1
|
Zawadzki R, Naumowicz M, Zalewska M, Zajkowska J, Kubas B. Evaluation of the Utility of Hybrid PET/MR Neuroimaging in Inflammatory Demyelination and Encephalitis. J Clin Med 2025; 14:2736. [PMID: 40283565 PMCID: PMC12028218 DOI: 10.3390/jcm14082736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
With the increased availability of hybrid PET/MRI in recent years, this method is increasingly used for neuroimaging in clinical practice. It combines the advantages of MRI (including high-resolution imaging of intracerebral lesions and data provided from specialised MRI sequences) with the benefits of PET, which visualises functional alterations in the brain, as well as assesses the myelin quantity changes and the severity of inflammation. The use of PET/MRI may help to eliminate the limitations of MRI indicated in imaging demyelinating inflammatory diseases (such as low specificity in imaging demyelination and a weak correlation of findings with clinical symptoms), as well as insufficient sensitivity in detecting lesions present in encephalitis. In addition to supporting the diagnosis of encephalitis, PET/MRI facilitates monitoring of the disease course and assessing the treatment efficacy of inflammatory demyelinating diseases and encephalitis, as well as evaluating the risk of multiple sclerosis relapse. Further multi-centre longitudinal studies are necessary to assess the real clinical potential of PET/MRI among patients with inflammatory demyelination or encephalitis. In addition to MS and AIE, these studies should also include other inflammatory demyelinating diseases (ADEM, NMO, NMOSD, and MOGAD) as well as encephalitis of viral and parasitic aetiology.
Collapse
Affiliation(s)
- Radosław Zawadzki
- Department of Radiology, Medical University of Białystok, M. Skłodowskiej-Curie 24A, 15-276 Białystok, Poland; (R.Z.); (M.Z.); (B.K.)
| | - Maciej Naumowicz
- Department of Radiology, Medical University of Białystok, M. Skłodowskiej-Curie 24A, 15-276 Białystok, Poland; (R.Z.); (M.Z.); (B.K.)
| | - Magdalena Zalewska
- Department of Radiology, Medical University of Białystok, M. Skłodowskiej-Curie 24A, 15-276 Białystok, Poland; (R.Z.); (M.Z.); (B.K.)
| | - Joanna Zajkowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Białystok, Żurawia 14, 15-540 Białystok, Poland;
| | - Bożena Kubas
- Department of Radiology, Medical University of Białystok, M. Skłodowskiej-Curie 24A, 15-276 Białystok, Poland; (R.Z.); (M.Z.); (B.K.)
| |
Collapse
|
2
|
Falet JPR, Nobile S, Szpindel A, Barile B, Kumar A, Durso-Finley J, Arbel T, Arnold DL. The role of AI for MRI-analysis in multiple sclerosis-A brief overview. Front Artif Intell 2025; 8:1478068. [PMID: 40265105 PMCID: PMC12011719 DOI: 10.3389/frai.2025.1478068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 03/19/2025] [Indexed: 04/24/2025] Open
Abstract
Magnetic resonance imaging (MRI) has played a crucial role in the diagnosis, monitoring and treatment optimization of multiple sclerosis (MS). It is an essential component of current diagnostic criteria for its ability to non-invasively visualize both lesional and non-lesional pathology. Nevertheless, modern day usage of MRI in the clinic is limited by lengthy protocols, error-prone procedures for identifying disease markers (e.g., lesions), and the limited predictive value of existing imaging biomarkers for key disability outcomes. Recent advances in artificial intelligence (AI) have underscored the potential for AI to not only improve, but also transform how MRI is being used in MS. In this short review, we explore the role of AI in MS applications that span the entire life-cycle of an MRI image, from data collection, to lesion segmentation, detection, and volumetry, and finally to downstream clinical and scientific tasks. We conclude with a discussion on promising future directions.
Collapse
Affiliation(s)
- Jean-Pierre R. Falet
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Mila - Quebec AI Institute, Montreal, QC, Canada
- Department of Electrical and Computer Engineering, Centre for Intelligent Machines, McGill University, Montreal, QC, Canada
| | - Steven Nobile
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Aliya Szpindel
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Berardino Barile
- Mila - Quebec AI Institute, Montreal, QC, Canada
- Department of Electrical and Computer Engineering, Centre for Intelligent Machines, McGill University, Montreal, QC, Canada
| | - Amar Kumar
- Mila - Quebec AI Institute, Montreal, QC, Canada
- Department of Electrical and Computer Engineering, Centre for Intelligent Machines, McGill University, Montreal, QC, Canada
| | - Joshua Durso-Finley
- Mila - Quebec AI Institute, Montreal, QC, Canada
- Department of Electrical and Computer Engineering, Centre for Intelligent Machines, McGill University, Montreal, QC, Canada
| | - Tal Arbel
- Mila - Quebec AI Institute, Montreal, QC, Canada
- Department of Electrical and Computer Engineering, Centre for Intelligent Machines, McGill University, Montreal, QC, Canada
| | - Douglas L. Arnold
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
3
|
Dewey BE, Remedios SW, Sanjayan M, Rjeily NB, Lee AZ, Wyche C, Duncan S, Prince JL, Calabresi PA, Fitzgerald KC, Mowry EM. Super-Resolution in Clinically Available Spinal Cord MRIs Enables Automated Atrophy Analysis. AJNR Am J Neuroradiol 2025; 46:823-831. [PMID: 39366765 PMCID: PMC11979833 DOI: 10.3174/ajnr.a8526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/03/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND AND PURPOSE Measurement of the mean upper cervical cord area (MUCCA) is an important biomarker in the study of neurodegeneration. However, dedicated high-resolution (HR) scans of the cervical spinal cord are rare in standard-of-care imaging due to timing and clinical usability. Most clinical cervical spinal cord imaging is sagittally acquired in 2D with thick slices and anisotropic voxels. As a solution, previous work describes HR T1-weighted brain imaging for measuring the upper cord area, but this is still not common in clinical care. MATERIALS AND METHODS We propose using a zero-shot super-resolution technique, synthetic multi-orientation resolution enhancement (SMORE), already validated in the brain, to enhance the resolution of 2D-acquired scans for upper cord area calculations. To incorporate super-resolution in spinal cord analysis, we validate SMORE against HR research imaging and in a real-world longitudinal data analysis. RESULTS Super-resolved (SR) images reconstructed by using SMORE showed significantly greater similarity to the ground truth than low-resolution (LR) images across all tested resolutions (P < .001 for all resolutions in peak signal-to-noise ratio [PSNR] and mean structural similarity [MSSIM]). MUCCA results from SR scans demonstrate excellent correlation with HR scans (r > 0.973 for all resolutions) compared with LR scans. Additionally, SR scans are consistent between resolutions (r > 0.969), an essential factor in longitudinal analysis. Compared with clinical outcomes such as walking speed or disease severity, MUCCA values from LR scans have significantly lower correlations than those from HR scans. SR results have no significant difference. In a longitudinal real-world data set, we show that these SR volumes can be used in conjunction with T1-weighted brain scans to show a significant rate of atrophy (-0.790, P = .020 versus -0.438, P = .301 with LR). CONCLUSIONS Super-resolution is a valuable tool for enabling large-scale studies of cord atrophy, as LR images acquired in clinical practice are common and available.
Collapse
Affiliation(s)
- Blake E Dewey
- From the Department of Neurology (B.E.D., M.S., N.B.R., A.Z.L., C.W., S.D., P.A.C., K.C.F., E.M.M.), Johns Hopkins University, Baltimore, Maryland
| | - Samuel W Remedios
- Department of Computer Science (S.W.R.), Johns Hopkins University, Baltimore, Maryland
| | - Muraleetharan Sanjayan
- From the Department of Neurology (B.E.D., M.S., N.B.R., A.Z.L., C.W., S.D., P.A.C., K.C.F., E.M.M.), Johns Hopkins University, Baltimore, Maryland
| | - Nicole Bou Rjeily
- From the Department of Neurology (B.E.D., M.S., N.B.R., A.Z.L., C.W., S.D., P.A.C., K.C.F., E.M.M.), Johns Hopkins University, Baltimore, Maryland
| | - Alexandra Zambriczki Lee
- From the Department of Neurology (B.E.D., M.S., N.B.R., A.Z.L., C.W., S.D., P.A.C., K.C.F., E.M.M.), Johns Hopkins University, Baltimore, Maryland
| | - Chelsea Wyche
- From the Department of Neurology (B.E.D., M.S., N.B.R., A.Z.L., C.W., S.D., P.A.C., K.C.F., E.M.M.), Johns Hopkins University, Baltimore, Maryland
| | - Safiya Duncan
- From the Department of Neurology (B.E.D., M.S., N.B.R., A.Z.L., C.W., S.D., P.A.C., K.C.F., E.M.M.), Johns Hopkins University, Baltimore, Maryland
| | - Jerry L Prince
- Department of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, Maryland
| | - Peter A Calabresi
- From the Department of Neurology (B.E.D., M.S., N.B.R., A.Z.L., C.W., S.D., P.A.C., K.C.F., E.M.M.), Johns Hopkins University, Baltimore, Maryland
| | - Kathryn C Fitzgerald
- From the Department of Neurology (B.E.D., M.S., N.B.R., A.Z.L., C.W., S.D., P.A.C., K.C.F., E.M.M.), Johns Hopkins University, Baltimore, Maryland
| | - Ellen M Mowry
- From the Department of Neurology (B.E.D., M.S., N.B.R., A.Z.L., C.W., S.D., P.A.C., K.C.F., E.M.M.), Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
4
|
Dehghani S, Ocakcı O, Hatipoglu PT, Özalp VC, Tevlek A. Exosomes as Biomarkers and Therapeutic Agents in Neurodegenerative Diseases: Current Insights and Future Directions. Mol Neurobiol 2025:10.1007/s12035-025-04825-5. [PMID: 40095345 DOI: 10.1007/s12035-025-04825-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/07/2025] [Indexed: 03/19/2025]
Abstract
Neurodegenerative diseases (NDs) like Alzheimer's, Parkinson's, and ALS rank among the most challenging global health issues, marked by substantial obstacles in early diagnosis and effective treatment. Current diagnostic techniques frequently demonstrate inadequate sensitivity and specificity, whilst conventional treatment strategies encounter challenges related to restricted bioavailability and insufficient blood-brain barrier (BBB) permeability. Recently, exosomes-nanoscale vesicles packed with proteins, RNAs, and lipids-have emerged as promising agents with the potential to reshape diagnostic and therapeutic approaches to these diseases. Unlike conventional drug carriers, they naturally traverse the BBB and can deliver bioactive molecules to affected neural cells. Their molecular cargo can influence cell signaling, reduce neuroinflammation, and potentially slow neurodegenerative progression. Moreover, exosomes serve as non-invasive biomarkers, enabling early and precise diagnosis while allowing real-time disease monitoring. Additionally, engineered exosomes, loaded with therapeutic molecules, enhance this capability by targeting diseased neurons and overcoming conventional treatment barriers. By offering enhanced specificity, reduced immunogenicity, and an ability to bypass physiological limitations, exosome-based strategies present a transformative advantage over existing diagnostic and therapeutic approaches. This review examines the multifaceted role of exosomes in NDDs, emphasizing their diagnostic capabilities, intrinsic therapeutic functions, and transformative potential as advanced treatment vehicles.
Collapse
Affiliation(s)
- Sam Dehghani
- Faculty of Medicine, Undergraduate Program, Atılım University, 06830, Ankara, Turkey
| | - Ozgecan Ocakcı
- Department of Medical Biology, Faculty of Medicine, AtıLıM University, 06830, Ankara, Turkey
| | - Pars Tan Hatipoglu
- Faculty of Medicine, Undergraduate Program, Atılım University, 06830, Ankara, Turkey
| | - Veli Cengiz Özalp
- Department of Medical Biology, Faculty of Medicine, AtıLıM University, 06830, Ankara, Turkey
| | - Atakan Tevlek
- Department of Medical Biology, Faculty of Medicine, AtıLıM University, 06830, Ankara, Turkey.
| |
Collapse
|
5
|
Essel RR, Krieger B, Bellenberg B, Müller D, Ladopoulos T, Gold R, Schneider R, Lukas C. Lesion assessment in multiple sclerosis: a comparison between synthetic and conventional fluid-attenuated inversion recovery imaging. Front Neurol 2025; 16:1537465. [PMID: 40144619 PMCID: PMC11936806 DOI: 10.3389/fneur.2025.1537465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Background and purpose Magnetic resonance imaging (MRI)-based lesion quantification is essential for the diagnosis of and prognosis in multiple sclerosis (MS). This study compares an established software's performance for automated volumetric and numerical segmentation of MS brain lesions using synthetic T2-weighted fluid-attenuated inversion recovery (FLAIR) MRI, based on a multi-dynamic, multi-echo sequence (MDME), vs. conventional FLAIR imaging. Methods To ensure comparability, 3D FLAIR images were resampled to 4 mm axial slices to match the synthetic images' slice thickness. Lesion segmentation was performed using the Lesion Prediction Algorithm within the Lesion Segmentation Toolbox. For the assessment of spatial differences between lesion segmentations from both sequences, all lesion masks were registered to a brain template in the standard space. Spatial agreement between the two sequences was evaluated by calculating Sørensen-Dice coefficients (SDC) of the segmented and registered lesion masks. Additionally, average lesion masks for both synthetic and conventional FLAIR were created and displayed as overlays on a brain template to visualize segmentation differences. Results Both total lesion volume (TLV) and total lesion number (TLN) were significantly higher for synthetic MRI (11.0 ± 12.8 mL, 19.5 ± 12.1 lesions) than for conventional images (6.1 ± 8.5 mL, 17.9 ± 12.5 lesions). Bland-Altman plot analysis showed minimal TLV differences between synthetic and conventional FLAIR in patients with low overall lesion loads. The intraclass coefficient (ICC) indicated excellent agreement between both measurements, with values of 0.88 for TLV and 0.89 for TLN. The mean SDC was 0.47 ± 0.15. Conclusion Despite some limitations, synthetic FLAIR imaging holds promise as an alternative to conventional FLAIR for assessing MS lesions, especially in patients with low lesion load. However, further refinement is needed to reduce unwanted artifacts that may affect image quality.
Collapse
Affiliation(s)
- Roald Ruwen Essel
- Institute of Neuroradiology, St. Josef Hospital Bochum, Ruhr-Universität Bochum, Bochum, Germany
| | - Britta Krieger
- Institute of Neuroradiology, St. Josef Hospital Bochum, Ruhr-Universität Bochum, Bochum, Germany
| | - Barbara Bellenberg
- Institute of Neuroradiology, St. Josef Hospital Bochum, Ruhr-Universität Bochum, Bochum, Germany
| | - Dajana Müller
- Institute of Neuroradiology, St. Josef Hospital Bochum, Ruhr-Universität Bochum, Bochum, Germany
| | - Theodoros Ladopoulos
- Department of Neurology, St. Josef Hospital Bochum, Ruhr-Universität Bochum, Bochum, Germany
| | - Ralf Gold
- Department of Neurology, St. Josef Hospital Bochum, Ruhr-Universität Bochum, Bochum, Germany
| | - Ruth Schneider
- Department of Neurology, St. Josef Hospital Bochum, Ruhr-Universität Bochum, Bochum, Germany
| | - Carsten Lukas
- Institute of Neuroradiology, St. Josef Hospital Bochum, Ruhr-Universität Bochum, Bochum, Germany
- Department of Neurology, St. Josef Hospital Bochum, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
6
|
Zone-Abid I, Maaloul K, Hamza N, Hdiji O, Mhiri C, Trigui A. Optical coherence tomography in multiple sclerosis: A Tunisian tertiary center study. J Fr Ophtalmol 2025; 48:104371. [PMID: 39662309 DOI: 10.1016/j.jfo.2024.104371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 07/12/2024] [Accepted: 09/17/2024] [Indexed: 12/13/2024]
Abstract
PURPOSE To study retinal layers on OCT in patients with multiple sclerosis (MS) and look for correlations with clinical and electrophysiological characteristics. METHODS We conducted a cross-sectional study including MS patients aged between 18 and 60 years and a reference group of healthy, age- and gender-matched, control participants. A neurological examination with assessment of disability by the Expanded Disability Status Scale (EDSS), an ophthalmological examination, a spectral-domain OCT, and visual evoked potentials (VEP) were performed. RESULTS Fifty-one patients with MS and 30 control subjects were included in the study. The mean age of our patients was 38 years, and the sex ratio (male/female) was 0.49. Mean total thickness of the peripapillary retinal nerve fiber layer (pRNFL) and mean thicknesses in the individual quadrants were significantly lower than those of control subjects (P<0.001). All mean thicknesses of the various retinal layers were reduced compared to those of control eyes, but the difference was statistically significant only for the inner plexiform layer (IPL), the inner nuclear layer (INL) and the outer plexiform layer (OPL). We found a significant relationship between pRNFL atrophy as well as ganglion cell inner plexiform layer (GCIPL) atrophy and history of MS-ON (multiple sclerosis-optic neuritis) (P<0.001). pRNFL was preserved in the primary progressive form of MS, while it was atrophied in relapsing-remitting and secondary progressive forms. There was no significant change in inner retinal layer thicknesses according to duration of MS progression. We found a significant correlation between pRNFL atrophy in the superior (R=-0.22, P=0.03), inferior (R=-0.28, P=0.005) and temporal (R=-0.21, P=0.03) quadrants and the EDSS score. The difference in the thickness of the other retinal layers was significant for the GCIPL in patients with a high EDSS score (>3). There was no significant difference in the thickness of the various retinal layers between eyes of patients on first- or a second-line treatment. We found a correlation between visual acuity and pRNFL (R=0.446, P<0.001) and GCIPL thickness (R=0.343, P=0.001). There was a correlation between the increase of P100 wave latency in VEP and pRNFL atrophy (R=-0.32, P=0.01). A correlation between pRNFL atrophy and the decrease in the amplitude of the P100 wave was only seen in MS-ON eyes (R=0.41, P=0.03). CONCLUSIONS Correlations between pRNFL and GCIPL atrophy and clinical and electrophysiological parameters of MS suggest that OCT is an important tool to quantify neurodegeneration and to monitor disease progression in MS patients.
Collapse
Affiliation(s)
- I Zone-Abid
- Department of Ophtalmology, Habib Bourguiba University Hospital, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | - K Maaloul
- Department of Ophtalmology, Habib Bourguiba University Hospital, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia.
| | - N Hamza
- Department of Neurology, Habib Bourguiba University Hospital, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | - O Hdiji
- Department of Neurology, Habib Bourguiba University Hospital, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | - C Mhiri
- Department of Neurology, Habib Bourguiba University Hospital, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | - A Trigui
- Department of Ophtalmology, Habib Bourguiba University Hospital, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
7
|
Murayama R, Liu G, Zhao MM, Xu D, Zhu TT, Cai Y, Yue Y, Nakamura H, Hashimoto K. Microbiome depletion by broad-spectrum antibiotics does not influence demyelination and remyelination in cuprizone-treated mice. Pharmacol Biochem Behav 2025; 247:173946. [PMID: 39672388 DOI: 10.1016/j.pbb.2024.173946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/10/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
Demyelination in the central nervous system (CNS) is a feature of various psychiatric and neurological disorders. Emerging evidence suggests that the gut-brain axis may play a crucial role in CNS demyelination. The cuprizone (CPZ) model, which involves the administration of CPZ-containing food pellets, is commonly used to study the effects of different compounds on CNS demyelination and subsequent remyelination. This study aimed to evaluate the impact of microbiome depletion, induced by an antibiotic cocktail (ABX), on demyelination in CPZ-treated mice and the subsequent remyelination following CPZ withdrawal. Our findings indicate that a chronic 4-week oral ABX regimen, administered both during and after a 6-week CPZ exposure, does not affect demyelination or remyelination in the brains of CPZ-treated mice. Specifically, ABX treatment for 2 weeks before and 2 weeks after CPZ exposure, in the final 4 weeks before sacrifice, and for 4 weeks post-CPZ withdrawal, did not significantly alter these processes compared to control mice receiving water instead of ABX. These results indicate that despite effective microbiome depletion, a 4-week oral ABX regimen does not influence demyelination or remyelination in the CPZ model. Thus, it is unlikely that gut microbiota depletion by ABX plays a significant role in these processes. However, further research is needed to fully understand the role of the host microbiome on CPZ-induced demyelination.
Collapse
Affiliation(s)
- Rumi Murayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan; Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Guilin Liu
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao 266100, China
| | - Ming-Ming Zhao
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Dan Xu
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ting-Ting Zhu
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yi Cai
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan; Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Yong Yue
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Hiroyuki Nakamura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Kenji Hashimoto
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| |
Collapse
|
8
|
Molchanova N, Raina V, Malinin A, Rosa FL, Depeursinge A, Gales M, Granziera C, Müller H, Graziani M, Cuadra MB. Structural-based uncertainty in deep learning across anatomical scales: Analysis in white matter lesion segmentation. Comput Biol Med 2025; 184:109336. [PMID: 39546878 DOI: 10.1016/j.compbiomed.2024.109336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024]
Abstract
This paper explores uncertainty quantification (UQ) as an indicator of the trustworthiness of automated deep-learning (DL) tools in the context of white matter lesion (WML) segmentation from magnetic resonance imaging (MRI) scans of multiple sclerosis (MS) patients. Our study focuses on two principal aspects of uncertainty in structured output segmentation tasks. First, we postulate that a reliable uncertainty measure should indicate predictions likely to be incorrect with high uncertainty values. Second, we investigate the merit of quantifying uncertainty at different anatomical scales (voxel, lesion, or patient). We hypothesize that uncertainty at each scale is related to specific types of errors. Our study aims to confirm this relationship by conducting separate analyses for in-domain and out-of-domain settings. Our primary methodological contributions are (i) the development of novel measures for quantifying uncertainty at lesion and patient scales, derived from structural prediction discrepancies, and (ii) the extension of an error retention curve analysis framework to facilitate the evaluation of UQ performance at both lesion and patient scales. The results from a multi-centric MRI dataset of 444 patients demonstrate that our proposed measures more effectively capture model errors at the lesion and patient scales compared to measures that average voxel-scale uncertainty values. We provide the UQ protocols code at https://github.com/Medical-Image-Analysis-Laboratory/MS_WML_uncs.
Collapse
Affiliation(s)
- Nataliia Molchanova
- Radiology Department, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland; MedGIFT, Institute of Informatics, School of Management, HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland, Sierre, Switzerland; CIBM Center for Biomedical Imaging, Lausanne, Switzerland.
| | - Vatsal Raina
- ALTA Institute, University of Cambridge, Cambridge, United Kingdom
| | | | - Francesco La Rosa
- Icahn School of Medicine at Mount Sinai, New York City, United States of America
| | - Adrien Depeursinge
- Radiology Department, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland; MedGIFT, Institute of Informatics, School of Management, HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland, Sierre, Switzerland
| | - Mark Gales
- ALTA Institute, University of Cambridge, Cambridge, United Kingdom
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland; Department of Neurology, University Hospital Basel, Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Henning Müller
- MedGIFT, Institute of Informatics, School of Management, HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland, Sierre, Switzerland; Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Mara Graziani
- MedGIFT, Institute of Informatics, School of Management, HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland, Sierre, Switzerland
| | - Meritxell Bach Cuadra
- Radiology Department, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland; CIBM Center for Biomedical Imaging, Lausanne, Switzerland
| |
Collapse
|
9
|
Shi L, Ghezzi L, Fenoglio C, Pietroboni AM, Galimberti D, Pace F, Hardy TA, Piccio L, Don AS. CSF sphingolipids are correlated with neuroinflammatory cytokines and differentiate neuromyelitis optica spectrum disorder from multiple sclerosis. J Neurol Neurosurg Psychiatry 2024; 96:54-67. [PMID: 38844340 PMCID: PMC11672031 DOI: 10.1136/jnnp-2024-333774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/23/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND There is a need for biomarkers of disease progression and therapeutic response in multiple sclerosis (MS). This study aimed to identify cerebrospinal fluid (CSF) lipids that differentiate MS from other neuroinflammatory conditions and correlate with Expanded Disability Status Scale (EDSS) scores, gadolinium-enhancing lesions or inflammatory mediators. METHODS Lipids and inflammatory cytokines/chemokines were quantified with liquid chromatography-tandem mass spectrometry and multiplex ELISA, respectively, in CSF from people with untreated MS, neuromyelitis optica spectrum disorder (NMOSD), other inflammatory neurological diseases and non-inflammatory neurological diseases (NIND). Analytes were compared between groups using analysis of variance, and correlations were assessed with Pearson's analysis. RESULTS Twenty-five sphingolipids and four lysophosphatidylcholines were significantly higher in NMOSD compared with MS and NIND cases, whereas no lipids differed significantly between MS and NIND. A combination of three sphingolipids differentiated NMOSD from MS with the area under the curve of 0.92 in random forest models. Ninety-four lipids, including those that differentiated NMOSD from MS, were positively correlated with macrophage migration inhibitory factor (MIF) and 37 lipids were positively correlated with CSF protein in two independent MS cohorts. EDSS was inversely correlated with cholesterol ester CE(16:0) in both MS cohorts. In contrast, MIF and soluble triggering receptor expressed on myeloid cells 2 were positively associated with EDSS. CONCLUSIONS CSF sphingolipids are positively correlated with markers of neuroinflammation and differentiate NMOSD from MS. The inverse correlation between EDSS and CE(16:0) levels may reflect poor clearance of cholesterol released during myelin break-down and warrants further investigation as a biomarker of therapeutic response.
Collapse
Affiliation(s)
- Lisa Shi
- School of Medical Sciences, Charles Perkins Centre, and Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Laura Ghezzi
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- La Fondazione IRCCS Ospedale Maggiore Policlinico, Milano, Italy
| | - Chiara Fenoglio
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- La Fondazione IRCCS Ospedale Maggiore Policlinico, Milano, Italy
| | | | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- La Fondazione IRCCS Ospedale Maggiore Policlinico, Milano, Italy
| | - Francesca Pace
- Department of Neurology, Washington University in St Louis, St Louis, Missouri, USA
- Department of Clinical-Surgical Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Lombardia, Italy
| | - Todd A Hardy
- Concord Hospital, Department of Neurology, The University of Sydney, Sydney, New South Wales, Australia
| | - Laura Piccio
- School of Medical Sciences, Charles Perkins Centre, and Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- Department of Neurology, Washington University in St Louis, St Louis, Missouri, USA
| | - Anthony S Don
- School of Medical Sciences, Charles Perkins Centre, and Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
10
|
Clemente-Suárez VJ, Rubio-Zarapuz A, Belinchón-deMiguel P, Beltrán-Velasco AI, Martín-Rodríguez A, Tornero-Aguilera JF. Impact of Physical Activity on Cellular Metabolism Across Both Neurodegenerative and General Neurological Conditions: A Narrative Review. Cells 2024; 13:1940. [PMID: 39682689 PMCID: PMC11640500 DOI: 10.3390/cells13231940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Regular physical activity plays a crucial role in modulating cellular metabolism and mitigating the progression of neurodegenerative diseases such as Alzheimer's, Parkinson's, and Multiple Sclerosis. OBJECTIVE The objective of this review is to evaluate the molecular mechanisms by which exercise influences cellular metabolism, with a focus on its potential as a therapeutic intervention for neurological disorders. METHODS A comprehensive literature review was conducted using peer-reviewed scientific articles, with a focus on the period between 2015 and 2024, to analyze the effects of exercise on mitochondrial function, oxidative stress, and metabolic health. RESULTS The findings indicate that exercise promotes mitochondrial biogenesis, enhances oxidative phosphorylation, and reduces reactive oxygen species, contributing to improved energy production and cellular resilience. These metabolic adaptations are associated with delayed disease progression and reduced symptoms in patients with neurodegenerative conditions. Additionally, integrating exercise with nutritional strategies may further enhance therapeutic outcomes by addressing metabolic disturbances comprehensively. CONCLUSIONS This review concludes that personalized exercise protocols should be developed to optimize metabolic benefits for patients with neurological diseases, while future research should focus on biomarker development for individualized treatment approaches. These findings highlight the importance of non-pharmacological interventions in managing neurodegenerative diseases.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Alejandro Rubio-Zarapuz
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
| | - Pedro Belinchón-deMiguel
- Department of Nursing, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain;
| | | | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
- Faculty of Applied Social Sciences and Communications, Universidad Internacional de la Empresa (UNIE), 28015 Madrid, Spain
| | - José Francisco Tornero-Aguilera
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
| |
Collapse
|
11
|
Tisell A, Söderberg K, Link Y, Lundberg P, Mellergård J. Diffuse white matter pathology in multiple sclerosis during treatment with dimethyl fumarate-An observational study of changes in normal-appearing white matter using proton magnetic resonance spectroscopy. PLoS One 2024; 19:e0309547. [PMID: 39432495 PMCID: PMC11493296 DOI: 10.1371/journal.pone.0309547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 08/13/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is an inflammatory demyelinating disease with neurodegenerative features causing risk for neurologic irreversible disability over time. Examination of normal-appearing white matter (NAWM) changes in MS by proton magnetic resonance spectroscopy (1H-MRS), may detect diffuse white matter pathology that is associated with neurodegeneration. METHODS In this observational study of in total twenty-six patients with MS, starting treatment with dimethyl fumarate (DMF), we measured the absolute concentration of metabolites in periventricular NAWM using 1H-MRS at baseline and after one and three years of treatment. Metabolite concentrations were analyzed both cross-sectionally, in relation to 10 controls and longitudinally in relation to disease activity. RESULTS Patients with MS had higher concentrations of myo-inositol (mIns) in NAWM at baseline compared with controls (mean 5.98 ± 1.37 (SD) and 4.32 ± 1.16 (SD), p<0.01, independent samples t-test). The disease duration was inversely correlated with concentrations of total N-acetylaspartate and N-acetylaspartylglutamate (tNA) (r = -0.62, p<0.01) in NAWM as well as positively to the ratio of mIns and tNA (r = 0.51, p = 0.03). Metabolite concentrations during one-year (n = 19) and three-years (n = 11) follow-up were generally stable. The dropouts were caused by treatment switch after one year, mainly due to new MRI activity. Cross-sectional analyses showed that there was an inverse correlation between concentrations of tNA and mIns at both baseline and at 1 and 3-years follow-up (r = -0.44 to -0.65, p = 0.04 to 0.004). Metabolite concentrations were stable during 1-year follow-up independently of disease activity. CONCLUSIONS Higher concentrations of the astrogliosis marker mIns in MS compared to controls, the inverse relation between MS disease duration and the neuroaxonal integrity marker tNA, as well as the consistent inverse relation between these two metabolites during follow-up, showed that non-lesional white matter pathology is present in this cohort of MS patients in early disease stages. However, metabolite concentrations during follow-up were generally stable and did not reflect differences in disease activity among patients.
Collapse
Affiliation(s)
- Anders Tisell
- Department of Medical Radiation Physics in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Kristina Söderberg
- Department of Radiology in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Yumin Link
- Department of Neurology in Linköping, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Peter Lundberg
- Department of Medical Radiation Physics in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Johan Mellergård
- Department of Neurology in Linköping, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
12
|
Friesen E, Sheft M, Hari K, Palmer V, Zhu S, Herrera S, Buist R, Jiang D, Li XM, Del Bigio MR, Thiessen JD, Martin M. Quantitative Analysis of Early White Matter Damage in Cuprizone Mouse Model of Demyelination Using 7.0 T MRI Multiparametric Approach. ASN Neuro 2024; 16:2404366. [PMID: 39400556 PMCID: PMC11792140 DOI: 10.1080/17590914.2024.2404366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
Magnetic Resonance Imaging (MRI) is commonly used to follow the progression of neurodegenerative conditions, including multiple sclerosis (MS). MRI is limited by a lack of correlation between imaging results and clinical presentations, referred to as the clinico-radiological paradox. Animal models are commonly used to mimic the progression of human neurodegeneration and as a tool to help resolve the paradox. Most studies focus on later stages of white matter (WM) damage whereas few focus on early stages when oligodendrocyte apoptosis has just begun. The current project focused on these time points, namely weeks 2 and 3 of cuprizone (CPZ) administration, a toxin which induces pathophysiology similar to MS. In vivo T2-weighted (T2W) and Magnetization Transfer Ratio (MTR) maps and ex vivo Diffusion Tensor Imaging (DTI), Magnetization Transfer Imaging (MTI), and relaxometry (T1 and T2) values were obtained at 7 T. Significant changes in T2W signal intensity and non-significant changes in MTR were observed to correspond to early WM damage, whereas significant changes in both corresponded with full demyelination. Some DTI metrics decrease with simultaneous increase in others, indicating acute demyelination. MTI metrics T2A, T2B, f and R were observed to have contradictory changes across CPZ administration. T1 relaxation times were observed to have stronger correlations to disease states during later stages of CPZ treatment, whereas T2 had weak correlations to early WM damage. These results all suggest the need for multiple metrics and further studies at early and late time points of demyelination. Further research is required to continue investigating the interplay between various MR metrics during all weeks of CPZ administration.
Collapse
Affiliation(s)
- Emma Friesen
- Department of Chemistry, University of Winnipeg, Winnipeg, Canada
| | - Maxina Sheft
- Department of Physics, University of Winnipeg, Winnipeg, Canada
- Massachusetts Institute of Technology, Cambridge, USA
| | - Kamya Hari
- Department of Physics, University of Winnipeg, Winnipeg, Canada
- Electronics and Communication Engineering, SSN College of Engineering, Chennai, India
| | - Vanessa Palmer
- Department of Biomedical Engineering, University of Manitoba, Winnipeg, Canada
- Cubresa Inc, Winnipeg, Canada
| | - Shenghua Zhu
- Department of Neuroradiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sheryl Herrera
- Department of Physics, University of Winnipeg, Winnipeg, Canada
- Cubresa Inc, Winnipeg, Canada
| | - Richard Buist
- Department of Radiology, University of Manitoba, Winnipeg, Canada
| | - Depeng Jiang
- Department of Community Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Xin-Min Li
- Department of Psychiatry, University of Alberta, Edmonton, Canada
| | | | - Jonathan D. Thiessen
- Imaging Program, Lawson Health Research Institute, London, Canada
- Department of Medical Biophysics, Western University, London, Canada
| | - Melanie Martin
- Department of Physics, University of Winnipeg, Winnipeg, Canada
| |
Collapse
|
13
|
Yousef H, Malagurski Tortei B, Castiglione F. Predicting multiple sclerosis disease progression and outcomes with machine learning and MRI-based biomarkers: a review. J Neurol 2024; 271:6543-6572. [PMID: 39266777 PMCID: PMC11447111 DOI: 10.1007/s00415-024-12651-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/14/2024]
Abstract
Multiple sclerosis (MS) is a demyelinating neurological disorder with a highly heterogeneous clinical presentation and course of progression. Disease-modifying therapies are the only available treatment, as there is no known cure for the disease. Careful selection of suitable therapies is necessary, as they can be accompanied by serious risks and adverse effects such as infection. Magnetic resonance imaging (MRI) plays a central role in the diagnosis and management of MS, though MRI lesions have displayed only moderate associations with MS clinical outcomes, known as the clinico-radiological paradox. With the advent of machine learning (ML) in healthcare, the predictive power of MRI can be improved by leveraging both traditional and advanced ML algorithms capable of analyzing increasingly complex patterns within neuroimaging data. The purpose of this review was to examine the application of MRI-based ML for prediction of MS disease progression. Studies were divided into five main categories: predicting the conversion of clinically isolated syndrome to MS, cognitive outcome, EDSS-related disability, motor disability and disease activity. The performance of ML models is discussed along with highlighting the influential MRI-derived biomarkers. Overall, MRI-based ML presents a promising avenue for MS prognosis. However, integration of imaging biomarkers with other multimodal patient data shows great potential for advancing personalized healthcare approaches in MS.
Collapse
Affiliation(s)
- Hibba Yousef
- Technology Innovation Institute, Biotechnology Research Center, P.O.Box: 9639, Masdar City, Abu Dhabi, United Arab Emirates.
| | - Brigitta Malagurski Tortei
- Technology Innovation Institute, Biotechnology Research Center, P.O.Box: 9639, Masdar City, Abu Dhabi, United Arab Emirates
| | - Filippo Castiglione
- Technology Innovation Institute, Biotechnology Research Center, P.O.Box: 9639, Masdar City, Abu Dhabi, United Arab Emirates
- Institute for Applied Computing (IAC), National Research Council of Italy, Rome, Italy
| |
Collapse
|
14
|
Friesen E, Hari K, Sheft M, Thiessen JD, Martin M. Magnetic resonance metrics for identification of cuprizone-induced demyelination in the mouse model of neurodegeneration: a review. MAGMA (NEW YORK, N.Y.) 2024; 37:765-790. [PMID: 38635150 DOI: 10.1007/s10334-024-01160-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/17/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
Neurodegenerative disorders, including Multiple Sclerosis (MS), are heterogenous disorders which affect the myelin sheath of the central nervous system (CNS). Magnetic Resonance Imaging (MRI) provides a non-invasive method for studying, diagnosing, and monitoring disease progression. As an emerging research area, many studies have attempted to connect MR metrics to underlying pathophysiological presentations of heterogenous neurodegeneration. Most commonly, small animal models are used, including Experimental Autoimmune Encephalomyelitis (EAE), Theiler's Murine Encephalomyelitis (TMEV), and toxin models including cuprizone (CPZ), lysolecithin, and ethidium bromide (EtBr). A contrast and comparison of these models is presented, with focus on the cuprizone model, followed by a review of literature studying neurodegeneration using MRI and the cuprizone model. Conventional MRI methods including T1 Weighted (T1W) and T2 Weighted (T2W) Imaging are mentioned. Quantitative MRI methods which are sensitive to diffusion, magnetization transfer, susceptibility, relaxation, and chemical composition are discussed in relation to studying the CPZ model. Overall, additional studies are needed to improve both the sensitivity and specificity of MRI metrics for underlying pathophysiology of neurodegeneration and the relationships in attempts to clear the clinico-radiological paradox. We therefore propose a multiparametric approach for the investigation of MR metrics for underlying pathophysiology.
Collapse
Affiliation(s)
- Emma Friesen
- Chemistry, University of Winnipeg, Winnipeg, Canada.
| | - Kamya Hari
- Physics, University of Winnipeg, Winnipeg, Canada
- Electronics and Communication Engineering, SSN College of Engineering, Chennai, India
| | - Maxina Sheft
- Physics, University of Winnipeg, Winnipeg, Canada
- Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, USA
| | - Jonathan D Thiessen
- Imaging Program, Lawson Health Research Institute, London, Canada
- Medical Biophysics, Western University, London, Canada
- Medical Imaging, Western University, London, Canada
| | | |
Collapse
|
15
|
Seehafer S, Schmill LP, Aludin S, Huhndorf M, Larsen N, Jansen O, Stürner K, Peters S. Automatic lesion detection at Multiple Sclerosis patients - Comparison of 2D- and 3D-FLAIR-datasets. Mult Scler Relat Disord 2024; 88:105728. [PMID: 38909527 DOI: 10.1016/j.msard.2024.105728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Multiple Sclerosis (MS) is a common autoimmune inflammatory disease of the central nervous system (CNS). Magnetic Resonance Imaging (MRI) allows a sensitive assessment of the CNS and is established for diagnostic, prognostic and (therapy-) monitoring purposes. Especially lesion counting in T2- or Fluid Attenuated Inversion Recovery (FLAIR)-weighted images plays a decisive role in clinical routine. Software-packages allowing an automatic evaluation of image data are increasingly established aiming a faster and improved workflow. These programs allow e.g. the counting, spatial attribution and volumetry of MS-lesions in FLAIR-weighted images. Research has shown that 3D-FLAIR-sequences are superior to 2D-FLAIR-sequences in visual evaluation of lesion burden in MS. An influence on the automatic analysis is expectable but not yet systematically studied. This work will therefore investigate the influence of 2D- and 3D datasets on the results of an automatic assessment. MATERIAL AND METHODS In this prospective study, 80 Multiple Sclerosis patients underwent a clinically indicated routine MRI examination. The clinical routine protocol already including a 3D-FLAIR sequence was adapted by an additional 2D-FLAIR sequence also conform to the 2021 MAGNIMS-CMSCNAIMS consensus recommendations. To obtain a quantitative analysis for assessment of amount, dissemination and volume of the lesions, the acquired MR images were post-processed using the CE-certified Software mdbrain (mediaire, Berlin, Germany). The resulting data were statistically analysed using the paired t-test for normally distributed data and the Wilcoxon-signed-rank-test for not normally distributed data respectively. Demographic data and data such as the subtype, duration, severity and therapy of the disease were collected, pseudonymized and evaluated. RESULTS There is a significant difference concerning the total number and lesion volume with more lesions being detected (2D: 29.7, +/- 20.22 sd; 3D: 40.1 +/- 31.67 sd; p < 0.0001) but lower total volume (2D: 6.24 +/- 6.11 sd; 3D: 5.39 +/- 6.37 sd; p < 0.0001) when using the 3D- sequence. Especially significantly more small lesions in the unspecific white matter and infratentorial region were detected by using the 3D-FLAIR sequence (p < 0.0001) compared to the 2D-FLAIR image. Main reason for the lower total volume in the 3D-FLAIR sequence was the calculated volume for periventricular lesions which was significantly beneath the calculated volume from the 2D-FLAIR sequence (p < 0.0001). CONCLUSION Automatic lesion counting and volumetry is feasible with both 2D- and 3D-weightend FLAIR images. Still, it leads to partly significant differences even between two sequences that both are conform to the 2021 MAGNIMS-CMSCNAIMS consensus recommendations. This study contributes valuable insights into the impact of using different input data from the same patient for automated MS lesion evaluation.
Collapse
Affiliation(s)
- Svea Seehafer
- Department of Radiology and Neuroradiology, University Hospital of Schleswig-Holstein, Arnold-Heller-Str. 3, Hs D (Neurozentrum), D-24105 Kiel, Germany.
| | - Lars-Patrick Schmill
- Department of Radiology and Neuroradiology, University Hospital of Schleswig-Holstein, Arnold-Heller-Str. 3, Hs D (Neurozentrum), D-24105 Kiel, Germany
| | - Schekeb Aludin
- Department of Radiology and Neuroradiology, University Hospital of Schleswig-Holstein, Arnold-Heller-Str. 3, Hs D (Neurozentrum), D-24105 Kiel, Germany
| | - Monika Huhndorf
- Department of Radiology and Neuroradiology, University Hospital of Schleswig-Holstein, Arnold-Heller-Str. 3, Hs D (Neurozentrum), D-24105 Kiel, Germany
| | - Naomi Larsen
- Department of Radiology and Neuroradiology, University Hospital of Schleswig-Holstein, Arnold-Heller-Str. 3, Hs D (Neurozentrum), D-24105 Kiel, Germany
| | - Olav Jansen
- Department of Radiology and Neuroradiology, University Hospital of Schleswig-Holstein, Arnold-Heller-Str. 3, Hs D (Neurozentrum), D-24105 Kiel, Germany
| | - Klarissa Stürner
- Department of Neurology, University Hospital of Schleswig-Holstein, Arnold-Heller-Str. 3, Hs D (Neurozentrum), D-24105 Kiel, Germany
| | - Sönke Peters
- Department of Radiology and Neuroradiology, University Hospital of Schleswig-Holstein, Arnold-Heller-Str. 3, Hs D (Neurozentrum), D-24105 Kiel, Germany
| |
Collapse
|
16
|
García-Domínguez M. Enkephalins and Pain Modulation: Mechanisms of Action and Therapeutic Perspectives. Biomolecules 2024; 14:926. [PMID: 39199314 PMCID: PMC11353043 DOI: 10.3390/biom14080926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Enkephalins, a subclass of endogenous opioid peptides, play a pivotal role in pain modulation. Enkephalins primarily exert their effects through opioid receptors located widely throughout both the central and peripheral nervous systems. This review will explore the mechanisms by which enkephalins produce analgesia, emotional regulation, neuroprotection, and other physiological effects. Furthermore, this review will analyze the involvement of enkephalins in the modulation of different pathologies characterized by severe pain. Understanding the complex role of enkephalins in pain processing provides valuable insight into potential therapeutic strategies for managing pain disorders.
Collapse
Affiliation(s)
- Mario García-Domínguez
- Faculty of Education and Psychology, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Spain
| |
Collapse
|
17
|
Szanyi J, Kremlacek J, Kubova Z, Kuba M, Vit F, Langrova J, Gebousky P, Szanyi J. Optic nerve involvement in patients with Lyme neuroborreliosis: an electrophysiological study. Doc Ophthalmol 2024:10.1007/s10633-024-09975-w. [PMID: 38622306 DOI: 10.1007/s10633-024-09975-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/28/2024] [Indexed: 04/17/2024]
Abstract
PURPOSE The aim of this neurophysiological study was to retrospectively analyze visual evoked potentials (VEPs) acquired during an examination for diagnosing optic nerve involvement in patients with Lyme neuroborreliosis (LNB). Attention was focused on LNB patients with peripheral facial palsy (PFP) and optic nerve involvement. METHODS A total of 241 Czech patients were classified as having probable/definite LNB (193/48); of these, 57 were younger than 40 years, with a median age of 26.3 years, and 184 were older than 40 years, with a median age of 58.8 years. All patients underwent pattern-reversal (PVEP) and motion-onset (MVEP) VEP examinations. RESULTS Abnormal VEP results were observed in 150/241 patients and were noted more often in patients over 40 years (p = 0.008). Muscle/joint problems and paresthesia were observed to be significantly more common in patients older than 40 years (p = 0.002, p = 0.030), in contrast to headache and decreased visual acuity, which were seen more often in patients younger than 40 years (p = 0.001, p = 0.033). Peripheral facial palsy was diagnosed in 26/241 LNB patients. Among patients with PFP, VEP peak times above the laboratory limit was observed in 22 (84.6%) individuals. Monitoring of patients with PFP and pathological VEP showed that the adjustment of visual system function occurred in half of the patients in one to more years, in contrast to faster recovery from peripheral facial palsy within months in most patients. CONCLUSION In LNB patients, VEP helps to increase sensitivity of an early diagnostic process.
Collapse
Affiliation(s)
- Jana Szanyi
- Department of Pathological Physiology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic.
| | - Jan Kremlacek
- Department of Pathological Physiology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic
| | - Zuzana Kubova
- Department of Pathological Physiology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic
| | - Miroslav Kuba
- Department of Pathological Physiology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic
| | - Frantisek Vit
- Department of Pathological Physiology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic
| | - Jana Langrova
- Department of Pathological Physiology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic
| | - Pavel Gebousky
- Department of Infectious Diseases, Faculty Hospital in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Juraj Szanyi
- Department of Infectious Diseases, Faculty Hospital in Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
18
|
Alrehaili AA, Faizo NL, Alsulimani BM, Alsulimani RK, Aldwaila DA, Alqarni NJ, Faizo NL. Exploring Spinal Cord Changes in Multiple Sclerosis Patients Using MRI. NEUROSCI 2024; 5:87-97. [PMID: 39483810 PMCID: PMC11523708 DOI: 10.3390/neurosci5010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 11/03/2024] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease affecting the central nervous system (CNS). The diagnosis of MS is based on clinical signs and symptoms as well as findings in magnetic resonance imaging (MRI) sequences by demonstrating the spatial and temporal dispersion of white matter lesions, which are thought to be typical of MS in distribution, shape, extent, and signal abnormalities. Spinal cord MRI can identify asymptomatic lesions and rule out malignancies or spinal stenosis in patients for whom brain imaging is not helpful in making an MS diagnosis. This study examines the MRI features of Saudi Arabian patients clinically proven to have MS with typical lesions exclusively evident in the spinal cord. This retrospective cross-sectional study was carried out in 151 patients who are confirmed cases of MS based on clinical findings and MRI results. Patients' MRI data were reviewed from the picture archiving and communication system (PACS). The study revealed that MS incidence was higher in females than males and that the number of people diagnosed with MS increased in middle age. Cervical cord plaques and cervical cord curve straightening were the most frequent changes (67% and 56%, respectively), indicating that MRI can complement and even replace clinical data in MS diagnosis, leading to earlier, more precise diagnoses and speedier starts to treatment.
Collapse
Affiliation(s)
- Amani A. Alrehaili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Nahla L. Faizo
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (N.L.F.); (B.M.A.); (R.K.A.); (D.A.A.); (N.J.A.)
| | - Batool M. Alsulimani
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (N.L.F.); (B.M.A.); (R.K.A.); (D.A.A.); (N.J.A.)
| | - Raghad K. Alsulimani
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (N.L.F.); (B.M.A.); (R.K.A.); (D.A.A.); (N.J.A.)
| | - Dana A. Aldwaila
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (N.L.F.); (B.M.A.); (R.K.A.); (D.A.A.); (N.J.A.)
| | - Nada J. Alqarni
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (N.L.F.); (B.M.A.); (R.K.A.); (D.A.A.); (N.J.A.)
| | - Nisreen Lutfi Faizo
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
19
|
Zhu F, Zhao Y, Arnold DL, Bar‐Or A, Bernstein CN, Bonner C, Graham M, Hart J, Knox N, Marrie RA, Mirza AI, O'Mahony J, Van Domselaar G, Yeh EA, Banwell B, Waubant E, Tremlett H. A cross-sectional study of MRI features and the gut microbiome in pediatric-onset multiple sclerosis. Ann Clin Transl Neurol 2024; 11:486-496. [PMID: 38130033 PMCID: PMC10863907 DOI: 10.1002/acn3.51970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/27/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
OBJECTIVE To identify gut microbiome features associated with MRI lesion burden in persons with pediatric-onset multiple sclerosis (symptom onset <18 years). METHODS A cross-sectional study involving the Canadian Paediatric Demyelinating Disease Network study participants. Gut microbiome features (alpha diversity, phylum- and genus-level taxa) were derived using 16S rRNA sequencing from stool samples. T1- and T2-weighted lesion volumes were measured on brain MRI obtained within 6 months of stool sample procurement. Associations between the gut microbiota and MRI metrics (cube-root-transformed) were assessed using standard and Lasso regression models. RESULTS Thirty-four participants were included; mean ages at symptom onset and MRI were 15.1 and 19.0 years, respectively, and 79% were female. The T1- and T2-weighted lesion volumes were not significantly associated with alpha diversity (age and sex-adjusted p > 0.08). At the phylum level, high Tenericutes (relative abundance) was associated with higher T1 and T2 volumes (β coefficient = 0.25, 0.37) and high Firmicutes, Patescibacteria or Actinobacteria with lower lesion volumes (β coefficient = -0.30 to -0.07). At the genus level, high Ruminiclostridium, whereas low Coprococcus 3 and low Erysipelatoclostridium were associated with higher lesion volumes. INTERPRETATION Our study characterized the gut microbiota features associated with MRI lesion burden in pediatric-onset MS, shedding light onto possible pathophysiological mechanisms.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Medicine (Neurology)The University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Yinshan Zhao
- Department of Medicine (Neurology)The University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Douglas L. Arnold
- Department of Neurology and NeurosurgeryMcGill University Faculty of MedicineMontrealQuebecCanada
| | - Amit Bar‐Or
- Department of Neurology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- The Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Charles N. Bernstein
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaCanada
- Inflammatory Bowel Disease Clinical and Research CentreUniversity of ManitobaWinnipegManitobaCanada
| | - Christine Bonner
- National Microbiology LaboratoryPublic Health Agency of CanadaWinnipegManitobaCanada
| | - Morag Graham
- National Microbiology LaboratoryPublic Health Agency of CanadaWinnipegManitobaCanada
- Department of Medical Microbiology and Infectious DiseasesUniversity of ManitobaWinnipegManitobaCanada
| | - Janace Hart
- Department of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Natalie Knox
- National Microbiology LaboratoryPublic Health Agency of CanadaWinnipegManitobaCanada
- Department of Medical Microbiology and Infectious DiseasesUniversity of ManitobaWinnipegManitobaCanada
| | - Ruth Ann Marrie
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaCanada
| | - Ali I. Mirza
- Department of Medicine (Neurology)The University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Julia O'Mahony
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaCanada
| | - Gary Van Domselaar
- National Microbiology LaboratoryPublic Health Agency of CanadaWinnipegManitobaCanada
- Department of Medical Microbiology and Infectious DiseasesUniversity of ManitobaWinnipegManitobaCanada
| | - E. Ann Yeh
- Department of Neurology and NeurosurgeryMcGill University Faculty of MedicineMontrealQuebecCanada
| | - Brenda Banwell
- Department of Neurology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- The Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Emmanuelle Waubant
- Department of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Helen Tremlett
- Department of Medicine (Neurology)The University of British ColumbiaVancouverBritish ColumbiaCanada
| | | |
Collapse
|
20
|
Neri I, Ramazzotti G, Mongiorgi S, Rusciano I, Bugiani M, Conti L, Cousin M, Giorgio E, Padiath QS, Vaula G, Cortelli P, Manzoli L, Ratti S. Understanding the Ultra-Rare Disease Autosomal Dominant Leukodystrophy: an Updated Review on Morpho-Functional Alterations Found in Experimental Models. Mol Neurobiol 2023; 60:6362-6372. [PMID: 37450245 PMCID: PMC10533580 DOI: 10.1007/s12035-023-03461-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/22/2023] [Indexed: 07/18/2023]
Abstract
Autosomal dominant leukodystrophy (ADLD) is an ultra-rare, slowly progressive, and fatal neurodegenerative disorder associated with the loss of white matter in the central nervous system (CNS). Several years after its first clinical description, ADLD was found to be caused by coding and non-coding variants in the LMNB1 gene that cause its overexpression in at least the brain of patients. LMNB1 encodes for Lamin B1, a protein of the nuclear lamina. Lamin B1 regulates many cellular processes such as DNA replication, chromatin organization, and senescence. However, its functions have not been fully characterized yet. Nevertheless, Lamin B1 together with the other lamins that constitute the nuclear lamina has firstly the key role of maintaining the nuclear structure. Being the nucleus a dynamic system subject to both biochemical and mechanical regulation, it is conceivable that changes to its structural homeostasis might translate into functional alterations. Under this light, this review aims at describing the pieces of evidence that to date have been obtained regarding the effects of LMNB1 overexpression on cellular morphology and functionality. Moreover, we suggest that further investigation on ADLD morpho-functional consequences is essential to better understand this complex disease and, possibly, other neurological disorders affecting CNS myelination.
Collapse
Affiliation(s)
- Irene Neri
- Cellular Signalling Laboratory, Anatomy Centre, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126, Bologna, Italy
| | - Giulia Ramazzotti
- Cellular Signalling Laboratory, Anatomy Centre, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126, Bologna, Italy
| | - Sara Mongiorgi
- Cellular Signalling Laboratory, Anatomy Centre, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126, Bologna, Italy
| | - Isabella Rusciano
- Cellular Signalling Laboratory, Anatomy Centre, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126, Bologna, Italy
| | - Marianna Bugiani
- Department of Pathology, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, 1105, Amsterdam, The Netherlands
| | - Luciano Conti
- Department of Cellular, Computational, and Integrative Biology (CIBIO), Università Degli Studi Di Trento, 38123, Povo-Trento, Italy
| | - Margot Cousin
- Center for Individualized Medicine and Department of Clinical Genomics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Elisa Giorgio
- Department of Molecular Medicine, University of Pavia, 27100, Pavia, Italy
- Medical Genetics Unit, IRCCS Mondino Foundation, 27100, Pavia, Italy
| | - Quasar S Padiath
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Giovanna Vaula
- Department of Neuroscience, Azienda Ospedaliera-Universitaria Città della Salute e della Scienza, 10126, Turin, Italy
| | - Pietro Cortelli
- IRCCS, Istituto Di Scienze Neurologiche Di Bologna, 40139, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 , Bologna, Italy
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Anatomy Centre, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126, Bologna, Italy
| | - Stefano Ratti
- Cellular Signalling Laboratory, Anatomy Centre, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126, Bologna, Italy.
| |
Collapse
|
21
|
Eva L, Pleș H, Covache-Busuioc RA, Glavan LA, Bratu BG, Bordeianu A, Dumitrascu DI, Corlatescu AD, Ciurea AV. A Comprehensive Review on Neuroimmunology: Insights from Multiple Sclerosis to Future Therapeutic Developments. Biomedicines 2023; 11:2489. [PMID: 37760930 PMCID: PMC10526343 DOI: 10.3390/biomedicines11092489] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
This review delves into neuroimmunology, focusing on its relevance to multiple sclerosis (MS) and potential treatment advancements. Neuroimmunology explores the intricate relationship between the immune system and the central nervous system (CNS). Understanding these mechanisms is vital for grasping the pathophysiology of diseases like MS and for devising innovative treatments. This review introduces foundational neuroimmunology concepts, emphasizing the role of immune cells, cytokines, and blood-brain barrier in CNS stability. It highlights how their dysregulation can contribute to MS and discusses genetic and environmental factors influencing MS susceptibility. Cutting-edge research methods, from omics techniques to advanced imaging, have revolutionized our understanding of MS, offering valuable diagnostic and prognostic tools. This review also touches on the intriguing gut-brain axis, examining how gut microbiota impacts neuroimmunological processes and its potential therapeutic implications. Current MS treatments, from immunomodulatory drugs to disease-modifying therapies, are discussed alongside promising experimental approaches. The potential of personalized medicine, cell-based treatments, and gene therapy in MS management is also explored. In conclusion, this review underscores neuroimmunology's significance in MS research, suggesting that a deeper understanding could pave the way for more tailored and effective treatments for MS and similar conditions. Continued research and collaboration in neuroimmunology are essential for enhancing patient outcomes.
Collapse
Affiliation(s)
- Lucian Eva
- Clinical Emergency Hospital “Prof. Dr. Nicolae Oblu”, 700309 Iasi, Romania;
| | - Horia Pleș
- Department of Neurosurgery, Centre for Cognitive Research in Neuropsychiatric Pathology (NeuroPsy-Cog), “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (L.A.G.); (B.-G.B.); (A.B.); (D.-I.D.); (A.D.C.); (A.V.C.)
| | - Luca Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (L.A.G.); (B.-G.B.); (A.B.); (D.-I.D.); (A.D.C.); (A.V.C.)
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (L.A.G.); (B.-G.B.); (A.B.); (D.-I.D.); (A.D.C.); (A.V.C.)
| | - Andrei Bordeianu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (L.A.G.); (B.-G.B.); (A.B.); (D.-I.D.); (A.D.C.); (A.V.C.)
| | - David-Ioan Dumitrascu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (L.A.G.); (B.-G.B.); (A.B.); (D.-I.D.); (A.D.C.); (A.V.C.)
| | - Antonio Daniel Corlatescu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (L.A.G.); (B.-G.B.); (A.B.); (D.-I.D.); (A.D.C.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (L.A.G.); (B.-G.B.); (A.B.); (D.-I.D.); (A.D.C.); (A.V.C.)
| |
Collapse
|
22
|
Almubaslat F, Sanchez-Boluarte SS, Diaz MM. A review of neurological health disparities in Peru. Front Public Health 2023; 11:1210238. [PMID: 37744515 PMCID: PMC10513391 DOI: 10.3389/fpubh.2023.1210238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023] Open
Abstract
Peru is a historically unique and culturally diverse Latin American country. As a low-to-middle-income country (LMIC), Peru faces health implications from the spread of communicable diseases as well as a growing rate of noncommunicable diseases, both of which have been worsened by the recent COVID-19 pandemic's impact on the national health system. Over the past two decades, the country has aimed to improve health access for its population through various efforts described in this review. Despite this, there are notable neurological health disparities that exist today. This narrative review investigates such disparities through the leading neurological contributors to the national burden of disease in the country, including migraine headaches, cerebrovascular disease, and dementia. Public health disparities that contribute to other major neurological diseases in the country, including epilepsy, neurocysticercosis, Chagas disease, multiple sclerosis, traumatic brain injury, traumatic and non-traumatic spinal cord injuries are also investigated. We also explore potential solutions for overcoming the various neurological health disparities covered in this review that may be applied through public policies, as well as in similar LMICs in Latin America. By overcoming such disparities, the country may be able to successfully address the major contributors of neurological disease burden and create a healthcare environment that can sustainably and equitably improve health outcomes for Peruvian people.
Collapse
Affiliation(s)
- Faris Almubaslat
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | | | - Monica M. Diaz
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
23
|
Landry RL, Embers ME. The Probable Infectious Origin of Multiple Sclerosis. NEUROSCI 2023; 4:211-234. [PMID: 39483197 PMCID: PMC11523707 DOI: 10.3390/neurosci4030019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 11/03/2024] Open
Abstract
Multiple sclerosis (MS) is an immune inflammatory disease that causes demyelination of the white matter of the central nervous system. It is generally accepted that the etiology of MS is multifactorial and believed to be a complex interplay between genetic susceptibility, environmental factors, and infectious agents. While the exact cause of MS is still unknown, increasing evidence suggests that disease development is the result of interactions between genetically susceptible individuals and the environment that lead to immune dysregulation and CNS inflammation. Genetic factors are not sufficient on their own to cause MS, and environmental factors such as viral infections, smoking, and vitamin D deficiency also play important roles in disease development. Several pathogens have been implicated in the etiology of MS, including Epstein-Barr virus, human herpesvirus 6, varicella-zoster virus, cytomegalovirus, Helicobacter pylori, Chlamydia pneumoniae, and Borrelia burgdorferi. Although vastly different, viruses and bacteria can manipulate host gene expression, causing immune dysregulation, myelin destruction, and neuroinflammation. This review emphasizes the pathogenic triggers that should be considered in MS progression.
Collapse
Affiliation(s)
- Remi L Landry
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA;
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA 70433, USA
| | - Monica E Embers
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA;
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA 70433, USA
| |
Collapse
|
24
|
Brier MR, Taha F. Measuring Pathology in Patients with Multiple Sclerosis Using Positron Emission Tomography. Curr Neurol Neurosci Rep 2023; 23:479-488. [PMID: 37418219 DOI: 10.1007/s11910-023-01285-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
PURPOSE OF REVIEW Multiple sclerosis is characterized by a diverse and complex pathology. Clinical relapses, the hallmark of the disease, are accompanied by focal white matter lesions with intense inflammatory and demyelinating activity. Prevention of these relapses has been the major focus of pharmaceutical development, and it is now possible to dramatically reduce this inflammatory activity. Unfortunately, disability accumulation persists for many people living with multiple sclerosis owing to ongoing damage within existing lesions, pathology outside of discrete lesions, and other yet unknown factors. Understanding this complex pathological cascade will be critical to stopping progressive multiple sclerosis. Positron emission tomography uses biochemically specific radioligands to quantitatively measure pathological processes with molecular specificity. This review examines recent advances in the understanding of multiple sclerosis facilitated by positron emission tomography and identifies future avenues to expand understanding and treatment options. RECENT FINDINGS An increasing number of radiotracers allow for the quantitative measurement of inflammatory abnormalities, de- and re-myelination, and metabolic disruption associated with multiple sclerosis. The studies have identified contributions of ongoing, smoldering inflammation to accumulating tissue injury and clinical worsening. Myelin studies have quantified the dynamics of myelin loss and recovery. Lastly, metabolic changes have been found to contribute to symptom worsening. The molecular specificity facilitated by positron emission tomography in people living with multiple sclerosis will critically inform efforts to modulate the pathology leading to progressive disability accumulation. Existing studies show the power of this approach applied to multiple sclerosis. This armamentarium of radioligands allows for new understanding of how the brain and spinal cord of people is impacted by multiple sclerosis.
Collapse
Affiliation(s)
- Matthew R Brier
- Department of Neurology, John L Trotter MS Center, Washington University in St. Louis, St. Louis, USA.
| | - Farris Taha
- Department of Neurology, Medical University of South Carolina, Charleston, USA
| |
Collapse
|
25
|
Shah A, Panchal V, Patel K, Alimohamed Z, Kaka N, Sethi Y, Patel N. Pathogenesis and management of multiple sclerosis revisited. Dis Mon 2023; 69:101497. [PMID: 36280474 DOI: 10.1016/j.disamonth.2022.101497] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Multiple sclerosis is an autoimmune chronic inflammatory disease characterized by selective destruction of myelin in the CNS neurons (including optic nerve). It was first described in the 19th century and remained elusive owing to the disease's unique relapsing and remitting course. The widespread and debilitating prevalence of multiple sclerosis (MS) has prompted the development of various treatment modalities for its effective management. METHODS AND OBJECTIVES A literature review was conducted using the electronic databases PubMed and Google Scholar. The main objective of the review was to compile the advances in pathogenesis, classifications, and evolving treatment modalities for MS. RESULTS The understanding of the pathogenesis of MS and the potential drug targets for its precise treatment has evolved significantly over the past decade. The experimental developments are also motivating and present a big change coming up in the next 5 years. Numerous disease-modifying therapies (DMTs) have revolutionized the management of MS: interferon (IFN) preparations, monoclonal antibodies-natalizumab and ocrelizumab, immunomodulatory agents-glatiramer acetate, sphingosine 1-phosphate receptor 1 (S1PR1) modulators (Siponimod) and teriflunomide. The traditional parenteral drugs are now available as oral formulations improving patient acceptability. Repurposing various agents used for related diseases may reinforce the drug reserve to manage MS and are under trials. Although at a nascent phase, strategies to enhance re-myelination by stimulating oligodendrocytes are fascinating and hold promise for better outcomes in patients with MS. CONCLUSIONS The recent past has seen staggering inclusions to the management of multiple sclerosis catalyzing a significant turnabout in our approach to diagnosis, treatment, and prognosis. Since the advent of DMTs various other oral and injectable agents have been approved. The advances in MS therapeutics and diagnostics have laid the ground for further research and development to enhance the quality of life of afflicted patients.
Collapse
Affiliation(s)
- Abhi Shah
- Smt NHL MMC, Ahmedabad, Gujarat, 380006, India; PearResearch, India
| | - Viraj Panchal
- Smt NHL MMC, Ahmedabad, Gujarat, 380006, India; PearResearch, India
| | - Kashyap Patel
- Baroda Medical College, Vadodara, India; PearResearch, India
| | - Zainab Alimohamed
- Muhimbili University of Health and Allied Sciences (MUHAS), Tanzania; PearResearch, India
| | - Nirja Kaka
- PearResearch, India; GMERS Medical College, Himmatnagar, India
| | - Yashendra Sethi
- PearResearch, India; Government Doon Medical College, Dehradun, Uttarakhand, India
| | - Neil Patel
- PearResearch, India; GMERS Medical College, Himmatnagar, India.
| |
Collapse
|
26
|
Zhao M, Zhang Y, Wu J, Li X, Gao Y. Early urinary candidate biomarkers and clinical outcomes of intervention in a rat model of experimental autoimmune encephalomyelitis. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230118. [PMID: 37621667 PMCID: PMC10445012 DOI: 10.1098/rsos.230118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
Multiple sclerosis is a chronic autoimmune demyelinating disease of the central nervous system and is difficult to diagnose in early stages. Without homeostatic control, urine was reported to have the ability to accumulate early changes in the body. We expect that urinary proteome can reflect early changes in the nervous system. The early urinary proteome changes in a most employed multiple sclerosis rat model (experimental autoimmune encephalomyelitis) were analysed to explore early urinary candidate biomarkers, and early treatment of methylprednisolone was used to evaluate the therapeutic effect. Twenty-five urinary proteins were altered at day 7 when there were no clinical symptoms and obvious histological changes. Fourteen were reported to be differently expressed in the serum/cerebrospinal fluid/brain tissues of multiple sclerosis patients or animals such as angiotensinogen and matrix metallopeptidase 8. Functional analysis showed that the dysregulated proteins were associated with asparagine degradation, neuroinflammation and lipid metabolism. After the early treatment of methylprednisolone, the incidence of encephalomyelitis in the intervention group was only 1/13. This study demonstrates that urine may be a good source of biomarkers for the early detection of multiple sclerosis. These findings may provide important information for early diagnosis and intervention of multiple sclerosis in the future.
Collapse
Affiliation(s)
- Mindi Zhao
- Department of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Yameng Zhang
- Gene Engineering Drug and Biotechnology Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing 100875, People's Republic of China
- Department of Pathology, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Jianqiang Wu
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Xundou Li
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, People's Republic of China
| | - Youhe Gao
- Gene Engineering Drug and Biotechnology Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
27
|
Tokarska N, Tottenham I, Baaklini C, Gawryluk JR. How does the brain age in individuals with multiple sclerosis? A systematic review. Front Neurol 2023; 14:1207626. [PMID: 37456635 PMCID: PMC10349663 DOI: 10.3389/fneur.2023.1207626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Multiple Sclerosis (MS) is a complex neurological disorder that involves demyelination, lesions and atrophy in both white and gray matter. Such changes in the central nervous system are diagnostic in MS and has a strong relationship with both physical and cognitive symptoms. As a result, magnetic resonance imaging (MRI) scans as a metric of brain atrophy have emerged as an important outcome measure in MS studies. Recently, research has begun to focus on the contribution of aging to the structural changes in the brain associated with MS; prompting questions about whether there is an amplifying effect of aging superimposed on MS-related brain atrophy. To examine current evidence of how the brain ages in individuals with MS, a systematic review of the literature was performed. Specific questions were focused on how aging affects gray and white matter structure, whether patterns of brain atrophy differ in younger and older cohorts and if there are structural differences in the brain as a function of sex in aging people with MS. This review considered studies that used MRI to examine the effects of aging in adults with MS. Twenty-one studies met eligibility criteria. Findings across these studies revealed that gray matter atrophy was more pronounced in older adults with MS, particularly in subcortical regions such as the thalamus; that the rates of atrophy were similar but varied by region for younger and older cohorts; and that males may experience more brain atrophy than females. Further studies that use multimodal MRI acquisition methods are needed to capture changes in both males and females over time, particularly in middle to older adulthood.
Collapse
Affiliation(s)
- Nataliya Tokarska
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Isabelle Tottenham
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Charbel Baaklini
- Department of Neuroscience, University of Alberta, Edmonton, AB, Canada
| | - Jodie R. Gawryluk
- Department of Psychology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
28
|
Aleksandravičiūtė E, Stankevičiūtė R, Balnytė R, Šaknys L, Ulozienė I. Oligoclonal Band Status and Features of Radiological and Clinical Findings in Patients with Multiple Sclerosis in Lithuania. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1028. [PMID: 37374232 PMCID: PMC10301297 DOI: 10.3390/medicina59061028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023]
Abstract
Background and Objectives: Multiple sclerosis (MS) is a widely spread and debilitating disease with 2.8 million people worldwide currently affected. However, the exact pathogenesis of the disease and its progression remains incompletely understood. According to the revised McDonald criteria, cerebrospinal fluid oligoclonal bands (CSF OCBs) magnetic resonance imaging (MRI) results, in conjunction with clinical presentation, remain the gold standard of MS diagnostics. Therefore, this study aims to evaluate the association between CSF OCB status and features of radiological and clinical findings in patients with multiple sclerosis in Lithuania. Materials and Methods: The selection of 200 MS patients was performed in order to find associations between CSF OCB status, MRI data and various disease features. The data were acquired from outpatient records and a retrospective analysis was performed. Results: OCB positive patients were diagnosed with MS earlier and had spinal cord lesions more frequently than OCB negative patients. Patients with lesions in the corpus callosum had a greater increase in the Expanded Disability Status Scale (EDSS) score between their first and last visit. Patients with brainstem lesions had higher EDSS scores during their first and last visit. Even so, the progression of the EDSS score was not greater. The time between the first symptoms and diagnosis was shorter for patients who had juxtacortical lesions than patients who did not. Conclusions: CSF OCBs and MRI data remain irreplaceable tools when diagnosing multiple sclerosis as well as prognosing the development of the disease and disability.
Collapse
Affiliation(s)
- Emilija Aleksandravičiūtė
- Department of Neurology, Lithuanian University of Health Sciences Medical Academy, A. Mickevičiaus g.9, LT-44307 Kaunas, Lithuania
| | - Radvilė Stankevičiūtė
- Department of Neurology, Lithuanian University of Health Sciences Medical Academy, A. Mickevičiaus g.9, LT-44307 Kaunas, Lithuania
| | - Renata Balnytė
- Department of Neurology, Lithuanian University of Health Sciences Medical Academy, A. Mickevičiaus g.9, LT-44307 Kaunas, Lithuania
| | - Laurynas Šaknys
- Department of Neurology, Lithuanian University of Health Sciences Medical Academy, A. Mickevičiaus g.9, LT-44307 Kaunas, Lithuania
| | - Ingrida Ulozienė
- Department of Otorhinolaringology, Lithuanian University of Health Sciences Medical Academy, A. Mickevičiaus g.9, LT-44307 Kaunas, Lithuania
| |
Collapse
|
29
|
Manzano GS, Rice DR, Zurawski J, Jalkh Y, Bakshi R, Mateen FJ. Familial Mediterranean Fever and multiple sclerosis treated with ocrelizumab: Case report. J Neuroimmunol 2023; 379:578099. [PMID: 37172371 DOI: 10.1016/j.jneuroim.2023.578099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/25/2023] [Accepted: 05/02/2023] [Indexed: 05/14/2023]
Abstract
BACKGROUND Familial Mediterranean Fever (FMF) is associated with increased risk of multiple sclerosis (MS). Optimal treatment of patients with comorbid FMF and MS remains uncertain. CASE A 28-year-old woman with FMF, treated with colchicine, had symptomatic onset of relapsing remitting MS following four simultaneous vaccines. MRI brain with a 7-Tesla magnet demonstrated several areas of leptomeningeal enhancement with predominant linear, spread/fill and rare nodular patterns. Central vein signs were present in supratentorial white matter lesions. She received four cycles of ocrelizumab and achieved no evidence of disease activity (NEDA-3) at 20 months' follow up. DISCUSSION FMF with incident CNS demyelinating disease demonstrated neuroimaging features typical for classic RRMS including the central vein sign and leptomeningeal enhancement. Treatment with B-cell depleting therapy for FMF-MS led to clinical stability and symptomatic improvement at 20 months' follow up. We add to the sparse literature characterizing the course of FMF as a genetic risk factor for CNS demyelinating disease, demonstrating pathognomonic imaging features of MS on 7 T imaging and treatment efficacy with B-cell depletion.
Collapse
Affiliation(s)
- Giovanna S Manzano
- Department of Neurology, Massachusetts General Hospital, Boston, USA; Department of Neurology, Brigham and Women's Hospital, Boston, USA; Harvard Medical School, Boston, MA, USA
| | - Dylan R Rice
- Department of Neurology, Massachusetts General Hospital, Boston, USA
| | - Jonathan Zurawski
- Department of Neurology, Brigham and Women's Hospital, Boston, USA; Harvard Medical School, Boston, MA, USA
| | - Youmna Jalkh
- Department of Neurology, Brigham and Women's Hospital, Boston, USA
| | - Rohit Bakshi
- Department of Neurology, Brigham and Women's Hospital, Boston, USA; Harvard Medical School, Boston, MA, USA
| | - Farrah J Mateen
- Department of Neurology, Massachusetts General Hospital, Boston, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
30
|
Ganapathy Subramanian R, Zivadinov R, Bergsland N, Dwyer MG, Weinstock-Guttman B, Jakimovski D. Multiple sclerosis optic neuritis and trans-synaptic pathology on cortical thinning in people with multiple sclerosis. J Neurol 2023:10.1007/s00415-023-11709-y. [PMID: 37067590 DOI: 10.1007/s00415-023-11709-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/18/2023]
Abstract
BACKGROUND The multi-order visual system represents an excellent testing site regarding the process of trans-synaptic degeneration. The presence and extent of global versus trans-synaptic neurodegeneration in people with multiple sclerosis (pwMS) is not clear. OBJECTIVE To explore cross-sectional and longitudinal relationships between retinal, thalamic and cortical changes in pwMS with and without MS-related optic neuritis (pwMSON and pwoMSON) using MRI and optical coherence tomography (OCT). METHODS 162 pwMS and 47 healthy controls (HCs) underwent OCT and brain MRI at baseline and 5.5-years follow-up. Peripapillary retinal nerve fiber layer (pRNFL) and macular ganglion cell inner plexiform layer (mGCIPL) thicknesses were determined. Global volume measures of brain parenchymal volume (BPV)/percent brain volume change (PBVC), thalamic volume and T2-lesion volume (LV) were derived using standard analysis protocols. Regional cortical thickness was determined using FreeSurfer. Cross-sectional and longitudinal relationship between the retinal measures, thalamic volume and cortical thickness were assessed using age, BPV/PBVC and T2-LV adjusted correlations and regressions. RESULTS After age, BPV and T2-LV adjustment, the thalamic volume explained additional variance in the thickness of pericalcarine (R2 increase of 0.066, standardized β = 0.299, p = 0.039) and lateral occipital (R2 increase of 0.024, standardized β = 0.299, p = 0.039) gyrii in pwMSON. In pwoMSON, the thalamic volume was a significant predictor only of control (frontal) regions of pars opercularis. There was no relationship between thalamic atrophy and cortical thinning over the follow-up in both pwMS with and without MSON. While numerically lower in the pwMSON group, the inter-eye difference was not able to predict the presence of MSON. CONCLUSIONS MSON can induce a measurable amount of trans-synaptic pathology on second-order cortical regions.
Collapse
Affiliation(s)
- Ranjani Ganapathy Subramanian
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 14203, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 14203, USA
- Center for Biomedical Imaging at the Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 14203, USA
- IRCCS, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 14203, USA
| | - Bianca Weinstock-Guttman
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 14203, USA.
| |
Collapse
|
31
|
Sen MK, Hossain MJ, Mahns DA, Brew BJ. Validity of serum neurofilament light chain as a prognostic biomarker of disease activity in multiple sclerosis. J Neurol 2023; 270:1908-1930. [PMID: 36520240 DOI: 10.1007/s00415-022-11507-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022]
Abstract
Multiple sclerosis (MS) is a chronic demyelinating and neuroinflammatory disease of the human central nervous system with complex pathoetiology, heterogeneous presentations and an unpredictable course of disease progression. There remains an urgent need to identify and validate a biomarker that can reliably predict the initiation and progression of MS as well as identify patient responses to disease-modifying treatments/therapies (DMTs). Studies exploring biomarkers in MS and other neurodegenerative diseases currently focus mainly on cerebrospinal fluid (CSF) analyses, which are invasive and impractical to perform on a repeated basis. Recent studies, replacing CSF with peripheral blood samples, have revealed that the elevation of serum neurofilament light chain (sNfL) in the clinical stages of MS is, potentially, an ideal prognostic biomarker for predicting disease progression and for possibly guiding treatment decisions. However, there are unresolved factors (the definition of abnormal values of sNfL concentration, the standardisation of measurement and the amount of change in sNfL concentration that is significant) that are preventing its use as a biomarker in routine clinical practice for MS. This updated review critiques these recent findings and highlights areas for focussed work to facilitate the use of sNfL as a prognostic biomarker in MS management.
Collapse
Affiliation(s)
- Monokesh K Sen
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
- Peter Duncan Neuroscience Research Unit, St Vincent's Centre for Applied Medical Research, Darlinghurst, Sydney, 2010, Australia
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Md Jakir Hossain
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - David A Mahns
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Bruce J Brew
- Peter Duncan Neuroscience Research Unit, St Vincent's Centre for Applied Medical Research, Darlinghurst, Sydney, 2010, Australia.
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia.
- Department of Neurology, St Vincent's Hospital, Darlinghurst, 2010, Australia.
| |
Collapse
|
32
|
Radiological Benefits of Vitamin D Status and Supplementation in Patients with MS—A Two-Year Prospective Observational Cohort Study. Nutrients 2023; 15:nu15061465. [PMID: 36986195 PMCID: PMC10052720 DOI: 10.3390/nu15061465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
Current data emphasize the immunomodulating role of vitamin D in enhancing the anti-inflammatory response. Vitamin D deficiency is an established risk factor for developing multiple sclerosis—the autoimmune demyelinating and degenerative disease of the central nervous system. Several studies confirmed that higher vitamin D serum level is associated with better clinical and radiological outcomes in patients with multiple sclerosis, whereas vitamin D supplementation benefits in multiple sclerosis remain inconclusive. Despite that, many experts suggest regular measurements of vitamin D serum levels and supplementation in patients with multiple sclerosis. In this study, 133 patients with multiple sclerosis (relapsing–remitting subtype) were prospectively observed in a 0-, 12- and 24-month time span in a clinical setting. The study group consisted of 71.4% of patients (95 out of 133) supplementing vitamin D. The associations between vitamin D serum levels, clinical outcomes (disability status expressed by EDSS, number of relapses and time to relapse) and radiological outcomes (new T2-weighted lesions and number of gadolinium-enhanced lesions) were evaluated. There were no statistically significant correlations between clinical outcomes and vitamin D serum levels or supplementations. Fewer new T2-weighted lesions were observed in patients with vitamin D supplementations (p = 0.034) in 24 months of observation. Moreover, an optimal or higher level of vitamin D (>30 ng/mL) maintained throughout the entire observation period was associated with a lower number of new T2-weighted lesions in 24 months of observation (p = 0.045). These results support vitamin D implementation commencement and amelioration in patients with multiple sclerosis.
Collapse
|
33
|
Chapman L. Fingolimod significantly reduces MRI activity in paediatric-onset multiple sclerosis (MS). Arch Dis Child Educ Pract Ed 2023; 108:50. [PMID: 34244234 DOI: 10.1136/archdischild-2021-322317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
34
|
New Insights into Risk Genes and Their Candidates in Multiple Sclerosis. Neurol Int 2022; 15:24-39. [PMID: 36648967 PMCID: PMC9844300 DOI: 10.3390/neurolint15010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Oligodendrocytes are central nervous system glial cells that wrap neuronal axons with their differentiated myelin membranes as biological insulators. There has recently been an emerging concept that multiple sclerosis could be triggered and promoted by various risk genes that appear likely to contribute to the degeneration of oligodendrocytes. Despite the known involvement of vitamin D, immunity, and inflammatory cytokines in disease progression, the common causes and key genetic mechanisms remain unknown. Herein, we focus on recently identified risk factors and risk genes in the background of multiple sclerosis and discuss their relationships.
Collapse
|
35
|
Zamzam AEA, Aboukhadrah RS, Khali MM, Khodair SAZ. Diagnostic value of three-dimensional cube fluid attenuated inversion recovery imaging and its axial MIP reconstruction in multiple sclerosis. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2022. [DOI: 10.1186/s43055-022-00795-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Magnetic resonance imaging is regarded as one of the most important markers for multiple sclerosis. It can detect lesions in order to establish dissemination in time and space, which would aid in the diagnosis. Two-dimensional FLAIR is a standard sequence in MS routine imaging because it suppresses cerebrospinal fluid signal, increasing contrast between lesions and CSF and improving white matter lesion detection. Newer 3D FLAIR sequences are expected to offer even more benefits, such as improved MS lesions detection and higher resolution due to thinner slice thickness. We aimed to compare the role of 3D Cube FLAIR imaging (versus standard 2D FLAIR) in the assessment of white matter lesions in MS patients, as well as to test the convenience of using maximum intensity projection (MIP) on 3D FLAIR images for faster and easier evaluation.
Results
This study included 160 MS patients. A 1.5 T routine brain MRI scan was performed, which included a 2D FLAIR sequence, followed by a 3D-FLAIR sequence. All images were analyzed after 3D-FLAIR images were reformatted into axial MIP images. Lesions were counted in each sequence and classified into supra-tentorial (periventricular, deep white matter, and juxta-cortical), and infra-tentorial lesions, with the relative comparison of lesions numbers on 3D-FLAIR and MIP versus 2D-FLAIR expressed as a percentage increase or decrease. 3D FLAIR can significantly improve MS lesion detection in all areas of the brain when compared with 2D FLAIR results. At 2 mm reformatting, there is no difference in MS lesion detection between sagittal 3D FLAIR and axial MIP reconstruction, implying that the MIP algorithm can be used to simplify lesion detection by reducing the number of images while maintaining the same level of reliability.
Conclusion
3D FLAIR sequences should be added to conventional 2D FLAIR sequences in the MRI protocol when MS is suspected.
Collapse
|
36
|
Peter J, Ferraioli F, Mathew D, George S, Chan C, Alalade T, Salcedo SA, Saed S, Tatti E, Quartarone A, Ghilardi MF. Movement-related beta ERD and ERS abnormalities in neuropsychiatric disorders. Front Neurosci 2022; 16:1045715. [PMID: 36507340 PMCID: PMC9726921 DOI: 10.3389/fnins.2022.1045715] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Movement-related oscillations in the beta range (from 13 to 30 Hz) have been observed over sensorimotor areas with power decrease (i.e., event-related desynchronization, ERD) during motor planning and execution followed by an increase (i.e., event-related synchronization, ERS) after the movement's end. These phenomena occur during active, passive, imaged, and observed movements. Several electrophysiology studies have used beta ERD and ERS as functional indices of sensorimotor integrity, primarily in diseases affecting the motor system. Recent literature also highlights other characteristics of beta ERD and ERS, implying their role in processes not strictly related to motor function. Here we review studies about movement-related ERD and ERS in diseases characterized by motor dysfunction, including Parkinson's disease, dystonia, stroke, amyotrophic lateral sclerosis, cerebral palsy, and multiple sclerosis. We also review changes of beta ERD and ERS reported in physiological aging, Alzheimer's disease, and schizophrenia, three conditions without overt motor symptoms. The review of these works shows that ERD and ERS abnormalities are present across the spectrum of the examined pathologies as well as development and aging. They further suggest that cognition and movement are tightly related processes that may share common mechanisms regulated by beta modulation. Future studies with a multimodal approach are warranted to understand not only the specific topographical dynamics of movement-related beta modulation but also the general meaning of beta frequency changes occurring in relation to movement and cognitive processes at large. Such an approach will provide the foundation to devise and implement novel therapeutic approaches to neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jaime Peter
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Francesca Ferraioli
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Dave Mathew
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Shaina George
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Cameron Chan
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Tomisin Alalade
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Sheilla A. Salcedo
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Shannon Saed
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Elisa Tatti
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States,*Correspondence: Elisa Tatti,
| | - Angelo Quartarone
- IRCCS Centro Neurolesi Bonino Pulejo-Piemonte, Messina, Italy,Angelo Quartarone,
| | - M. Felice Ghilardi
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States,M. Felice Ghilardi,
| |
Collapse
|
37
|
Zhou Q, Zhang T, Meng H, Shen D, Li Y, He L, Gao Y, Zhang Y, Huang X, Meng H, Li B, Zhang M, Chen S. Characteristics of cerebral blood flow in an Eastern sample of multiple sclerosis patients: A potential quantitative imaging marker associated with disease severity. Front Immunol 2022; 13:1025908. [PMID: 36325320 PMCID: PMC9618793 DOI: 10.3389/fimmu.2022.1025908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system that is rare in China. At present, there are no widespread quantitative imaging markers associated with disease severity in MS. Despite several previous studies reporting cerebral blood flow (CBF) changes in MS, no consensus has been reached. In this study, we enrolled 30 Eastern MS patients to investigate CBF changes in different brain regions using the arterial spin labeling technique and their relationship with disease severity. The average CBF in MS patients were higher than those in health controls in various brain regions except cerebellum. The results indicated that MS patients with strongly increased CBF showed worse disease severity, including higher Expanded Disability Status Scale (EDSS) scores and serum neurofilament light chain (sNfL) values than those with mildly increased CBF in the parietal lobes, temporal lobes, basal ganglia, and damaged white matter (DWM). From another perspective, MS patients with worse disease severity (higher EDSS score and sNfL values, longer disease duration) showed increased CBF in parietal lobes, temporal lobes, basal ganglia, normal-appearing white matter (NAWM), and DWM. Correlation analysis showed that there was a strong association among CBF, EDSS score and sNfL. MS patients with strongly increased CBF in various brain regions had more ratio in relapsing phase than patients with mildly increased CBF. And relapsing patients showed significantly higher CBF in some regions (temporal lobes, left basal ganglia, right NAWM) compared to remitting patients. In addition, MS patients with cognitive impairment had higher CBF than those without cognitive impairment in the right parietal lobe and NAWM. However, there were no significant differences in CBF between MS patients with and without other neurologic dysfunctions (e.g., motor impairment, visual disturbance, sensory dysfunction). These findings expand our understanding of CBF in MS and imply that CBF could be a potential quantitative imaging marker associated with disease severity.
Collapse
Affiliation(s)
- Qinming Zhou
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianxiao Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Huanyu Meng
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dingding Shen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lu He
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yining Gao
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yizongheng Zhang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyun Huang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongping Meng
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Sheng Chen, ; Min Zhang,
| | - Sheng Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Department of Neurology, Xinrui Hospital, Wuxi, China
- *Correspondence: Sheng Chen, ; Min Zhang,
| |
Collapse
|
38
|
Valencia L, Clèrigues A, Valverde S, Salem M, Oliver A, Rovira À, Lladó X. Evaluating the use of synthetic T1-w images in new T2 lesion detection in multiple sclerosis. Front Neurosci 2022; 16:954662. [PMID: 36248650 PMCID: PMC9558286 DOI: 10.3389/fnins.2022.954662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
The assessment of disease activity using serial brain MRI scans is one of the most valuable strategies for monitoring treatment response in patients with multiple sclerosis (MS) receiving disease-modifying treatments. Recently, several deep learning approaches have been proposed to improve this analysis, obtaining a good trade-off between sensitivity and specificity, especially when using T1-w and T2-FLAIR images as inputs. However, the need to acquire two different types of images is time-consuming, costly and not always available in clinical practice. In this paper, we investigate an approach to generate synthetic T1-w images from T2-FLAIR images and subsequently analyse the impact of using original and synthetic T1-w images on the performance of a state-of-the-art approach for longitudinal MS lesion detection. We evaluate our approach on a dataset containing 136 images from MS patients, and 73 images with lesion activity (the appearance of new T2 lesions in follow-up scans). To evaluate the synthesis of the images, we analyse the structural similarity index metric and the median absolute error and obtain consistent results. To study the impact of synthetic T1-w images, we evaluate the performance of the new lesion detection approach when using (1) both T2-FLAIR and T1-w original images, (2) only T2-FLAIR images, and (3) both T2-FLAIR and synthetic T1-w images. Sensitivities of 0.75, 0.63, and 0.81, respectively, were obtained at the same false-positive rate (0.14) for all experiments. In addition, we also present the results obtained when using the data from the international MSSEG-2 challenge, showing also an improvement when including synthetic T1-w images. In conclusion, we show that the use of synthetic images can support the lack of data or even be used instead of the original image to homogenize the contrast of the different acquisitions in new T2 lesions detection algorithms.
Collapse
Affiliation(s)
- Liliana Valencia
- Research Institute of Computer Vision and Robotics, University of Girona, Girona, Spain
| | - Albert Clèrigues
- Research Institute of Computer Vision and Robotics, University of Girona, Girona, Spain
| | | | - Mostafa Salem
- Research Institute of Computer Vision and Robotics, University of Girona, Girona, Spain
- Department of Computer Science, Faculty of Computers and Information, Assiut University, Asyut, Egypt
| | - Arnau Oliver
- Research Institute of Computer Vision and Robotics, University of Girona, Girona, Spain
| | - Àlex Rovira
- Magnetic Resonance Unit, Department of Radiology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Xavier Lladó
- Research Institute of Computer Vision and Robotics, University of Girona, Girona, Spain
| |
Collapse
|
39
|
La Rosa F, Wynen M, Al-Louzi O, Beck ES, Huelnhagen T, Maggi P, Thiran JP, Kober T, Shinohara RT, Sati P, Reich DS, Granziera C, Absinta M, Bach Cuadra M. Cortical lesions, central vein sign, and paramagnetic rim lesions in multiple sclerosis: Emerging machine learning techniques and future avenues. Neuroimage Clin 2022; 36:103205. [PMID: 36201950 PMCID: PMC9668629 DOI: 10.1016/j.nicl.2022.103205] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 12/14/2022]
Abstract
The current diagnostic criteria for multiple sclerosis (MS) lack specificity, and this may lead to misdiagnosis, which remains an issue in present-day clinical practice. In addition, conventional biomarkers only moderately correlate with MS disease progression. Recently, some MS lesional imaging biomarkers such as cortical lesions (CL), the central vein sign (CVS), and paramagnetic rim lesions (PRL), visible in specialized magnetic resonance imaging (MRI) sequences, have shown higher specificity in differential diagnosis. Moreover, studies have shown that CL and PRL are potential prognostic biomarkers, the former correlating with cognitive impairments and the latter with early disability progression. As machine learning-based methods have achieved extraordinary performance in the assessment of conventional imaging biomarkers, such as white matter lesion segmentation, several automated or semi-automated methods have been proposed as well for CL, PRL, and CVS. In the present review, we first introduce these MS biomarkers and their imaging methods. Subsequently, we describe the corresponding machine learning-based methods that were proposed to tackle these clinical questions, putting them into context with respect to the challenges they are facing, including non-standardized MRI protocols, limited datasets, and moderate inter-rater variability. We conclude by presenting the current limitations that prevent their broader deployment and suggesting future research directions.
Collapse
Key Words
- ms, multiple sclerosis
- mri, magnetic resonance imaging
- dl, deep learning
- ml, machine learning
- cl, cortical lesions
- prl, paramagnetic rim lesions
- cvs, central vein sign
- wml, white matter lesions
- flair, fluid-attenuated inversion recovery
- mprage, magnetization prepared rapid gradient-echo
- gm, gray matter
- wm, white matter
- psir, phase-sensitive inversion recovery
- dir, double inversion recovery
- mp2rage, magnetization-prepared 2 rapid gradient echoes
- sels, slowly evolving/expanding lesions
- cnn, convolutional neural network
- xai, explainable ai
- pv, partial volume
Collapse
Affiliation(s)
- Francesco La Rosa
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; CIBM Center for Biomedical Imaging, Switzerland; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Maxence Wynen
- CIBM Center for Biomedical Imaging, Switzerland; ICTeam, UCLouvain, Louvain-la-Neuve, Belgium; Louvain Inflammation Imaging Lab (NIL), Institute of Neuroscience (IoNS), UCLouvain, Brussels, Belgium; Radiology Department, Lausanne University and University Hospital, Switzerland
| | - Omar Al-Louzi
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Erin S Beck
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Till Huelnhagen
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Radiology Department, Lausanne University and University Hospital, Switzerland; Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Pietro Maggi
- Louvain Inflammation Imaging Lab (NIL), Institute of Neuroscience (IoNS), UCLouvain, Brussels, Belgium; Department of Neurology, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Department of Neurology, CHUV, Lausanne, Switzerland
| | - Jean-Philippe Thiran
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; CIBM Center for Biomedical Imaging, Switzerland; Radiology Department, Lausanne University and University Hospital, Switzerland
| | - Tobias Kober
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Radiology Department, Lausanne University and University Hospital, Switzerland; Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Russell T Shinohara
- Center for Biomedical Image Computing and Analysis (CBICA), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA; Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA, USA; Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Switzerland; Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Martina Absinta
- IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Meritxell Bach Cuadra
- CIBM Center for Biomedical Imaging, Switzerland; Radiology Department, Lausanne University and University Hospital, Switzerland
| |
Collapse
|
40
|
Hossain MZ, Daskalaki E, Brüstle A, Desborough J, Lueck CJ, Suominen H. The role of machine learning in developing non-magnetic resonance imaging based biomarkers for multiple sclerosis: a systematic review. BMC Med Inform Decis Mak 2022; 22:242. [PMID: 36109726 PMCID: PMC9476596 DOI: 10.1186/s12911-022-01985-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a neurological condition whose symptoms, severity, and progression over time vary enormously among individuals. Ideally, each person living with MS should be provided with an accurate prognosis at the time of diagnosis, precision in initial and subsequent treatment decisions, and improved timeliness in detecting the need to reassess treatment regimens. To manage these three components, discovering an accurate, objective measure of overall disease severity is essential. Machine learning (ML) algorithms can contribute to finding such a clinically useful biomarker of MS through their ability to search and analyze datasets about potential biomarkers at scale. Our aim was to conduct a systematic review to determine how, and in what way, ML has been applied to the study of MS biomarkers on data from sources other than magnetic resonance imaging. METHODS Systematic searches through eight databases were conducted for literature published in 2014-2020 on MS and specified ML algorithms. RESULTS Of the 1, 052 returned papers, 66 met the inclusion criteria. All included papers addressed developing classifiers for MS identification or measuring its progression, typically, using hold-out evaluation on subsets of fewer than 200 participants with MS. These classifiers focused on biomarkers of MS, ranging from those derived from omics and phenotypical data (34.5% clinical, 33.3% biological, 23.0% physiological, and 9.2% drug response). Algorithmic choices were dependent on both the amount of data available for supervised ML (91.5%; 49.2% classification and 42.3% regression) and the requirement to be able to justify the resulting decision-making principles in healthcare settings. Therefore, algorithms based on decision trees and support vector machines were commonly used, and the maximum average performance of 89.9% AUC was found in random forests comparing with other ML algorithms. CONCLUSIONS ML is applicable to determining how candidate biomarkers perform in the assessment of disease severity. However, applying ML research to develop decision aids to help clinicians optimize treatment strategies and analyze treatment responses in individual patients calls for creating appropriate data resources and shared experimental protocols. They should target proceeding from segregated classification of signals or natural language to both holistic analyses across data modalities and clinically-meaningful differentiation of disease.
Collapse
Affiliation(s)
- Md Zakir Hossain
- School of Computing, College of Engineering and Computer Science, Australian National University, Canberra, ACT Australia
| | - Elena Daskalaki
- School of Computing, College of Engineering and Computer Science, Australian National University, Canberra, ACT Australia
| | - Anne Brüstle
- The John Curtin School of Medical Research, College of Health and Medicine, Australian National University, Canberra, ACT Australia
| | - Jane Desborough
- Department of Health Services Research and Policy, Research School of Population Health, College of Health and Medicine, Australian National University, Canberra, ACT Australia
| | - Christian J. Lueck
- Department of Neurology, Canberra Hospital, Canberra, ACT Australia
- ANU Medical School, College of Health and Medicine, Australian National University, Canberra, ACT Australia
| | - Hanna Suominen
- School of Computing, College of Engineering and Computer Science, Australian National University, Canberra, ACT Australia
- Department of Computing, University of Turku, Turku, Finland
| |
Collapse
|
41
|
Kim Y, Varosanec M, Kosa P, Bielekova B. Confounder-adjusted MRI-based predictors of multiple sclerosis disability. FRONTIERS IN RADIOLOGY 2022; 2:971157. [PMID: 37492673 PMCID: PMC10365278 DOI: 10.3389/fradi.2022.971157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/02/2022] [Indexed: 07/27/2023]
Abstract
Introduction Both aging and multiple sclerosis (MS) cause central nervous system (CNS) atrophy. Excess brain atrophy in MS has been interpreted as "accelerated aging." Current paper tests an alternative hypothesis: MS causes CNS atrophy by mechanism(s) different from physiological aging. Thus, subtracting effects of physiological confounders on CNS structures would isolate MS-specific effects. Methods Standardized brain MRI and neurological examination were acquired prospectively in 646 participants enrolled in ClinicalTrials.gov Identifier: NCT00794352 protocol. CNS volumes were measured retrospectively, by automated Lesion-TOADS algorithm and by Spinal Cord Toolbox, in a blinded fashion. Physiological confounders identified in 80 healthy volunteers were regressed out by stepwise multiple linear regression. MS specificity of confounder-adjusted MRI features was assessed in non-MS cohort (n = 158). MS patients were randomly split into training (n = 277) and validation (n = 131) cohorts. Gradient boosting machine (GBM) models were generated in MS training cohort from unadjusted and confounder-adjusted CNS volumes against four disability scales. Results Confounder adjustment highlighted MS-specific progressive loss of CNS white matter. GBM model performance decreased substantially from training to cross-validation, to independent validation cohorts, but all models predicted cognitive and physical disability with low p-values and effect sizes that outperform published literature based on recent meta-analysis. Models built from confounder-adjusted MRI predictors outperformed models from unadjusted predictors in the validation cohort. Conclusion GBM models from confounder-adjusted volumetric MRI features reflect MS-specific CNS injury, and due to stronger correlation with clinical outcomes compared to brain atrophy these models should be explored in future MS clinical trials.
Collapse
|
42
|
Hamann J, Ettrich B, Hoffman KT, Then Bergh F, Lobsien D. Somatosensory evoked potentials and their relation to microstructural damage in patients with multiple sclerosis—A whole brain DTI study. Front Neurol 2022; 13:890841. [PMID: 36105776 PMCID: PMC9465089 DOI: 10.3389/fneur.2022.890841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Somatosensory evoked potentials (SSEP) play a pivotal role in the diagnosis and disease monitoring of multiple sclerosis (MS). Delayed latencies are a surrogate for demyelination along the sensory afference. This study aimed to evaluate if SSEP latencies are representative of demyelination of the brain overall, by correlating with cerebral microstructural integrity as measured by Magnetic resonance (MR) diffusion tensor imaging (DTI). Analysis was performed in a hypothesis-free whole brain approach using tract-based spatial statistics (TBSS). Material and methods A total of 46 patients with MS or clinically isolated syndrome were included in the study. Bilateral SSEPs of the median nerve measuring mean N20 latencies (mN20) and Central Conduction Time (CCT), were acquired. MRI scans were performed at 3T. DTI acquisition was done with a single-shot echoplanar imaging technique with 80 diffusion directions. The FSL software package was used to process the DTI datasets and to calculate maps of fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD). These maps were then further analyzed using the TBSS module. The mean N20 and CCT and the right- and left-sided N20 and CCT were separately correlated to FA, AD, and RD, controlled for age, gender, and EDSS as variables of non-interest. Results Widespread negative correlations of SSEP latencies with FA (p = 0.0005) and positive correlations with RD (p = 0.0003) were measured in distinct white matter tracts, especially the optic tracts, corpus callosum, and posterior corona radiata. No correlation with AD was found in any white matter tract. Conclusion Highly significant correlations of FA and RD to SSEPs suggest that their latency is representative of widespread microstructural change, and especially demyelination in patients suffering from MS, reaching beyond the classic somatosensory regions. This points to the usefulness of SSEPs as a non-invasive tool in the evaluation of microstructural damage to the brain.
Collapse
Affiliation(s)
- Jan Hamann
- Institute of Neuroradiology, University of Leipzig, Leipzig, Germany
- *Correspondence: Jan Hamann
| | - Barbara Ettrich
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | | | | | - Donald Lobsien
- Institute of Neuroradiology, University of Leipzig, Leipzig, Germany
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, Helios Klinikum Erfurt, Erfurt, Germany
| |
Collapse
|
43
|
Bose G, Healy BC, Barro C, Glanz BI, Lokhande HA, Polgar-Turcsanyi M, Guttmann CR, Bakshi R, Weiner HL, Chitnis T. Younger age at multiple sclerosis onset is associated with worse outcomes at age 50. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2022-329353. [PMID: 35953266 DOI: 10.1136/jnnp-2022-329353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/26/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Older age at multiple sclerosis (MS) onset has been associated with worse 10-year outcomes. However, disease duration often exceeds 10 years and age-related comorbidities may also contribute to disability. We investigated patients with>10 years disease duration to determine how age at MS onset is associated with clinical, MRI and occupational outcomes at age 50. METHODS We included patients enrolled in the Comprehensive Longitudinal Investigation of Multiple Sclerosis at the Brigham and Women's Hospital with disease duration>10 years. Outcomes at age 50 included the Expanded Disability Status Scale (EDSS), development of secondary-progressive multiple sclerosis (SPMS), brain T2-lesion volume (T2LV) and brain parenchymal fraction (BPF), and occupational status. We assessed how onset age was independently associated with each outcome when adjusting for the date of visit closest to age 50, sex, time to first treatment, number of treatments by age 50 and exposure to high-efficacy treatments by age 50. RESULTS We included 661 patients with median onset at 31.4 years. The outcomes at age 50 were worse the younger first symptoms developed: for every 5 years earlier, the EDSS was 0.22 points worse (95% CI: 0.04 to 0.40; p=0.015), odds of SPMS 1.33 times higher (95% CI: 1.08 to 1.64; p=0.008), T2LV 1.86 mL higher (95% CI: 1.02 to 2.70; p<0.001), BPF 0.97% worse (95% CI: 0.52 to 1.42; p<0.001) and odds of unemployment from MS 1.24 times higher (95% CI: 1.01 to 1.53; p=0.037). CONCLUSIONS All outcomes at age 50 were worse in patients with younger age at onset. Decisions to provide high-efficacy treatments should consider younger age at onset, equating to a longer expected disease duration, as a poor prognostic factor.
Collapse
Affiliation(s)
- Gauruv Bose
- Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, MA, USA
| | - Brian C Healy
- Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, MA, USA
| | - Christian Barro
- Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, MA, USA
| | - Bonnie I Glanz
- Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Mariann Polgar-Turcsanyi
- Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Rohit Bakshi
- Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, MA, USA
| | - Howard L Weiner
- Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, MA, USA
| | - Tanuja Chitnis
- Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
44
|
Involvement of the Intestinal Microbiota in the Appearance of Multiple Sclerosis: Aloe vera and Citrus bergamia as Potential Candidates for Intestinal Health. Nutrients 2022; 14:nu14132711. [PMID: 35807891 PMCID: PMC9269320 DOI: 10.3390/nu14132711] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 02/05/2023] Open
Abstract
Multiple sclerosis (MS) is a neurological and inflammatory autoimmune disease of the Central Nervous System in which selective activation of T and B lymphocytes prompts a reaction against myelin, inducing demyelination and axonal loss. Although MS is recognized to be an autoimmune pathology, the specific causes are many; thus, to date, it has been considered a disorder resulting from environmental factors in genetically susceptible individuals. Among the environmental factors hypothetically involved in MS, nutrition seems to be well related, although the role of nutritional factors is still unclear. The gut of mammals is home to a bacterial community of about 2000 species known as the “microbiota”, whose composition changes throughout the life of each individual. There are five bacterial phylas that make up the microbiota in healthy adults: Firmicutes (79.4%), Bacteroidetes (16.9%), Actinobacteria (2.5%), Proteobacteria (1%) and Verrucomicrobia (0.1%). The diversity and abundance of microbial populations justifies a condition known as eubiosis. On the contrary, the state of dysbiosis refers to altered diversity and abundance of the microbiota. Many studies carried out in the last few years have demonstrated that there is a relationship between the intestinal microflora and the progression of multiple sclerosis. This correlation was also demonstrated by the discovery that patients with MS, treated with specific prebiotics and probiotics, have greatly increased bacterial diversity in the intestinal microbiota, which might be otherwise reduced or absent. In particular, natural extracts of Aloe vera and bergamot fruits, rich in polyphenols and with a high percentage of polysaccharides (mostly found in indigestible and fermentable fibers), appear to be potential candidates to re-equilibrate the gut microbiota in MS patients. The present review article aims to assess the pathophysiological mechanisms that reveal the role of the microbiota in the development of MS. In addition, the potential for supplementing patients undergoing early stages of MS with Aloe vera as well as bergamot fibers, on top of conventional drug treatments, is discussed.
Collapse
|
45
|
Valizadeh A, Fattahi MR, Sadeghi M, Saghab Torbati M, Sahraian MA, Azimi AR. Disease-modifying therapies and T1 hypointense lesions in patients with multiple sclerosis: A systematic review and meta-analysis. CNS Neurosci Ther 2022; 28:648-657. [PMID: 35218155 PMCID: PMC8981477 DOI: 10.1111/cns.13815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/12/2022] [Accepted: 02/04/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Previous research has shown that cerebral T1 hypointense lesions are positively correlated with the disability of multiple sclerosis (MS) patients. Hence, they could be used as an objective marker for evaluating the progression of the disease. Up to this date, there has not been a systematic evaluation of the effects of disease-modifying therapies (DMTs) on this prognostic marker. OBJECTIVES To evaluate the effects of FDA-approved DMTs on the numbers and volume of T1 hypointense lesions in adult patients with MS. METHODS We included studies with the mentioned desired outcomes. In March 2021, we searched MEDLINE (Ovid), Embase, and CENTRAL to find relevant studies. All included studies were assessed for the risk of bias using the RoB-2 tool. Extracted data were analyzed using a random-effects model. Certainty of evidence was assessed using GRADE. RESULTS Thirteen studies with 7484 participants were included. Meta-analysis revealed the mean difference between the intervention and comparator groups for the number of lesions was -1.3 (95% CI: -2.1, -0.5) and for the mean volume of lesions was -363.1 (95% CI: -611.6, -114.6). Certainty of evidence was judged to be moderate. Heterogeneity was considerable. DISCUSSION DMTs reduce the number and volume of T1 hypointense lesions. Although, these findings must be interpreted cautiously due to the high values of heterogeneity.
Collapse
Affiliation(s)
- Amir Valizadeh
- Neuroscience InstituteTehran University of Medical SciencesTehranIran
| | | | - Maryam Sadeghi
- Neuroscience InstituteTehran University of Medical SciencesTehranIran
| | | | - Mohammad Ali Sahraian
- Multiple Sclerosis Research CenterNeuroscience InstituteTehran University of Medical SciencesTehranIran
| | - Amir Reza Azimi
- Multiple Sclerosis Research CenterNeuroscience InstituteTehran University of Medical SciencesTehranIran
| |
Collapse
|
46
|
Ganelin-Cohen E, Tartakovsky E, Klepfish E, Golderman S, Rozenberg A, Kaplan B. Personalized Disease Monitoring in Pediatric Onset Multiple Sclerosis Using the Saliva Free Light Chain Test. Front Immunol 2022; 13:821499. [PMID: 35450065 PMCID: PMC9016751 DOI: 10.3389/fimmu.2022.821499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/11/2022] [Indexed: 12/15/2022] Open
Abstract
Background Development of new safe methods of monitoring disease activity in the pediatric onset multiple sclerosis (POMS) is a challenging task, especially when trying to refrain from frequent MRI usage. In our recent study, the saliva immunoglobulin free light chains (FLC) were suggested as biomarkers to discriminate between remission and active MS in adults. Objectives To assess utility of saliva FLC measurements for monitoring disease activity in POMS. Methods We used semiquantitative Western blot analysis to detect immunoreactive FLC monomers and dimers and to calculate the intensity of their bands. Statistical tests included Firth logistic regression analysis suitable for small sample sizes, and Spearman's non-parametric correlation. Results In naive POMS patients, the saliva levels of FLC in relapse were significantly higher than those in remission. Significant correlation was found between FLC levels (monomers, dimers or both) and the load of enhanced lesions in MRI scans. FLC levels may be reduced under treatment, especially as result of corticosteroids therapy. Follow-up of individual patients showed the correspondence of changes in the FLC levels to MRI findings. Conclusions Our results show the potential of the non-invasive saliva FLC test, as a new tool for monitoring the disease activity in POMS.
Collapse
Affiliation(s)
- Esther Ganelin-Cohen
- Institute of Pediatric Neurology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | - Sizilia Golderman
- Heller Institute of Medical Research, Sheba Medical Center, Ramat Gan, Israel
| | - Ayal Rozenberg
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Batia Kaplan
- Heller Institute of Medical Research, Sheba Medical Center, Ramat Gan, Israel
| |
Collapse
|
47
|
Bose G, Healy BC, Lokhande HA, Sotiropoulos MG, Polgar‐Turcsanyi M, Anderson M, Glanz BI, Guttman CRG, Bakshi R, Weiner HL, Chitnis T. Early predictors of clinical and MRI outcomes using LASSO in multiple sclerosis. Ann Neurol 2022; 92:87-96. [DOI: 10.1002/ana.26370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/28/2022] [Accepted: 04/10/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Gauruv Bose
- Harvard Medical School Boston MA US
- Brigham Multiple Sclerosis Center & Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital Boston MA US
| | - Brian C. Healy
- Harvard Medical School Boston MA US
- Brigham Multiple Sclerosis Center & Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital Boston MA US
| | - Hrishikesh A. Lokhande
- Brigham Multiple Sclerosis Center & Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital Boston MA US
| | - Marinos G. Sotiropoulos
- Harvard Medical School Boston MA US
- Brigham Multiple Sclerosis Center & Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital Boston MA US
| | - Mariann Polgar‐Turcsanyi
- Harvard Medical School Boston MA US
- Brigham Multiple Sclerosis Center & Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital Boston MA US
| | - Mark Anderson
- Brigham Multiple Sclerosis Center & Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital Boston MA US
| | - Bonnie I. Glanz
- Harvard Medical School Boston MA US
- Brigham Multiple Sclerosis Center & Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital Boston MA US
| | - Charles R. G. Guttman
- Harvard Medical School Boston MA US
- Center for Neurological Imaging, Department of Radiology, Brigham and Women’s Hospital Boston MA US
| | - Rohit Bakshi
- Harvard Medical School Boston MA US
- Brigham Multiple Sclerosis Center & Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital Boston MA US
| | - Howard L. Weiner
- Harvard Medical School Boston MA US
- Brigham Multiple Sclerosis Center & Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital Boston MA US
| | - Tanuja Chitnis
- Harvard Medical School Boston MA US
- Brigham Multiple Sclerosis Center & Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital Boston MA US
| |
Collapse
|
48
|
Mohamed AAB, Algahalan HA, Thabit MN. Correlation between functional MRI techniques and early disability in ambulatory patients with relapsing–remitting MS. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2022. [DOI: 10.1186/s41983-022-00457-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Abstract
Background
Multiple sclerosis (MS) is a common neurological disorder which can lead to an occasional damage to the central nervous system. Conventional magnetic resonance imaging (cMRI) is an important modality in the diagnosis of MS; however, correlation between cMRI findings and clinical impairment is weak. Non-conventional MRI techniques including apparent diffusion coefficient (ADC) and magnetic resonance spectroscopy (MRS) investigate the metabolic changes over the course of MS and overcome the limits of cMRI.
A total of 80 patients with MS and 20 age and sex-matched healthy control subjects were enrolled in this cross-sectional study. Ambulatory patients with relapsing–remitting MS (RRMS) were recruited. Expanded Disability Status Scale (EDSS) was used to assess the disability and the patients were categorized into three groups “no disability”, “minimal disability” and “moderate disability”. All patients underwent cMRI techniques. ADC was measured in MS plaques and in normal appearing white matter (NAWM) adjacent and around the plaque. All metabolites concentrations were expressed as ratios including N-acetyl-aspartate/creatine (NAA/Cr), choline/N-acetyl-aspartate (Cho/NAA) and choline/creatine (Cho/Cr). ADC and metabolite concentrations were measured in the normal white matter of 20 healthy control subjects.
Results
The study was carried on 80 MS patients [36 males (45%) and 44 females (55%)] and 20 healthy control [8 males (40%) and 12 females (60%)]. The ADC values and MRS parameters in NAWM of patients with MS were significantly different from those of the control group. The number of the plaques on T2 images and black holes were significantly higher at “Minimal disability” group. Most of the enhanced plaques were at the “Moderate disability” group with P value < 0.001. The mean of ADC in the group 1, 2 and 3 of disability was 1.12 ± 0.19, 1.50 ± 0.35, 1.51 ± 0.36, respectively, with P value < 0. 001. In the group 1, 2 and 3 of disability, the mean of NAA/Cr ratio at the plaque was 1.34 ± 0.44, 1.59 ± 0.51 and 1.11 ± 0.15, respectively, with P value equal 0.001.
Conclusion
The non-conventional quantitative MRI techniques are useful tools for detection of early disability in MS patients.
Collapse
|
49
|
Wijeyaratnam DO, Edwards T, Pilutti LA, Cressman EK. Assessing visually guided reaching in people with multiple sclerosis with and without self-reported upper limb impairment. PLoS One 2022; 17:e0262480. [PMID: 35061785 PMCID: PMC8782348 DOI: 10.1371/journal.pone.0262480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 12/24/2021] [Indexed: 11/18/2022] Open
Abstract
The ability to accurately complete goal-directed actions, such as reaching for a glass of water, requires coordination between sensory, cognitive and motor systems. When these systems are impaired, like in people with multiple sclerosis (PwMS), deficits in movement arise. To date, the characterization of upper limb performance in PwMS has typically been limited to results attained from self-reported questionnaires or clinical tools. Our aim was to characterize visually guided reaching performance in PwMS. Thirty-six participants (12 PwMS who reported upper limb impairment (MS-R), 12 PwMS who reported not experiencing upper limb impairment (MS-NR), and 12 age- and sex-matched control participants without MS (CTL)) reached to 8 targets in a virtual environment while seeing a visual representation of their hand in the form of a cursor on the screen. Reaches were completed with both the dominant and non-dominant hands. All participants were able to complete the visually guided reaching task, such that their hand landed on the target. However, PwMS showed noticeably more atypical reaching profiles when compared to control participants. In accordance with these observations, analyses of reaching performance revealed that the MS-R group was more variable with respect to the time it took to initiate and complete their movements compared to the CTL group. While performance of the MS-NR group did not differ significantly from either the CTL or MS-R groups, individuals in the MS-NR group were less consistent in their performance compared to the CTL group. Together these findings suggest that PwMS with and without self-reported upper limb impairment have deficits in the planning and/or control of their movements. We further argue that deficits observed during movement in PwMS who report upper limb impairment may arise due to participants compensating for impaired movement planning processes.
Collapse
Affiliation(s)
- Darrin O. Wijeyaratnam
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Thomas Edwards
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Lara A. Pilutti
- Interdisciplinary School of Health Science, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Erin K. Cressman
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
50
|
Bastos Ferreira AP, do Nascimento ADFS, Sampaio Rocha-Filho PA. Cerebral and spinal cord changes observed through magnetic resonance imaging in patients with HTLV-1-associated myelopathy/tropical spastic paraparesis: a systematic review. J Neurovirol 2022; 28:1-16. [PMID: 34981435 DOI: 10.1007/s13365-021-01043-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 11/21/2021] [Accepted: 12/09/2021] [Indexed: 11/27/2022]
Abstract
To verify brain and spinal changes using magnetic resonance imaging in patients with HTLV-1-associated myelopathy/tropical spastic paraparesis. This was a systematic review. The descriptors used were tropical spastic paraparesis and magnetic resonance image. The keyword HTLV-1-associated myelopathy was also used. Twenty-three articles were included: 16 detected brain changes and 18 detected spinal changes. White matter lesions were the most frequent finding in the brain. Brain injuries were most frequently identified in the periventricular region, in the subcortical region, in the centrum semiovale, in the brain stem, and corpus callosum. Atrophy was the most frequent finding of the spinal cord, affecting the thoracic and cervical regions, and was associated with a longer evolution of myelopathy. White matter lesions in these regions were also observed. Cortical white matter lesions and thoracic spinal cord atrophy were the most frequently reported changes in patients with HTLV-1-associated myelopathy.
Collapse
Affiliation(s)
- Ana Patrícia Bastos Ferreira
- Post-Graduation Program in Neuropsychiatry and Behavioral Sciences (Posneuro), Federal University of Pernambuco (UFPE), Recife, Brazil.,Rua Carlos Pereira Falcão, 1136, Recife, 51021-350, Brazil
| | - Ana Dolores Firmino Santos do Nascimento
- Post-Graduation Program in Neuropsychiatry and Behavioral Sciences (Posneuro), Federal University of Pernambuco (UFPE), Recife, Brazil.,Rua Arlindo Gouveia, 145, Recife, 50720-595, Brazil
| | - Pedro Augusto Sampaio Rocha-Filho
- Division of Neuropsychiatry, Federal University of Pernambuco (UFPE), Recife, Brazil. .,Rua General Joaquim Inácio, Pernambuco- CEP, 1412 - Edifício The Plaza Business Center, Recife, Sala, 83052011-270, Brazil.
| |
Collapse
|