1
|
He R, He Z, Zhang T, Liu B, Gao M, Li N, Geng Q. HDAC3 in action: Expanding roles in inflammation and inflammatory diseases. Cell Prolif 2025; 58:e13731. [PMID: 39143689 PMCID: PMC11693555 DOI: 10.1111/cpr.13731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/14/2024] [Accepted: 07/27/2024] [Indexed: 08/16/2024] Open
Abstract
Inflammation serves as the foundation for numerous physiological and pathological processes, driving the onset and progression of various diseases. Histone deacetylase 3 (HDAC3), an essential chromatin-modifying protein within the histone deacetylase superfamily, exerts its transcriptional inhibitory role through enzymatic histone modification to uphold normal physiological function, growth, and development of the body. With both enzymatic and non-enzymatic activities, HDAC3 plays a pivotal role in regulating diverse transcription factors associated with inflammatory responses and related diseases. This review examines the involvement of HDAC3 in inflammatory responses while exploring its therapeutic potential as a target for treating inflammatory diseases, thereby offering valuable insights for clinical applications.
Collapse
Affiliation(s)
- Ruyuan He
- Department of Thoracic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Zhuokun He
- Department of Thoracic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Tianyu Zhang
- Department of Thoracic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Bohao Liu
- Department of Thoracic SurgeryJilin UniversityChangchunChina
| | - Minglang Gao
- Department of Thoracic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Ning Li
- Department of Thoracic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Qing Geng
- Department of Thoracic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
2
|
Gvozdenov Z, Peng AYT, Biswas A, Barcutean Z, Gestaut D, Frydman J, Struhl K, Freeman BC. TRiC/CCT Chaperonin Governs RNA Polymerase II Activity in the Nucleus to Support RNA Homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615188. [PMID: 39386699 PMCID: PMC11463447 DOI: 10.1101/2024.09.26.615188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The chaperonin TRiC/CCT is a large hetero-oligomeric ringed-structure that is essential in eukaryotes. While present in the nucleus, TRiC/CCT is typically considered to function in the cytosol where it mediates nascent polypeptide folding and the assembly/disassembly of protein complexes. Here, we investigated the nuclear role of TRiC/CCT. Inactivation of TRiC/CCT resulted in a significant increase in the production of nascent RNA leading to the accumulation of noncoding transcripts. The influence on transcription was not due to cytoplasmic TRiC/CCT-activities or other nuclear proteins as the effect was observed when TRiC/CCT was evicted from the nucleus and restricted to the cytoplasm. Rather, our data support a direct role of TRiC/CCT in regulating RNA polymerase II activity, as the chaperonin modulated nascent RNA production both in vivo and in vitro. Overall, our studies reveal a new avenue by which TRiC/CCT contributes to cell homeostasis by regulating the activity of nuclear RNA polymerase II.
Collapse
|
3
|
Asmamaw MD, He A, Zhang LR, Liu HM, Gao Y. Histone deacetylase complexes: Structure, regulation and function. Biochim Biophys Acta Rev Cancer 2024; 1879:189150. [PMID: 38971208 DOI: 10.1016/j.bbcan.2024.189150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/07/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Histone deacetylases (HDACs) are key epigenetic regulators, and transcriptional complexes with deacetylase function are among the epigenetic corepressor complexes in the nucleus that target the epigenome. HDAC-bearing corepressor complexes such as the Sin3 complex, NuRD complex, CoREST complex, and SMRT/NCoR complex are common in biological systems. These complexes activate the otherwise inactive HDACs in a solitary state. HDAC complexes play vital roles in the regulation of key biological processes such as transcription, replication, and DNA repair. Moreover, deregulated HDAC complex function is implicated in human diseases including cancer. Therapeutic strategies targeting HDAC complexes are being sought actively. Thus, illustration of the nature and composition of HDAC complexes is vital to understanding the molecular basis of their functions under physiologic and pathologic conditions, and for designing targeted therapies. This review presents key aspects of large multiprotein HDAC-bearing complexes including their structure, function, regulatory mechanisms, implication in disease development, and role in therapeutics.
Collapse
Affiliation(s)
- Moges Dessale Asmamaw
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory for Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Ang He
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory for Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| | - Ya Gao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| |
Collapse
|
4
|
Zhao F, Yao Z, Li Y, Zhao W, Sun Y, Yang X, Zhao Z, Huang B, Wang J, Li X, Chen A. Targeting the molecular chaperone CCT2 inhibits GBM progression by influencing KRAS stability. Cancer Lett 2024; 590:216844. [PMID: 38582394 DOI: 10.1016/j.canlet.2024.216844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/08/2024]
Abstract
Proper protein folding relies on the assistance of molecular chaperones post-translation. Dysfunctions in chaperones can cause diseases associated with protein misfolding, including cancer. While previous studies have identified CCT2 as a chaperone subunit and an autophagy receptor, its specific involvement in glioblastoma remains unknown. Here, we identified CCT2 promote glioblastoma progression. Using approaches of coimmunoprecipitation, mass spectrometry and surface plasmon resonance, we found CCT2 directly bound to KRAS leading to increased stability and upregulated downstream signaling of KRAS. Interestingly, we found that dihydroartemisinin, a derivative of artemisinin, exhibited therapeutic effects in a glioblastoma animal model. We further demonstrated direct binding between dihydroartemisinin and CCT2. Treatment with dihydroartemisinin resulted in decreased KRAS expression and downstream signaling. Highlighting the significance of CCT2, CCT2 overexpression rescued the inhibitory effect of dihydroartemisinin on glioblastoma. In conclusion, the study demonstrates that CCT2 promotes glioblastoma progression by directly binding to and enhancing the stability of the KRAS protein. Additionally, dihydroartemisinin inhibits glioblastoma by targeting the CCT2 and the following KRAS signaling. Our findings overcome the challenge posed by the undruggable nature of KRAS and offer potential therapeutic strategies for glioblastoma treatment.
Collapse
Affiliation(s)
- Feihu Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, PR China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250017, PR China
| | - Zhong Yao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, PR China
| | - Yaquan Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, PR China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250017, PR China
| | - Wenbo Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, PR China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250017, PR China
| | - Yanfei Sun
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, PR China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250017, PR China
| | - Xiaobing Yang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, PR China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250017, PR China
| | - Zhimin Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, PR China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250017, PR China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, PR China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250017, PR China
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, PR China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250017, PR China; Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, PR China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250017, PR China.
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, PR China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250017, PR China.
| |
Collapse
|
5
|
Que Y, Qiu Y, Ding Z, Zhang S, Wei R, Xia J, Lin Y. The role of molecular chaperone CCT/TRiC in translation elongation: A literature review. Heliyon 2024; 10:e29029. [PMID: 38596045 PMCID: PMC11002246 DOI: 10.1016/j.heliyon.2024.e29029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
Protein synthesis from mRNA is an energy-intensive and strictly controlled biological process. Translation elongation is a well-coordinated and multifactorial step in translation that ensures the accurate and efficient addition of amino acids to a growing nascent-peptide chain encoded in the sequence of messenger RNA (mRNA). Which undergoes dynamic regulation due to cellular state and environmental determinants. An expanding body of research points to translational elongation as a crucial process that controls the translation of an mRNA through multiple feedback mechanisms. Molecular chaperones are key players in protein homeostasis to keep the balance between protein synthesis, folding, assembly, and degradation. Chaperonin-containing tailless complex polypeptide 1 (CCT) or tailless complex polypeptide 1 ring complex (TRiC) is an essential eukaryotic molecular chaperone that plays an essential role in assisting cellular protein folding and suppressing protein aggregation. In this review, we give an overview of the factors that influence translation elongation, focusing on different functions of molecular chaperones in translation elongation, including how they affect translation rates and post-translational modifications. We also provide an understanding of the mechanisms by which the molecular chaperone CCT plays multiple roles in the elongation phase of eukaryotic protein synthesis.
Collapse
Affiliation(s)
- Yueyue Que
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yudan Qiu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zheyu Ding
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Shanshan Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Rong Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jianing Xia
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yingying Lin
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
6
|
Zeng C, Han S, Pan Y, Huang Z, Zhang B, Zhang B. Revisiting the chaperonin T-complex protein-1 ring complex in human health and disease: A proteostasis modulator and beyond. Clin Transl Med 2024; 14:e1592. [PMID: 38363102 PMCID: PMC10870801 DOI: 10.1002/ctm2.1592] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Disrupted protein homeostasis (proteostasis) has been demonstrated to facilitate the progression of various diseases. The cytosolic T-complex protein-1 ring complex (TRiC/CCT) was discovered to be a critical player in orchestrating proteostasis by folding eukaryotic proteins, guiding intracellular localisation and suppressing protein aggregation. Intensive investigations of TRiC/CCT in different fields have improved the understanding of its role and molecular mechanism in multiple physiological and pathological processes. MAIN BODY In this review, we embark on a journey through the dynamic protein folding cycle of TRiC/CCT, unraveling the intricate mechanisms of its substrate selection, recognition, and intriguing folding and assembly processes. In addition to discussing the critical role of TRiC/CCT in maintaining proteostasis, we detail its involvement in cell cycle regulation, apoptosis, autophagy, metabolic control, adaptive immunity and signal transduction processes. Furthermore, we meticulously catalogue a compendium of TRiC-associated diseases, such as neuropathies, cardiovascular diseases and various malignancies. Specifically, we report the roles and molecular mechanisms of TRiC/CCT in regulating cancer formation and progression. Finally, we discuss unresolved issues in TRiC/CCT research, highlighting the efforts required for translation to clinical applications, such as diagnosis and treatment. CONCLUSION This review aims to provide a comprehensive view of TRiC/CCT for researchers to inspire further investigations and explorations of potential translational possibilities.
Collapse
Affiliation(s)
- Chenglong Zeng
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Shenqi Han
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Yonglong Pan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Binhao Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Organ Transplantation, Ministry of EducationWuhanChina
- Key Laboratory of Organ Transplantation, National Health CommissionWuhanChina
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical SciencesWuhanChina
| |
Collapse
|
7
|
Xu W, Yao Z, Li Y, Wang K, Kong S, Wang Y, Xiang M, Zhu F, Wang F, Zhang H. Loss of PMFBP1 Disturbs Mouse Spermatogenesis by Downregulating HDAC3 Expression. J Assist Reprod Genet 2023; 40:1865-1879. [PMID: 37423931 PMCID: PMC10371971 DOI: 10.1007/s10815-023-02874-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023] Open
Abstract
PURPOSE Polyamine modulating factor 1 binding protein (PMFBP1) acts as a scaffold protein for the maintenance of sperm structure. The aim of this study was further to identify the new role and molecular mechanism of PMFBP1 during mouse spermatogenesis. METHODS AND RESULTS We identified a profile of proteins interacting with PMFBP1 by immunoprecipitation combined with mass spectrometry and demonstrated that class I histone deacetylases, particularly HDAC3 and chaperonin-containing TCP1 subunit 3 (CCT3), were potential interaction partners of PMFBP1 based on network analysis of protein-protein interactions and co-immunoprecipitation. Immunoblotting and immunochemistry assays showed that loss of Pmfbp1 would result in a decline in HDACs and change the proteomic profile of mouse testis, in which differently expressed proteins are associated with spermatogenesis and assembly of flagella, which was proved by proteomic analysis of testis tissue obtained from Pmfbp1-/- mice. After integrating with transcriptome data for Hdac3-/- and Sox30-/- round sperm obtained from a public database, RT-qPCR confirmed ring finger protein 151 (Rnf151) and ring finger protein 133 (Rnf133) were key downstream response factors of the Pmfbp1-Hdac axis affecting mouse spermatogenesis. CONCLUSION Taken together, this study indicates a previously unidentified molecular mechanism of PMFBP1 in spermatogenesis whereby PMFBP1 interacts with CCT3, affecting the expression of HDAC3, followed by the downregulation of RNF151 and RNF133, resulting in an abnormal phenotype of sperm beyond the headless sperm tails. These findings not only advance our understanding of the function of Pmfbp1 in mouse spermatogenesis but also provide a typical case for multi-omics analysis used in the functional annotation of specific genes.
Collapse
Affiliation(s)
- Weilong Xu
- School of Life Science, Anhui Medical University, Hefei, 230022, China
| | - Zhoujuan Yao
- School of Life Science, Anhui Medical University, Hefei, 230022, China
| | - Yunzhi Li
- School of Life Science, Anhui Medical University, Hefei, 230022, China
| | - Ke Wang
- School of Life Science, Anhui Medical University, Hefei, 230022, China
- Reproductive Medicine Center, Anhui No. 2 Provincial People's Hospital, Hefei, 230041, Anhui, China
| | - Shuai Kong
- School of Life Science, Anhui Medical University, Hefei, 230022, China
| | - Yu Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Mingfei Xiang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Fuxi Zhu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China.
| | - Fengsong Wang
- School of Life Science, Anhui Medical University, Hefei, 230022, China.
| | - Hui Zhang
- School of Life Science, Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
8
|
Lackner A, Müller M, Gamperl M, Stoeva D, Langmann O, Papuchova H, Roitinger E, Dürnberger G, Imre R, Mechtler K, Latos PA. The Fgf/Erf/NCoR1/2 repressive axis controls trophoblast cell fate. Nat Commun 2023; 14:2559. [PMID: 37137875 DOI: 10.1038/s41467-023-38101-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/15/2023] [Indexed: 05/05/2023] Open
Abstract
Placental development relies on coordinated cell fate decisions governed by signalling inputs. However, little is known about how signalling cues are transformed into repressive mechanisms triggering lineage-specific transcriptional signatures. Here, we demonstrate that upon inhibition of the Fgf/Erk pathway in mouse trophoblast stem cells (TSCs), the Ets2 repressor factor (Erf) interacts with the Nuclear Receptor Co-Repressor Complex 1 and 2 (NCoR1/2) and recruits it to key trophoblast genes. Genetic ablation of Erf or Tbl1x (a component of the NCoR1/2 complex) abrogates the Erf/NCoR1/2 interaction. This leads to mis-expression of Erf/NCoR1/2 target genes, resulting in a TSC differentiation defect. Mechanistically, Erf regulates expression of these genes by recruiting the NCoR1/2 complex and decommissioning their H3K27ac-dependent enhancers. Our findings uncover how the Fgf/Erf/NCoR1/2 repressive axis governs cell fate and placental development, providing a paradigm for Fgf-mediated transcriptional control.
Collapse
Affiliation(s)
- Andreas Lackner
- Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090, Vienna, Austria
| | - Michael Müller
- Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090, Vienna, Austria
| | - Magdalena Gamperl
- Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090, Vienna, Austria
| | - Delyana Stoeva
- Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090, Vienna, Austria
| | - Olivia Langmann
- Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090, Vienna, Austria
| | - Henrieta Papuchova
- Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090, Vienna, Austria
| | | | | | - Richard Imre
- Institute of Molecular Pathology, A-1030, Vienna, Austria
| | - Karl Mechtler
- Institute of Molecular Pathology, A-1030, Vienna, Austria
| | - Paulina A Latos
- Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090, Vienna, Austria.
| |
Collapse
|
9
|
He R, Liu B, Geng B, Li N, Geng Q. The role of HDAC3 and its inhibitors in regulation of oxidative stress and chronic diseases. Cell Death Discov 2023; 9:131. [PMID: 37072432 PMCID: PMC10113195 DOI: 10.1038/s41420-023-01399-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 04/20/2023] Open
Abstract
HDAC3 is a specific and crucial member of the HDAC family. It is required for embryonic growth, development, and physiological function. The regulation of oxidative stress is an important factor in intracellular homeostasis and signal transduction. Currently, HDAC3 has been found to regulate several oxidative stress-related processes and molecules dependent on its deacetylase and non-enzymatic activities. In this review, we comprehensively summarize the knowledge of the relationship of HDAC3 with mitochondria function and metabolism, ROS-produced enzymes, antioxidant enzymes, and oxidative stress-associated transcription factors. We also discuss the role of HDAC3 and its inhibitors in some chronic cardiovascular, kidney, and neurodegenerative diseases. Due to the simultaneous existence of enzyme activity and non-enzyme activity, HDAC3 and the development of its selective inhibitors still need further exploration in the future.
Collapse
Affiliation(s)
- Ruyuan He
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bohao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Boxin Geng
- School of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
10
|
Toscano-Marquez F, Romero Y, Espina-Ordoñez M, Cisneros J. Absence of HDAC3 by Matrix Stiffness Promotes Chromatin Remodeling and Fibroblast Activation in Idiopathic Pulmonary Fibrosis. Cells 2023; 12:cells12071020. [PMID: 37048093 PMCID: PMC10093275 DOI: 10.3390/cells12071020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/05/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and fatal disease characterized by progressive and irreversible lung scarring associated with persistent activation of fibroblasts. Epigenetics could integrate diverse microenvironmental signals, such as stiffness, to direct persistent fibroblast activation. Histone modifications by deacetylases (HDAC) may play an essential role in the gene expression changes involved in the pathological remodeling of the lung. Particularly, HDAC3 is crucial for maintaining chromatin and regulating gene expression, but little is known about its role in IPF. In the study, control and IPF-derived fibroblasts were used to determine the influence of HDAC3 on chromatin remodeling and gene expression associated with IPF signature. Additionally, the cells were grown on hydrogels to mimic the stiffness of a fibrotic lung. Our results showed a decreased HDAC3 in the nucleus of IPF fibroblasts, which correlates with changes in nucleus size and heterochromatin loss. The inhibition of HDAC3 with a pharmacological inhibitor causes hyperacetylation of H3K9 and provokes an increased expression of Col1A1, ACTA2, and p21. Comparable results were found in hydrogels, where matrix stiffness promotes the loss of nuclear HDAC3 and increases the profibrotic signature. Finally, latrunculin b was used to confirm that changes by stiffness depend on the mechanotransduction signals. Together, these results suggest that HDAC3 could be a link between epigenetic mechanisms and the fibrotic microenvironment.
Collapse
Affiliation(s)
- Fernanda Toscano-Marquez
- Laboratorio de Biopatología Pulmonar INER-Ciencias-UNAM, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Yair Romero
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Marco Espina-Ordoñez
- Laboratorio de Biopatología Pulmonar INER-Ciencias-UNAM, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - José Cisneros
- Laboratorio de Biopatología Pulmonar INER-Ciencias-UNAM, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico
- Correspondence:
| |
Collapse
|
11
|
Smith TM, Willardson BM. Mechanistic insights into protein folding by the eukaryotic chaperonin complex CCT. Biochem Soc Trans 2022; 50:1403-1414. [PMID: 36196890 PMCID: PMC9704529 DOI: 10.1042/bst20220591] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022]
Abstract
The cytosolic chaperonin CCT is indispensable to eukaryotic life, folding the cytoskeletal proteins actin and tubulin along with an estimated 10% of the remaining proteome. However, it also participates in human diseases such as cancer and viral infections, rendering it valuable as a potential therapeutic target. CCT consists of two stacked rings, each comprised of eight homologous but distinct subunits, that assists the folding of a remarkable substrate clientele that exhibits both broad diversity and specificity. Much of the work in recent years has been aimed at understanding the mechanisms of CCT substrate recognition and folding. These studies have revealed new binding sites and mechanisms by which CCT uses its distinctive subunit arrangement to fold structurally unrelated substrates. Here, we review recent structural insights into CCT-substrate interactions and place them into the broader context of CCT function and its implications for human health.
Collapse
Affiliation(s)
- Theresa M. Smith
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, U.S.A
| | - Barry M. Willardson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, U.S.A
| |
Collapse
|
12
|
Milan KL, Jayasuriya R, Harithpriya K, Anuradha M, Sarada DVL, Siti Rahayu N, Ramkumar KM. Vitamin D resistant genes - promising therapeutic targets of chronic diseases. Food Funct 2022; 13:7984-7998. [PMID: 35856462 DOI: 10.1039/d2fo00822j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vitamin D is an essential vitamin indispensable for calcium and phosphate metabolism, and its deficiency has been implicated in several extra-skeletal pathologies, including cancer and chronic kidney disease. Synthesized endogenously in the layers of the skin by the action of UV-B radiation, the vitamin maintains the integrity of the bones, teeth, and muscles and is involved in cell proliferation, differentiation, and immunity. The deficiency of Vit-D is increasing at an alarming rate, with nearly 32% of children and adults being either deficient or having insufficient levels. This has been attributed to Vit-D resistant genes that cause a reduction in circulatory Vit-D levels through a set of signaling pathways. CYP24A1, SMRT, and SNAIL are three genes responsible for Vit-D resistance as their activity either lowers the circulatory levels of Vit-D or reduces its availability in target tissues. The hydroxylase CYP24A1 inactivates analogs and prohormonal and/or hormonal forms of calcitriol. Elevation of the expression of CYP24A1 is the major cause of exacerbation of several diseases. CYP24A1 is rate-limiting, and its induction has been correlated with increased prognosis of diseases, while loss of function mutations cause hypersensitivity to Vit-D. The silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) and its corepressor are involved in the transcriptional repression of VDR-target genes. SNAIL1 (SNAIL), SNAIL2 (Slug), and SNAIL3 (Smuc) are involved in transcriptional repression and binding to histone deacetylases and methyltransferases in addition to recruiting polycomb repressive complexes to the target gene promoters. An inverse relationship between the levels of calcitriol and the epithelial-to-mesenchymal transition is reported. Studies have demonstrated a strong association between Vit-D deficiency and chronic diseases, including cardiovascular diseases, diabetes, cancers, autoimmune diseases, infectious diseases, etc. Vit-D resistant genes associated with the aforementioned chronic diseases could serve as potential therapeutic targets. This review focuses on the basic structures and mechanisms of the repression of Vit-D regulated genes and highlights the role of Vit-D resistant genes in chronic diseases.
Collapse
Affiliation(s)
- Kunnath Lakshmanan Milan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| | - Ravichandran Jayasuriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| | - Kannan Harithpriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| | - Murugesan Anuradha
- Department of Obstetrics & Gynaecology, SRM Medical College Hospital and Research Centre, Kattankulathur 603 203, Tamil Nadu, India
| | - Dronamraju V L Sarada
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| | - Nadhiroh Siti Rahayu
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Indonesia
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
13
|
Peng X, Chen G, Lv B, Lv J. MicroRNA-148a/152 cluster restrains tumor stem cell phenotype of colon cancer via modulating CCT6A. Anticancer Drugs 2022; 33:e610-e621. [PMID: 34486532 DOI: 10.1097/cad.0000000000001198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Accumulating evidence has presented that microRNA-148a/152 (miR-148a/152) acts as the tumor inhibitor in various cancers. In this article, we aimed to probe the inhibition of colon cancer stem cells by miR-148a/152 cluster via regulation of CCT6A. miR-148a/152 and CCT6A expression in colon cancer tissues and cells was detected. The relationship between miR-148a/152 expression and the clinicopathological features of patients with colon cancer was analyzed. Colon cancer stem cells (CD44+/CD133+) were selected and high/low expression of miR-148a/152 plasmids were synthesized to intervene CD44+/CD133+ colon cancer stem cells to investigate the function of miR-148a/152 in invasion, migration, proliferation, colony formation and apoptosis of cells. The growth status of nude mice was observed to verify the in-vitro results. The relationship between miR-148a/152 and CCT6A was analyzed. CCT6A upregulated and miR-148a/152 downregulated in colon cancer tissues. MiR-148a/152 expression was correlated with tumor node metastasis stage, lymph node metastasis and differentiation degree. Upregulated miR-148a/152 depressed CCT6A expression and restrained invasion and migration ability, colony formation and proliferation, induced cell apoptosis, depressed OCT4, Nanog and SOX2 mRNA expression of colon cancer stem cells, and descended tumor weight and volume in nude mice. CCT6A was a target gene of miR-148a/152. Overexpression of CCT6A protected colon cancer stem cells. Functional studies showed that upregulation of miR-148a/152 can suppress the migration, invasion and proliferation of CD44+/CD133+ colon cancer stem cells, advance its apoptosis via inhibition of CCT6A expression.
Collapse
Affiliation(s)
- Xin Peng
- Department of Anorectal Surgery, Xinxiang Central Hospital General Surgery III, Xinxiang City, Henan, China
| | | | | | | |
Collapse
|
14
|
Shaheen N, Akhtar J, Umer Z, Khan MHF, Bakhtiari MH, Saleem M, Faisal A, Tariq M. Polycomb Requires Chaperonin Containing TCP-1 Subunit 7 for Maintaining Gene Silencing in Drosophila. Front Cell Dev Biol 2021; 9:727972. [PMID: 34660585 PMCID: PMC8517254 DOI: 10.3389/fcell.2021.727972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
In metazoans, heritable states of cell type-specific gene expression patterns linked with specialization of various cell types constitute transcriptional cellular memory. Evolutionarily conserved Polycomb group (PcG) and trithorax group (trxG) proteins contribute to the transcriptional cellular memory by maintaining heritable patterns of repressed and active expression states, respectively. Although chromatin structure and modifications appear to play a fundamental role in maintenance of repression by PcG, the precise targeting mechanism and the specificity factors that bind PcG complexes to defined regions in chromosomes remain elusive. Here, we report a serendipitous discovery that uncovers an interplay between Polycomb (Pc) and chaperonin containing T-complex protein 1 (TCP-1) subunit 7 (CCT7) of TCP-1 ring complex (TRiC) chaperonin in Drosophila. CCT7 interacts with Pc at chromatin to maintain repressed states of homeotic and non-homeotic targets of PcG, which supports a strong genetic interaction observed between Pc and CCT7 mutants. Depletion of CCT7 results in dissociation of Pc from chromatin and redistribution of an abundant amount of Pc in cytoplasm. We propose that CCT7 is an important modulator of Pc, which helps Pc recruitment at chromatin, and compromising CCT7 can directly influence an evolutionary conserved epigenetic network that supervises the appropriate cellular identities during development and homeostasis of an organism.
Collapse
Affiliation(s)
- Najma Shaheen
- Epigenetics and Gene Regulation Laboratory, Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Jawad Akhtar
- Epigenetics and Gene Regulation Laboratory, Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Zain Umer
- Epigenetics and Gene Regulation Laboratory, Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Muhammad Haider Farooq Khan
- Epigenetics and Gene Regulation Laboratory, Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Mahnoor Hussain Bakhtiari
- Epigenetics and Gene Regulation Laboratory, Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Murtaza Saleem
- Department of Physics, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Amir Faisal
- Cancer Therapeutics Laboratory, Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Muhammad Tariq
- Epigenetics and Gene Regulation Laboratory, Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| |
Collapse
|
15
|
Li J, Guo C, Rood C, Zhang J. A C terminus-dependent conformational change is required for HDAC3 activation by nuclear receptor corepressors. J Biol Chem 2021; 297:101192. [PMID: 34520758 PMCID: PMC8502911 DOI: 10.1016/j.jbc.2021.101192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/30/2021] [Accepted: 09/10/2021] [Indexed: 11/21/2022] Open
Abstract
Histone deacetylase 3 (HDAC3) plays an important role in signal-dependent transcription and is dysregulated in diseases such as cancer. Previous studies have shown that the function of HDAC3 requires an activation step, which is mediated by the interactions of HDAC3 with the deacetylase-activation domain (DAD) of nuclear receptor corepressors and inositol tetraphosphate (IP4). However, the role of the unique HDAC3 C-terminal region in HDAC3 activation is elusive. Here multiple biochemical, structural, and functional studies show that HDAC3 activation requires a priming step mediated by the C terminus to remodel HDAC3 conformation. We show that multiple C-terminal mutations prevent HDAC3 activation by preventing this C terminus–dependent conformational change. Mechanistically, we demonstrate that the C terminus–mediated function in altering HDAC3 conformation is required for proper complex formation of HDAC3 with DAD and IP4 by allowing HDAC3 to undergo IP4-dependent interaction with DAD. Remarkably, we found that this C terminus function is conformation dependent, being necessary for HDAC3 activation prior to but not after the conformational change. Together, our study defines two functional states of free HDAC3, reveals the complete HDAC3 activation pathway, and links the C terminus function to the specific interaction between HDAC3 and DAD. These results also have implications in how signaling pathways may converge on the C terminus to regulate HDAC3 and suggest that the C terminus–mediated conformational change could represent a new target for inhibiting HDAC3 in diseases such as cancer.
Collapse
Affiliation(s)
- Jian Li
- Department of Pharmacology & Physiology, Saint Louis University School of Medicine, St Louis, Missouri, USA
| | - Chun Guo
- Department of Pharmacology & Physiology, Saint Louis University School of Medicine, St Louis, Missouri, USA
| | - Christopher Rood
- Department of Pharmacology & Physiology, Saint Louis University School of Medicine, St Louis, Missouri, USA
| | - Jinsong Zhang
- Department of Pharmacology & Physiology, Saint Louis University School of Medicine, St Louis, Missouri, USA.
| |
Collapse
|
16
|
Ni J, Ni A. Histone deacetylase inhibitor induced pVHL-independent degradation of HIF-1α and hierarchical quality control of pVHL via chaperone system. PLoS One 2021; 16:e0248019. [PMID: 34329303 PMCID: PMC8323912 DOI: 10.1371/journal.pone.0248019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
The mortality rate of ovarian cancer is increasing and the role of hypoxia inducible factor-1α (HIF-1α) in tumor progression has been confirmed. von Hippel-Lindau tumor suppressor protein (pVHL) binds HIF-1α and mediates proteasome degradation of HIF-1α. Besides, histone deacetylase inhibitor (HDACi) mitigates tumor growth via targeting HIF-1α, whereas underlying mechanism still requires investigation. In this research, we exposed ovarian cancer cell lines OV-90 and SKOV-3 to escalating concentrations of HDACi LBH589. As a result, cell viability was significantly suppressed and expression of HIF-1α was remarkably reduced along with decreased levels of signal molecules, including phosphoinositide 3-kinase (PI3K) and glycogen synthase kinase 3β (GSK3β) (P = 0.000). Interestingly, pVHL was expressed in a notably declining tendency (P = 0.000). Chaperone heat shock protein-70 (HSP70) was expressed in an ascending manner, whereas expression of chaperonin TCP-1α was reduced clearly (P = 0.000). Besides, co-inhibition of pVHL plus HDAC did not contribute to a remarkable difference in HIF-1α expression as compared with single HDAC inhibition. Furthermore, both cell lines were transfected with plasmids of VHL plus VHL binding protein-1 (VBP-1). Consequently, the expression of HIF-1α as well as lactate dehydrogenase-A (LDHA) was remarkably decreased (P = 0.000). These findings indicate HDACi may repress expression of HIF-1α via inhibiting PI3K and GSK3β and promote degradation of HIF-1α via HSP70, independent of pVHL. Additionally, a sophisticated network of HDAC and chaperones may involve in pVHL quality control.
Collapse
Affiliation(s)
- Jieming Ni
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Anping Ni
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
- * E-mail:
| |
Collapse
|
17
|
Ning L, Rui X, Bo W, Qing G. The critical roles of histone deacetylase 3 in the pathogenesis of solid organ injury. Cell Death Dis 2021; 12:734. [PMID: 34301918 PMCID: PMC8302660 DOI: 10.1038/s41419-021-04019-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
Histone deacetylase 3 (HDAC3) plays a crucial role in chromatin remodeling, which, in turn, regulates gene transcription. Hence, HDAC3 has been implicated in various diseases, including ischemic injury, fibrosis, neurodegeneration, infections, and inflammatory conditions. In addition, HDAC3 plays vital roles under physiological conditions by regulating circadian rhythms, metabolism, and development. In this review, we summarize the current knowledge of the physiological functions of HDAC3 and its role in organ injury. We also discuss the therapeutic value of HDAC3 in various diseases.
Collapse
Affiliation(s)
- Li Ning
- grid.412632.00000 0004 1758 2270Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Xiong Rui
- grid.412632.00000 0004 1758 2270Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Wang Bo
- grid.412632.00000 0004 1758 2270Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Geng Qing
- grid.412632.00000 0004 1758 2270Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| |
Collapse
|
18
|
Temiz E, Koyuncu İ, Sahin E. CCT3 suppression prompts apoptotic machinery through oxidative stress and energy deprivation in breast and prostate cancers. Free Radic Biol Med 2021; 165:88-99. [PMID: 33508424 DOI: 10.1016/j.freeradbiomed.2021.01.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/20/2022]
Abstract
Mediated by chaperon proteins, protein misfolding plays a crucial role in cancer pathogenesis. Chaperonin Containing TCP1 Subunit 3 (CCT3) is one of eight subunits forming eukaryotic chaperons that catalyzes correct folding of the proteins employed in cell division, proliferation, and apoptosis pathway. Moreover, CCT3 expression increases responsively with carcinogenesis. However, how CCT3 drives the cancerous process has not been documented. Here we probed the mechanistic and functional interactions between CCT3 and apoptotic pathways and cell stressors. First, we profiled CCT3 expression levels of different 16 cell lines and found that CCT3 expression levels of CRL-2329 and PC3 were significantly increased. Then, we suppressed CCT3 levels in CRL-2329 and PC3 lines by miR-24-3p, miR-128-3p, and miR-149-5p mimics, and measured apoptotic response of the cell lines to the knockdown of CCT3 by acridine orange/ethidium bromide and Annexin V/PI staining, cell-cycle and mitochondria membrane potential (MMP) analyses, intracellular reactive oxygen species (ROS) measurement and analysis of expression levels of the apoptotic genes. After having suppressed CCT3, the cell cycle was arrested in the G0/G1 phase, MMP was impaired, and the intracellular ROS level was increased. These signs of apoptotic flux were corroborated by morphological images, statistically enhanced expression levels of the apoptotic pathway modulators and intracellular free amino acids profile. The free amino acid profile, which is heavily implicated in energy metabolism and cell division, is fluctuated in the progress of canceration. Strikingly, suppressed CCT3 shifted intracellular levels of glutamine, beta-alanine, glycine, serin, asparagine and sarcosine, which are employed in energy metabolism. Consequently, miRNA-mediated CCT3 suppression spur apoptosis by unbalancing the homeostasis in intracellular ROS and the profile of free amino acids in energy metabolism. Taken together, we anticipate that miRNA-mediated CCT3 suppression might provide a "dual therapeutic strategy" through conventional cellular toxicity as well as energy withdrawal.
Collapse
Affiliation(s)
- Ebru Temiz
- Program of Medical Promotion and Marketing, Health Services Vocational School, Harran University, Sanliurfa, Turkey; Department of Medical Biology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - İsmail Koyuncu
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Emel Sahin
- Department of Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey.
| |
Collapse
|
19
|
Dong Y, Lu S, Wang Z, Liu L. CCTs as new biomarkers for the prognosis of head and neck squamous cancer. Open Med (Wars) 2020; 15:672-688. [PMID: 33313411 PMCID: PMC7706129 DOI: 10.1515/med-2020-0114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/30/2020] [Accepted: 06/18/2020] [Indexed: 12/23/2022] Open
Abstract
The chaperonin-containing T-complex protein 1 (CCT) subunits participate in diverse diseases. However, little is known about their expression and prognostic values in human head and neck squamous cancer (HNSC). This article aims to evaluate the effects of CCT subunits regarding their prognostic values for HNSC. We mined the transcriptional and survival data of CCTs in HNSC patients from online databases. A protein-protein interaction network was constructed and a functional enrichment analysis of target genes was performed. We observed that the mRNA expression levels of CCT1/2/3/4/5/6/7/8 were higher in HNSC tissues than in normal tissues. Survival analysis revealed that the high mRNA transcriptional levels of CCT3/4/5/6/7/8 were associated with a low overall survival. The expression levels of CCT4/7 were correlated with advanced tumor stage. And the overexpression of CCT4 was associated with higher N stage of patients. Validation of CCTs' differential expression and prognostic values was achieved by the Human Protein Atlas and GEO datasets. Mechanistic exploration of CCT subunits by the functional enrichment analysis suggests that these genes may influence the HNSC prognosis by regulating PI3K-Akt and other pathways. This study implies that CCT3/4/6/7/8 are promising biomarkers for the prognosis of HNSC.
Collapse
Affiliation(s)
- Yanbo Dong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, 95th Yong'an Road, Xicheng District, Beijing 100050, China
| | - Siyu Lu
- Department of Emergency, Aviation General Hospital, Beijing 100012, China
| | - Zhenxiao Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, 95th Yong'an Road, Xicheng District, Beijing 100050, China
| | - Liangfa Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, 95th Yong'an Road, Xicheng District, Beijing 100050, China
| |
Collapse
|
20
|
The TRiC/CCT Chaperonin and Its Role in Uncontrolled Proliferation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1243:21-40. [PMID: 32297209 DOI: 10.1007/978-3-030-40204-4_2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The cell cycle is a sophisticated space-time regulated mechanism where a wide variety of protein modules and complexes associate functioning in a concerted manner to regulate and transfer the genetic material to daughter cells. CCT (chaperonin containing TCP-1, also known as TRiC) is a molecular machine that forms a high molecular weight complex (1000 KDa). CCT is emerging as a key molecule during mitosis due to its essential role in the folding of many important proteins involved in cell division (Cdh1, Plk1, p27, Cdc20, PP2a regulatory subunits, tubulin or actin) suggesting its involvement in uncontrolled proliferation. The assembly is formed by eight different subunits called CCTα, β, γ, δ, ε, ζ, η and θ in mammals corresponding to CCT1-8 in yeast. CCT/TRiC is organized in a unique intra- and inter-ring arrangement. The chaperonin monomers share a common domain structure including an equatorial domain, which contains all the inter-ring contacts, most of the intra-ring contacts and the ATP binding site, whose binding and hydrolysis triggers the conformational changes that take place during the functional cycle. All chaperonins display an open substrate-receptive conformation, where the unfolded protein is recognized and trapped, and a closed conformation where the substrate is isolated from the bulk of the intracellular environment. In this chapter we discuss the complex set of intra- and inter-ring allosteric signals during chaperonin function.
Collapse
|
21
|
Emmett MJ, Lazar MA. Integrative regulation of physiology by histone deacetylase 3. Nat Rev Mol Cell Biol 2019; 20:102-115. [PMID: 30390028 DOI: 10.1038/s41580-018-0076-0] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cell-type-specific gene expression is physiologically modulated by the binding of transcription factors to genomic enhancer sequences, to which chromatin modifiers such as histone deacetylases (HDACs) are recruited. Drugs that inhibit HDACs are in clinical use but lack specificity. HDAC3 is a stoichiometric component of nuclear receptor co-repressor complexes whose enzymatic activity depends on this interaction. HDAC3 is required for many aspects of mammalian development and physiology, for example, for controlling metabolism and circadian rhythms. In this Review, we discuss the mechanisms by which HDAC3 regulates cell type-specific enhancers, the structure of HDAC3 and its function as part of nuclear receptor co-repressors, its enzymatic activity and its post-translational modifications. We then discuss the plethora of tissue-specific physiological functions of HDAC3.
Collapse
Affiliation(s)
- Matthew J Emmett
- Institute for Diabetes, Obesity, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. .,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Gvozdenov Z, Kolhe J, Freeman BC. The Nuclear and DNA-Associated Molecular Chaperone Network. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a034009. [PMID: 30745291 PMCID: PMC6771373 DOI: 10.1101/cshperspect.a034009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Maintenance of a healthy and functional proteome in all cellular compartments is critical to cell and organismal homeostasis. Yet, our understanding of the proteostasis process within the nucleus is limited. Here, we discuss the identified roles of the major molecular chaperones Hsp90, Hsp70, and Hsp60 with client proteins working in diverse DNA-associated pathways. The unique challenges facing proteins in the nucleus are considered as well as the conserved features of the molecular chaperone system in facilitating DNA-linked processes. As nuclear protein inclusions are a common feature of protein-aggregation diseases (e.g., neurodegeneration), a better understanding of nuclear proteostasis is warranted.
Collapse
Affiliation(s)
- Zlata Gvozdenov
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801.,Department Chemie, Technische Universität München, Garching 85748, Germany
| | - Janhavi Kolhe
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801
| | - Brian C Freeman
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
23
|
Mayer KS, Chen X, Sanders D, Chen J, Jiang J, Nguyen P, Scalf M, Smith LM, Zhong X. HDA9-PWR-HOS15 Is a Core Histone Deacetylase Complex Regulating Transcription and Development. PLANT PHYSIOLOGY 2019; 180:342-355. [PMID: 30765479 PMCID: PMC6501109 DOI: 10.1104/pp.18.01156] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/31/2019] [Indexed: 05/19/2023]
Abstract
Histone deacetylases remove acetyl groups from histone proteins and play important roles in many genomic processes. How histone deacetylases perform specialized molecular and biological functions in plants is poorly understood. Here, we identify HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 15 (HOS15) as a core member of the Arabidopsis (Arabidopsis thaliana) HISTONE DEACETYLASE9-POWERDRESS (HDA9-PWR) complex. HOS15 immunoprecipitates with both HDA9 and PWR. Mutation of HOS15 induces histone hyperacetylation and methylation changes similar to hda9 and pwr mutants. HOS15, HDA9, and PWR are coexpressed in all organs, and mutant combinations display remarkable phenotypic resemblance and nonadditivity for organogenesis and developmental phase transitions. Ninety percent of HOS15-regulated genes are also controlled by HDA9 and PWR HDA9 binds to and directly represses 92 genes, many of which are responsive to biotic and abiotic stimuli, including a family of ethylene response factor genes. Additionally, HOS15 regulates HDA9 nuclear accumulation and chromatin association. Collectively, this study establishes that HOS15 forms a core complex with HDA9 and PWR to control gene expression and plant development.
Collapse
Affiliation(s)
- Kevin S Mayer
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Xiangsong Chen
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Dean Sanders
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Jiani Chen
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Jianjun Jiang
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Phu Nguyen
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Xuehua Zhong
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
24
|
Yusof NA, Kamaruddin S, Abu Bakar FD, Mahadi NM, Abdul Murad AM. Structural and functional insights into TRiC chaperonin from a psychrophilic yeast, Glaciozyma antarctica. Cell Stress Chaperones 2019; 24:351-368. [PMID: 30649671 PMCID: PMC6439030 DOI: 10.1007/s12192-019-00969-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 12/29/2022] Open
Abstract
Studies on TCP1-1 ring complex (TRiC) chaperonin have shown its indispensable role in folding cytosolic proteins in eukaryotes. In a psychrophilic organism, extreme cold temperature creates a low-energy environment that potentially causes protein denaturation with loss of activity. We hypothesized that TRiC may undergo evolution in terms of its structural molecular adaptation in order to facilitate protein folding in low-energy environment. To test this hypothesis, we isolated G. antarctica TRiC (GaTRiC) and found that the expression of GaTRiC mRNA in G. antarctica was consistently expressed at all temperatures indicating their importance in cell regulation. Moreover, we showed GaTRiC has the ability of a chaperonin whereby denatured luciferase can be folded to the functional stage in its presence. Structurally, three categories of residue substitutions were found in α, β, and δ subunits: (i) bulky/polar side chains to alanine or valine, (ii) charged residues to alanine, and (iii) isoleucine to valine that would be expected to increase intramolecular flexibility within the GaTRiC. The residue substitutions observed in the built structures possibly affect the hydrophobic, hydrogen bonds, and ionic and aromatic interactions which lead to an increase in structural flexibility. Our structural and functional analysis explains some possible structural features which may contribute to cold adaptation of the psychrophilic TRiC folding chamber.
Collapse
Affiliation(s)
- Nur Athirah Yusof
- Biotechnology Research Institute, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia.
| | - Shazilah Kamaruddin
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Farah Diba Abu Bakar
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Nor Muhammad Mahadi
- Malaysia Genome Institute, Jalan Bangi, 43000, Kajang, Selangor Darul Ehsan, Malaysia
| | - Abdul Munir Abdul Murad
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| |
Collapse
|
25
|
Lagunas-Rangel FA, Bermúdez-Cruz RM. Epigenetics in the early divergent eukaryotic Giardia duodenalis: An update. Biochimie 2019; 156:123-128. [DOI: 10.1016/j.biochi.2018.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/12/2018] [Indexed: 11/29/2022]
|
26
|
Abstract
The eukaryotic group II chaperonin TRiC/CCT assists the folding of 10% of cytosolic proteins including many key structural and regulatory proteins. TRiC plays an essential role in maintaining protein homeostasis, and dysfunction of TRiC is closely related to human diseases including cancer and neurodegenerative diseases. TRiC consists of eight paralogous subunits, each of which plays a specific role in the assembly, allosteric cooperativity, and substrate recognition and folding of this complex macromolecular machine. TRiC-mediated substrate folding is regulated through its ATP-driven conformational changes. In recent years, progresses have been made on the structure, subunit arrangement, conformational cycle, and substrate folding of TRiC. Additionally, accumulating evidences also demonstrate the linkage between TRiC oligomer or monomer and diseases. In this review, we focus on the TRiC structure itself, TRiC assisted substrate folding, TRiC and disease, and the potential therapeutic application of TRiC in various diseases.
Collapse
Affiliation(s)
- Mingliang Jin
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Caixuan Liu
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Wenyu Han
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yao Cong
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
- Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
27
|
Żylicz JJ, Bousard A, Žumer K, Dossin F, Mohammad E, da Rocha ST, Schwalb B, Syx L, Dingli F, Loew D, Cramer P, Heard E. The Implication of Early Chromatin Changes in X Chromosome Inactivation. Cell 2018; 176:182-197.e23. [PMID: 30595450 PMCID: PMC6333919 DOI: 10.1016/j.cell.2018.11.041] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/20/2018] [Accepted: 11/26/2018] [Indexed: 12/24/2022]
Abstract
During development, the precise relationships between transcription and chromatin modifications often remain unclear. We use the X chromosome inactivation (XCI) paradigm to explore the implication of chromatin changes in gene silencing. Using female mouse embryonic stem cells, we initiate XCI by inducing Xist and then monitor the temporal changes in transcription and chromatin by allele-specific profiling. This reveals histone deacetylation and H2AK119 ubiquitination as the earliest chromatin alterations during XCI. We show that HDAC3 is pre-bound on the X chromosome and that, upon Xist coating, its activity is required for efficient gene silencing. We also reveal that first PRC1-associated H2AK119Ub and then PRC2-associated H3K27me3 accumulate initially at large intergenic domains that can then spread into genes only in the context of histone deacetylation and gene silencing. Our results reveal the hierarchy of chromatin events during the initiation of XCI and identify key roles for chromatin in the early steps of transcriptional silencing.
Collapse
Affiliation(s)
- Jan Jakub Żylicz
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, 75005 Paris, France; University of Cambridge, Department of Physiology, Development and Neuroscience, Cambridge CB2 3EG, UK
| | - Aurélie Bousard
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, 75005 Paris, France
| | - Kristina Žumer
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, 37077 Göttingen, Germany
| | - Francois Dossin
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, 75005 Paris, France
| | - Eusra Mohammad
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, 37077 Göttingen, Germany
| | - Simão Teixeira da Rocha
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Björn Schwalb
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, 37077 Göttingen, Germany
| | - Laurène Syx
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, 75005 Paris, France
| | - Florent Dingli
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Paris 75248 Cedex 05, France
| | - Damarys Loew
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Paris 75248 Cedex 05, France
| | - Patrick Cramer
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, 37077 Göttingen, Germany
| | - Edith Heard
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, 75005 Paris, France.
| |
Collapse
|
28
|
Polsinelli GA, Yu HD. Regulation of histone deacetylase 3 by metal cations and 10-hydroxy-2E-decenoic acid: Possible epigenetic mechanisms of queen-worker bee differentiation. PLoS One 2018; 13:e0204538. [PMID: 30532259 PMCID: PMC6287826 DOI: 10.1371/journal.pone.0204538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/28/2018] [Indexed: 11/19/2022] Open
Abstract
Histone deacetylases (HDACs) catalyze the hydrolysis of Ɛ-acetyl-lysine residues of histones. Removal of acetyl groups results in condensation of chromatin structure and repression of gene expression. Human class I, II, and IV HDACs are said to be zinc-dependent in that they require divalent zinc ions to catalyze the deacetylase reaction. HDACs are considered potential targets for the treatment of cancer due to their role in regulating transcription. They are also thought to play important roles in the development of organisms such as honey bees. The fatty acid, 10-hydroxy-2E-decenoic acid (10-HDA), which can account for up to 5% of royal jelly composition has been reported as an HDAC inhibitor. The crystal structure of the HDAC3:SMRT complex possesses two monovalent cations (MVCs) labeled as potassium with one MVC binding site near the active site Zn(II) and the second MVC binding site ≥20 Å from the active site Zn(II). We report here the inhibitory effects of excess Zn(II) on the catalytic activity of histone deacetylase 3 (HDAC3) bound to the deacetylase activating domain of nuclear receptor corepressor 2 (NCOR2). We also report the effects of varying concentrations of potassium ions where [K+] up to 10 mM increase HDAC3 activity with a maximum kcat/KM of approximately 80,000 M-1s-1 while [K+] above 10 mM inhibit HDAC3 activity. The inhibition constant (Ki) of 10-HDA was determined to be 5.32 mM. The regulatory effects of zinc, potassium, and 10-HDA concentration on HDAC3 activity suggest a strong correlation between these chemical species and epigenetic control over Apis mellifera caste differentiation among other control mechanisms.
Collapse
Affiliation(s)
- Gregory A. Polsinelli
- Department of Biology, Bethany College, Bethany, WV, United States of America
- * E-mail:
| | - Hongwei D. Yu
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States of America
| |
Collapse
|
29
|
The structure and evolution of eukaryotic chaperonin-containing TCP-1 and its mechanism that folds actin into a protein spring. Biochem J 2018; 475:3009-3034. [DOI: 10.1042/bcj20170378] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/16/2018] [Accepted: 08/28/2018] [Indexed: 12/15/2022]
Abstract
Actin is folded to its native state in eukaryotic cytosol by the sequential allosteric mechanism of the chaperonin-containing TCP-1 (CCT). The CCT machine is a double-ring ATPase built from eight related subunits, CCT1–CCT8. Non-native actin interacts with specific subunits and is annealed slowly through sequential binding and hydrolysis of ATP around and across the ring system. CCT releases a folded but soft ATP-G-actin monomer which is trapped 80 kJ/mol uphill on the folding energy surface by its ATP-Mg2+/Ca2+ clasp. The energy landscape can be re-explored in the actin filament, F-actin, because ATP hydrolysis produces dehydrated and more compact ADP-actin monomers which, upon application of force and strain, are opened and closed like the elements of a spring. Actin-based myosin motor systems underpin a multitude of force generation processes in cells and muscles. We propose that the water surface of F-actin acts as a low-binding energy, directional waveguide which is recognized specifically by the myosin lever-arm domain before the system engages to form the tight-binding actomyosin complex. Such a water-mediated recognition process between actin and myosin would enable symmetry breaking through fast, low energy initial binding events. The origin of chaperonins and the subsequent emergence of the CCT–actin system in LECA (last eukaryotic common ancestor) point to the critical role of CCT in facilitating phagocytosis during early eukaryotic evolution and the transition from the bacterial world. The coupling of CCT-folding fluxes to the cell cycle, cell size control networks and cancer are discussed together with directions for further research.
Collapse
|
30
|
Differential HDAC1/2 network analysis reveals a role for prefoldin/CCT in HDAC1/2 complex assembly. Sci Rep 2018; 8:13712. [PMID: 30209338 PMCID: PMC6135828 DOI: 10.1038/s41598-018-32009-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/24/2018] [Indexed: 01/27/2023] Open
Abstract
HDAC1 and HDAC2 are components of several corepressor complexes (NuRD, Sin3, CoREST and MiDAC) that regulate transcription by deacetylating histones resulting in a more compact chromatin environment. This limits access of transcriptional machinery to genes and silences transcription. While using an AP-MS approach to map HDAC1/2 protein interaction networks, we noticed that N-terminally tagged versions of HDAC1 and HDAC2 did not assemble into HDAC corepressor complexes as expected, but instead appeared to be stalled with components of the prefoldin-CCT chaperonin pathway. These N-terminally tagged HDACs were also catalytically inactive. In contrast to the N-terminally tagged HDACs, C-terminally tagged HDAC1 and HDAC2 captured complete histone deacetylase complexes and the purified proteins had deacetylation activity that could be inhibited by SAHA (Vorinostat), a Class I/II HDAC inhibitor. This tag-mediated reprogramming of the HDAC1/2 protein interaction network suggests a mechanism whereby HDAC1 is first loaded into the CCT complex by prefoldin to complete folding, and then assembled into active, functional HDAC complexes. Imaging revealed that the prefoldin subunit VBP1 colocalises with nuclear HDAC1, suggesting that delivery of HDAC1 to the CCT complex happens in the nucleus.
Collapse
|
31
|
Chen WB, Gao L, Wang J, Wang YG, Dong Z, Zhao J, Mi QS, Zhou L. Conditional ablation of HDAC3 in islet beta cells results in glucose intolerance and enhanced susceptibility to STZ-induced diabetes. Oncotarget 2018; 7:57485-57497. [PMID: 27542279 PMCID: PMC5295367 DOI: 10.18632/oncotarget.11295] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/10/2016] [Indexed: 12/18/2022] Open
Abstract
Histone deacetylases (HDACs) are enzymes that regulate gene expression by modifying chromatin structure through removal of acetyl groups from target histones or non-histone proteins. Previous in vitro studies suggest that HDACs may be novel pharmacological targets in immune-mediated islet β-cell destruction. However, the role of specific HDAC in islet β-cell development and function remain unclear. Here, we generated a conditional islet β-cells specific HDAC3 deletion mouse model to determine the consequences of HDAC3 depletion on islet β-cell differentiation, maintenance and function. Islet morphology, insulin secretion, glucose tolerance, and multiple low-dose streptozotocin (STZ)-induced diabetes incidence were evaluated and compared between HDAC3 knockout and wild type littermate controls. Mice with β-cell-specific HDAC3 deletion displayed decreased pancreatic insulin content, disrupted glucose-stimulated insulin secretion, with intermittent spontaneous diabetes and dramatically enhanced susceptibility to STZ-induced diabetes. Furthermore, islet β-cell line, MIN6 cells with siRNA-mediated HDAC3 silence, showed decreased insulin gene transcription, which was mediated, at least partially, through the upregulation of suppressors of cytokine signaling 3 (SOCS3). These results indicate the critical role of HDAC3 in normal β-cell differentiation, maintenance and function.
Collapse
Affiliation(s)
- Wen-Bin Chen
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, USA.,Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Department of Dermatology, Henry Ford Health System, Detroit, MI, USA
| | - Ling Gao
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Jie Wang
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, USA.,Department of Dermatology, Henry Ford Health System, Detroit, MI, USA.,Department of Endocrinology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan-Gang Wang
- Department of Endocrinology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Augusta University, GA, USA
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Qing-Sheng Mi
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, USA.,Department of Dermatology, Henry Ford Health System, Detroit, MI, USA.,Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Li Zhou
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, USA.,Department of Dermatology, Henry Ford Health System, Detroit, MI, USA.,Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| |
Collapse
|
32
|
Disrupting CCT-β : β-tubulin selectively kills CCT-β overexpressed cancer cells through MAPKs activation. Cell Death Dis 2017; 8:e3052. [PMID: 28906489 PMCID: PMC5636972 DOI: 10.1038/cddis.2017.425] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/12/2017] [Accepted: 07/24/2017] [Indexed: 12/21/2022]
Abstract
We have previously demonstrated the ability of I-Trp to disrupt the protein–protein interaction of β-tubulin with chaperonin-containing TCP-1β (CCT-β). This caused more severe apoptosis in multidrug-resistant MES-SA/Dx5, compared to MES-SA, due to its higher CCT-β overexpression. In this study, we screened a panel of cancer cell lines, finding CCT-β overexpression in the triple-negative breast cancer cell line MDA-MB-231, colorectal cancer cell lines Colo205 and HCT116, and a gastric cancer cell line MKN-45. Thus, I-Trp killed these cancers with sub- to low-μM EC50, whereas it was non-toxic to MCF-10A. We then synthesized analogs of I-Trp and evaluated their cytotoxicity. Furthermore, apoptotic mechanism investigations revealed the activation of both protein ubiquitination/degradation and ER-associated protein degradation pathways. These pathways proceeded through activation of MAPKs at the onset of CCT-β : β-tubulin complex disruption. We thus establish an effective strategy to treat CCT-β overexpressed cancers by disrupting the CCT-β : β-tubulin complex.
Collapse
|
33
|
Distinct roles for the deacetylase domain of HDAC3 in the hippocampus and medial prefrontal cortex in the formation and extinction of memory. Neurobiol Learn Mem 2017; 145:94-104. [PMID: 28890149 DOI: 10.1016/j.nlm.2017.09.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/29/2017] [Accepted: 09/06/2017] [Indexed: 12/22/2022]
Abstract
Histone deacetylases (HDACs) are chromatin modifying enzymes that have been implicated as powerful negative regulators of memory processes. HDAC3has been shown to play a pivotal role in long-term memory for object location as well as the extinction of cocaine-associated memory, but it is unclear whether this function depends on the deacetylase domain of HDAC3. Here, we tested whether the deacetylase domain of HDAC3has a role in object location memory formation as well as the formation and extinction of cocaine-associated memories. Using a deacetylase-dead point mutant of HDAC3, we found that selectively blocking HDAC3 deacetylase activity in the dorsal hippocampus enhanced long-term memory for object location, but had no effect on the formation of cocaine-associated memory. When this same point mutant virus of HDAC3 was infused into the prelimbic cortex, it failed to affect cocaine-associated memory formation. With regards to extinction, impairing the HDAC3 deacetylase domain in the infralimbic cortex had no effect on extinction, but a facilitated extinction effect was observed when the point mutant virus was delivered to the dorsal hippocampus. These results suggest that the deacetylase domain of HDAC3 plays a selective role in specific brain regions underlying long-term memory formation of object location as well as cocaine-associated memory formation and extinction.
Collapse
|
34
|
Histone deacetylases control module-specific phenotypic plasticity in beetle weapons. Proc Natl Acad Sci U S A 2016; 113:15042-15047. [PMID: 27956627 DOI: 10.1073/pnas.1615688114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nutritional conditions during early development influence the plastic expression of adult phenotypes. Among several body modules of animals, the development of sexually selected exaggerated traits exhibits striking nutrition sensitivity, resulting in positive allometry and hypervariability distinct from other traits. Using de novo RNA sequencing and comprehensive RNA interference (RNAi) for epigenetic modifying factors, we found that histone deacetylases (HDACs) and polycomb group (PcG) proteins preferentially influence the size of mandibles (exaggerated male weapon) and demonstrate nutrition-dependent hypervariability in the broad-horned flour beetle, Gnatocerus cornutus RNAi-mediated HDAC1 knockdown (KD) in G. cornutus larvae caused specific curtailment of mandibles in adults, whereas HDAC3 KD led to hypertrophy. Notably, these KDs conferred opposite effects on wing size, but little effect on the size of the core body and genital modules. PcG RNAi also reduced adult mandible size. These results suggest that the plastic development of exaggerated traits is controlled in a module-specific manner by HDACs.
Collapse
|
35
|
Farooq M, Wadaan MAM. Epigenetic targets in hepatocellular carcinoma cells: identification of chaperone protein complexes with histone deacetylases. Epigenomics 2016; 5:501-12. [PMID: 24059797 DOI: 10.2217/epi.13.45] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIMS The study was designed to find out the protein complex(s) associated with HDAC3 in liver cancer using a modified form of affinity purification coupled with a mass spectrometry technique in HepG2 cells. The organ-specific requirement for HDAC1 and HDAC3 during liver formation in zebrafish and their altered expression in liver cancer tissues indicates they are indispensible for hepato-organogenesis and hepatocarcinogenesis. However, how they exert their function is unknown. MATERIAL & METHODS HepG2 cells were transfected with either mock or construct-containing HDAC3 using a C-terminal strepIII-HA tag as bait. The bait proteins were purified by double affinity columns and were analyzed on a Thermo LTQ Orbitrap™ (Thermo Scientific, MA, USA) chromatography system. RESULTS Affinity purification coupled with mass spectrometry resulted in the identification of 24 putative binders of HDAC3 in HepG2 cells. The majority (83%) of these are novel interactions are reported for the first time in this study. CONCLUSION This is the first study reporting the affinity purification and identification of protein complexes with two closely related proteins in one cell line. The novel HDAC1 and HDAC3 complexes identified in HepG2 cells could serve as a platform for the design of future therapeutic medicine for the treatment of liver cancer.
Collapse
Affiliation(s)
- Muhammad Farooq
- Bioproducts Research Chair, College of Science, Department of Zoology, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | | |
Collapse
|
36
|
Völker-Albert MC, Pusch MC, Fedisch A, Schilcher P, Schmidt A, Imhof A. A Quantitative Proteomic Analysis of In Vitro Assembled Chromatin. Mol Cell Proteomics 2016; 15:945-59. [PMID: 26811354 PMCID: PMC4813712 DOI: 10.1074/mcp.m115.053553] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 01/17/2016] [Indexed: 12/30/2022] Open
Abstract
The structure of chromatin is critical for many aspects of cellular physiology and is considered to be the primary medium to store epigenetic information. It is defined by the histone molecules that constitute the nucleosome, the positioning of the nucleosomes along the DNA and the non-histone proteins that associate with it. These factors help to establish and maintain a largely DNA sequence-independent but surprisingly stable structure. Chromatin is extensively disassembled and reassembled during DNA replication, repair, recombination or transcription in order to allow the necessary factors to gain access to their substrate. Despite such constant interference with chromatin structure, the epigenetic information is generally well maintained. Surprisingly, the mechanisms that coordinate chromatin assembly and ensure proper assembly are not particularly well understood. Here, we use label free quantitative mass spectrometry to describe the kinetics of in vitro assembled chromatin supported by an embryo extract prepared from preblastoderm Drosophila melanogaster embryos. The use of a data independent acquisition method for proteome wide quantitation allows a time resolved comparison of in vitro chromatin assembly. A comparison of our in vitro data with proteomic studies of replicative chromatin assembly in vivo reveals an extensive overlap showing that the in vitro system can be used for investigating the kinetics of chromatin assembly in a proteome-wide manner.
Collapse
Affiliation(s)
- Moritz Carl Völker-Albert
- From the ‡BioMedical Center and Center for Integrated Protein Sciences Munich, Ludwig-Maximilians-University of Munich, Groβhaderner Straβe 9, 82152 Planegg-Martinsried, Germany
| | - Miriam Caroline Pusch
- From the ‡BioMedical Center and Center for Integrated Protein Sciences Munich, Ludwig-Maximilians-University of Munich, Groβhaderner Straβe 9, 82152 Planegg-Martinsried, Germany
| | - Andreas Fedisch
- From the ‡BioMedical Center and Center for Integrated Protein Sciences Munich, Ludwig-Maximilians-University of Munich, Groβhaderner Straβe 9, 82152 Planegg-Martinsried, Germany
| | - Pierre Schilcher
- §Zentrallabor für Proteinanalytik (Protein Analyis Unit), Ludwig-Maximilians-University of Munich, Groβhaderner Straβe 9, 82152 Planegg-Martinsried, Germany
| | - Andreas Schmidt
- §Zentrallabor für Proteinanalytik (Protein Analyis Unit), Ludwig-Maximilians-University of Munich, Groβhaderner Straβe 9, 82152 Planegg-Martinsried, Germany
| | - Axel Imhof
- From the ‡BioMedical Center and Center for Integrated Protein Sciences Munich, Ludwig-Maximilians-University of Munich, Groβhaderner Straβe 9, 82152 Planegg-Martinsried, Germany; §Zentrallabor für Proteinanalytik (Protein Analyis Unit), Ludwig-Maximilians-University of Munich, Groβhaderner Straβe 9, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
37
|
Tanaka H, Muto A, Shima H, Katoh Y, Sax N, Tajima S, Brydun A, Ikura T, Yoshizawa N, Masai H, Hoshikawa Y, Noda T, Nio M, Ochiai K, Igarashi K. Epigenetic Regulation of the Blimp-1 Gene (Prdm1) in B Cells Involves Bach2 and Histone Deacetylase 3. J Biol Chem 2016; 291:6316-30. [PMID: 26786103 DOI: 10.1074/jbc.m116.713842] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Indexed: 11/06/2022] Open
Abstract
B lymphocyte-induced maturation protein 1 (Blimp-1) encoded by Prdm1 is a master regulator of plasma cell differentiation. The transcription factor Bach2 represses Blimp-1 expression in B cells to stall terminal differentiation, by which it supports reactions such as class switch recombination of the antibody genes. We found that histones H3 and H4 around the Prdm1 intron 5 Maf recognition element were acetylated at higher levels in X63/0 plasma cells expressing Blimp-1 than in BAL17 mature B cells lacking its expression. Conversely, methylation of H3-K9 was lower in X63/0 cells than BAL17 cells. Purification of the Bach2 complex in BAL17 cells revealed its interaction with histone deacetylase 3 (HDAC3), nuclear co-repressors NCoR1 and NCoR2, transducin β-like 1X-linked (Tbl1x), and RAP1-interacting factor homolog (Rif1). Chromatin immunoprecipitation confirmed the binding of HDAC3 and Rif1 to the Prdm1 locus. Reduction of HDAC3 or NCoR1 expression by RNA interference in B cells resulted in an increased Prdm1 mRNA expression. Bach2 is suggested to cooperate with HDAC3-containing co-repressor complexes in B cells to regulate the stage-specific expression of Prdm1 by writing epigenetic modifications at the Prdm1 locus.
Collapse
Affiliation(s)
- Hiromu Tanaka
- From the Department of Biochemistry and the Department of Pediatric Surgery, Tohoku University Graduate School of Medicine, Seiryo-machi 1-1, Sendai 980-0874
| | - Akihiko Muto
- From the Department of Biochemistry and CREST, Japan Science and Technology Agency, Seiryo-machi 2-1, Sendai 980-8575
| | - Hiroki Shima
- From the Department of Biochemistry and CREST, Japan Science and Technology Agency, Seiryo-machi 2-1, Sendai 980-8575
| | - Yasutake Katoh
- From the Department of Biochemistry and Center for Regulatory Epigenome and Diseases,Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575
| | - Nicolas Sax
- From the Department of Biochemistry and CREST, Japan Science and Technology Agency, Seiryo-machi 2-1, Sendai 980-8575
| | | | | | - Tsuyoshi Ikura
- the Radiation Biology Center, Kyoto University, Kyoto 606-8501
| | - Naoko Yoshizawa
- Tokyo Metropolitan Institute of Medical Sciences, Kamikitazawa 1-6, Tokyo 156-8506, and
| | - Hisao Masai
- Tokyo Metropolitan Institute of Medical Sciences, Kamikitazawa 1-6, Tokyo 156-8506, and
| | - Yutaka Hoshikawa
- the Japanese Foundation for Cancer Research, Cancer Institute, Ariake 3-10-6, Tokyo 135-8550, Japan
| | - Tetsuo Noda
- the Japanese Foundation for Cancer Research, Cancer Institute, Ariake 3-10-6, Tokyo 135-8550, Japan
| | - Masaki Nio
- the Department of Pediatric Surgery, Tohoku University Graduate School of Medicine, Seiryo-machi 1-1, Sendai 980-0874
| | - Kyoko Ochiai
- From the Department of Biochemistry and CREST, Japan Science and Technology Agency, Seiryo-machi 2-1, Sendai 980-8575
| | - Kazuhiko Igarashi
- From the Department of Biochemistry and CREST, Japan Science and Technology Agency, Seiryo-machi 2-1, Sendai 980-8575, Center for Regulatory Epigenome and Diseases,Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575,
| |
Collapse
|
38
|
Mehdi S, Derkacheva M, Ramström M, Kralemann L, Bergquist J, Hennig L. The WD40 Domain Protein MSI1 Functions in a Histone Deacetylase Complex to Fine-Tune Abscisic Acid Signaling. THE PLANT CELL 2016; 28:42-54. [PMID: 26704384 PMCID: PMC4746680 DOI: 10.1105/tpc.15.00763] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/17/2015] [Accepted: 12/19/2015] [Indexed: 05/19/2023]
Abstract
MSI1 belongs to a family of histone binding WD40-repeat proteins. Arabidopsis thaliana contains five genes encoding MSI1-like proteins, but their functions in diverse chromatin-associated complexes are poorly understood. Here, we show that MSI1 is part of a histone deacetylase complex. We copurified HISTONE DEACETYLASE19 (HDA19) with MSI1 and transcriptional regulatory SIN3-like proteins and provide evidence that MSI1 and HDA19 associate into the same complex in vivo. These data suggest that MSI1, HDA19, and HISTONE DEACETYLATION COMPLEX1 protein form a core complex that can integrate various SIN3-like proteins. We found that reduction of MSI1 or HDA19 causes upregulation of abscisic acid (ABA) receptor genes and hypersensitivity of ABA-responsive genes. The MSI1-HDA19 complex fine-tunes ABA signaling by binding to the chromatin of ABA receptor genes and by maintaining low levels of acetylation of histone H3 at lysine 9, thereby affecting the expression levels of ABA receptor genes. Reduced MSI1 or HDA19 levels led to increased tolerance to salt stress corresponding to the increased ABA sensitivity of gene expression. Together, our results reveal the presence of an MSI1-HDA19 complex that fine-tunes ABA signaling in Arabidopsis.
Collapse
MESH Headings
- Abscisic Acid/metabolism
- Abscisic Acid/pharmacology
- Acetylation/drug effects
- Adaptation, Physiological/drug effects
- Adaptation, Physiological/genetics
- Arabidopsis/drug effects
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis Proteins/chemistry
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Chromatin/metabolism
- Gene Expression Regulation, Plant/drug effects
- Genes, Plant
- Histone Deacetylases/metabolism
- Histones/metabolism
- Lysine/metabolism
- Models, Biological
- Protein Binding/drug effects
- Protein Structure, Tertiary
- Protein Subunits/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Sodium Chloride/pharmacology
- Stress, Physiological/drug effects
- Stress, Physiological/genetics
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Saher Mehdi
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| | - Maria Derkacheva
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden Department of Biology and Zurich-Basel Plant Science Center, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Margareta Ramström
- Department of Chemistry, Analytical Chemistry and Science for Life Laboratory, Uppsala University, SE-75124 Uppsala, Sweden
| | - Lejon Kralemann
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| | - Jonas Bergquist
- Department of Chemistry, Analytical Chemistry and Science for Life Laboratory, Uppsala University, SE-75124 Uppsala, Sweden
| | - Lars Hennig
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| |
Collapse
|
39
|
Zhang Y, Wang Y, Wei Y, Wu J, Zhang P, Shen S, Saiyin H, Wumaier R, Yang X, Wang C, Yu L. Molecular chaperone CCT3 supports proper mitotic progression and cell proliferation in hepatocellular carcinoma cells. Cancer Lett 2015; 372:101-9. [PMID: 26739059 DOI: 10.1016/j.canlet.2015.12.029] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/16/2015] [Accepted: 12/19/2015] [Indexed: 10/22/2022]
Abstract
CCT3 was one of the subunits of molecular chaperone CCT/TRiC complex, which plays a central role in maintaining cellular proteostasis. We demonstrated that expressions of CCT3 mRNA and protein are highly up-regulated in hepatocellular carcinoma (HCC) tissues, and high level of CCT3 is correlated with poor survival in cancer patients. In HCC cell lines, CCT3 depletion suppresses cell proliferation by inducing mitotic arrest at prometaphase and apoptosis eventually. We also identified CCT3 as a novel regulator of spindle integrity and as a requirement for proper kinetochore-microtubule attachment during mitosis. Moreover, we found that CCT3 depletion sensitizes HCC cells to microtubule destabilizing drug Vincristine. Collectively, our study suggests that CCT3 is indispensible for HCC cell proliferation, and provides a potential drug target for treatment of HCC.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yuqi Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | - Youheng Wei
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | - Jiaxue Wu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | - Pingzhao Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | - Suqin Shen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | - Hexige Saiyin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | - Reziya Wumaier
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | - Xianmei Yang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | - Chenji Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China.
| | - Long Yu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China.
| |
Collapse
|
40
|
Bacon T, Seiler C, Wolny M, Hughes R, Watson P, Schwabe J, Grigg R, Peckham M. Histone deacetylase 3 indirectly modulates tubulin acetylation. Biochem J 2015; 472:367-77. [PMID: 26450925 PMCID: PMC4661566 DOI: 10.1042/bj20150660] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/08/2015] [Indexed: 01/04/2023]
Abstract
Histone deacetylase 3 (HDAC3), a member of the Class I subfamily of HDACs, is found in both the nucleus and the cytoplasm. Its roles in the nucleus have been well characterized, but its cytoplasmic roles are still not elucidated fully. We found that blocking HDAC3 activity using MI192, a compound specific for HDAC3, modulated tubulin acetylation in the human prostate cancer cell line PC3. A brief 1 h treatment of PC3 cells with MI192 significantly increased levels of tubulin acetylation and ablated the dynamic behaviour of microtubules in live cells. siRNA-mediated knockdown (KD) of HDAC3 in PC3 cells, significantly increased levels of tubulin acetylation, and overexpression reduced it. However, the active HDAC3-silencing mediator of retinoic and thyroid receptors (SMRT)-deacetylase-activating domain (DAD) complex did not directly deacetylate tubulin in vitro. These data suggest that HDAC3 indirectly modulates tubulin acetylation.
Collapse
Affiliation(s)
- Travis Bacon
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Caroline Seiler
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Marcin Wolny
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Ruth Hughes
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Peter Watson
- Department of Molecular and Cell Biology, Henry Wellcome Laboratories of Structural Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, U.K
| | - John Schwabe
- Department of Molecular and Cell Biology, Henry Wellcome Laboratories of Structural Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, U.K
| | - Ronald Grigg
- School of Chemistry, Faculty of Maths and Physical Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Michelle Peckham
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| |
Collapse
|
41
|
Roh SH, Kasembeli M, Bakthavatsalam D, Chiu W, Tweardy DJ. Contribution of the Type II Chaperonin, TRiC/CCT, to Oncogenesis. Int J Mol Sci 2015; 16:26706-20. [PMID: 26561808 PMCID: PMC4661834 DOI: 10.3390/ijms161125975] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/22/2015] [Accepted: 10/26/2015] [Indexed: 02/07/2023] Open
Abstract
The folding of newly synthesized proteins and the maintenance of pre-existing proteins are essential in sustaining a living cell. A network of molecular chaperones tightly guides the folding, intracellular localization, and proteolytic turnover of proteins. Many of the key regulators of cell growth and differentiation have been identified as clients of molecular chaperones, which implies that chaperones are potential mediators of oncogenesis. In this review, we briefly provide an overview of the role of chaperones, including HSP70 and HSP90, in cancer. We further summarize and highlight the emerging the role of chaperonin TRiC (T-complex protein-1 ring complex, also known as CCT) in the development and progression of cancer mediated through its critical interactions with oncogenic clients that modulate growth deregulation, apoptosis, and genome instability in cancer cells. Elucidation of how TRiC modulates the folding and function of oncogenic clients will provide strategies for developing novel cancer therapies.
Collapse
Affiliation(s)
- Soung-Hun Roh
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Moses Kasembeli
- Division of Internal Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | | | - Wah Chiu
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - David J Tweardy
- Division of Internal Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
42
|
Yu K, Gong J, Huang C, Huang H, Ye H, Wang G, Zeng C. Characterization of CCTα and evaluating its expression in the mud crab Scylla paramamosain when challenged by low temperatures alone and in combination with high and low salinity. Cell Stress Chaperones 2015; 20:853-64. [PMID: 26122201 PMCID: PMC4529868 DOI: 10.1007/s12192-015-0612-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/10/2015] [Accepted: 06/11/2015] [Indexed: 11/28/2022] Open
Abstract
Chaperonin containing the T-complex polypeptide-1 (CCT), which is known to be involved in intracellular assembly and folding of proteins, is a class of chaperonin omnipresent in all forms of life. Previous studies showed that CCT played a vital role in cold hardiness of various animals. In order to understand the response of the polypeptide complex to low temperature challenge and other environmental stresses, a subunit of CCT (CCTα) was cloned from the mud crab Scylla paramamosain by expressed sequence tag (EST) analysis and rapid amplification of cDNA ends (RACE). The full-length cDNA SpCCTα was of 1972 bp and contained a 1668 bp open reading frame (ORF) encoding a polypeptide of 555 amino acids with four conserved motifs. The messenger ribonucleic acid (mRNA) levels of SpCCTα in ten tissues of adult S. paramamosain was subsequently examined and the highest expression was found in muscle, followed by gill, hepatopancreas, thoracic ganglion, hemocyte, heart, cerebral ganglion, stomach, eyestalk ganglion, and epidermis. The expressions of SpCCTα in the muscle of sub-adult crabs (pre-acclimated to 28 °C) subjected to the challenges of both lower temperatures (25, 20, 15, and 10 °C) alone and low temperatures (15 and 10 °C) in combination with salinity of 35 and 10 were further investigated by fluorescent quantitative real-time PCR (qPCR). It was revealed that when exposed to lower temperatures alone, the mRNA transcripts of the SpCCTα gene in the muscle were generally induced for significant higher expression at 10 °C treatment than the 25, 20, and 15 °C treatments; meanwhile, exposure to 15 °C also frequently led to significantly higher expression than those at 20 and 25 °C. This finding indicated that the up-regulation of SpCCTα was closely related to the cold hardiness of S. paramamosain. The results of an additional experiment challenging the sub-adult crabs with various combinations of low temperatures with different salinity conditions generally demonstrated that at both 10 and 15 °C, the expression of SpCCTα under the high salinity of 35 was significantly lower than that at low salinity of 10, implying that the damages caused by low temperatures with high salinity were less than that under low salinity.
Collapse
Affiliation(s)
- Kun Yu
- />College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005 China
| | - Jie Gong
- />College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005 China
| | - Chencui Huang
- />College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005 China
| | - Huiyang Huang
- />College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005 China
- />College of Marine and Environmental Sciences, James Cook University, Townsville, Queensland 4811 Australia
| | - Haihui Ye
- />College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005 China
- />College of Marine and Environmental Sciences, James Cook University, Townsville, Queensland 4811 Australia
| | - Guizhong Wang
- />College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005 China
| | - Chaoshu Zeng
- />College of Marine and Environmental Sciences, James Cook University, Townsville, Queensland 4811 Australia
| |
Collapse
|
43
|
Cesa LC, Mapp AK, Gestwicki JE. Direct and Propagated Effects of Small Molecules on Protein-Protein Interaction Networks. Front Bioeng Biotechnol 2015; 3:119. [PMID: 26380257 PMCID: PMC4547496 DOI: 10.3389/fbioe.2015.00119] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/05/2015] [Indexed: 12/15/2022] Open
Abstract
Networks of protein–protein interactions (PPIs) link all aspects of cellular biology. Dysfunction in the assembly or dynamics of PPI networks is a hallmark of human disease, and as such, there is growing interest in the discovery of small molecules that either promote or inhibit PPIs. PPIs were once considered undruggable because of their relatively large buried surface areas and difficult topologies. Despite these challenges, recent advances in chemical screening methodologies, combined with improvements in structural and computational biology have made some of these targets more tractable. In this review, we highlight developments that have opened the door to potent chemical modulators. We focus on how allostery is being used to produce surprisingly robust changes in PPIs, even for the most challenging targets. We also discuss how interfering with one PPI can propagate changes through the broader web of interactions. Through this analysis, it is becoming clear that a combination of direct and propagated effects on PPI networks is ultimately how small molecules re-shape biology.
Collapse
Affiliation(s)
- Laura C Cesa
- Program in Chemical Biology, Life Sciences Institute, University of Michigan , Ann Arbor, MI , USA
| | - Anna K Mapp
- Program in Chemical Biology, Life Sciences Institute, University of Michigan , Ann Arbor, MI , USA ; Department of Chemistry, University of Michigan , Ann Arbor, MI , USA
| | - Jason E Gestwicki
- Program in Chemical Biology, Life Sciences Institute, University of Michigan , Ann Arbor, MI , USA ; Department of Pharmaceutical Chemistry, Institute for Neurodegenerative Diseases, University of California San Francisco , San Francisco, CA , USA
| |
Collapse
|
44
|
Up-Regulation of CCT8 Related to Neuronal Apoptosis after Traumatic Brain Injury in Adult Rats. Neurochem Res 2015; 40:1882-91. [DOI: 10.1007/s11064-015-1683-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 07/20/2015] [Accepted: 07/23/2015] [Indexed: 12/21/2022]
|
45
|
Qiu X, He X, Huang Q, Liu X, Sun G, Guo J, Yuan D, Yang L, Ban N, Fan S, Tao T, Wang D. Overexpression of CCT8 and its significance for tumor cell proliferation, migration and invasion in glioma. Pathol Res Pract 2015; 211:717-25. [PMID: 26304164 DOI: 10.1016/j.prp.2015.04.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 03/22/2015] [Accepted: 04/01/2015] [Indexed: 01/01/2023]
Abstract
Overexpression of chaperonin containing t-complex polypeptide 1 (TCP1), or CCT, has been reported in various classes of malignancies. However, little is known about the expression of t-complex protein subunits TCP1theta (CCT8) in gliomas. In this study, the expression of CCT8 protein was detected using blotting analysis and immunohistochemistry. CCT8 was found to be overexpressed in gliomas and to correlate with the WHO grade of gliomas. To further investigate the biological function of CCT8 in gliomas, CCT8-silenced U87 glioblastoma multiforme (GBM) and U251MG cells were constructed using a small interference RNA (siRNA) sequence. The knockdown effect of CCT8 on proliferation and invasion in these cells was analyzed using the CCK8, flow cytometry cycle, scratch, transwell invasion and fluorescence assays. Compared with the controls, the glioma cells expressing CCT8-siRNA exhibited a significantly decreased proliferation and invasion capacity, as well as a dysregulated cell cytoskeleton. This study showed that high CCT8 protein expression might be related to poor outcome of glioma, and that CCT8 regulates the proliferation and invasion of glioblastomas.
Collapse
Affiliation(s)
- Xiaojun Qiu
- Department of Neurosurgery, Affiliated Hospital, Nantong University, Nantong 226001, PR China
| | - Xiaojuan He
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Pathology, Medical College, Nantong University, Nantong 226001, PR China
| | - Qingfeng Huang
- Department of Neurosurgery, Affiliated Hospital, Nantong University, Nantong 226001, PR China
| | - Xianchen Liu
- Department of Neurosurgery, Affiliated Hospital, Nantong University, Nantong 226001, PR China
| | - Guan Sun
- Department of Neurosurgery, Affiliated Hospital, Nantong University, Nantong 226001, PR China
| | - Jun Guo
- Department of Neurosurgery, Affiliated Hospital, Nantong University, Nantong 226001, PR China
| | - Damin Yuan
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Pathology, Medical College, Nantong University, Nantong 226001, PR China
| | - Lixiang Yang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Pathology, Medical College, Nantong University, Nantong 226001, PR China
| | - Na Ban
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Pathology, Medical College, Nantong University, Nantong 226001, PR China
| | - Shaochen Fan
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Pathology, Medical College, Nantong University, Nantong 226001, PR China
| | - Tao Tao
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Pathology, Medical College, Nantong University, Nantong 226001, PR China.
| | - Donglin Wang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Pathology, Medical College, Nantong University, Nantong 226001, PR China.
| |
Collapse
|
46
|
Shim DH, Lim JW, Kim H. Differentially expressed proteins in nitric oxide-stimulated NIH/3T3 fibroblasts: implications for inhibiting cancer development. Yonsei Med J 2015; 56:563-71. [PMID: 25684010 PMCID: PMC4329373 DOI: 10.3349/ymj.2015.56.2.563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Recent evidence shows that nitric oxide (NO) may exhibit both pro-cancer and anti-cancer activities. The present study aimed to determine the differentially expressed proteins in NO-treated NIH/3T3 fibroblasts in order to investigate whether NO induces proteins with pro-cancer or anti-cancer effects. MATERIALS AND METHODS The cells were treated with 300 μM of an NO donor 3,3-bis-(aminoethyl)-1-hydroxy-2-oxo-1-triazene (NOC-18) for 12 h. The changed protein patterns, which were separated by two-dimensional electrophoresis using pH gradients of 4-7, were conclusively identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis of the peptide digests. RESULTS Seventeen differentially expressed proteins were identified in NOC-18-treated cells. Nine proteins [vinculin protein, keratin 19, ubiquitous tropomodulin, F-actin capping protein (α1 subunit), tropomyosin 3, 26S proteasome-associated pad1 homolog, T-complex protein 1 (ε subunit) N(G)-dimethylarginine dimethylaminohydrolase, and heat shock protein 90] were increased and eight proteins (heat shock protein 70, glucosidase II, lamin B1, calreticulin, nucleophosmin 1, microtubule-associated protein retinitis pigmentosa/end binding family member 1, 150 kD oxygen-regulated protein precursor, and heat shock 70-related protein albino or pale green 2) were decreased by NOC-18 in the cells. Thirteen proteins are related to the suppression of cancer cell proliferation, invasion, and metastasis while two proteins (heat shock protein 90 and N(G)-dimethylarginine dimethylaminohydrolase) are related to carcinogenesis. The functions of 150 kD oxygen-regulated protein precursor and T-complex protein 1 (ε subunit) are unknown in relation to carcinogenesis. CONCLUSION Most proteins differentially expressed by NOC-18 are involved in inhibiting cancer development.
Collapse
Affiliation(s)
- Dong Hwi Shim
- Department of Pharmacology, College of Medicine, Yonsei University, Seoul, Korea
| | - Joo Weon Lim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Korea.
| | - Hyeyoung Kim
- Department of Pharmacology, College of Medicine, Yonsei University, Seoul, Korea.; Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Korea.
| |
Collapse
|
47
|
Wong MM, Guo C, Zhang J. Nuclear receptor corepressor complexes in cancer: mechanism, function and regulation. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2014; 2:169-187. [PMID: 25374920 PMCID: PMC4219314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 10/01/2014] [Indexed: 06/04/2023]
Abstract
Nuclear receptor corepressor (NCoR) and silencing mediator for retinoid and thyroid hormone receptors (SMRT) function as corepressors for diverse transcription factors including nuclear receptors such as estrogen receptors and androgen receptors. Deregulated functions of NCoR and SMRT have been observed in many types of cancers and leukemias. NCoR and SMRT directly bind to transcription factors and nucleate the formation of stable complexes that include histone deacetylase 3, transducin b-like protein 1/TBL1-related protein 1, and G-protein pathway suppressor 2. These NCoR/SMRT-interacting proteins also show deregulated functions in cancers. In this review, we summarize the literature on the mechanism, regulation, and function of the core components of NCoR/SMRT complexes in the context of their involvement in cancers and leukemias. While the current studies support the view that the corepressors are promising targets for cancer treatment, elucidation of the mechanisms of corepressors involved in individual types of cancers is likely required for effective therapy.
Collapse
Affiliation(s)
- Madeline M Wong
- Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine St. Louis, Missouri 63104
| | - Chun Guo
- Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine St. Louis, Missouri 63104
| | - Jinsong Zhang
- Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine St. Louis, Missouri 63104
| |
Collapse
|
48
|
Farooq M, Hozzein WN, Elsayed EA, Taha NA, Wadaan MA. Identification of histone deacetylase 1 protein complexes in liver cancer cells. Asian Pac J Cancer Prev 2014; 14:915-21. [PMID: 23621261 DOI: 10.7314/apjcp.2013.14.2.915] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma is one of the leading causes of mortalities worldwide. The search for new therapeutic targets is of utmost importance for improved treatment. Altered expression of HDAC1 in hepatocellular carcinoma (HCC) and its requirement for liver formation in zebrafish, suggest that it may regulate key events in liver carcinogenesis and organogenesis. However, molecular mechanisms of HDAC1 action in liver carcinogenesis are largely unknown. The present study was conducted to identify HDAC1 interacting proteins in HepG2 cells using modified SH-double-affinity purification coupled with liquid mass spectrophotemetery. MATERIALS AND METHODS HepG2 cells were transfected with a construct containing HDAC1 with a C-terminal strepIII-HA tag as bait. Bait proteins were confirmed to be expressed in HepG2 cells by western blotting and purified by double affinity columns and protein complexes for analysis on a Thermo LTQ Orbitrap XL using a C18 nano flow ESI liquid chromatography system. RESULTS There were 27 proteins which showed novel interactions with HDAC1 identified only in this study, while 14 were among the established interactors. Various subunits of T complex proteins (TCP1) and prefoldin proteins (PFDN) were identified as interacting partners that showed high affinity with HDAC1 in HepG2 cells. CONCLUSIONS The double affinity purification method adopted in this study was very successful in terms of specificity and reproducibility. The novel HDAC1 complex identified in this study could be better therapeutic target for treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Muhammad Farooq
- Bioproducts Research Group, Department of Zoology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | | | | | | | | |
Collapse
|
49
|
Huang X, Wang X, Cheng C, Cai J, He S, Wang H, Liu F, Zhu C, Ding Z, Huang X, Zhang T, Zhang Y. Chaperonin containing TCP1, subunit 8 (CCT8) is upregulated in hepatocellular carcinoma and promotes HCC proliferation. APMIS 2014; 122:1070-9. [PMID: 24862099 DOI: 10.1111/apm.12258] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 01/02/2014] [Indexed: 12/25/2022]
Abstract
The development of molecular pathogenesis of hepatocellular carcinoma (HCC) is complex and involves alterations in the expression and conformation of assorted oncoproteins and tumor suppressors. Chaperonin containing TCP1 (CCT) is a cytolic molecular chaperone complex that is required for the correct folding of numerous proteins. In this study, we investigated a possible involvement of CCT subunit 8 (CCT8) in HCC development. Immunohistochemical analysis was performed in 102 human HCC samples. High CCT8 expression was detected in clinical HCC samples compared with adjacent noncancerous tissues. The univariate and multivariate survival analyses were also performed to determine their prognostic significance. Western blot confirmed the high expression of CCT8 in HCC compared with adjacent normal tissue. Moreover, the biological significance of the aberrant expression of CCT8 was investigated in HCC cell lines. Expression of CCT8 was correlated directly with the histologic grades and tumor size of HCC and high expression of CCT8 was associated with a poor prognosis. CCT8 depletion by siRNA inhibited cell proliferation and blocked S-phase entry in HuH7 cells. These results suggested that CCT8 might be an oncogene and participate in HCC cell proliferation. These findings provide a potential therapeutic strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Xiaodong Huang
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong University, Nantong
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Khabele D. The therapeutic potential of class I selective histone deacetylase inhibitors in ovarian cancer. Front Oncol 2014; 4:111. [PMID: 24904826 PMCID: PMC4033132 DOI: 10.3389/fonc.2014.00111] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/30/2014] [Indexed: 01/07/2023] Open
Abstract
Epithelial ovarian cancer remains the deadliest gynecologic malignancy. Despite advances in treatment, new approaches are needed. Histone deacetylases (HDACs) are a family of enzymes that regulate gene expression by removing acetyl groups from lysine residues on histones and non-histone proteins. Inhibition of HDACs with small molecules has led to the development of histone deacetylase inhibitors (HDACi) that are in clinical use, primarily for hematologic malignancies. Although clinical trials with HDACi as single agents in solid tumors have been disappointing, data from independent labs and recent work by our group show that class I selective HDACi have potent anti-tumor effects in pre-clinical models of ovarian cancer. This review summarizes the role of HDACs in ovarian cancer and the potential niche for selective class I HDACi, particularly HDAC3 in ovarian cancer therapy.
Collapse
Affiliation(s)
- Dineo Khabele
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Vanderbilt University , Nashville, TN , USA ; Vanderbilt-Ingram Cancer Center , Nashville, TN , USA
| |
Collapse
|