1
|
Bhargava S, Deshmukh R, Dewangan HK. Recent Advancement in Drug Development for Treating Malaria using Herbal Medicine and Nanotechnological Approach. Curr Pharm Des 2025; 31:203-218. [PMID: 39279710 DOI: 10.2174/0113816128321468240828103439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 09/18/2024]
Abstract
More than two hundred million people around the world are infected with malaria, a blood-borne disease that poses a significant risk to human life. Single medications, such as lumefantrine, primaquine, and chloroquine, as well as combinations of these medications with artemisinin or its derivatives, are currently being used as therapies. In addition, due to rising antimalarial drug resistance, other therapeutic options are needed immediately. Furthermore, due to anti-malarial medication failures, a new drug is required. Medication discovery and development are costly and time-consuming. Many malaria treatments have been developed however, most treatments have low water solubility and bioavailability. They may also cause drugresistant parasites, which would increase malaria cases and fatalities. Nanotechnology may offer a safer, more effective malaria therapy and control option. Nanoparticles' high loading capacity, concentrated drug delivery, biocompatibility, and low toxicity make them an attractive alternative to traditional therapy. Nanotechnologybased anti-malarial chemotherapeutic medications outperform conventional therapies in therapeutic benefits, safety, and cost. This improves patient treatment compliance. The limitations of malaria treatments and the importance of nanotechnological approaches to the treatment of malaria were also topics that were covered in this review. The most recent advancements in nanomaterials and the advantages they offer in terms of medication delivery are discussed in this article. The prospective therapy for malaria is also discussed. Additionally, the limitations of malaria therapies and the importance of nanotechnology-based approaches to the treatment of malaria were explored.
Collapse
Affiliation(s)
- Sarvesh Bhargava
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P., India
| | - Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P., India
| | - Hitesh Kumar Dewangan
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| |
Collapse
|
2
|
Munjal A, Rex DAB, Garg P, Prasad TSK, Mishra SK, Malhotra Y, Yadav D, John J, P P, Rawal K, Singh S. Mass Spectrometric and Artificial Intelligence-Based Identification of the Secretome of Plasmodium falciparum Merozoites to Provide Novel Candidates for Vaccine Development Pipeline. Proteomics Clin Appl 2024; 18:e202300115. [PMID: 39082488 DOI: 10.1002/prca.202300115] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/24/2024] [Accepted: 07/16/2024] [Indexed: 11/15/2024]
Abstract
PURPOSE Merozoites are the only extracellular form of blood stage parasites, making it a worthwhile target. Multiple invasins that are stored in the merozoite apical organelles, are secreted just prior to invasion, and mediates its interaction with RBC. A comprehensive identification of all these secreted invasins is lacking and this study addresses that gap. EXPERIMENTAL DESIGN Pf3D7 merozoites were enriched and triggered to discharge apical organelle contents by exposure to ionic conditions mimicking that of blood plasma. The secreted proteins were separated from cellular contents and both the fractions were subjected to proteomic analysis. Also, the identified secreted proteins were subjected to GO, PPI network analysis, and AI-based in silico approach to understand their vaccine candidacy. RESULTS A total of 63 proteins were identified in the secretory fraction with membrane and apical organellar localization. This includes various MSPs, micronemal EBAs and rhoptry bulb proteins, which play a crucial role in initial and late merozoite attachment, and majority of them qualified as vaccine candidates. CONCLUSION AND CLINICAL RELEVANCE We, for the first time, report the secretory repertoire of merozoite and its status for vaccine candidacy. This information can be utilized to develop better invasion blocking multisubunit vaccines, comprising of immunological epitopes from several secreted invasins.
Collapse
Affiliation(s)
- Akshay Munjal
- Special Centre of Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Devasahayam Arokia Balaya Rex
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
- Department of Laboratory Medicine and Pathology, Rochester, Minnesota, USA
| | - Prachi Garg
- Special Centre of Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | | | - Sai Kumar Mishra
- Center for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Noida, Uttar Pradesh, India
| | - Yuktika Malhotra
- Center for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Noida, Uttar Pradesh, India
| | - Deepika Yadav
- Center for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Noida, Uttar Pradesh, India
| | - Jerry John
- Center for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Noida, Uttar Pradesh, India
| | - Preeti P
- Center for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Noida, Uttar Pradesh, India
| | - Kamal Rawal
- Center for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Noida, Uttar Pradesh, India
| | - Shailja Singh
- Special Centre of Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
3
|
Neog S, Vinjamuri SR, Vijayan K, Kumar S, Trivedi V. NDV targets the invasion pathway in malaria parasite through cell surface sialic acid interaction. FASEB J 2024; 38:e23856. [PMID: 39092913 DOI: 10.1096/fj.202400004rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/01/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Abstract
Merozoites utilize sialic acids on the red blood cell (RBC) cell surface to rapidly adhere to and invade the RBCs. Newcastle disease virus (NDV) displays a strong affinity toward membrane-bound sialic acids. Incubation of NDV with the malaria parasites dose-dependently reduces its cellular viability. The antiplasmodial activity of NDV is specific, as incubation with Japanese encephalitis virus, duck enteritis virus, infectious bronchitis virus, and influenza virus did not affect the parasite propagation. Interestingly, NDV is reducing more than 80% invasion when RBCs are pretreated with the virus. Removal of the RBC surface proteins or the NDV coat proteins results in disruption of the virus binding to RBC. It suggests the involvement of specific protein: ligand interaction in virus binding. We established that the virus engages with the parasitized RBCs (PRBCs) through its hemagglutinin neuraminidase (HN) protein by recognizing sialic acid-containing glycoproteins on the cell surface. Blocking of the HN protein with free sialic acid or anti-HN antibodies abolished the virus binding as well as its ability to reduce parasite growth. Interestingly, the purified HN from the virus alone could inhibit the parasite's growth in a dose-dependent manner. NDV binds strongly to knobless murine parasite strain Plasmodium yoelii and restricted the parasite growth in mice. Furthermore, the virus was found to preferentially target the PRBCs compared to normal erythrocytes. Immunolocalization studies reveal that NDV is localized on the plasma membrane as well as weakly inside the PRBC. NDV causes neither any infection nor aggregation of the human RBCs. Our findings suggest that NDV is a potential candidate for developing targeted drug delivery platforms for the Plasmodium-infected RBCs.
Collapse
Affiliation(s)
- Siddharth Neog
- Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, India
| | - Sandeep Reddy Vinjamuri
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, India
| | - Kamalakannan Vijayan
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, India
| | - Sachin Kumar
- Viral Immunology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, India
| | - Vishal Trivedi
- Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, India
| |
Collapse
|
4
|
Subudhi AK, Green JL, Satyam R, Salunke RP, Lenz T, Shuaib M, Isaioglou I, Abel S, Gupta M, Esau L, Mourier T, Nugmanova R, Mfarrej S, Shivapurkar R, Stead Z, Rached FB, Ostwal Y, Sougrat R, Dada A, Kadamany AF, Fischle W, Merzaban J, Knuepfer E, Ferguson DJP, Gupta I, Le Roch KG, Holder AA, Pain A. DNA-binding protein PfAP2-P regulates parasite pathogenesis during malaria parasite blood stages. Nat Microbiol 2023; 8:2154-2169. [PMID: 37884813 PMCID: PMC10627835 DOI: 10.1038/s41564-023-01497-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/11/2023] [Indexed: 10/28/2023]
Abstract
Malaria-associated pathogenesis such as parasite invasion, egress, host cell remodelling and antigenic variation requires concerted action by many proteins, but the molecular regulation is poorly understood. Here we have characterized an essential Plasmodium-specific Apicomplexan AP2 transcription factor in Plasmodium falciparum (PfAP2-P; pathogenesis) during the blood-stage development with two peaks of expression. An inducible knockout of gene function showed that PfAP2-P is essential for trophozoite development, and critical for var gene regulation, merozoite development and parasite egress. Chromatin immunoprecipitation sequencing data collected at timepoints matching the two peaks of pfap2-p expression demonstrate PfAP2-P binding to promoters of genes controlling trophozoite development, host cell remodelling, antigenic variation and pathogenicity. Single-cell RNA sequencing and fluorescence-activated cell sorting revealed de-repression of most var genes in Δpfap2-p parasites. Δpfap2-p parasites also overexpress early gametocyte marker genes, indicating a regulatory role in sexual stage conversion. We conclude that PfAP2-P is an essential upstream transcriptional regulator at two distinct stages of the intra-erythrocytic development cycle.
Collapse
Affiliation(s)
- Amit Kumar Subudhi
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Judith L Green
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, UK
| | - Rohit Satyam
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Rahul P Salunke
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Todd Lenz
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA
| | - Muhammad Shuaib
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Ioannis Isaioglou
- Cell Migration and Signaling Laboratory, Bioscience Program, BESE Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Steven Abel
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA
| | - Mohit Gupta
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA
| | - Luke Esau
- KAUST Core Labs, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Tobias Mourier
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Raushan Nugmanova
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Sara Mfarrej
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Rupali Shivapurkar
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Zenaida Stead
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Fathia Ben Rached
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Yogesh Ostwal
- Laboratory of Chromatin Biochemistry, Bioscience Program, BESE Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Rachid Sougrat
- KAUST Core Labs, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Ashraf Dada
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia
- College of Medicine, Al Faisal University, Riyadh, Saudi Arabia
| | - Abdullah Fuaad Kadamany
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia
| | - Wolfgang Fischle
- Laboratory of Chromatin Biochemistry, Bioscience Program, BESE Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Jasmeen Merzaban
- Cell Migration and Signaling Laboratory, Bioscience Program, BESE Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Ellen Knuepfer
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, UK
- Molecular and Cellular Parasitology Laboratory, Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, UK
| | - David J P Ferguson
- Nuffield Department of Clinical Laboratory Science, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Ishaan Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
- School of Artificial Intelligence, Indian Institute of Technology Delhi, New Delhi, India
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA
| | - Anthony A Holder
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, UK.
| | - Arnab Pain
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
5
|
Subudhi AK, Green JL, Satyam R, Lenz T, Salunke RP, Shuaib M, Isaioglou I, Abel S, Gupta M, Esau L, Mourier T, Nugmanova R, Mfarrej S, Sivapurkar R, Stead Z, Rached FB, Otswal Y, Sougrat R, Dada A, Kadamany AF, Fischle W, Merzaban J, Knuepfer E, Ferguson DJP, Gupta I, Le Roch KG, Holder AA, Pain A. PfAP2-MRP DNA-binding protein is a master regulator of parasite pathogenesis during malaria parasite blood stages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541898. [PMID: 37293082 PMCID: PMC10245809 DOI: 10.1101/2023.05.23.541898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Malaria pathogenicity results from the parasite's ability to invade, multiply within and then egress from the host red blood cell (RBC). Infected RBCs are remodeled, expressing antigenic variant proteins (such as PfEMP1, coded by the var gene family) for immune evasion and survival. These processes require the concerted actions of many proteins, but the molecular regulation is poorly understood. We have characterized an essential Plasmodium specific Apicomplexan AP2 (ApiAP2) transcription factor in Plasmodium falciparum (PfAP2-MRP; Master Regulator of Pathogenesis) during the intraerythrocytic developmental cycle (IDC). An inducible gene knockout approach showed that PfAP2-MRP is essential for development during the trophozoite stage, and critical for var gene regulation, merozoite development and parasite egress. ChIP-seq experiments performed at 16 hour post invasion (h.p.i.) and 40 h.p.i. matching the two peaks of PfAP2-MRP expression, demonstrate binding of PfAP2-MRP to the promoters of genes controlling trophozoite development and host cell remodeling at 16 h.p.i. and antigenic variation and pathogenicity at 40 h.p.i. Using single-cell RNA-seq and fluorescence-activated cell sorting, we show de-repression of most var genes in Δpfap2-mrp parasites that express multiple PfEMP1 proteins on the surface of infected RBCs. In addition, the Δpfap2-mrp parasites overexpress several early gametocyte marker genes at both 16 and 40 h.p.i., indicating a regulatory role in the sexual stage conversion. Using the Chromosomes Conformation Capture experiment (Hi-C), we demonstrate that deletion of PfAP2-MRP results in significant reduction of both intra-chromosomal and inter-chromosomal interactions in heterochromatin clusters. We conclude that PfAP2-MRP is a vital upstream transcriptional regulator controlling essential processes in two distinct developmental stages during the IDC that include parasite growth, chromatin structure and var gene expression.
Collapse
Affiliation(s)
- Amit Kumar Subudhi
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Judith L Green
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Rohit Satyam
- Department of Computer Science, Jamia Millia Islamia, Jamia Nagar, Okhla, New Delhi, Delhi 110025, India
| | - Todd Lenz
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Rahul P Salunke
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Muhammad Shuaib
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Ioannis Isaioglou
- Cell Migration and Signaling Laboratory, Bioscience Program, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Steven Abel
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Mohit Gupta
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Luke Esau
- KAUST Core Labs, KAUST, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Tobias Mourier
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Raushan Nugmanova
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Sara Mfarrej
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Rupali Sivapurkar
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Zenaida Stead
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Fathia Ben Rached
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Yogesh Otswal
- Laboratory of Chromatin Biochemistry, Bioscience Program, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Rachid Sougrat
- KAUST Core Labs, KAUST, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Ashraf Dada
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia
| | - Abdullah Fuaad Kadamany
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia
| | - Wolfgang Fischle
- Laboratory of Chromatin Biochemistry, Bioscience Program, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Jasmeen Merzaban
- Cell Migration and Signaling Laboratory, Bioscience Program, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Ellen Knuepfer
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - David J P Ferguson
- Nuffield Department of Clinical Laboratory Science, University of Oxford, John Radcliffe Hospital, Oxford OX1 2JD, United Kingdom
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Ishaan Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Anthony A Holder
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Arnab Pain
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- International Institute for Zoonosis Control; Hokkaido University, Sapporo, Japan
| |
Collapse
|
6
|
Elsworth B, Keroack C, Rezvani Y, Paul A, Barazorda K, Tennessen J, Sack S, Moreira C, Gubbels MJ, Meyers M, Zarringhalam K, Duraisingh M. Babesia divergens egress from host cells is orchestrated by essential and druggable kinases and proteases. RESEARCH SQUARE 2023:rs.3.rs-2553721. [PMID: 36909484 PMCID: PMC10002801 DOI: 10.21203/rs.3.rs-2553721/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Apicomplexan egress from host cells is fundamental to the spread of infection and is poorly characterized in Babesia spp., parasites of veterinary importance and emerging zoonoses. Through the use of video microscopy, transcriptomics and chemical genetics, we have implicated signaling, proteases and gliding motility as key drivers of egress by Babesia divergens. We developed reverse genetics to perform a knockdown screen of putative mediators of egress, identifying kinases and proteases involved in distinct steps of egress (ASP3, PKG and CDPK4) and invasion (ASP2, ASP3 and PKG). Inhibition of egress leads to continued intracellular replication, indicating exit from the replication cycle is uncoupled from egress. Chemical genetics validated PKG, ASP2 and ASP3 as druggable targets in Babesia spp. All taken together, egress in B. divergens more closely resembles T. gondii than the more evolutionarily-related Plasmodium spp. We have established a molecular framework for biological and translational studies of B. divergens egress.
Collapse
|
7
|
Zhang X, Wei H, Zhang Y, Zhao Y, Wang L, Hu Y, Nguitragool W, Sattabongkot J, Adams J, Cui L, Cao Y, Wang Q. Genetic diversity of Plasmodium vivax reticulocyte binding protein 2b in global parasite populations. Parasit Vectors 2022; 15:205. [PMID: 35698238 PMCID: PMC9191549 DOI: 10.1186/s13071-022-05296-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 04/23/2022] [Indexed: 11/19/2022] Open
Abstract
Background Plasmodium vivax reticulocyte binding protein 2b (PvRBP2b) plays a critical role in parasite invasion of reticulocytes by binding the transferrin receptor 1. PvRBP2b is a vaccine candidate based on the negative correlation between antibody titers against PvRBP2b recombinant proteins and parasitemia and risk of vivax malaria. The aim of this study was to analyze the genetic diversity of the PvRBP2b gene in the global P. vivax populations. Methods Near full-length PvRBP2b nucleotide sequences (190–8349 bp) were obtained from 88 P. vivax isolates collected from the China–Myanmar border (n = 44) and Thailand (n = 44). An additional 224 PvRBP2b sequences were retrieved from genome sequences from parasite populations worldwide. The genetic diversity, neutral selection, haplotype distribution and genetic differentiation of PvRBP2b were examined. Results The genetic diversity of PvRBP2b was distributed unevenly, with peak diversity found in the reticulocyte binding region in the N-terminus. Neutrality analysis suggested that this region is subjected to balancing selection or population bottlenecks. Several amino acid variants were found in all or nearly all P. vivax endemic regions. However, the critical residues responsible for reticulocyte binding were highly conserved. There was substantial population differentiation according to the geographical separation. The distribution of haplotypes in the reticulocyte binding region varied among regions; even the two major haplotypes Hap_6 and Hap_8 were found in only five populations. Conclusions Our data show considerable genetic variations of PvRBPb in global parasite populations. The geographic divergence may pose a challenge to PvRBP2b-based vaccine development. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05296-6.
Collapse
Affiliation(s)
- Xuexing Zhang
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning, China
| | - Haichao Wei
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning, China.,Department of Blood Transfusion Medicine, General Hospital of Northern Theater Command, Shenyang, 110015, Liaoning, China
| | - Yangminghui Zhang
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning, China
| | - Yan Zhao
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning, China
| | - Lin Wang
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning, China.,Department of Blood Transfusion, Yantaishan Hospital, Yantai, 264000, Shandong, China
| | - Yubing Hu
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning, China.,Central Laboratory, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Wang Nguitragool
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - John Adams
- College of Public Health, Global Health Infectious Disease Research (GHIDR) Program, Tampa, FL, USA
| | - Liwang Cui
- College of Public Health, Global Health Infectious Disease Research (GHIDR) Program, Tampa, FL, USA.,Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, FL, 33612, USA
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning, China.
| | - Qinghui Wang
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
8
|
Molina-Franky J, Patarroyo ME, Kalkum M, Patarroyo MA. The Cellular and Molecular Interaction Between Erythrocytes and Plasmodium falciparum Merozoites. Front Cell Infect Microbiol 2022; 12:816574. [PMID: 35433504 PMCID: PMC9008539 DOI: 10.3389/fcimb.2022.816574] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum is the most lethal human malaria parasite, partly due to its genetic variability and ability to use multiple invasion routes via its binding to host cell surface receptors. The parasite extensively modifies infected red blood cell architecture to promote its survival which leads to increased cell membrane rigidity, adhesiveness and permeability. Merozoites are initially released from infected hepatocytes and efficiently enter red blood cells in a well-orchestrated process that involves specific interactions between parasite ligands and erythrocyte receptors; symptoms of the disease occur during the life-cycle’s blood stage due to capillary blockage and massive erythrocyte lysis. Several studies have focused on elucidating molecular merozoite/erythrocyte interactions and host cell modifications; however, further in-depth analysis is required for understanding the parasite’s biology and thus provide the fundamental tools for developing prophylactic or therapeutic alternatives to mitigate or eliminate Plasmodium falciparum-related malaria. This review focuses on the cellular and molecular events during Plasmodium falciparum merozoite invasion of red blood cells and the alterations that occur in an erythrocyte once it has become infected.
Collapse
Affiliation(s)
- Jessica Molina-Franky
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, United States
- PhD Programme in Biotechnology, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Manuel Elkin Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Health Sciences Division, Universidad Santo Tomás, Bogotá, Colombia
- Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Markus Kalkum
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, United States
- *Correspondence: Markus Kalkum, ; Manuel Alfonso Patarroyo,
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Health Sciences Division, Universidad Santo Tomás, Bogotá, Colombia
- Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
- *Correspondence: Markus Kalkum, ; Manuel Alfonso Patarroyo,
| |
Collapse
|
9
|
Bahl V, Chaddha K, Mian SY, Holder AA, Knuepfer E, Gaur D. Genetic disruption of Plasmodium falciparum Merozoite surface antigen 180 (PfMSA180) suggests an essential role during parasite egress from erythrocytes. Sci Rep 2021; 11:19183. [PMID: 34584166 PMCID: PMC8479079 DOI: 10.1038/s41598-021-98707-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
Plasmodium falciparum, the parasite responsible for severe malaria, develops within erythrocytes. Merozoite invasion and subsequent egress of intraerythrocytic parasites are essential for this erythrocytic cycle, parasite survival and pathogenesis. In the present study, we report the essential role of a novel protein, P. falciparum Merozoite Surface Antigen 180 (PfMSA180), which is conserved across Plasmodium species and recently shown to be associated with the P. vivax merozoite surface. Here, we studied MSA180 expression, processing, localization and function in P. falciparum blood stages. Initially we examined its role in invasion, a process mediated by multiple ligand-receptor interactions and an attractive step for targeting with inhibitory antibodies through the development of a malaria vaccine. Using antibodies specific for different regions of PfMSA180, together with a parasite containing a conditional pfmsa180-gene knockout generated using CRISPR/Cas9 and DiCre recombinase technology, we demonstrate that this protein is unlikely to play a crucial role in erythrocyte invasion. However, deletion of the pfmsa180 gene resulted in a severe egress defect, preventing schizont rupture and blocking the erythrocytic cycle. Our study highlights an essential role of PfMSA180 in parasite egress, which could be targeted through the development of a novel malaria intervention strategy.
Collapse
Affiliation(s)
- Vanndita Bahl
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Kritika Chaddha
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Syed Yusuf Mian
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Anthony A Holder
- Malaria Parasitology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Ellen Knuepfer
- Malaria Parasitology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK. .,The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, Hertfordshire, UK.
| | - Deepak Gaur
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
10
|
Dos Santos BM, Pereira PH, Garcia CR. Molecular basis of synchronous replication of malaria parasites in the blood stage. Curr Opin Microbiol 2021; 63:210-215. [PMID: 34428626 DOI: 10.1016/j.mib.2021.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
The search for host factors that leads to malaria parasite synchronization has been the focus of several laboratories. The host hormone melatonin synchronizes Plasmodium falciparum in culture by increasing the number of mature parasite stages through a PLC-IP3 activation. Melatonin signaling is linked to crosstalk between Ca2+-cAMP that results in PKA activation. Two other kinases, PfPK7 and PfeIK1, and the nuclear protein PfMORC that lacks melatonin sensitivity in the inducible knock-down parasites are also identified as part of the hormone-signal transduction pathways. Melatonin also modulates P. falciparum mitochondrial fission genes FIS1, DYN1, and DYN2 in a stage-specific manner. How these multiple molecular mechanisms are orchestrated to lead to parasite synchronization is a fascinating and opened biological question.
Collapse
Affiliation(s)
- Benedito M Dos Santos
- Laboratory of Functional Genomics and Antimalarial Discovery, Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, 05508-000, São Paulo, Brazil
| | - Pedro Hs Pereira
- Laboratory of Functional Genomics and Antimalarial Discovery, Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, 05508-000, São Paulo, Brazil
| | - Célia Rs Garcia
- Laboratory of Functional Genomics and Antimalarial Discovery, Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, 05508-000, São Paulo, Brazil.
| |
Collapse
|
11
|
Djokic V, Rocha SC, Parveen N. Lessons Learned for Pathogenesis, Immunology, and Disease of Erythrocytic Parasites: Plasmodium and Babesia. Front Cell Infect Microbiol 2021; 11:685239. [PMID: 34414129 PMCID: PMC8369351 DOI: 10.3389/fcimb.2021.685239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/15/2021] [Indexed: 11/24/2022] Open
Abstract
Malaria caused by Plasmodium species and transmitted by Anopheles mosquitoes affects large human populations, while Ixodes ticks transmit Babesia species and cause babesiosis. Babesiosis in animals has been known as an economic drain, and human disease has also emerged as a serious healthcare problem in the last 20–30 years. There is limited literature available regarding pathogenesis, immunity, and disease caused by Babesia spp. with their genomes sequenced only in the last decade. Therefore, using previous studies on Plasmodium as the foundation, we have compared similarities and differences in the pathogenesis of Babesia and host immune responses. Sexual life cycles of these two hemoparasites in their respective vectors are quite similar. An adult Anopheles female can take blood meal several times in its life such that it can both acquire and transmit Plasmodia to hosts. Since each tick stage takes blood meal only once, transstadial horizontal transmission from larva to nymph or nymph to adult is essential for the release of Babesia into the host. The initiation of the asexual cycle of these parasites is different because Plasmodium sporozoites need to infect hepatocytes before egressed merozoites can infect erythrocytes, while Babesia sporozoites are known to enter the erythrocytic cycle directly. Plasmodium metabolism, as determined by its two- to threefold larger genome than different Babesia, is more complex. Plasmodium replication occurs in parasitophorous vacuole (PV) within the host cells, and a relatively large number of merozoites are released from each infected RBC after schizogony. The Babesia erythrocytic cycle lacks both PV and schizogony. Cytoadherence that allows the sequestration of Plasmodia, primarily P. falciparum in different organs facilitated by prominent adhesins, has not been documented for Babesia yet. Inflammatory immune responses contribute to the severity of malaria and babesiosis. Antibodies appear to play only a minor role in the resolution of these diseases; however, cellular and innate immunity are critical for the clearance of both pathogens. Inflammatory immune responses affect the severity of both diseases. Macrophages facilitate the resolution of both infections and also offer cross-protection against related protozoa. Although the immunosuppression of adaptive immune responses by these parasites does not seem to affect their own clearance, it significantly exacerbates diseases caused by coinfecting bacteria during coinfections.
Collapse
Affiliation(s)
- Vitomir Djokic
- Department for Bacterial Zoonozes, Laboratory for Animal Health, French Agency for Food, Environmental and Occupational Health & Safety, UPEC, University Paris-Est, Maisons-Alfort, France
| | - Sandra C Rocha
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Nikhat Parveen
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
12
|
Dhangadamajhi G, Singh S. Malaria link of hypertension: a hidden syndicate of angiotensin II, bradykinin and sphingosine 1-phosphate. Hum Cell 2021; 34:734-744. [PMID: 33683655 DOI: 10.1007/s13577-021-00513-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/22/2021] [Indexed: 01/22/2023]
Abstract
In malaria-endemic countries, the burden of hypertension is on the rise. Although malaria and hypertension seem to have no direct link, several studies in recent years support their possible link. Three bioactive molecules such as angiotensin II (Ang II), bradykinin (BK) and sphingosine 1-phosphate (S1P) are crucial in regulating blood pressure. While the increased level of Ang II and S1P are responsible for inducing hypertension, BK is arthero-protective and anti-hypertensive. Therefore, in the present review, based on available literatures we highlight the present knowledge on the production and bioavailability of these molecules, the mechanism of their regulation of hypertension, and patho-physiological role in malaria. Further, a possible link between malaria and hypertension is hypothesized through various arguments based on experimental evidence. Understanding of their mechanisms of blood pressure regulation during malaria infection may open up avenues for drug therapeutics and management of malaria in co-morbidity with hypertension.
Collapse
Affiliation(s)
- Gunanidhi Dhangadamajhi
- Department of Biotechnology, Maharaja Sriramchandra Bhanjadeo University, Takatpur, Baripada, Odisha, 75003, India.
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
13
|
Elsworth B, Duraisingh MT. A framework for signaling throughout the life cycle of Babesia species. Mol Microbiol 2020; 115:882-890. [PMID: 33274587 DOI: 10.1111/mmi.14650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 01/28/2023]
Abstract
Babesia species are tick-borne intracellular parasites that infect the red blood cells of their mammalian host, leading to severe or fatal disease. Babesia spp. infect a wide range of mammalian species and cause a significant economic burden globally, predominantly through disease in cattle. Several Babesia spp. are increasingly being recognized as zoonotic pathogens of humans. Babesia spp. have complex life cycles involving multiple stages in the tick and the mammalian host. The parasite utilizes complex signaling pathways during replication, egress, and invasion in each of these stages. They must also rapidly respond to their environment when switching between the mammalian and tick stages. This review will focus on the signaling pathways and environmental stimuli that Babesia spp. utilize in the bloodstream and for transmission to the tick, with an emphasis on the role of phosphorylation- and calcium-based signaling during egress and invasion. The expanding availability of in vitro and in vivo culture systems, genomes, transcriptomes, and transgenic systems available for a range of Babesia spp. should encourage further biological and translational studies of these ubiquitous parasites.
Collapse
Affiliation(s)
- Brendan Elsworth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
14
|
Florentin A, Cobb DW, Kudyba HM, Muralidharan V. Directing traffic: Chaperone-mediated protein transport in malaria parasites. Cell Microbiol 2020; 22:e13215. [PMID: 32388921 PMCID: PMC7282954 DOI: 10.1111/cmi.13215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 12/16/2022]
Abstract
The ability of eukaryotic parasites from the phylum Apicomplexa to cause devastating diseases is predicated upon their ability to maintain faithful and precise protein trafficking mechanisms. Their parasitic life cycle depends on the trafficking of effector proteins to the infected host cell, transport of proteins to several critical organelles required for survival, as well as transport of parasite and host proteins to the digestive organelles to generate the building blocks for parasite growth. Several recent studies have shed light on the molecular mechanisms parasites utilise to transform the infected host cells, transport proteins to essential metabolic organelles and for biogenesis of organelles required for continuation of their life cycle. Here, we review key pathways of protein transport originating and branching from the endoplasmic reticulum, focusing on the essential roles of chaperones in these processes. Further, we highlight key gaps in our knowledge that prevents us from building a holistic view of protein trafficking in these deadly human pathogens.
Collapse
Affiliation(s)
- Anat Florentin
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA.,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - David W Cobb
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA.,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Heather M Kudyba
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA.,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Vasant Muralidharan
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA.,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
15
|
Nava S, Sadiqova A, Castellanos-Gonzalez A, White AC. Cryptosporidium parvum cyclic GMP-dependent protein kinase (PKG): An essential mediator of merozoite egress. Mol Biochem Parasitol 2020; 237:111277. [PMID: 32348840 PMCID: PMC7262579 DOI: 10.1016/j.molbiopara.2020.111277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 11/26/2022]
Abstract
Cryptosporidium protein kinase G mRNA was silenced using siRNA, which led to decreased expression of the PKG protein. After silencing, merozoite egress was blocked and merozoites retained within the host epithelical cells. PKG plays an essential role in Cryptosporidium merozoite egress.
Cryptosporidiosis is an obligate intracellular pathogen causing diarrhea. Merozoite egress is essential for infection to spread between host cells. However, the mechanisms of egress have yet to be defined. We hypothesized that Cyclic GMP-Dependent Protein Kinase G (PKG) may be involved in Cryptosporidium egress. In this study, Cryptosporidium parvum PKG was silenced by using antisense RNA sequences. PKG-silencing significantly inhibited egress of merozoites from infected HCT-8 cells into the supernatant and led to retention of intracellular forms within the host cells. This data identifies PKG as a key mediator of merozoite egress, a key step in the parasite lifecycle.
Collapse
Affiliation(s)
- Samantha Nava
- Infectious Diseases Division, Department of Internal Medicine, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555-0435, USA
| | - Aygul Sadiqova
- Infectious Diseases Division, Department of Internal Medicine, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555-0435, USA
| | - Alejandro Castellanos-Gonzalez
- Infectious Diseases Division, Department of Internal Medicine, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555-0435, USA
| | - A Clinton White
- Infectious Diseases Division, Department of Internal Medicine, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555-0435, USA.
| |
Collapse
|
16
|
The parasitophorous vacuole of the blood-stage malaria parasite. Nat Rev Microbiol 2020; 18:379-391. [PMID: 31980807 DOI: 10.1038/s41579-019-0321-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2019] [Indexed: 12/31/2022]
Abstract
The pathology of malaria is caused by infection of red blood cells with unicellular Plasmodium parasites. During blood-stage development, the parasite replicates within a membrane-bound parasitophorous vacuole. A central nexus for host-parasite interactions, this unique parasite shelter functions in nutrient acquisition, subcompartmentalization and the export of virulence factors, making its functional molecules attractive targets for the development of novel intervention strategies to combat the devastating impact of malaria. In this Review, we explore the origin, development, molecular composition and functions of the parasitophorous vacuole of Plasmodium blood stages. We also discuss the relevance of the malaria parasite's intravacuolar lifestyle for successful erythrocyte infection and provide perspectives for future research directions in parasitophorous vacuole biology.
Collapse
|
17
|
Guo J, Li M, Sun Y, Yu L, He P, Nie Z, Zhan X, Zhao Y, Luo X, Wang S, Aoyang S, Liu Q, Huang C, He L, Zhao J. Characterization of a novel secretory spherical body protein in Babesia orientalis and Babesia orientalis-infected erythrocytes. Parasit Vectors 2018; 11:433. [PMID: 30045776 PMCID: PMC6060518 DOI: 10.1186/s13071-018-3018-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/16/2018] [Indexed: 11/26/2022] Open
Abstract
Background The spherical body, a membrane bound organelle localized in the apical organelle complex, is unique to Babesia and Theileria spp. The spherical body proteins (SBPs) secreted by spherical bodies include SBP1, SBP2, SBP3 and SBP4. Up to now, only SBP3 has been characterized in Babesia orientalis. Methods The BoSBP4 gene was amplified from cDNA and gDNA and cloned into the pGEX-6P-1 vector by homologous recombination, sequenced and analyzed by bioinformatics tools. The amino acid (aa) sequence of BoSBP4 was compared with that of Babesia bovis and Babesia bigemina as well as SBP3 of B. orientalis. The immunoreactivity was evaluated by incubating recombinant BoSBP4 (rBoSBP4) with the serum of B. orientalis-infected water buffalo. The native form of BoSBP4 was identified by incubating lysate of B. orientalis-infected water buffalo erythrocytes with the anti-rBoSBP4 mouse serum. The cellular localization of BoSBP4 was determined by indirect immunofluorescence assay. Results The full length of the BoSBP4 gene was estimated to be 945 bp without introns, encoding a 314 aa polypeptide with a predicted molecular weight of 37 kDa. The truncated recombinant protein was expressed from 70 to 945 bp as a GST fusion protein with a practical molecular weight of 70 kDa. BoSBP4 shared a 40% and 30% identity with B. bovis and B. bigemina, respectively. Furthermore, it was 31% identical to SBP3 of B. orientalis. BoSBP4 was identified in the lysate of B. orientalis-infected water buffalo erythrocytes with a molecular weight of 37 kDa, corresponding to the expected molecular mass of BoSBP4. The result of rBoSBP4 with positive serum revealed that BoSBP4 can elicit an immune response to B. orientalis-infected water buffalo. The cellular localization of BoSBP4 was detected to be adjacent to the merozoite nucleus in the intracellular phase, followed by the diffusion of the fluorescence of BoSBP4 into the cytoplasm of B. orientalis-infected erythrocytes as puncta-like specks and a gradual increase of the fluorescence. Conclusions In this study, SBP4 in B. orientalis was characterized for the first time. It may play a key role in interaction with the host cell by being secreted into the cytoplasm of the B. orientalis-infected erythrocytes to facilitate parasite growth and reproduction.
Collapse
Affiliation(s)
- Jiaying Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Muxiao Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Yali Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Long Yu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Pei He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Zheng Nie
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Xueyan Zhan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Yangnan Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Xiaoying Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Sen Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Siqi Aoyang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Qin Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Cuiqin Huang
- College of Life Science, Longyan University & Fujian, Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, 364012, Fujian, China
| | - Lan He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China.
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| |
Collapse
|
18
|
Ayón-Núñez DA, Fragoso G, Espitia C, García-Varela M, Soberón X, Rosas G, Laclette JP, Bobes RJ. Identification and characterization of Taenia solium enolase as a plasminogen-binding protein. Acta Trop 2018; 182:69-79. [PMID: 29466706 DOI: 10.1016/j.actatropica.2018.02.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 12/19/2022]
Abstract
The larval stage of Taenia solium (cysticerci) is the causal agent of human and swine cysticercosis. When ingested by the host, T. solium eggs are activated and hatch in the intestine, releasing oncospheres that migrate to various tissues and evolve into cysticerci. Plasminogen (Plg) receptor proteins have been reported to play a role in migration processes for several pathogens. This work is aimed to identify Plg-binding proteins in T. solium cysticerci and determine whether T. solium recombinant enolase (rTsEnoA) is capable of specifically binding and activating human Plg. To identify Plg-binding proteins, a 2D-SDS-PAGE ligand blotting was performed, and recognized spots were identified by MS/MS. Seven proteins from T. solium cysticerci were found capable of binding Plg: fascicilin-1, fasciclin-2, enolase, MAPK, annexin, actin, and cytosolic malate dehydrogenase. To determine whether rTsEnoA binds human Plg, a ligand blotting was performed and the results were confirmed by ELISA both in the presence and absence of εACA, a competitive Plg inhibitor. Finally, rTsEnoA-bound Plg was activated to plasmin in the presence of tPA. To better understand the evolution of enolase isoforms in T. solium, a phylogenetic inference analysis including 75 enolase amino acid sequences was conducted. The origin of flatworm enolase isoforms, except for Eno4, is independent of their vertebrate counterparts. Therefore, herein we propose to designate tapeworm protein isoforms as A, B, C, and 4. In conclusion, recombinant enolase showed a strong plasminogen binding and activating activity in vitro. T. solium enolase could play a role in parasite invasion along with other plasminogen-binding proteins.
Collapse
|
19
|
Lim C, Dankwa S, Paul AS, Duraisingh MT. Host Cell Tropism and Adaptation of Blood-Stage Malaria Parasites: Challenges for Malaria Elimination. Cold Spring Harb Perspect Med 2017; 7:a025494. [PMID: 28213436 PMCID: PMC5666624 DOI: 10.1101/cshperspect.a025494] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Plasmodium falciparum and Plasmodium vivax account for most of the mortality and morbidity associated with malaria in humans. Research and control efforts have focused on infections caused by P. falciparum and P. vivax, but have neglected other malaria parasite species that infect humans. Additionally, many related malaria parasite species infect nonhuman primates (NHPs), and have the potential for transmission to humans. For malaria elimination, the varied and specific challenges of all of these Plasmodium species will need to be considered. Recent advances in molecular genetics and genomics have increased our knowledge of the prevalence and existing diversity of the human and NHP Plasmodium species. We are beginning to identify the extent of the reservoirs of each parasite species in humans and NHPs, revealing their origins as well as potential for adaptation in humans. Here, we focus on the red blood cell stage of human infection and the host cell tropism of each human Plasmodium species. Determinants of tropism are unique among malaria parasite species, presenting a complex challenge for malaria elimination.
Collapse
Affiliation(s)
- Caeul Lim
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115
| | - Selasi Dankwa
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115
| | - Aditya S Paul
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115
| | | |
Collapse
|