity at the level of neuronal populations and mesoscopic parcellations of rat brains remain unresolved. To address this gap in knowledge, we employed two middle cerebral artery occlusion models and one intracerebral hemorrhage model with variant extent and location of neuronal dysfunction. Motor and spatial memory function was assessed and the level of hippocampal activation via Fos immunohistochemistry. Contribution of connectivity change to functional impairment was analyzed for connection similarities, graph distances and spatial distances as well as the importance of regions in terms of network architecture based on the neuroVIISAS rat connectome. We found that functional impairment correlated with not only the extent but also the locations of the injury among the models. In addition, via coactivation analysis in dynamic rat brain models, we found that lesioned regions led to stronger coactivations with motor function and spatial learning regions than with other unaffected regions of the connectome. Dynamic modeling with the weighted bilateral connectome detected changes in signal propagation in the remote hippocampus in all 3 stroke types, predicting the extent of hippocampal hypoactivation and impairment in spatial learning and memory function. Our study provides a comprehensive analytical framework in predictive identification of remote regions not directly altered by stroke events and their functional implication.
Collapse
Affiliation(s)
- Oliver Schmitt
- Medical School Hamburg - University of Applied Sciences, Department of Anatomy; University of Rostock, Institute of Anatomy
- SFVAMC, 1700 Owens Street, San Francisco, CA 94158
| | - Peter Eipert
- Medical School Hamburg - University of Applied Sciences, Department of Anatomy; University of Rostock, Institute of Anatomy
- SFVAMC, 1700 Owens Street, San Francisco, CA 94158
| | - Yonggang Wang
- Department of Neurological Surgery, UCSF
- SFVAMC, 1700 Owens Street, San Francisco, CA 94158
- Department of Neurological Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China, 100050
| | - Atsushi Kanoke
- Department of Neurological Surgery, UCSF
- SFVAMC, 1700 Owens Street, San Francisco, CA 94158
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Gratianne Rabiller
- Department of Neurological Surgery, UCSF
- SFVAMC, 1700 Owens Street, San Francisco, CA 94158
| | - Jialing Liu
- Department of Neurological Surgery, UCSF
- SFVAMC, 1700 Owens Street, San Francisco, CA 94158
| |
Collapse
|
40
|
Fallahnezhad M, Le Mero J, Zenelaj X, Vincent J, Rochefort C, Rondi-Reig L. Cerebellar control of a unitary head direction sense. Proc Natl Acad Sci U S A 2023; 120:e2214539120. [PMID: 36812198 PMCID: PMC9992783 DOI: 10.1073/pnas.2214539120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/17/2023] [Indexed: 02/24/2023] Open
Abstract
The head-direction (HD) system, a key neural circuit for navigation, consists of several anatomical structures containing neurons selective to the animal's head direction. HD cells exhibit ubiquitous temporal coordination across brain regions, independently of the animal's behavioral state or sensory inputs. Such temporal coordination mediates a single, stable, and persistent HD signal, which is essential for intact orientation. However, the mechanistic processes behind the temporal organization of HD cells are unknown. By manipulating the cerebellum, we identify pairs of HD cells recorded from two brain structures (anterodorsal thalamus and retrosplenial cortex) that lose their temporal coordination, specifically during the removal of the external sensory inputs. Further, we identify distinct cerebellar mechanisms that participate in the spatial stability of the HD signal depending on sensory signals. We show that while cerebellar protein phosphatase 2B-dependent mechanisms facilitate the anchoring of the HD signal on the external cues, the cerebellar protein kinase C-dependent mechanisms are required for the stability of the HD signal by self-motion cues. These results indicate that the cerebellum contributes to the preservation of a single and stable sense of direction.
Collapse
Affiliation(s)
- Mehdi Fallahnezhad
- Sorbonne Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médical, Institut de Biologie Paris Seine, Neurosciences Paris Seine, Cerebellum, Navigation and Memory Team, 75005Paris, France
- Inovarion, 75005Paris, France
| | - Julia Le Mero
- Sorbonne Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médical, Institut de Biologie Paris Seine, Neurosciences Paris Seine, Cerebellum, Navigation and Memory Team, 75005Paris, France
| | - Xhensjana Zenelaj
- Sorbonne Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médical, Institut de Biologie Paris Seine, Neurosciences Paris Seine, Cerebellum, Navigation and Memory Team, 75005Paris, France
| | - Jean Vincent
- Sorbonne Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médical, Institut de Biologie Paris Seine, Neurosciences Paris Seine, Cerebellum, Navigation and Memory Team, 75005Paris, France
| | - Christelle Rochefort
- Sorbonne Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médical, Institut de Biologie Paris Seine, Neurosciences Paris Seine, Cerebellum, Navigation and Memory Team, 75005Paris, France
| | - Laure Rondi-Reig
- Sorbonne Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médical, Institut de Biologie Paris Seine, Neurosciences Paris Seine, Cerebellum, Navigation and Memory Team, 75005Paris, France
| |
Collapse
|
41
|
Lin CR, Amokrane N, Chen S, Chen TX, Lai R, Trinh P, Minyetty MJ, Emmerich H, Pan M, Claassen DO, Kuo S. Cerebellar impulsivity-compulsivity assessment scale. Ann Clin Transl Neurol 2023; 10:48-57. [PMID: 36401598 PMCID: PMC9852385 DOI: 10.1002/acn3.51698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE The cerebellum has been identified as the key brain region that modulates reward processing in animal models. Consistently, we recently found that people with cerebellar ataxia have impulsive and compulsive behaviors (ICBs), the main symptoms related to abnormal reward processing. Due to the lack of a validated scale to quantitatively measure ICBs in cerebellar disorders, we aim to develop and validate a new scale, Cerebellar Impulsivity-Compulsivity Assessment (CIA). METHODS We recruited 62 cerebellar ataxia cases, categorized into those with ICBs and those without. We developed a preliminary version of CIA, containing 17 questions. We studied the internal consistency, test-retest reliability, and inter-rater reliability to formulate the final version of CIA, which constitutes only 10 questions. The receiver operating characteristic curve (ROC) was generated to assess the sensitivity and specificity of CIA. RESULTS Cerebellar ataxia cases with ICBs have threefold higher total preliminary CIA scores than those without ICBs (12.06 ± 5.96 vs. 4.68 ± 3.50, p = 0.038). Cronbach's alpha revealed good internal consistency across all items (α > 0.70). By performing the test-retest reliability and inter-rater reliability on the preliminary version of CIA, we excluded seven questions (r < 0.70) and generated the final version of CIA. Based on the ROC, a score of 8.0 in CIA was chosen as the cut-off for ICBs in individuals with cerebellar ataxia with 81% sensitivity and 81% specificity. INTERPRETATION CIA is a novel tool to assess ICBs in cerebellar ataxia and broaden our understanding of the cerebellum-related cognitive and behavioral symptoms.
Collapse
Affiliation(s)
- Chi‐Ying R. Lin
- Parkinson's Disease Center and Movement Disorders Clinic, Department of NeurologyBaylor College of MedicineHoustonTexasUSA
- Alzheimer's Disease and Memory Disorders Center, Department of NeurologyBaylor College of MedicineHoustonTexasUSA
| | - Nadia Amokrane
- Department of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
- Initiative of Columbia Ataxia and TremorColumbia University Medical CenterNew YorkNew YorkUSA
| | - Serena Chen
- Department of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
- Initiative of Columbia Ataxia and TremorColumbia University Medical CenterNew YorkNew YorkUSA
| | - Tiffany X. Chen
- Department of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
- Initiative of Columbia Ataxia and TremorColumbia University Medical CenterNew YorkNew YorkUSA
- Department of Biomedical EngineeringWhiting School of Engineering, Johns Hopkins UniversityBaltimoreMarylandUSA
| | - Ruo‐Yah Lai
- Department of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
- Initiative of Columbia Ataxia and TremorColumbia University Medical CenterNew YorkNew YorkUSA
| | - Paula Trinh
- Department of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
- Initiative of Columbia Ataxia and TremorColumbia University Medical CenterNew YorkNew YorkUSA
| | - Michael J. Minyetty
- Department of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
- Initiative of Columbia Ataxia and TremorColumbia University Medical CenterNew YorkNew YorkUSA
| | - Haidyn Emmerich
- Department of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
- Initiative of Columbia Ataxia and TremorColumbia University Medical CenterNew YorkNew YorkUSA
| | - Ming‐Kai Pan
- Department of Medical ResearchNational Taiwan University HospitalTaipeiTaiwan
| | - Daniel O. Claassen
- Department of NeurologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Sheng‐Han Kuo
- Department of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
- Initiative of Columbia Ataxia and TremorColumbia University Medical CenterNew YorkNew YorkUSA
| |
Collapse
|
42
|
Jackson A, Xu W. Role of cerebellum in sleep-dependent memory processes. Front Syst Neurosci 2023; 17:1154489. [PMID: 37143709 PMCID: PMC10151545 DOI: 10.3389/fnsys.2023.1154489] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/31/2023] [Indexed: 05/06/2023] Open
Abstract
The activities and role of the cerebellum in sleep have, until recently, been largely ignored by both the sleep and cerebellum fields. Human sleep studies often neglect the cerebellum because it is at a position in the skull that is inaccessible to EEG electrodes. Animal neurophysiology sleep studies have focussed mainly on the neocortex, thalamus and the hippocampus. However, recent neurophysiological studies have shown that not only does the cerebellum participate in the sleep cycle, but it may also be implicated in off-line memory consolidation. Here we review the literature on cerebellar activity during sleep and the role it plays in off-line motor learning, and introduce a hypothesis whereby the cerebellum continues to compute internal models during sleep that train the neocortex.
Collapse
Affiliation(s)
- Andrew Jackson
- Institute of Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Wei Xu
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Wei Xu,
| |
Collapse
|
43
|
Parras GG, Leal-Campanario R, López-Ramos JC, Gruart A, Delgado-García JM. Functional properties of eyelid conditioned responses and involved brain centers. Front Behav Neurosci 2022; 16:1057251. [PMID: 36570703 PMCID: PMC9780278 DOI: 10.3389/fnbeh.2022.1057251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
For almost a century the classical conditioning of nictitating membrane/eyelid responses has been used as an excellent and feasible experimental model to study how the brain organizes the acquisition, storage, and retrieval of new motor abilities in alert behaving mammals, including humans. Lesional, pharmacological, and electrophysiological approaches, and more recently, genetically manipulated animals have shown the involvement of numerous brain areas in this apparently simple example of associative learning. In this regard, the cerebellum (both cortex and nuclei) has received particular attention as a putative site for the acquisition and storage of eyelid conditioned responses, a proposal not fully accepted by all researchers. Indeed, the acquisition of this type of learning implies the activation of many neural processes dealing with the sensorimotor integration and the kinematics of the acquired ability, as well as with the attentional and cognitive aspects also involved in this process. Here, we address specifically the functional roles of three brain structures (red nucleus, cerebellar interpositus nucleus, and motor cortex) mainly involved in the acquisition and performance of eyelid conditioned responses and three other brain structures (hippocampus, medial prefrontal cortex, and claustrum) related to non-motor aspects of the acquisition process. The main conclusion is that the acquisition of this motor ability results from the contribution of many cortical and subcortical brain structures each one involved in specific (motor and cognitive) aspects of the learning process.
Collapse
|
44
|
Ottenhoff MJ, Dijkhuizen S, Ypelaar ACH, de Oude NL, Koekkoek SKE, Wang SSH, De Zeeuw CI, Elgersma Y, Boele HJ. Cerebellum-dependent associative learning is not impaired in a mouse model of neurofibromatosis type 1. Sci Rep 2022; 12:19041. [PMID: 36351971 PMCID: PMC9646701 DOI: 10.1038/s41598-022-21429-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/27/2022] [Indexed: 11/11/2022] Open
Abstract
Individuals with Neurofibromatosis type 1 (NF1) experience a high degree of motor problems. The cerebellum plays a pivotal role in motor functioning and the NF1 gene is highly expressed in cerebellar Purkinje cells. However, it is not well understood to what extent NF1 affects cerebellar functioning and how this relates to NF1 motor functioning. Therefore, we subjected global Nf1+/- mice to a cerebellum-dependent associative learning task, called Pavlovian eyeblink conditioning. Additionally, we assessed general motor function and muscle strength in Nf1+/- mice. To our surprise, we found that Nf1+/- mice showed a moderately increased learning rate of conditioned eyeblink responses, as well as improved accuracy in the adaptive timing of the eyeblink responses. Locomotion, balance, general motor function, and muscle strength were not affected in Nf1+/- mice. Together, our results support the view that cerebellar function in Nf1+/- mice is unimpaired.
Collapse
Affiliation(s)
- M J Ottenhoff
- Department of Neuroscience, Erasmus MC, 3000 DR, Rotterdam, The Netherlands
- The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, 3015GD, The Netherlands
| | - S Dijkhuizen
- Department of Neuroscience, Erasmus MC, 3000 DR, Rotterdam, The Netherlands
| | - A C H Ypelaar
- Department of Neuroscience, Erasmus MC, 3000 DR, Rotterdam, The Netherlands
| | - N L de Oude
- Department of Neuroscience, Erasmus MC, 3000 DR, Rotterdam, The Netherlands
| | - S K E Koekkoek
- Department of Neuroscience, Erasmus MC, 3000 DR, Rotterdam, The Netherlands
| | - S S-H Wang
- Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ, USA
| | - C I De Zeeuw
- Department of Neuroscience, Erasmus MC, 3000 DR, Rotterdam, The Netherlands
- Royal Academy of Arts and Sciences (KNAW), Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands
| | - Y Elgersma
- The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, 3015GD, The Netherlands
- Department of Clinical Genetics, Erasmus MC, 3000 DR, Rotterdam, The Netherlands
| | - H J Boele
- Department of Neuroscience, Erasmus MC, 3000 DR, Rotterdam, The Netherlands.
- Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ, USA.
| |
Collapse
|
45
|
Rondi-Reig L, Paradis AL, Fallahnezhad M. A Liaison Brought to Light: Cerebellum-Hippocampus, Partners for Spatial Cognition. CEREBELLUM (LONDON, ENGLAND) 2022; 21:826-837. [PMID: 35752720 DOI: 10.1007/s12311-022-01422-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 01/18/2023]
Abstract
This review focuses on the functional and anatomical links between the cerebellum and the hippocampus and the role of their interplay in goal-directed navigation and spatial cognition. We will describe the interactions between the cerebellum and the hippocampus at different scales: a macroscopic scale revealing the joint activations of these two structures at the level of neuronal circuits, a mesoscopic scale highlighting the synchronization of neuronal oscillations, and finally a cellular scale where we will describe the activity of hippocampal neuronal assemblies following a targeted manipulation of the cerebellar system. We will take advantage of this framework to summarize the different anatomical pathways that may sustain this multiscale interaction. We will finally consider the possible influence of the cerebellum on pathologies traditionally associated with hippocampal dysfunction.
Collapse
Affiliation(s)
- Laure Rondi-Reig
- Institut de Biologie Paris Seine (IBPS), Cerebellum Navigation and Memory Team (CeZaMe), Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine (NPS), 75005, Paris, France.
| | - Anne-Lise Paradis
- Institut de Biologie Paris Seine (IBPS), Cerebellum Navigation and Memory Team (CeZaMe), Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine (NPS), 75005, Paris, France
| | - Mehdi Fallahnezhad
- Institut de Biologie Paris Seine (IBPS), Cerebellum Navigation and Memory Team (CeZaMe), Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine (NPS), 75005, Paris, France
| |
Collapse
|
46
|
The caudal prethalamus: Inhibitory switchboard for behavioral control? Neuron 2022; 110:2728-2742. [PMID: 36076337 DOI: 10.1016/j.neuron.2022.07.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/16/2022] [Accepted: 07/17/2022] [Indexed: 11/21/2022]
Abstract
Prethalamic nuclei in the mammalian brain include the zona incerta, the ventral lateral geniculate nucleus, and the intergeniculate leaflet, which provide long-range inhibition to many targets in the midbrain, hindbrain, and thalamus. These nuclei in the caudal prethalamus can integrate sensory and non-sensory information, and together they exert powerful inhibitory control over a wide range of brain functions and behaviors that encompass most aspects of the behavioral repertoire of mammals, including sleep, circadian rhythms, feeding, drinking, predator avoidance, and exploration. In this perspective, we highlight the evidence for this wide-ranging control and lay out the hypothesis that one role of caudal prethalamic nuclei may be that of a behavioral switchboard that-depending on the sensory input, the behavioral context, and the state of the animal-can promote a behavioral strategy and suppress alternative, competing behaviors by modulating inhibitory drive onto diverse target areas.
Collapse
|
47
|
Harrington YA, Parisi JM, Duan D, Rojo-Wissar DM, Holingue C, Spira AP. Sex Hormones, Sleep, and Memory: Interrelationships Across the Adult Female Lifespan. Front Aging Neurosci 2022; 14:800278. [PMID: 35912083 PMCID: PMC9331168 DOI: 10.3389/fnagi.2022.800278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 06/09/2022] [Indexed: 01/26/2023] Open
Abstract
As the population of older adults grows, so will the prevalence of aging-related conditions, including memory impairments and sleep disturbances, both of which are more common among women. Compared to older men, older women are up to twice as likely to experience sleep disturbances and are at a higher risk of cognitive decline and Alzheimer's disease and related dementias (ADRD). These sex differences may be attributed in part to fluctuations in levels of female sex hormones (i.e., estrogen and progesterone) that occur across the adult female lifespan. Though women tend to experience the most significant sleep and memory problems during the peri-menopausal period, changes in memory and sleep have also been observed across the menstrual cycle and during pregnancy. Here, we review current knowledge on the interrelationships among female sex hormones, sleep, and memory across the female lifespan, propose possible mediating and moderating mechanisms linking these variables and describe implications for ADRD risk in later life.
Collapse
Affiliation(s)
- Yasmin A. Harrington
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Jeanine M. Parisi
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Daisy Duan
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Darlynn M. Rojo-Wissar
- The Initiative on Stress, Trauma, and Resilience (STAR), Department of Psychiatry and Human Behavior, Center for Behavioral and Preventive Medicine, The Miriam Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Calliope Holingue
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Center for Autism and Related Disorders, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Adam P. Spira
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Johns Hopkins Center on Aging and Health, Baltimore, MD, United States
| |
Collapse
|
48
|
Li LY, Wang YY, Gao JW, Chen J, Kang M, Ying P, Liao X, Wang Y, Zou J, Su T, Wei H, Shao Y. The Predictive Potential of Altered Voxel-Based Morphometry in Severely Obese Patients With Meibomian Gland Dysfunction. Front Neurosci 2022; 16:939268. [PMID: 35873814 PMCID: PMC9302233 DOI: 10.3389/fnins.2022.939268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/27/2022] [Indexed: 12/04/2022] Open
Abstract
Objective To investigate voxel-based morphometry (VBM) by using magnetic resonance imaging (MRI) in meibomian gland dysfunction patients with severe obesity (PATs) and to explore the application of VBM in the early diagnosis, prevention of cognitive impairment and targeted treatment of this disease. Methods Sixteen PATs and 12 healthy controls (HCs) were enrolled and underwent MRI. Whole-head images were analyzed using VBM and data were compared between groups using an independent samples t-test. Receiver operating characteristic (ROC) curves were utilized to assess the diagnostic value of this approach. Mini-mental state examination (MMSE) scores were used to assess cognitive impairment and were analyzed using an independent samples t-test. Results Compared with HCs, the VBM values in PATs were reduced in the left cerebellum and right thalamus but increased in the right brainstem, right precuneus and right paracentral lobule. The results of ROC curve analysis indicated that VBM may be useful in meibomian gland disease diagnosis. Comparison of MMSE scores between groups showed mild cognitive impairment in PATs. Conclusion PATs showed altered VBM values in some brain areas. These findings may provide information about the pathophysiology of meibomian gland dysfunction and may help to explain the underlying mechanisms of clinical manifestations in PATs, such as cognitive impairment. Abnormal VBM values in these brain areas may serve as predictive factors for development of meibomian gland disease in severely obese people and as indicators for individualized treatment.
Collapse
Affiliation(s)
- Le-Yan Li
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medicine, Queen Mary School, Nanchang University, Nanchang, China
| | - Yuan-Yuan Wang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun-Wei Gao
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun Chen
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Min Kang
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ping Ying
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xulin Liao
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yixin Wang
- School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Jie Zou
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ting Su
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Hong Wei
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi Shao
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Yi Shao,
| |
Collapse
|
49
|
Brito V, Montalban E, Sancho-Balsells A, Pupak A, Flotta F, Masana M, Ginés S, Alberch J, Martin C, Girault JA, Giralt A. Hippocampal Egr1-Dependent Neuronal Ensembles Negatively Regulate Motor Learning. J Neurosci 2022; 42:5346-5360. [PMID: 35610044 PMCID: PMC9270920 DOI: 10.1523/jneurosci.2258-21.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/09/2022] [Accepted: 05/17/2022] [Indexed: 01/09/2023] Open
Abstract
Motor skills learning is classically associated with brain regions including cerebral and cerebellar cortices and basal ganglia nuclei. Less is known about the role of the hippocampus in the acquisition and storage of motor skills. Here, we show that mice receiving a long-term training in the accelerating rotarod display marked hippocampal transcriptional changes and reduced pyramidal neurons activity in the CA1 region when compared with naive mice. Then, we use mice in which neural ensembles are permanently labeled in an Egr1 activity-dependent fashion. Using these mice, we identify a subpopulation of Egr1-expressing pyramidal neurons in CA1 activated in short-term (STT) and long-term (LTT) trained mice in the rotarod task. When Egr1 is downregulated in the CA1 or these neuronal ensembles are depleted, motor learning is improved whereas their chemogenetic stimulation impairs motor learning performance. Thus, Egr1 organizes specific CA1 neuronal ensembles during the accelerating rotarod task that limit motor learning. These evidences highlight the role of the hippocampus in the control of this type of learning and we provide a possible underlying mechanism.SIGNIFICANCE STATEMENT It is a major topic in neurosciences the deciphering of the specific circuits underlying memory systems during the encoding of new information. However, the potential role of the hippocampus in the control of motor learning and the underlying mechanisms has been poorly addressed. In the present work we show how the hippocampus responds to motor learning and how the Egr1 molecule is one of the major responsible for such phenomenon controlling the rate of motor coordination performances.
Collapse
Affiliation(s)
- Verónica Brito
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain, 28029 Madrid
| | - Enrica Montalban
- Biologie Fonctionnelle et Adaptative, Unité Mixte de Recherche 8251, Centre National de la Recherche Scientifique, Université de Paris, Paris F-75014, France
| | - Anna Sancho-Balsells
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain, 28029 Madrid
| | - Anika Pupak
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain, 28029 Madrid
| | - Francesca Flotta
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain, 28029 Madrid
| | - Mercè Masana
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain, 28029 Madrid
| | - Silvia Ginés
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain, 28029 Madrid
| | - Jordi Alberch
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain, 28029 Madrid
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona 08036, Spain
| | - Claire Martin
- Biologie Fonctionnelle et Adaptative, Unité Mixte de Recherche 8251, Centre National de la Recherche Scientifique, Université de Paris, Paris F-75014, France
| | - Jean-Antoine Girault
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche -S 1270, Paris 75005, France
- Science and Engineering Faculty, Sorbonne Université, Paris 75005, France
- Institut du Fer a Moulin, Paris 75005, France
| | - Albert Giralt
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain, 28029 Madrid
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona 08036, Spain
| |
Collapse
|
50
|
Stimulus presentation can enhance spiking irregularity across subcortical and cortical regions. PLoS Comput Biol 2022; 18:e1010256. [PMID: 35789328 PMCID: PMC9286274 DOI: 10.1371/journal.pcbi.1010256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 07/15/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022] Open
Abstract
Stimulus presentation is believed to quench neural response variability as measured by fano-factor (FF). However, the relative contributions of within-trial spike irregularity and trial-to-trial rate variability to FF fluctuations have remained elusive. Here, we introduce a principled approach for accurate estimation of spiking irregularity and rate variability in time for doubly stochastic point processes. Consistent with previous evidence, analysis showed stimulus-induced reduction in rate variability across multiple cortical and subcortical areas. However, unlike what was previously thought, spiking irregularity, was not constant in time but could be enhanced due to factors such as bursting abating the quench in the post-stimulus FF. Simulations confirmed plausibility of a time varying spiking irregularity arising from within and between pool correlations of excitatory and inhibitory neural inputs. By accurate parsing of neural variability, our approach reveals previously unnoticed changes in neural response variability and constrains candidate mechanisms that give rise to observed rate variability and spiking irregularity within brain regions. Mounting evidence suggest neural response variability to be important for understanding and constraining the underlying neural mechanisms in a given brain area. Here, by analyzing responses across multiple brain areas and by using a principled method for parsing variability components into rate variability and spiking irregularity, we show that unlike what was previously thought, event-related quench of variability is not a brain-wide phenomenon and that point process variability and nonrenewal bursting can enhance post-stimulus spiking irregularity across certain cortical and subcortical regions. We propose possible presynaptic mechanisms that may underlie the observed heterogeneities in spiking variability across the brain.
Collapse
|