1
|
Yurieva O, Nikiforov V, Nikiforov V, O'Donnell M, Mustaev A. Insights into RNA polymerase catalysis and adaptive evolution gained from mutational analysis of a locus conferring rifampicin resistance. Nucleic Acids Res 2017; 45:11327-11340. [PMID: 29036608 PMCID: PMC5737076 DOI: 10.1093/nar/gkx813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 09/06/2017] [Indexed: 01/25/2023] Open
Abstract
S531 of Escherichia coli RNA polymerase (RNAP) β subunit is a part of RNA binding domain in transcription complex. While highly conserved, S531 is not involved in interactions within the transcription complex as suggested by X-ray analysis. To understand the basis for S531 conservation we performed systematic mutagenesis of this residue. We find that the most of the mutations significantly decreased initiation-to-elongation transition by RNAP. Surprisingly, some changes enhanced the production of full-size transcripts by suppressing abortive loss of short RNAs. S531-R increased transcript retention by establishing a salt bridge with RNA, thereby explaining the R substitution at the equivalent position in extremophilic organisms, in which short RNAs retention is likely to be an issue. Generally, the substitutions had the same effect on bacterial doubling time when measured at 20°. Raising growth temperature to 37° ablated the positive influence of some mutations on the growth rate in contrast to their in vitro action, reflecting secondary effects of cellular environment on transcription and complex involvement of 531 locus in the cell biology. The properties of generated RNAP variants revealed an RNA/protein interaction network that is crucial for transcription, thereby explaining the details of initiation-to-elongation transition on atomic level.
Collapse
Affiliation(s)
- Olga Yurieva
- Laboratory of DNA Replication, The Rockefeller University and Howard Hughes Medical Institute, New York, NY 10065 USA
| | - Vadim Nikiforov
- Laboratory of DNA Replication, The Rockefeller University and Howard Hughes Medical Institute, New York, NY 10065 USA
| | - Vadim Nikiforov
- Public Health Research Institute, Newark, NJ 07103, USA.,Department of Microbiology, Biochemistry & Molecular Genetics, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ 07103, USA.,Institute of molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Michael O'Donnell
- Laboratory of DNA Replication, The Rockefeller University and Howard Hughes Medical Institute, New York, NY 10065 USA
| | - Arkady Mustaev
- Public Health Research Institute, Newark, NJ 07103, USA.,Department of Microbiology, Biochemistry & Molecular Genetics, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ 07103, USA
| |
Collapse
|
2
|
Wells CD, Deighan P, Brigham M, Hochschild A. Nascent RNA length dictates opposing effects of NusA on antitermination. Nucleic Acids Res 2016; 44:5378-89. [PMID: 27025650 PMCID: PMC4914094 DOI: 10.1093/nar/gkw198] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/15/2016] [Indexed: 12/31/2022] Open
Abstract
The NusA protein is a universally conserved bacterial transcription elongation factor that binds RNA polymerase (RNAP). When functioning independently, NusA enhances intrinsic termination. Paradoxically, NusA stimulates the function of the N and Q antiterminator proteins of bacteriophage λ. The mechanistic basis for NusA's functional plasticity is poorly understood. Here we uncover an effect of nascent RNA length on the ability of NusA to collaborate with Q. Ordinarily, Q engages RNAP during early elongation when it is paused at a specific site just downstream of the phage late-gene promoter. NusA facilitates this engagement process and both proteins remain associated with the transcription elongation complex (TEC) as it escapes the pause and transcribes the late genes. We show that the λ-related phage 82 Q protein (82Q) can also engage RNAP that is paused at a promoter-distal position and thus contains a nascent RNA longer than that associated with the natively positioned TEC. However, the effect of NusA in this context is antagonistic rather than stimulatory. Moreover, cleaving the long RNA associated with the promoter-distal TEC restores NusA's stimulatory effect. Our findings reveal a critical role for nascent RNA in modulating NusA's effect on 82Q-mediated antitermination, with implications for understanding NusA's functional plasticity.
Collapse
Affiliation(s)
| | - Padraig Deighan
- Department of Microbiology and Immunobiology, Boston, MA 02115, USA Department of Biology, Emmanuel College, Boston, MA 02115, USA
| | | | - Ann Hochschild
- Department of Microbiology and Immunobiology, Boston, MA 02115, USA
| |
Collapse
|
3
|
Mishra S, Sen R. N protein from lambdoid phages transforms NusA into an antiterminator by modulating NusA-RNA polymerase flap domain interactions. Nucleic Acids Res 2015; 43:5744-58. [PMID: 25990722 PMCID: PMC4499122 DOI: 10.1093/nar/gkv479] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/29/2015] [Indexed: 11/23/2022] Open
Abstract
Interaction of the lambdoid phage N protein with the bacterial transcription elongation factor NusA is the key component in the process of transcription antitermination. A convex surface of E. coli NusA-NTD, located opposite to its RNA polymerase-binding domain (the β-flap domain), directly interacts with N in the antitermination complex. We hypothesized that this N-NusA interaction induces allosteric effects on the NusA-RNAP interaction leading to transformation of NusA into a facilitator of the antitermination process. Here we showed that mutations in β-flap domain specifically defective for N antitermination exhibited altered NusA-nascent RNA interaction and have widened RNA exit channel indicating an intricate role of flap domain in the antitermination. The presence of N reoriented the RNAP binding surface of NusA-NTD, which changed its interaction pattern with the flap domain. These changes caused significant spatial rearrangement of the β-flap as well as the β′ dock domains to form a more constricted RNA exit channel in the N-modified elongation complex (EC), which might play key role in converting NusA into a facilitator of the N antitermination. We propose that in addition to affecting the RNA exit channel and the active center of the EC, β-flap domain rearrangement is also a mechanistic component in the N antitermination process.
Collapse
Affiliation(s)
- Saurabh Mishra
- Laboratory of Transcription, Center for DNA Fingerprinting and Diagnostics, Tuljaguda Complex, 4-1-714 Mozamjahi Road, Nampally, Hyderabad 500 001, India Graduate Studies, Manipal University, India
| | - Ranjan Sen
- Laboratory of Transcription, Center for DNA Fingerprinting and Diagnostics, Tuljaguda Complex, 4-1-714 Mozamjahi Road, Nampally, Hyderabad 500 001, India
| |
Collapse
|
4
|
Perdue SA, Roberts JW. A backtrack-inducing sequence is an essential component of Escherichia coli σ(70)-dependent promoter-proximal pausing. Mol Microbiol 2010; 78:636-50. [PMID: 21382107 DOI: 10.1111/j.1365-2958.2010.07347.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
RNA polymerase of both bacteria and eukaryotes can stall or pause within tens of base pairs of its initiation site at the promoter, a state that may reflect important regulatory events in early transcription. In the bacterial model system, the σ(70) initiation factor stabilizes such pauses by binding a downstream repeat of a promoter segment, especially the '-10' promoter element. We first show here that the '-35' promoter element also can stabilize promoter-proximal pausing, through interaction with σ(70) region 4. We further show that an essential element of either type of pause is a sequence just upstream of the site of pausing that stabilizes RNA polymerase backtracking. Although the pause is not intrinsically backtracked, we suggest that the same sequence element is required both to stabilize the paused state and to potentiate backtracking.
Collapse
Affiliation(s)
- Sarah A Perdue
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
5
|
Roles for the transcription elongation factor NusA in both DNA repair and damage tolerance pathways in Escherichia coli. Proc Natl Acad Sci U S A 2010; 107:15517-22. [PMID: 20696893 DOI: 10.1073/pnas.1005203107] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report observations suggesting that the transcription elongation factor NusA promotes a previously unrecognized class of transcription-coupled repair (TCR) in addition to its previously proposed role in recruiting translesion synthesis (TLS) DNA polymerases to gaps encountered during transcription. Earlier, we reported that NusA physically and genetically interacts with the TLS DNA polymerase DinB (DNA pol IV). We find that Escherichia coli nusA11(ts) mutant strains, at the permissive temperature, are highly sensitive to nitrofurazone (NFZ) and 4-nitroquinolone-1-oxide but not to UV radiation. Gene expression profiling suggests that this sensitivity is unlikely to be due to an indirect effect on gene expression affecting a known DNA repair or damage tolerance pathway. We demonstrate that an N(2)-furfuryl-dG (N(2)-f-dG) lesion, a structural analog of the principal lesion generated by NFZ, blocks transcription by E. coli RNA polymerase (RNAP) when present in the transcribed strand, but not when present in the nontranscribed strand. Our genetic analysis suggests that NusA participates in a nucleotide excision repair (NER)-dependent process to promote NFZ resistance. We provide evidence that transcription plays a role in the repair of NFZ-induced lesions through the isolation of RNAP mutants that display altered ability to survive NFZ exposure. We propose that NusA participates in an alternative class of TCR involved in the identification and removal of a class of lesion, such as the N(2)-f-dG lesion, which are accurately and efficiently bypassed by DinB in addition to recruiting DinB for TLS at gaps encountered by RNAP.
Collapse
|
6
|
Abstract
Since the discovery of the first signal-sensing RNA structure by Grundy and Henkin in 1993, the list of cis-acting riboregulators has grown dramatically. Riboswitches fold into elaborate structures and respond to binding of small metabolites by altering the folding pattern of the surrounding transcript, thereby altering the gene expression programme. Riboswitches that use short-range mechanisms to control transcription attenuation and translation initiation and mediate mRNA cleavage have been characterized in many Gram-positive bacteria. Their action typically relies on alternative RNA structures that are differentially stabilized by the ligand binding. In this issue of Molecular Microbiology, Irnov and Winkler describe a novel Bacillus subtilis riboregulator called EAR that shares structural complexity with riboswitches but possesses a unique mechanism of action. EAR increases expression of exopolysaccharide genes and biofilm formation, and appears to act as a processive, long-range antiterminator, the first such example outside of Escherichia coli. While it is unclear whether EAR senses a biofilm-inducing signal, the results suggest that its action depends on yet unidentified auxiliary factors. Interestingly, efficient capsule biogenesis in E. coli and Bacteroides fragilis also depends on processive antiterminators but utilizes the protein-based mechanisms instead.
Collapse
Affiliation(s)
- Irina Artsimovitch
- Department of Microbiology and The RNA Group, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
7
|
Koitabashi T, Cui S, Kamruzzaman M, Nishibuchi M. Isolation and characterization of the Shiga toxin gene (stx)-bearing Escherichia coli O157 and non-O157 from retail meats in Shandong Province, China, and characterization of the O157-derived stx2 phages. J Food Prot 2008; 71:706-13. [PMID: 18468023 DOI: 10.4315/0362-028x-71.4.706] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Infection by Shiga toxin (Stx)-producing Escherichia coli of non-O157 and O157 serotypes are rare in China, but infection by O157 serotype was found in Shandong Province and three other provinces in China. To understand the reason for these rare infections and to determine the safety of retail meats in Shandong Province, we examined the distribution of Shiga toxin gene (stx)-bearing E. coli in retail meats and characterized the isolated stx-bearing strains. We used hybridization with DNA probes and isolated stx1- and/or stx2-positive E. coli from 31 (58%) of 53 retail meat samples, with beef showing the highest frequency (68%). Of 42 stx-positive isolates, none belonged to O157. Using the O157-specific immunomagnetic bead technique, we isolated E. coli O157 carrying the eae and stx2 genes from eight beef samples (26%). These strains produced little or no Stx2 and carried a unique q gene. Replication of the stx2 phages was detected in these strains, whereas stx2 phage replication was not detected in our previous study in which we examined similar stx2-bearing E. coli O157 strains from other Asian countries. Analysis of E. coli C600 lysogenized with the stx2 phages found in this study suggests that the lack of Stx2 production is due to changes in non-q gene region(s) of the phage genome or chromosomal mutation(s) in the host. Our data and reports by other workers suggest it is necessary to determine if various stx2-bearing E. coli O157 strains producing Stx2 to varying degrees are distributed in meats in various locations in China.
Collapse
Affiliation(s)
- Tsutomu Koitabashi
- Qingdao Chengyu Research Institute of Food-Safety, Chengyang District, Qingdao, Shandong Province, China
| | | | | | | |
Collapse
|
8
|
Abstract
The elongation phase of transcription by RNA polymerase is highly regulated and modulated. Both general and operon-specific elongation factors determine the local rate and extent of transcription to coordinate the appearance of transcript with its use as a messenger or functional ribonucleoprotein or regulatory element, as well as to provide operon-specific gene regulation.
Collapse
Affiliation(s)
- Jeffrey W Roberts
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA.
| | | | | |
Collapse
|
9
|
Shankar S, Hatoum A, Roberts JW. A transcription antiterminator constructs a NusA-dependent shield to the emerging transcript. Mol Cell 2007; 27:914-27. [PMID: 17889665 PMCID: PMC2075354 DOI: 10.1016/j.molcel.2007.07.025] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 06/15/2007] [Accepted: 07/24/2007] [Indexed: 10/22/2022]
Abstract
The universal bacterial transcription elongation factor NusA mediates elongation activities of RNA polymerase. By itself, NusA induces transcription pausing and facilitates intrinsic termination, but NusA also is a cofactor of antiterminators that antagonize pausing and prevent termination. We show that NusA is required for lambda-related phage 82 antiterminator Q(82) to construct a stable complex in which RNA-based termination mechanisms have restricted access to the emerging transcript; this result suggests a locale for both Q(82) and NusA near the beta flap domain of RNA polymerase. Furthermore, as NusA is not required for the antipausing activity of Q(82) in vitro, we distinguish two distinct activities of antiterminators, namely antipausing and RNA occlusion, and discuss their roles in Q(82) function.
Collapse
Affiliation(s)
- Smita Shankar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
10
|
Svetlov V, Belogurov GA, Shabrova E, Vassylyev DG, Artsimovitch I. Allosteric control of the RNA polymerase by the elongation factor RfaH. Nucleic Acids Res 2007; 35:5694-705. [PMID: 17711918 PMCID: PMC2034486 DOI: 10.1093/nar/gkm600] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Efficient transcription of long polycistronic operons in bacteria frequently relies on accessory proteins but their molecular mechanisms remain obscure. RfaH is a cellular elongation factor that acts as a polarity suppressor by increasing RNA polymerase (RNAP) processivity. In this work, we provide evidence that RfaH acts by reducing transcriptional pausing at certain positions rather than by accelerating RNAP at all sites. We show that ‘fast’ RNAP variants are characterized by pause-free RNA chain elongation and are resistant to RfaH action. Similarly, the wild-type RNAP is insensitive to RfaH in the absence of pauses. In contrast, those enzymes that may be prone to falling into a paused state are hypersensitive to RfaH. RfaH inhibits pyrophosphorolysis of the nascent RNA and reduces the apparent Michaelis–Menten constant for nucleotides, suggesting that it stabilizes the post-translocated, active RNAP state. Given that the RfaH-binding site is located 75 Å away from the RNAP catalytic center, these results strongly indicate that RfaH acts allosterically. We argue that despite the apparent differences in the nucleic acid targets, the time of recruitment and the binding sites on RNAP, unrelated antiterminators (such as RfaH and λQ) utilize common strategies during both recruitment and anti-pausing modification of the transcription complex.
Collapse
Affiliation(s)
- Vladimir Svetlov
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210 and Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 720 20th Street South, Birmingham, AL 35294, USA
| | - Georgiy A. Belogurov
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210 and Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 720 20th Street South, Birmingham, AL 35294, USA
| | - Elena Shabrova
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210 and Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 720 20th Street South, Birmingham, AL 35294, USA
| | - Dmitry G. Vassylyev
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210 and Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 720 20th Street South, Birmingham, AL 35294, USA
| | - Irina Artsimovitch
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210 and Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 720 20th Street South, Birmingham, AL 35294, USA
- *To whom correspondence should be addressed. 614 292 6777614 292 8120
| |
Collapse
|
11
|
Deighan P, Hochschild A. The bacteriophage ?Q anti-terminator protein regulates late gene expression as a stable component of the transcription elongation complex. Mol Microbiol 2007; 63:911-20. [PMID: 17302807 DOI: 10.1111/j.1365-2958.2006.05563.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Q protein of bacteriophage lambda (lambdaQ) is a transcription anti-terminator required for the expression of the phage's late genes under the control of promoter P(R'). To effect terminator read-through, lambdaQ must gain access to RNA polymerase (RNAP) via a promoter-restricted pathway. In particular, lambdaQ modifies RNAP by binding a specific DNA site embedded in P(R') and interacting with RNAP in the context of a specific paused early elongation complex. The resultant lambdaQ-modified transcription elongation complex is competent to read through downstream termination signals. Here we use a chromatin-immunoprecipitation assay to test the hypothesis that lambdaQ functions as a stable component of the transcription elongation complex. Our results indicate that, in vivo, the lambdaQ-modified transcription elongation complex contains Q as a stably associated subunit. Furthermore, we find that in the physiologically relevant context of an induced lambda lysogen, Q remains stably associated with RNAP as it transcribes at least 22 kb of the phage late operon. Thus, our findings suggest that the promoter-specific pathway leading to lambdaQ-mediated terminator read-through results in the formation of a highly stable lambdaQ-containing transcription elongation complex capable of traversing the entire late operon.
Collapse
Affiliation(s)
- Padraig Deighan
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA
| | | |
Collapse
|
12
|
Abstract
The multisubunit RNAPs (RNA polymerases) found in all cellular life forms are remarkably conserved in fundamental structure, in mechanism and in their susceptibility to sequence-dependent pausing during transcription of DNA in the absence of elongation regulators. Recent studies of both prokaryotic and eukaryotic transcription have yielded an increasing appreciation of the extent to which gene regulation is accomplished during the elongation phase of transcription. Transcriptional pausing is a fundamental enzymatic mechanism that underlies many of these regulatory schemes. In some cases, pausing functions by halting RNAP for times or at positions required for regulatory interactions. In other cases, pauses function by making RNAP susceptible to premature termination of transcription unless the enzyme is modified by elongation regulators that programme efficient gene expression. Pausing appears to occur by a two-tiered mechanism in which an initial rearrangement of the enzyme's active site interrupts active elongation and puts RNAP in an elemental pause state from which additional rearrangements or regulator interactions can create long-lived pauses. Recent findings from biochemical and single-molecule transcription experiments, coupled with the invaluable availability of RNAP crystal structures, have produced attractive hypotheses to explain the fundamental mechanism of pausing.
Collapse
Affiliation(s)
- R Landick
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
13
|
Holmes SF, Santangelo TJ, Cunningham CK, Roberts JW, Erie DA. Kinetic investigation of Escherichia coli RNA polymerase mutants that influence nucleotide discrimination and transcription fidelity. J Biol Chem 2006; 281:18677-83. [PMID: 16621791 DOI: 10.1074/jbc.m600543200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent RNA polymerase (RNAP) structures led to a proposed three-step model of nucleoside triphosphate (NTP) binding, discrimination, and incorporation. NTPs are thought to enter through the secondary channel, bind to an E site, rotate into a pre-insertion (PS) site, and ultimately align in the catalytic (A) site. We characterized the kinetics of correct and incorrect incorporation for several Escherichia coli RNAPs with substitutions in the proposed NTP entry pore (secondary channel). Substitutions of the semi-conserved residue betaAsp(675), which is >10A away from these sites, significantly reduce fidelity; however, substitutions of the totally conserved residues betaArg(678) and betaAsp(814) do not significantly alter the correct or incorrect incorporation kinetics, even though the corresponding residues in RNAPII crystal structures appear to be interacting with the NTP phosphate groups and coordinating the second magnesium ion in the active site, respectively. Structural analysis suggests that the lower fidelity of the betaAsp(675) mutants most likely results from reduction of the negative potential of a small pore between the E and PS sites and elimination of several structural interactions around the pore. We suggest a mechanism of nucleotide discrimination that is governed both by rotation of the NTP through this pore and subsequent rearrangement or closure of RNAP to align the NTP in the A site.
Collapse
Affiliation(s)
- Shannon F Holmes
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
14
|
Santangelo TJ, Reeve JN. Archaeal RNA polymerase is sensitive to intrinsic termination directed by transcribed and remote sequences. J Mol Biol 2005; 355:196-210. [PMID: 16305799 DOI: 10.1016/j.jmb.2005.10.062] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 10/26/2005] [Accepted: 10/26/2005] [Indexed: 11/15/2022]
Abstract
Archaea are prokaryotes with a single DNA-dependent RNA polymerase (RNAP) that is homologous to, and likely resembles the ancestor of all three eukaryotic RNAPs. In vitro studies have confirmed that initiation by archaeal RNAPs resembles the Pol II system, and we report the first detailed in vitro investigation of archaeal transcription termination. Methanothermobacter thermautotrophicus (M.t.) RNAP is susceptible to intrinsic termination at an intergenic sequence that conforms to a bacterial intrinsic terminator, as well as at bona fide bacterial intrinsic terminators. In contrast to bacterial RNAPs, M.t. RNAP also terminated in response to synthetic and natural oligo-T-rich sequences that were not preceded by sequences with any recognizable potential to form a stable RNA hairpin. Both template topology and temperature influenced the position and extent of termination in vitro, and the results argue that transcription of an upstream sequence can alter the termination response of the archaeal RNAP at a remote downstream sequence.
Collapse
Affiliation(s)
- Thomas J Santangelo
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| | | |
Collapse
|
15
|
Abstract
The contribution of bacteriophage lambda to gene control research is far from over. A revised model of the lambda genetic switch includes extra cooperativity through octamerization of the cI repressor protein, mediated by long-range DNA looping. Structural analysis reveals remarkably subtle transcriptional activation by cI. The action of cI, activation by cII, and aspects of antitermination by N and Q all confirm the utility and versatility of simple, weak adhesive interactions mediated by nucleic acid tethers. New genetic and quantitative analysis of the lambda gene network is challenging cherished ideas about how complex behaviours emerge from this regulatory system.
Collapse
Affiliation(s)
- Ian B Dodd
- Discipline of Biochemistry, School of Molecular and Biomedical Science, University of Adelaide, South Australia 5005, Australia.
| | | | | |
Collapse
|
16
|
Kulbachinskiy A, Feklistov A, Krasheninnikov I, Goldfarb A, Nikiforov V. Aptamers to Escherichia coli core RNA polymerase that sense its interaction with rifampicin, sigma-subunit and GreB. ACTA ACUST UNITED AC 2005; 271:4921-31. [PMID: 15606780 DOI: 10.1111/j.1432-1033.2004.04461.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacterial RNA polymerase (RNAP) is the central enzyme of gene expression that is responsible for the synthesis of all types of cellular RNAs. The process of transcription is accompanied by complex structural rearrangements of RNAP. Despite the recent progress in structural studies of RNAP, detailed mechanisms of conformational changes of RNAP that occur at different stages of transcription remain unknown. The goal of this work was to obtain novel ligands to RNAP which would target different epitopes of the enzyme and serve as specific probes to study the mechanism of transcription and conformational flexibility of RNAP. Using in vitro selection methods, we obtained 13 classes of ssDNA aptamers against Escherichia coli core RNAP. The minimal nucleic acid scaffold (an oligonucleotide construct imitating DNA and RNA in elongation complex), rifampicin and the sigma70-subunit inhibited binding of the aptamers to RNAP core but did not affect the dissociation rate of preformed RNAP-aptamer complexes. We argue that these ligands sterically block access of the aptamers to their binding sites within the main RNAP channel. In contrast, transcript cleavage factor GreB increased the rate of dissociation of preformed RNAP-aptamer complexes. This suggested that GreB that binds RNAP outside the main channel actively disrupts RNAP-aptamer complexes by inducing conformational changes in the channel. We propose that the aptamers obtained in this work will be useful for studying the interactions of RNAP with various ligands and regulatory factors and for investigating the conformational flexibility of the enzyme.
Collapse
|
17
|
Greive SJ, von Hippel PH. Thinking quantitatively about transcriptional regulation. Nat Rev Mol Cell Biol 2005; 6:221-32. [PMID: 15714199 DOI: 10.1038/nrm1588] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
By thinking about the chemical and physical mechanisms that are involved in the stepwise elongation of RNA transcripts, we can begin to understand the way that these mechanisms are controlled within the cell to reflect the different requirements for transcription that are posed by various metabolic, developmental and disease states. Here, we focus on the mechanistic details of the single-nucleotide addition (or excision) cycle in the transcription process, as this is the level at which many regulatory mechanisms function and can be explained in quantitative terms.
Collapse
Affiliation(s)
- Sandra J Greive
- Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, Oregon 97403, USA
| | | |
Collapse
|
18
|
Berghöfer-Hochheimer Y, Lu CZ, Gross CA. Altering the interaction between sigma70 and RNA polymerase generates complexes with distinct transcription-elongation properties. Proc Natl Acad Sci U S A 2005; 102:1157-62. [PMID: 15650048 PMCID: PMC545856 DOI: 10.1073/pnas.0408973102] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We compare the elongation behavior of native Escherichia coli RNA polymerase holoenzyme assembled in vivo, holoenzyme reconstituted from sigma70 and RNA polymerase in vitro, and holoenzyme with a specific alteration in the interface between sigma70 and RNA polymerase. Elongating RNA polymerase from each holoenzyme has distinguishable properties, some of which cannot be explained by differential retention or rebinding of sigma70 during elongation, or by differential presence of elongation factors. We suggest that interactions between RNA polymerase and sigma70 may influence the ensemble of conformational states adopted by RNA polymerase during initiation. These states, in turn, may affect the conformational states adopted by the elongating enzyme, thereby physically and functionally imprinting RNA polymerase.
Collapse
Affiliation(s)
- Yvonne Berghöfer-Hochheimer
- Department of Microbiology and Immunology and Stomatology, Genentech Hall, 600 16th Street, University of California, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
19
|
Abstract
Bacteriophage lambda N and bacterial Nus proteins together with a unique site NUT in the leader of the early viral N gene transcript bind RNA polymerase (RNAP) and form a highly processive antitermination complex; N bound at NUT also represses N translation. In this study, we investigate whether N and NUT cause N translation repression as part of the antitermination complex by testing conditions that inhibit the formation of the N-modified transcription complex for their effect on N-mediated translation repression. We show that nus and nut mutations that in combination destabilize multiple interactions in the antitermination complex prevent N-mediated translation repression. Likewise, transcription of the nut-N region by T7 RNAP, which does not lead to the assembly of an effective antitermination complex when N is supplied, eliminates translation repression. We also demonstrate that a unique mutant beta subunit of RNAP reduces N-mediated translation repression, and that overexpression of transcription factor NusA suppresses this defect. We conclude that the N-modified RNAP transcription complex is necessary to repress N translation.
Collapse
Affiliation(s)
- Helen R Wilson
- Molecular Control and Genetics Section, Gene Regulation and Chromosome Biology, National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA
| | | | | | | |
Collapse
|
20
|
Abstract
Bacteriophage lambda gene Q protein and the related proteins of other lambdoid phages are transcription antiterminators that interact both with DNA in the late gene promoter segment and with RNA polymerase subunits. Using hybrids between Q of lambda and the related Q of phage 80, we characterized elements of both Q and DNA that contribute to the DNA binding function. In particular, we found a C-terminal segment of the protein that is responsible for binding specificity and an approximately 15 residue segment on a predicted alpha helix within this segment at which alanine substitutions decrease DNA binding. We identified a six-nucleotide segment located between the -35 and -10 promoter elements that confers binding specificity and is the site of point mutants that impair binding, and we isolated suppressors in lambda Q that restore binding function by increasing the overall binding affinity. We also identified putative zinc finger structures in both proteins.
Collapse
Affiliation(s)
- Jingshu Guo
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
21
|
Kolakofsky D, Le Mercier P, Iseni F, Garcin D. Viral DNA polymerase scanning and the gymnastics of Sendai virus RNA synthesis. Virology 2004; 318:463-73. [PMID: 15015496 DOI: 10.1016/j.virol.2003.10.031] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
mRNA synthesis from nonsegmented negative-strand RNA virus (NNV) genomes is unique in tht the genome RNA is embedded in an N protein assembly (the nucleocapsid) and the viral RNA polymerase does not dissociate from the template after release of each mRNA, but rather scans the genome RNA for the next gene-start site. A revised model for NNV RNA synthesis is presented, in which RNA polymerase scanning plays a prominent role. Polymerase scanning of the template is known to occur as the viral transcriptase negotiates gene junctions without falling off the template.
Collapse
Affiliation(s)
- Daniel Kolakofsky
- Department of Genetics and Microbiology, University of Geneva School of Medicine, Switzerland.
| | | | | | | |
Collapse
|
22
|
Neuman KC, Abbondanzieri EA, Landick R, Gelles J, Block SM. Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking. Cell 2004; 115:437-47. [PMID: 14622598 DOI: 10.1016/s0092-8674(03)00845-6] [Citation(s) in RCA: 246] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
RNA polymerase (RNAP) transcribes DNA discontinuously, with periods of rapid nucleotide addition punctuated by frequent pauses. We investigated the mechanism of transcription by measuring the effect of both hindering and assisting forces on the translocation of single Escherichia coli transcription elongation complexes, using an optical trapping apparatus that allows for the detection of pauses as short as one second. We found that the vast majority of pauses are brief (1-6 s at 21 degrees C, 1 mM NTPs), and that the probability of pausing at any particular position on a DNA template is low and fairly constant. Neither the probability nor the duration of these ubiquitous pauses was affected by hindering or assisting loads, establishing that they do not result from the backtracking of RNAP along the DNA template. We propose instead that they are caused by a structural rearrangement within the enzyme.
Collapse
Affiliation(s)
- Keir C Neuman
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
23
|
Toulokhonov I, Landick R. The flap domain is required for pause RNA hairpin inhibition of catalysis by RNA polymerase and can modulate intrinsic termination. Mol Cell 2004; 12:1125-36. [PMID: 14636572 DOI: 10.1016/s1097-2765(03)00439-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Bacterial RNA polymerase (RNAP) responds to formation of RNA secondary structures (hairpins) in newly synthesized RNA. Depending on the spacing of the hairpin from the RNA 3' end and the intervening RNA sequence, the hairpin can prolong pausing or cause transcriptional termination. At the his pause site, the pause hairpin contacts a flexible domain on RNAP called the flap, which forms a critical part of a hairpin-interaction site on the enzyme. We report that pause hairpin-flap interaction stabilizes an inhibited configuration of RNAP's active site without changing RNAP's translocation register. The distal part of the flap (the flap tip) is required for the hairpin to affect the active site, but not for hairpin formation. In contrast, the flap tip is not required for intrinsic termination, but can modulate it at suboptimal termination signals.
Collapse
|
24
|
Artsimovitch I, Chu C, Lynch AS, Landick R. A new class of bacterial RNA polymerase inhibitor affects nucleotide addition. Science 2003; 302:650-4. [PMID: 14576436 DOI: 10.1126/science.1087526] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
RNA polymerase (RNAP) is the central enzyme of gene expression. Despite availability of crystal structures, details of its nucleotide addition cycle remain obscure. We describe bacterial RNAP inhibitors (the CBR703 series) whose properties illuminate this mechanism. These compounds inhibit known catalytic activities of RNAP (nucleotide addition, pyrophosphorolysis, and Gre-stimulated transcript cleavage) but not translocation of RNA or DNA when translocation is uncoupled from catalysis. CBR703-resistance substitutions occur on an outside surface of RNAP opposite its internal active site. We propose that CBR703 compounds inhibit nucleotide addition allosterically by hindering movements of active site structures that are linked to the CBR703 binding site through a bridge helix.
Collapse
Affiliation(s)
- Irina Artsimovitch
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|