1
|
Booth JS, Rapaka RR, McArthur MA, Fresnay S, Darton TC, Blohmke CJ, Jones C, Waddington CS, Levine MM, Pollard AJ, Sztein MB. Role of circulating T follicular helper subsets following Ty21a immunization and oral challenge with wild type S. Typhi in humans. Front Immunol 2024; 15:1384642. [PMID: 39328410 PMCID: PMC11424897 DOI: 10.3389/fimmu.2024.1384642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 08/16/2024] [Indexed: 09/28/2024] Open
Abstract
Despite decades of intense research, our understanding of the correlates of protection against Salmonella Typhi (S. Typhi) infection and disease remains incomplete. T follicular helper cells (TFH), an important link between cellular and humoral immunity, play an important role in the development and production of high affinity antibodies. While traditional TFH cells reside in germinal centers, circulating TFH (cTFH) (a memory subset of TFH) are present in blood. We used specimens from a typhoid controlled human infection model whereby participants were immunized with Ty21a live attenuated S. Typhi vaccine and then challenged with virulent S. Typhi. Some participants developed typhoid disease (TD) and some did not (NoTD), which allowed us to assess the association of cTFH subsets in the development and prevention of typhoid disease. Of note, the frequencies of cTFH were higher in NoTD than in TD participants, particularly 7 days after challenge. Furthermore, the frequencies of cTFH2 and cTFH17, but not cTFH1 subsets were higher in NoTD than TD participants. However, we observed that ex-vivo expression of activation and homing markers were higher in TD than in NoTD participants, particularly after challenge. Moreover, cTFH subsets produced higher levels of S. Typhi-specific responses (cytokines/chemokines) in both the immunization and challenge phases. Interestingly, unsupervised analysis revealed unique clusters with distinct signatures for each cTFH subset that may play a role in either the development or prevention of typhoid disease. Importantly, we observed associations between frequencies of defined cTFH subsets and anti-S. Typhi antibodies. Taken together, our results suggest that circulating TFH2 and TFH17 subsets might play an important role in the development or prevention of typhoid disease. The contribution of these clusters was found to be distinct in the immunization and/or challenge phases. These results have important implications for vaccines aimed at inducing long-lived protective T cell and antibody responses.
Collapse
Affiliation(s)
- Jayaum S. Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Rekha R. Rapaka
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Monica A. McArthur
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Global Clinical Development, Sanofi, Swiftwater, PA, United States
| | - Stephanie Fresnay
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Rockville Center for Vaccine Research, GlaxsoSmithKline (GSK), Rockville, MD, United States
| | - Thomas C. Darton
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, and the National Institute for Health and Care Research (NIHR), Oxford Biomedical Research Centre, Oxford, United Kingdom
- Clinical Infection Research Group, Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, and the National Institute for Health and Care Research (NIHR), Sheffield Biomedical Research Centre, Sheffield, United Kingdom
| | - Christoph J. Blohmke
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, and the National Institute for Health and Care Research (NIHR), Oxford Biomedical Research Centre, Oxford, United Kingdom
- GlaxsoSmithKline (GSK) Vaccines, London, United Kingdom
| | - Claire Jones
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, and the National Institute for Health and Care Research (NIHR), Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Claire S. Waddington
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, and the National Institute for Health and Care Research (NIHR), Oxford Biomedical Research Centre, Oxford, United Kingdom
- Department of Infection, Imperial College Healthcare, National Health Service (NHS) Trust, London, United Kingdom
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Myron M. Levine
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Andrew J. Pollard
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, and the National Institute for Health and Care Research (NIHR), Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Marcelo B. Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Tumor Immunology and Immunotherapy Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| |
Collapse
|
2
|
Ali A, Waris A, Khan MA, Asim M, Khan AU, Khan S, Zeb J. Recent advancement, immune responses, and mechanism of action of various vaccines against intracellular bacterial infections. Life Sci 2023; 314:121332. [PMID: 36584914 DOI: 10.1016/j.lfs.2022.121332] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Emerging and re-emerging bacterial infections are a serious threat to human and animal health. Extracellular bacteria are free-living, while facultative intracellular bacteria replicate inside eukaryotic host cells. Many serious human illnesses are now known to be caused by intracellular bacteria such as Salmonella enterica, Escherichia coli, Staphylococcus aureus, Rickettsia massiliae, Chlamydia species, Brucella abortus, Mycobacterium tuberculosis and Listeria monocytogenes, which result in substantial morbidity and mortality. Pathogens like Mycobacterium, Brucella, MRSA, Shigella, Listeria, and Salmonella can infiltrate and persist in mammalian host cells, particularly macrophages, where they proliferate and establish a repository, resulting in chronic and recurrent infections. The current treatment for these bacteria involves the application of narrow-spectrum antibiotics. FDA-approved vaccines against obligate intracellular bacterial infections are lacking. The development of vaccines against intracellular pathogenic bacteria are more difficult because host defense against these bacteria requires the activation of the cell-mediated pathway of the immune system, such as CD8+ T and CD4+ T. However, different types of vaccines, including live, attenuated, subunit, killed whole cell, nano-based and DNA vaccines are currently in clinical trials. Substantial development has been made in various vaccine strategies against intracellular pathogenic bacteria. This review focuses on the mechanism of intracellular bacterial infection, host immune response, and recent advancements in vaccine development strategies against various obligate intracellular bacterial infections.
Collapse
Affiliation(s)
- Asmat Ali
- Department of Biotechnology and Genetic Engineering, Hazara University Mansehra, Pakistan
| | - Abdul Waris
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong.
| | - Muhammad Ajmal Khan
- Division of Life Sciences, Center for Cancer Research and State Key Laboratory of Molecular Neurosciences, The Hong Kong University of Science and Technology, Hong Kong
| | - Muhammad Asim
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong
| | - Atta Ullah Khan
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China
| | - Sahrish Khan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jehan Zeb
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong
| |
Collapse
|
3
|
Sztein MB, Booth JS. Controlled human infectious models, a path forward in uncovering immunological correlates of protection: Lessons from enteric fevers studies. Front Microbiol 2022; 13:983403. [PMID: 36204615 PMCID: PMC9530043 DOI: 10.3389/fmicb.2022.983403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Enteric infectious diseases account for more than a billion disease episodes yearly worldwide resulting in approximately 2 million deaths, with children under 5 years old and the elderly being disproportionally affected. Enteric pathogens comprise viruses, parasites, and bacteria; the latter including pathogens such as Salmonella [typhoidal (TS) and non-typhoidal (nTS)], cholera, Shigella and multiple pathotypes of Escherichia coli (E. coli). In addition, multi-drug resistant and extensively drug-resistant (XDR) strains (e.g., S. Typhi H58 strain) of enteric bacteria are emerging; thus, renewed efforts to tackle enteric diseases are required. Many of these entero-pathogens could be controlled by oral or parenteral vaccines; however, development of new, effective vaccines has been hampered by lack of known immunological correlates of protection (CoP) and limited knowledge of the factors contributing to protective responses. To fully comprehend the human response to enteric infections, an invaluable tool that has recently re-emerged is the use of controlled human infection models (CHIMs) in which participants are challenged with virulent wild-type (wt) organisms. CHIMs have the potential to uncover immune mechanisms and identify CoP to enteric pathogens, as well as to evaluate the efficacy of therapeutics and vaccines in humans. CHIMs have been used to provide invaluable insights in the pathogenesis, host-pathogen interaction and evaluation of vaccines. Recently, several Oxford typhoid CHIM studies have been performed to assess the role of multiple cell types (B cells, CD8+ T, Tregs, MAIT, Monocytes and DC) during S. Typhi infection. One of the key messages that emerged from these studies is that baseline antigen-specific responses are important in that they can correlate with clinical outcomes. Additionally, volunteers who develop typhoid disease (TD) exhibit higher levels and more activated cell types (e.g., DC and monocytes) which are nevertheless defective in discrete signaling pathways. Future critical aspects of this research will involve the study of immune responses to enteric infections at the site of entry, i.e., the intestinal mucosa. This review will describe our current knowledge of immunity to enteric fevers caused byS. Typhi and S. Paratyphi A, with emphasis on the contributions of CHIMs to uncover the complex immunological responses to these organisms and provide insights into the determinants of protective immunity.
Collapse
Affiliation(s)
- Marcelo B. Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- *Correspondence: Marcelo B. Sztein,
| | - Jayaum S. Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Jayaum S. Booth,
| |
Collapse
|
4
|
Rapaka RR, Wahid R, Fresnay S, Booth JS, Darton TC, Jones C, Waddington CS, Levine MM, Pollard AJ, Sztein MB. Human Salmonella Typhi exposure generates differential multifunctional cross-reactive T-cell memory responses against Salmonella Paratyphi and invasive nontyphoidal Salmonella. Clin Transl Immunology 2020; 9:e1178. [PMID: 33005416 PMCID: PMC7512505 DOI: 10.1002/cti2.1178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 12/19/2022] Open
Abstract
Objective There are no vaccines for most of the major invasive Salmonella strains causing severe infection in humans. We evaluated the specificity of adaptive T memory cell responses generated after Salmonella Typhi exposure in humans against other major invasive Salmonella strains sharing capacity for dissemination. Methods T memory cells from eleven volunteers who underwent controlled oral challenge with wtS. Typhi were characterised by flow cytometry for cross‐reactive cellular cytokine/chemokine effector responses or evidence of degranulation upon stimulation with autologous B‐lymphoblastoid cells infected with either S. Typhi, Salmonella Paratyphi A (PA), S. Paratyphi B (PB) or an invasive nontyphoidal Salmonella strain of the S. Typhimurium serovar (iNTSTy). Results Blood T‐cell effector memory (TEM) responses after exposure to S. Typhi in humans evolve late, peaking weeks after infection in most volunteers. Induced multifunctional CD4+ Th1 and CD8+ TEM cells elicited after S. Typhi challenge were cross‐reactive with PA, PB and iNTSTy. The magnitude of multifunctional CD4+ TEM cell responses to S. Typhi correlated with induction of cross‐reactive multifunctional CD8+ TEM cells against PA, PB and iNTSTy. Highly multifunctional subsets and T central memory and T effector memory cells that re‐express CD45 (TEMRA) demonstrated less heterologous T‐cell cross‐reactivity, and multifunctional Th17 elicited after S. Typhi challenge was not cross‐reactive against other invasive Salmonella. Conclusion Gaps in cross‐reactive immune effector functions in human T‐cell memory compartments were highly dependent on invasive Salmonella strain, underscoring the importance of strain‐dependent vaccination in the design of T‐cell‐based vaccines for invasive Salmonella.
Collapse
Affiliation(s)
- Rekha R Rapaka
- Center for Vaccine Development and Global Health University of Maryland School of Medicine Baltimore MD USA.,Department of Medicine University of Maryland School of Medicine Baltimore MD USA
| | - Rezwanul Wahid
- Center for Vaccine Development and Global Health University of Maryland School of Medicine Baltimore MD USA.,Department of Pediatrics University of Maryland School of Medicine Baltimore MD USA
| | - Stephanie Fresnay
- Center for Vaccine Development and Global Health University of Maryland School of Medicine Baltimore MD USA.,Department of Pediatrics University of Maryland School of Medicine Baltimore MD USA.,Present address: Stephanie Fresnay GlaxoSmithKline Rockville MD USA
| | - Jayaum S Booth
- Center for Vaccine Development and Global Health University of Maryland School of Medicine Baltimore MD USA.,Department of Pediatrics University of Maryland School of Medicine Baltimore MD USA
| | - Thomas C Darton
- Oxford Vaccine Group Department of Paediatrics University of Oxford and the NIHR Oxford Biomedical Research Centre Oxford UK.,Present address: Thomas C Darton University of Sheffield Medical School Sheffield UK
| | - Claire Jones
- Oxford Vaccine Group Department of Paediatrics University of Oxford and the NIHR Oxford Biomedical Research Centre Oxford UK
| | - Claire S Waddington
- Oxford Vaccine Group Department of Paediatrics University of Oxford and the NIHR Oxford Biomedical Research Centre Oxford UK.,Present address: University of Cambridge Cambridge UK
| | - Myron M Levine
- Center for Vaccine Development and Global Health University of Maryland School of Medicine Baltimore MD USA.,Department of Medicine University of Maryland School of Medicine Baltimore MD USA.,Department of Pediatrics University of Maryland School of Medicine Baltimore MD USA
| | - Andrew J Pollard
- Oxford Vaccine Group Department of Paediatrics University of Oxford and the NIHR Oxford Biomedical Research Centre Oxford UK
| | - Marcelo B Sztein
- Center for Vaccine Development and Global Health University of Maryland School of Medicine Baltimore MD USA.,Department of Medicine University of Maryland School of Medicine Baltimore MD USA.,Department of Pediatrics University of Maryland School of Medicine Baltimore MD USA
| |
Collapse
|
5
|
Salmonella enterica serovar Typhi exposure elicits ex vivo cell-type-specific epigenetic changes in human gut cells. Sci Rep 2020; 10:13581. [PMID: 32788681 PMCID: PMC7423951 DOI: 10.1038/s41598-020-70492-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/22/2020] [Indexed: 01/25/2023] Open
Abstract
Salmonella enterica serovar Typhi (S. Typhi) causes substantial morbidity and mortality worldwide, particularly among young children. Humans develop an array of mucosal immune responses following S. Typhi infection. Whereas the cellular mechanisms involved in S. Typhi infection have been intensively studied, very little is known about the early chromatin modifications occurring in the human gut microenvironment that influence downstream immune responses. To address this gap in knowledge, cells isolated from human terminal ileum exposed ex vivo to the wild-type S. Typhi strain were stained with a 33-metal-labeled antibody panel for mass cytometry analyses of the early chromatin modifications modulated by S. Typhi. We measured the cellular levels of 6 classes of histone modifications, and 1 histone variant in 11 major cell subsets (i.e., B, CD3 + T, CD4 + T, CD8 + T, NK, TCR-γδ, Mucosal associated invariant (MAIT), and NKT cells as well as monocytes, macrophages, and epithelial cells). We found that arginine methylation might regulate the early-differentiation of effector-memory CD4+ T-cells following exposure to S. Typhi. We also found S. Typhi-induced post-translational modifications in histone methylation and acetylation associated with epithelial cells, NKT, MAIT, TCR-γδ, Monocytes, and CD8 + T-cells that are related to both gene activation and silencing.
Collapse
|
6
|
Rudolph ME, McArthur MA, Magder LS, Barnes RS, Chen WH, Sztein MB. Diversity of Salmonella Typhi-responsive CD4 and CD8 T cells before and after Ty21a typhoid vaccination in children and adults. Int Immunol 2020; 31:315-333. [PMID: 30951606 DOI: 10.1093/intimm/dxz011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/18/2019] [Indexed: 11/13/2022] Open
Abstract
Typhoid fever is a life-threatening disease caused by the human-restricted pathogen Salmonella enterica serovar Typhi (S. Typhi). The oral live attenuated Ty21a typhoid vaccine protects against this severe disease by eliciting robust, multifunctional cell-mediated immunity (CMI), shown to be associated with protection in wild-type S. Typhi challenge studies. Ty21a induces S. Typhi-responsive CD8+ and CD4+ T cells but little is known about the response to this vaccine in children. To address this important gap in knowledge, we have used mass cytometry to analyze pediatric and adult pre- and post-Ty21a vaccination CMI in an autologous S. Typhi antigen presentation model. Here, using conventional supervised analytical tools, we show adult T cells are more multifunctional at baseline than those obtained from children. Moreover, pediatric and adult T cells respond similarly to Ty21a vaccination, but adult responders remain more multifunctional. The use of the unsupervised dimensionality reduction tool tSNE (t-distributed Stochastic Neighbor Embedding) allowed us to confirm these findings, as well as to identify increases and decreases in well-defined specific CD4+ and CD8+ T-cell populations that were not possible to uncover using the conventional gating strategies. These findings evidenced age-associated maturation of multifunctional S. Typhi-responsive T-cell populations, including those which we have previously shown to be associated with protection from, and/or delayed onset of, typhoid disease. These findings are likely to play an important role in improving pediatric vaccination strategies against S. Typhi and other enteric pathogens.
Collapse
Affiliation(s)
- Mark E Rudolph
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.,Molecular Microbiology and Immunology Department, University of Maryland Graduate Program in Life Sciences, Baltimore, MD, USA
| | - Monica A McArthur
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Laurence S Magder
- Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Robin S Barnes
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Wilbur H Chen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marcelo B Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
7
|
Salerno-Gonçalves R, Tettelin H, Luo D, Guo Q, Ardito MT, Martin WD, De Groot AS, Sztein MB. Differential functional patterns of memory CD4 + and CD8 + T-cells from volunteers immunized with Ty21a typhoid vaccine observed using a recombinant Escherichia coli system expressing S. Typhi proteins. Vaccine 2019; 38:258-270. [PMID: 31629569 DOI: 10.1016/j.vaccine.2019.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/03/2019] [Accepted: 10/07/2019] [Indexed: 02/01/2023]
Abstract
It is widely accepted that CD4+ and CD8+ T-cells play a significant role in protection against Salmonella enterica serovar Typhi (S. Typhi), the causative agent of the typhoid fever. However, the antigen specificity of these T-cells remains largely unknown. Previously, we demonstrated the feasibility of using a recombinant Escherichia coli (E. coli) expression system to uncover the antigen specificity of CD4+ and CD8+ T cells. Here, we expanded these studies to include the evaluation of 12 additional S. Typhi proteins: 4 outer membrane proteins (OmpH, OmpL, OmpR, OmpX), 3 Vi-polysaccharide biosynthesis proteins (TviA, TviB, TviE), 3 cold shock proteins (CspA, CspB, CspC), and 2 conserved hypothetical proteins (Chp 1 and Chp2), all selected based on the bioinformatic analyses of the content of putative T-cell epitopes. CD4+ and CD8+ T cells from 15 adult volunteers, obtained before and 42 days after immunization with oral live attenuated Ty21a vaccine, were assessed for their functionality (i.e., production of cytokines and cytotoxic expression markers in response to stimulation with selected antigens) as measured by flow cytometry. Although volunteers differed on their T-cell antigen specificity, we observed T-cell immune responses against all S. Typhi proteins evaluated. These responses included 9 proteins, OmpH, OmpR, TviA, TviE, CspA, CspB, CspC, Chp 1 and Chp 2, which have not been previously reported to elicit T-cell responses. Interestingly, we also observed that, regardless of the protein, the functional patterns of the memory T-cells were different between CD4+ and CD8+ T cells. In sum, these studies demonstrated the feasibility of using bioinformatic analysis and the E. coli expressing system described here to uncover novel immunogenic T-cell proteins that could serve as potential targets for the production of protein-based vaccines.
Collapse
Affiliation(s)
- Rosângela Salerno-Gonçalves
- Center for Vaccine Development and Global Health (CVD), Department of Pediatrics, University of Maryland School of Medicine, 685 West Baltimore Street, HSF1, Baltimore, MD 21201, USA.
| | - Hervé Tettelin
- Department of Microbiology and Immunology and Institute for Genome Sciences (IGS), University of Maryland School of Medicine, 670 West Baltimore Street, HSF3, Baltimore, MD 21201, USA
| | - David Luo
- Center for Vaccine Development and Global Health (CVD), Department of Pediatrics, University of Maryland School of Medicine, 685 West Baltimore Street, HSF1, Baltimore, MD 21201, USA
| | - Qin Guo
- Department of Microbiology and Immunology and Institute for Genome Sciences (IGS), University of Maryland School of Medicine, 670 West Baltimore Street, HSF3, Baltimore, MD 21201, USA
| | - Matthew T Ardito
- Institute for Immunology and Informatics (iCubed), Department of Cell and Molecular Biology, University of Rhode Island, 80 Washington Street, Providence, RI, USA; EpiVax, Inc., 188 Valley Street Suite 424, Providence, RI, USA
| | - William D Martin
- Institute for Immunology and Informatics (iCubed), Department of Cell and Molecular Biology, University of Rhode Island, 80 Washington Street, Providence, RI, USA; EpiVax, Inc., 188 Valley Street Suite 424, Providence, RI, USA
| | - Anne S De Groot
- Institute for Immunology and Informatics (iCubed), Department of Cell and Molecular Biology, University of Rhode Island, 80 Washington Street, Providence, RI, USA; EpiVax, Inc., 188 Valley Street Suite 424, Providence, RI, USA
| | - Marcelo B Sztein
- Center for Vaccine Development and Global Health (CVD), Department of Pediatrics, University of Maryland School of Medicine, 685 West Baltimore Street, HSF1, Baltimore, MD 21201, USA
| |
Collapse
|
8
|
Booth JS, Goldberg E, Patil SA, Greenwald BD, Sztein MB. Association between S. Typhi-specific memory CD4+ and CD8+ T responses in the terminal ileum mucosa and in peripheral blood elicited by the live oral typhoid vaccine Ty21a in humans. Hum Vaccin Immunother 2019; 15:1409-1420. [PMID: 30836838 PMCID: PMC6663141 DOI: 10.1080/21645515.2018.1564570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
CD4+ and CD8+ T subsets are essential components of the adaptive immune system which act in concert at the site of infections to effectively protect against pathogens. Very limited data is available in humans regarding the relationship between CD4+ and CD8+ S. Typhi responsive cells in the terminal ileum mucosa (TI) and peripheral blood following Ty21a oral typhoid immunization. Here, we compared TI lamina propria mononuclear cells (LPMC) and peripheral blood CD4+ and CD8+ T memory (TM) subsets responses and their relationship by Spearman’s correlation following Ty21a immunization in volunteers undergoing routine colonoscopy. We observed that Ty21a immunization (i) influences the homing and accumulation of both CD4+ and CD8+ T cells in the TI, particularly integrin α4β7+ CCR9+ CD8+ T cells, (ii) elicits significantly higher frequencies of LPMC S. Typhi-responsive CD8+ T multifunctional (CD107a, IFNγ, IL-17A and/or MIP1β) cells than their CD4+ T counterparts, and (iii) results in the correlation of LPMC CD4+ Teffector/memory (TEM) S. Typhi responses (CD107a, IFNγ, TNFα, IL-17A and/or MIP1β) to their LPMC CD8+ TEM counterparts. Moreover, we demonstrated that these positive correlations between CD4+ and CD8+ TEM occur primarily in TI LPMC but not in PBMC, suggesting important differences in responses between the mucosal and systemic compartments following oral Ty21a immunization. This study provides the first demonstration of the correlation of S. Typhi-specific CD4+ and CD8+ TM responses in the human terminal ileum mucosa and provides valuable information regarding the generation of mucosal and systemic immune responses following oral Ty21a-immunization which might impact future vaccine design and development.
Collapse
Affiliation(s)
- Jayaum S Booth
- a Center for Vaccine Development and Global Health , University of Maryland School of Medicine , Baltimore , MD , USA.,b Department of Pediatrics , University of Maryland School of Medicine , Baltimore , MD , USA
| | - Eric Goldberg
- c Department of Medicine , University of Maryland School of Medicine , Baltimore , MD , USA.,d Division of Gastroenterology and Hepatology , University of Maryland School of Medicine , Baltimore , MD , USA
| | - Seema A Patil
- c Department of Medicine , University of Maryland School of Medicine , Baltimore , MD , USA.,d Division of Gastroenterology and Hepatology , University of Maryland School of Medicine , Baltimore , MD , USA
| | - Bruce D Greenwald
- c Department of Medicine , University of Maryland School of Medicine , Baltimore , MD , USA.,d Division of Gastroenterology and Hepatology , University of Maryland School of Medicine , Baltimore , MD , USA
| | - Marcelo B Sztein
- a Center for Vaccine Development and Global Health , University of Maryland School of Medicine , Baltimore , MD , USA.,b Department of Pediatrics , University of Maryland School of Medicine , Baltimore , MD , USA.,c Department of Medicine , University of Maryland School of Medicine , Baltimore , MD , USA
| |
Collapse
|
9
|
Heide J, Vaughan KC, Sette A, Jacobs T, Schulze Zur Wiesch J. Comprehensive Review of Human Plasmodium falciparum-Specific CD8+ T Cell Epitopes. Front Immunol 2019; 10:397. [PMID: 30949162 PMCID: PMC6438266 DOI: 10.3389/fimmu.2019.00397] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/15/2019] [Indexed: 12/16/2022] Open
Abstract
Control of malaria is an important global health issue and there is still an urgent need for the development of an effective prophylactic vaccine. Multiple studies have provided strong evidence that Plasmodium falciparum-specific MHC class I-restricted CD8+ T cells are important for sterile protection against Plasmodium falciparum infection. Here, we present an interactive epitope map of all P. falciparum-specific CD8+ T cell epitopes published to date, based on a comprehensive data base (IEDB), and literature search. The majority of the described P. falciparum-specific CD8+ T cells were directed against the antigens CSP, TRAP, AMA1, and LSA1. Notably, most of the epitopes were discovered in vaccine trials conducted with malaria-naïve volunteers. Only few immunological studies of P. falciparum-specific CD8+ T cell epitopes detected in patients suffering from acute malaria or in people living in malaria endemic areas have been published. Further detailed immunological mappings of P. falciparum-specific epitopes of a broader range of P. falciparum proteins in different settings and with different disease status are needed to gain a more comprehensive understanding of the role of CD8+ T cell responses for protection, and to better guide vaccine design and to study their efficacy.
Collapse
Affiliation(s)
- Janna Heide
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Kerrie C Vaughan
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States.,Department of Medicine, Division of Infectious Diseases, University of California, San Diego (UCSD), La Jolla, CA, United States
| | - Thomas Jacobs
- Protozoa Immunology, Bernhard-Nocht-Institute of Tropical Medicine, Hamburg, Germany
| | - Julian Schulze Zur Wiesch
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|
10
|
Booth JS, Patil SA, Goldberg E, Barnes RS, Greenwald BD, Sztein MB. Attenuated Oral Typhoid Vaccine Ty21a Elicits Lamina Propria and Intra-Epithelial Lymphocyte Tissue-Resident Effector Memory CD8 T Responses in the Human Terminal Ileum. Front Immunol 2019; 10:424. [PMID: 30923521 PMCID: PMC6426796 DOI: 10.3389/fimmu.2019.00424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 02/18/2019] [Indexed: 11/16/2022] Open
Abstract
Tissue-resident memory T cells (TRM) are newly defined memory T cells (TM) distinct from circulating TM subsets which have the potential to mount rapid protective immune responses at the site of infection. However, very limited information is available regarding the role and contribution of TRM in vaccine-mediated immune responses in humans at the site of infection. Here, we studied the role and contribution of tissue resident memory T cells (TRM) located in the terminal ileum (TI) (favored site of infection for S. Typhi) following oral Ty21a immunization in humans. We examined TI-lamina propria mononuclear cells (LPMC) and intra-epithelial lymphocytes (IEL) CD8+ TRM subsets obtained from healthy volunteers undergoing medically-indicated colonoscopies who were either immunized with Ty21a or unvaccinated. No significant differences in the frequencies of LPMC CD8+ TRM and CD8+CD69+CD103– T cells subsets were observed following Ty21a-immunization. However, LPMC CD8+ TRM exhibited significantly higher levels of cytokines (IFN-γ, IL-17A, and TNF-α) ex-vivo in Ty21a-vaccinated than in unvaccinated volunteers. LPMC CD8+ TRMS. Typhi-specific responses were evaluated using S. Typhi-infected targets and found to produce significantly higher levels of S. Typhi-specific IL-17A. In contrast, LPMC CD8+CD69+CD103- T cells produced significantly increased S. Typhi-specific levels of IFN-γ, IL-2, and IL-17A. Finally, we assessed CD8+ TRM in IEL and observed that the frequency of IEL CD8+ TRM is significantly lower following Ty21a immunization. However, ex-vivo IEL CD8+ TRM elicited by Ty21a immunization spontaneously produced significantly higher levels of cytokines (IFN-γ, IL-17A, IL-2, and TNF-α). This study provides the first demonstration of the effect of oral Ty21a vaccination on CD8+ TRM subsets (spontaneous and S. Typhi-specific) responses in the LPMC and IEL compartment of the human terminal ileum mucosa, contributing novel information to our understanding of the generation of mucosal immune responses following oral Ty21a-immunization.
Collapse
Affiliation(s)
- Jayaum S Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Seema A Patil
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States.,Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Eric Goldberg
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States.,Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Robin S Barnes
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Bruce D Greenwald
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States.,Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Marcelo B Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
11
|
Wahid R, Kotloff KL, Levine MM, Sztein MB. Cell mediated immune responses elicited in volunteers following immunization with candidate live oral Salmonella enterica serovar Paratyphi A attenuated vaccine strain CVD 1902. Clin Immunol 2019; 201:61-69. [PMID: 30849494 DOI: 10.1016/j.clim.2019.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/22/2019] [Accepted: 03/03/2019] [Indexed: 01/01/2023]
Abstract
The incidence of Salmonella enterica serovar Paratyphi A (PA) infection is on the rise and no licensed vaccines are available. We evaluated cell mediated immune (CMI) responses elicited in volunteers following immunization with a single dose (109 or 1010 cfu) of a novel attenuated live oral PA-vaccine strain (CVD 1902). Results showed increases in PA-lipopolysaccharide-specific IgG- and/or IgA B-memory cells and production of IFN-γ, TNF-α, IL-10, IL-23 and RANTES following stimulation with PA-antigens by peripheral blood mononuclear cells obtained 28 days post immunization. Flow cytometry assays revealed that vaccine elicited PA-specific CD8+ and/or CD4+ T effector/memory cells were predominantly multifunctional concomitantly expressing CD107a and/or producing IFN-γ, TNF-α and/or IL-2. Similar proportions of these MF cells expressed, or not, the gut homing marker integrin α4β7. The results suggest that immunization with CVD 1902 elicits CMI responses against PA supporting its further evaluation as a potential vaccine candidate against paratyphoid A fever.
Collapse
Affiliation(s)
- Rezwanul Wahid
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Karen L Kotloff
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Medicine, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Myron M Levine
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Medicine, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marcelo B Sztein
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Medicine, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
12
|
Rudolph ME, McArthur MA, Magder LS, Barnes RS, Chen WH, Sztein MB. Age-Associated Heterogeneity of Ty21a-Induced T Cell Responses to HLA-E Restricted Salmonella Typhi Antigen Presentation. Front Immunol 2019; 10:257. [PMID: 30886613 PMCID: PMC6409365 DOI: 10.3389/fimmu.2019.00257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 01/29/2019] [Indexed: 01/15/2023] Open
Abstract
Human-restricted Salmonella enterica serovar Typhi (S. Typhi) is the causative agent of typhoid fever—a life-threatening disease of great global health significance, particularly in the developing world. Ty21a is an oral live-attenuated vaccine that protects against the development of typhoid disease in part by inducing robust T cell responses, among which multifunctional CD8+ cytotoxic T lymphocytes (CTL) play an important role. Following Ty21a vaccination, a significant component of adult CTL have shown to be targeted to S. Typhi antigen presented by the conserved major histocompatibility complex (MHC) class Ib molecule, human leukocyte antigen-E (HLA-E). S. Typhi challenge studies have shown that baseline, multifunctional HLA-E responsive T cells are associated with protection from, and delayed onset of, typhoid disease. However, despite the overwhelming burden of typhoid fever in school-aged children, and due to limited availability of pediatric samples, incomplete information is available regarding these important HLA-E-restricted responses in children, even though studies have shown that younger children may be less likely to develop protective cell mediated immune (CMI) responses than adults following vaccination. To address this gap, we have studied this phenomenon in depth by using mass cytometry to analyze pediatric and adult T cell responses to HLA-E-restricted S. Typhi antigen presentation, before and after Ty21a vaccination. Herein, we show variable responses in all age strata following vaccination among T effector memory (TEM) and T effector memory CD45RA+ (TEMRA) cells based on conventional gating analysis. However, by utilizing the dimensionality reduction tool tSNE (t-distributed Stochastic Neighbor Embedding), we are able to identify diverse, highly multifunctional gut-homing- TEM and TEMRA clusters of cells which are more abundant in adult and older pediatric participants than in younger children. These findings highlight a potential age-associated maturation of otherwise conserved HLA-E restricted T cell responses. Such insights, coupled with the marked importance of multifunctional T cell responses to combat infection, may better inform future pediatric vaccination strategies against S. Typhi and other infectious diseases.
Collapse
Affiliation(s)
- Mark E Rudolph
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Molecular Microbiology and Immunology Department, University of Maryland Graduate Program in Life Sciences, Baltimore, MD, United States
| | - Monica A McArthur
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Laurence S Magder
- Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Robin S Barnes
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Wilbur H Chen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Marcelo B Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Molecular Microbiology and Immunology Department, University of Maryland Graduate Program in Life Sciences, Baltimore, MD, United States.,Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|