1
|
Tartakoff AM. How the concentric organization of the nucleolus and chromatin ensures accuracy of ribosome biogenesis and drives transport. Genetics 2025; 229:iyaf030. [PMID: 40152466 DOI: 10.1093/genetics/iyaf030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
The biogenetic transport of ribosomal subunit precursors must be conducted with precision to ensure production of functional ribosomes. With a focus on ribosome biogenesis in higher eukaryotic cells, we here discuss the following: (1) the concentric organization of the phases/subcompartments of the nucleus-including chromatin, (2) why the nucleolus reorganizes when ribosomal RNA synthesis is inhibited, and (3) the mechanism responsible for vectorial transport of particulate subunit intermediates between subcompartments. We call attention to evidence that (1) nucleolar proteins can access the entire volume of the nucleus, (2) that the packaging of rDNA is a key determinant of topology, (3) the constancy of contacts between subcompartments, and the likely importance of a Brownian ratchet for imparting both directionality and quality control upon transport. Transport appears to depend on "self-immersion," whereby the surfaces of particulate intermediates successively interact with components of the surrounding milieux, each of which may be thought of as a distinct solvent. The result is a vectorial and ordered process.
Collapse
Affiliation(s)
- Alan M Tartakoff
- Department of Pathology, Case Western Reserve University, 2109 Cornell Road, Cleveland, OH 44106, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|
2
|
Pi JH, Choi SY, Park SK, Lim J, Kang CJ. Anti-lymphoma peptide is inspired by mapping a sequence of four amino acids of KRAI motif as nuclear localization signal of Crlz-1. MOLECULAR THERAPY. ONCOLOGY 2025; 33:200953. [PMID: 40093512 PMCID: PMC11906403 DOI: 10.1016/j.omton.2025.200953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/09/2025] [Accepted: 02/17/2025] [Indexed: 03/19/2025]
Abstract
Peptides of Crlz-1 nuclear localization signal as mapped to be a short KRAI sequence inhibited the proliferation of germinal center-derived Ramos cells from Burkitt's lymphoma patient. This anti-proliferative effect was mechanistically explained by a cascade of the block of Crlz-1 nuclear movement and consequential failure of CBFβ nuclear mobilization, resulting in the absence of bound Runx/CBFβ heterodimer on the enhancer-promoter of the Bcl-6 GC master gene. As a consequence of this heterodimer absence, the Bcl-6 expression was abolished, leading to the down-regulation of cyclins D1-D3 and the up-regulation of IRF-4, Blimp-1, and IgJ genes. Furthermore, this peptide decreased the production of rRNA in these cells, indicating that the nuclear Crlz-1 as a UTP-3 constituent of ribosomal small subunit processome might be necessary to regulate the biogenesis and/or processing of rRNA, and thereby produce ribosomes necessary for their rapid proliferation. Surprisingly, the KRAI motif peptides had an intrinsic cell-membrane permeability by themselves, and therefore their anti-proliferative and anti-tumor effects were also demonstrated in both the cultured cells and Ramos-xenografted mice just by adding them directly to the culture media or injecting them into tail veins. This definitely paved the prospective road to developing a novel anti-cancer peptide drug against the germinal center-derived B cell lymphoma.
Collapse
Affiliation(s)
- Joo Hyun Pi
- Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung, Yongin, Gyeonggi 17104, South Korea
| | - Seung Young Choi
- Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung, Yongin, Gyeonggi 17104, South Korea
| | - Sung-Kyun Park
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, South Korea
| | - Junghyun Lim
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju 54896, South Korea
| | - Chang Joong Kang
- Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung, Yongin, Gyeonggi 17104, South Korea
| |
Collapse
|
3
|
Yang ZZ, Yang B, Yan H, Ma X, Tian B, Zheng B, Chen YX, Dong YM, Deng J, Zhan Z, Shi Y, Zhang JY, Lu D, He JH, Zhang Y, Hu K, Zhu S, Zhou K, Zhang YC, Zheng Y, Yin D, Liao JY. DCAF13-mediated K63-linked ubiquitination of RNA polymerase I promotes uncontrolled proliferation in Breast Cancer. Nat Commun 2025; 16:557. [PMID: 39788980 PMCID: PMC11718263 DOI: 10.1038/s41467-025-55851-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/31/2024] [Indexed: 01/12/2025] Open
Abstract
Hyperactivation of ribosome biogenesis (RiBi) drives cancer progression, yet the role of RiBi-associated proteins (RiBPs) in breast cancer (BC) is underexplored. In this study, we perform a comprehensive multi-omics analysis and reveal that assembly and maturation factors (AMFs), a subclass of RiBPs, are upregulated at both RNA and protein levels in BC, correlating with poor patient outcomes. In contrast, ribosomal proteins (RPs) do not show systematic upregulation across various cancers, including BC. We further demonstrate that the oncogenic activation of a top AMF candidate in BC, DCAF13, enhances Pol I transcription and promotes proliferation in BC cells both in vitro and in vivo. Mechanistically, DCAF13 promotes Pol I transcription activity by facilitating the K63-linked ubiquitination of RPA194. This process stimulates global protein synthesis and cell growth. Our findings uncover a modification of RPA194 that regulates Pol I activity; this modification is dysregulated in BC, contributing to cancer progression.
Collapse
Affiliation(s)
- Zhi-Zhi Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China
| | - Bing Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China
| | - Haiyan Yan
- Department of Clinical Laboratory, Shenshan Central Hospital, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, Guangdong, 516600, PR China
| | - Xingyu Ma
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China
| | - Bin Tian
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China
| | - Bingqi Zheng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China
| | - Yong-Xian Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China
| | - Yi-Ming Dong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China
| | - Jinsi Deng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China
| | - Ziling Zhan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China
| | - Yanmei Shi
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China
| | - Jing Yuan Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China
| | - Daning Lu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China
| | - Jie-Hua He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China
| | - Yin Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China
| | - KaiShun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China
| | - Shuang Zhu
- Center for Bioresources and Drug Discovery and School of Biosciences and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Keda Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, PR China
| | - Yu-Chan Zhang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Yiqing Zheng
- Center for Precision Medicine, Shenshan Central Hospital, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, Guangdong, 516600, PR China.
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, 510120, PR China.
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, 510120, PR China.
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China.
| | - Jian-You Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China.
- Center for Precision Medicine, Shenshan Central Hospital, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, Guangdong, 516600, PR China.
| |
Collapse
|
4
|
Mendes Felgueira CA, Schneider DA. Growth-phase-dependent control of rRNA synthesis in Saccharomyces cerevisiae. mSphere 2024; 9:e0049324. [PMID: 39360849 PMCID: PMC11520348 DOI: 10.1128/msphere.00493-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/07/2024] [Indexed: 10/30/2024] Open
Abstract
Saccharomyces cerevisiae is one of the most well-studied model organisms used in the scientific community. Its ease of manipulation, accessible growth conditions, short life cycle, and conserved eukaryotic metabolic pathways make it a useful model organism. Consequently, yeast has been used to investigate a myriad of phenomena, from microbial to human studies. Most of the research performed using this model organism utilizes yeast cell populations when they are growing exponentially, a growth phase aptly termed exponential or log phase. However, log phase encompasses several yeast generations and ranges several hours of yeast growth, meaning that there is a potential for variability during this "homogenous" growth phase. Cells in log phase require robust ribosome biogenesis to support their rapid growth and cell division. Interestingly, during log phase, ribosomal RNA (rRNA) synthesis (which is the first and rate limiting step in ribosome biosynthesis) has been shown to decrease prior to growth rate decline in stationary phase. In this study, we utilized several genomic and biochemical methods to elucidate the relationship between subphases of log phase and rRNA synthesis. Our results indicate that as yeast cells progress through subphases of log growth, both polymerase I transcription and rRNA processing are repressed. Overall, this study establishes a growth-phase-dependent control of rRNA synthesis that unexpectedly begins prior to the switch to stationary phase (i.e., pre-diauxic shift) as a putative mechanism of anticipating nutrient starvation.IMPORTANCESaccharomyces cerevisiae is a ubiquitously used model organism in a wide range of scientific research fields. The conventional practice when performing yeast studies is to investigate its properties during logarithmic growth phase. This growth phase is defined as the period during which the cell population doubles at regular intervals, and nutrients are not limiting. However, this growth phase lasts hours and encompasses several yeast cell generations which consequently introduce heterogeneity to log growth phase depending on their time of harvest. This study reveals significant changes in the transcriptomic landscape even in early stages of exponential growth. The overall significance of this work is the revelation that even the seemingly homogenous log growth phase is far more diverse than was previously believed.
Collapse
Affiliation(s)
- Catarina A. Mendes Felgueira
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David A. Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
5
|
Sheu-Gruttadauria J, Yan X, Stuurman N, Vale RD, Floor SN. Nucleolar dynamics are determined by the ordered assembly of the ribosome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.26.559432. [PMID: 37808656 PMCID: PMC10557630 DOI: 10.1101/2023.09.26.559432] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Ribosome biogenesis occurs in the nucleolus, a nuclear biomolecular condensate that exhibits dynamic biophysical properties thought to be important for function. However, the relationship between ribosome assembly and nucleolar dynamics is incompletely understood. Here, we present a platform for high-throughput fluorescence recovery after photobleaching (HiT-FRAP), which we use to screen hundreds of genes for their impact on dynamics of the nucleolar scaffold nucleophosmin (NPM1). We find that scaffold dynamics and nucleolar morphology respond to disruptions in key stages of ribosome biogenesis. Accumulation of early ribosomal intermediates leads to nucleolar rigidification while late intermediates lead to increased fluidity. We map these biophysical changes to specific ribosomal intermediates and their affinity for NPM1. We also discover that disrupting mRNA processing impacts nucleolar dynamics and ribosome biogenesis. This work mechanistically ties ribosome assembly to the biophysical features of the nucleolus and enables study of how dynamics relate to function across other biomolecular condensates.
Collapse
Affiliation(s)
- Jessica Sheu-Gruttadauria
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Xiaowei Yan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Present address: Department of Dermatology, Stanford, CA, USA
| | - Nico Stuurman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Present address: Altos Labs, Redwood City, CA, USA
| | - Ronald D. Vale
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Stephen N. Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| |
Collapse
|
6
|
Parker MD, Brunk ES, Getzler AJ, Karbstein K. The kinase Rio1 and a ribosome collision-dependent decay pathway survey the integrity of 18S rRNA cleavage. PLoS Biol 2024; 22:e3001767. [PMID: 39038273 PMCID: PMC11045238 DOI: 10.1371/journal.pbio.3001767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 03/05/2024] [Indexed: 07/24/2024] Open
Abstract
The 18S rRNA sequence is highly conserved, particularly at its 3'-end, which is formed by the endonuclease Nob1. How Nob1 identifies its target sequence is not known, and in vitro experiments have shown Nob1 to be error-prone. Moreover, the sequence around the 3'-end is degenerate with similar sites nearby. Here, we used yeast genetics, biochemistry, and next-generation sequencing to investigate a role for the ATPase Rio1 in monitoring the accuracy of the 18S rRNA 3'-end. We demonstrate that Nob1 can miscleave its rRNA substrate and that miscleaved rRNA accumulates upon bypassing the Rio1-mediated quality control (QC) step, but not in healthy cells with intact QC mechanisms. Mechanistically, we show that Rio1 binding to miscleaved rRNA is weaker than its binding to accurately processed 18S rRNA. Accordingly, excess Rio1 results in accumulation of miscleaved rRNA. Ribosomes containing miscleaved rRNA can translate, albeit more slowly, thereby inviting collisions with trailing ribosomes. These collisions result in degradation of the defective ribosomes utilizing parts of the machinery for mRNA QC. Altogether, the data support a model in which Rio1 inspects the 3'-end of the nascent 18S rRNA to prevent miscleaved 18S rRNA-containing ribosomes from erroneously engaging in translation, where they induce ribosome collisions. The data also demonstrate how ribosome collisions purify cells of altered ribosomes with different functionalities, with important implications for the concept of ribosome heterogeneity.
Collapse
Affiliation(s)
- Melissa D. Parker
- The Skaggs Graduate School of Chemical and Biological Sciences, The
Scripps Research Institute, La Jolla, California, United States of
America
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and
Technology, Jupiter, Florida, United States of America
| | - Elise S. Brunk
- The Skaggs Graduate School of Chemical and Biological Sciences, The
Scripps Research Institute, La Jolla, California, United States of
America
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and
Technology, Jupiter, Florida, United States of America
| | - Adam J. Getzler
- The Skaggs Graduate School of Chemical and Biological Sciences, The
Scripps Research Institute, La Jolla, California, United States of
America
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and
Technology, Jupiter, Florida, United States of America
| | - Katrin Karbstein
- The Skaggs Graduate School of Chemical and Biological Sciences, The
Scripps Research Institute, La Jolla, California, United States of
America
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and
Technology, Jupiter, Florida, United States of America
| |
Collapse
|
7
|
Neumann SA, Gaspin C, Sáez-Vásquez J. Plant ribosomes as a score to fathom the melody of 2'- O-methylation across evolution. RNA Biol 2024; 21:70-81. [PMID: 39508203 PMCID: PMC11542601 DOI: 10.1080/15476286.2024.2417152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
2'-O-ribose methylation (2'-O-Me) is one of the most common RNA modifications detected in ribosomal RNAs (rRNA) from bacteria to eukaryotic cells. 2'-O-Me favours a specific RNA conformation and protects RNA from hydrolysis. Moreover, rRNA 2'-O-Me might stabilize its interactions with messenger RNA (mRNA), transfer RNA (tRNA) or proteins. The extent of rRNA 2'-O-Me fluctuates between species from 3-4 sites in bacteria to tens of sites in archaea, yeast, algae, plants and human. Depending on the organism as well as the rRNA targeting site and position, the 2'-O-Me reaction can be carried out by several site-specific RNA methyltransferases (RMTase) or by a single RMTase associated to specific RNA guides. Here, we review current progresses in rRNA 2'-O-Me (sites/Nm and RMTases) in plants and compare the results with molecular clues from unicellular (bacteria, archaea, algae and yeast) as well as multicellular (human and plants) organisms.
Collapse
MESH Headings
- Methylation
- Ribosomes/metabolism
- RNA, Ribosomal/metabolism
- RNA, Ribosomal/genetics
- RNA, Ribosomal/chemistry
- Plants/metabolism
- Plants/genetics
- Humans
- Evolution, Molecular
- Methyltransferases/metabolism
- Methyltransferases/genetics
- Methyltransferases/chemistry
- RNA, Plant/metabolism
- RNA, Plant/genetics
- RNA, Plant/chemistry
- Archaea/genetics
- Archaea/metabolism
- RNA, Transfer/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/chemistry
Collapse
Affiliation(s)
- Sara Alina Neumann
- CNRS, Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, Perpignan, France
- University Perpignan Via Domitia, LGDP, UMR 5096, Perpignan, France
| | - Christine Gaspin
- Université Fédérale de Toulouse, INRAE, MIAT, Castanet-Tolosan, France
- Université Fédérale de Toulouse, INRAE, BioinfOmics, Genotoul Bioinformatics Facility, Castanet-Tolosan, France
| | - Julio Sáez-Vásquez
- CNRS, Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, Perpignan, France
- University Perpignan Via Domitia, LGDP, UMR 5096, Perpignan, France
| |
Collapse
|
8
|
Dörner K, Ruggeri C, Zemp I, Kutay U. Ribosome biogenesis factors-from names to functions. EMBO J 2023; 42:e112699. [PMID: 36762427 PMCID: PMC10068337 DOI: 10.15252/embj.2022112699] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
The assembly of ribosomal subunits is a highly orchestrated process that involves a huge cohort of accessory factors. Most eukaryotic ribosome biogenesis factors were first identified by genetic screens and proteomic approaches of pre-ribosomal particles in Saccharomyces cerevisiae. Later, research on human ribosome synthesis not only demonstrated that the requirement for many of these factors is conserved in evolution, but also revealed the involvement of additional players, reflecting a more complex assembly pathway in mammalian cells. Yet, it remained a challenge for the field to assign a function to many of the identified factors and to reveal their molecular mode of action. Over the past decade, structural, biochemical, and cellular studies have largely filled this gap in knowledge and led to a detailed understanding of the molecular role that many of the players have during the stepwise process of ribosome maturation. Such detailed knowledge of the function of ribosome biogenesis factors will be key to further understand and better treat diseases linked to disturbed ribosome assembly, including ribosomopathies, as well as different types of cancer.
Collapse
Affiliation(s)
- Kerstin Dörner
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.,Molecular Life Sciences Ph.D. Program, Zurich, Switzerland
| | - Chiara Ruggeri
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.,RNA Biology Ph.D. Program, Zurich, Switzerland
| | - Ivo Zemp
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Ulrike Kutay
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
McCool MA, Bryant CJ, Huang H, Ogawa LM, Farley-Barnes KI, Sondalle SB, Abriola L, Surovtseva YV, Baserga SJ. Human nucleolar protein 7 (NOL7) is required for early pre-rRNA accumulation and pre-18S rRNA processing. RNA Biol 2023; 20:257-271. [PMID: 37246770 PMCID: PMC10228412 DOI: 10.1080/15476286.2023.2217392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2023] [Indexed: 05/30/2023] Open
Abstract
The main components of the essential cellular process of eukaryotic ribosome biogenesis are highly conserved from yeast to humans. Among these, the U3 Associated Proteins (UTPs) are a small subunit processome subcomplex that coordinate the first two steps of ribosome biogenesis in transcription and pre-18S processing. While we have identified the human counterparts of most of the yeast Utps, the homologs of yeast Utp9 and Bud21 (Utp16) have remained elusive. In this study, we find that NOL7 is the likely ortholog of Bud21. Previously described as a tumour suppressor through regulation of antiangiogenic transcripts, we now show that NOL7 is required for early pre-rRNA accumulation and pre-18S rRNA processing in human cells. These roles lead to decreased protein synthesis and induction of the nucleolar stress response upon NOL7 depletion. Beyond Bud21's nonessential role in yeast, we establish human NOL7 as an essential UTP that is necessary to maintain both early pre-rRNA levels and processing.
Collapse
Affiliation(s)
- Mason A. McCool
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Carson J. Bryant
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Hannah Huang
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Lisa M. Ogawa
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Katherine I. Farley-Barnes
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Samuel B. Sondalle
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Laura Abriola
- Yale Center for Molecular Discovery, Yale University, West Haven, CT, USA
| | | | - Susan J. Baserga
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
10
|
McCool MA, Buhagiar AF, Bryant CJ, Ogawa LM, Abriola L, Surovtseva YV, Baserga SJ. Human pre-60S assembly factors link rRNA transcription to pre-rRNA processing. RNA (NEW YORK, N.Y.) 2022; 29:rna.079149.122. [PMID: 36323459 PMCID: PMC9808572 DOI: 10.1261/rna.079149.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
In eukaryotes, the nucleolus is the site of ribosome biosynthesis, an essential process in all cells. While human ribosome assembly is largely evolutionarily conserved, many of the regulatory details underlying its control and function have not yet been well-defined. The nucleolar protein RSL24D1 was originally identified as a factor important for 60S ribosomal subunit biogenesis. In addition, the PeBoW (BOP1-PES1-WDR12) complex has been well-defined as required for pre-28S rRNA processing and cell proliferation. In this study, we show that RSL24D1 depletion impairs both pre-ribosomal RNA (pre-rRNA) transcription and mature 28S rRNA production, leading to decreased protein synthesis and p53 stabilization in human cells. Surprisingly, each of the PeBoW complex members is also required for pre-rRNA transcription. We demonstrate that RSL24D1 and WDR12 co-immunoprecipitate with the RNA polymerase I subunit, RPA194, and regulate its steady state levels. These results uncover the dual role of RSL24D1 and the PeBoW complex in multiple steps of ribosome biogenesis, and provide evidence implicating large ribosomal subunit biogenesis factors in pre-rRNA transcription control.
Collapse
|
11
|
Yan D, Hua L. Nucleolar stress: Friend or foe in cardiac function? Front Cardiovasc Med 2022; 9:1045455. [PMID: 36386352 PMCID: PMC9659567 DOI: 10.3389/fcvm.2022.1045455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/17/2022] [Indexed: 03/14/2024] Open
Abstract
Studies in the past decades have uncovered an emerging role of the nucleolus in stress response and human disease progression. The disruption of ribosome biogenesis in the nucleolus causes aberrant nucleolar architecture and function, termed nucleolar stress, to initiate stress-responsive pathways via nucleolar release sequestration of various proteins. While data obtained from both clinical and basic investigations have faithfully demonstrated an involvement of nucleolar stress in the pathogenesis of cardiomyopathy, much remains unclear regarding its precise role in the progression of cardiac diseases. On the one hand, the initiation of nucleolar stress following acute myocardial damage leads to the upregulation of various cardioprotective nucleolar proteins, including nucleostemin (NS), nucleophosmin (NPM) and nucleolin (NCL). As a result, nucleolar stress plays an important role in facilitating the survival and repair of cardiomyocytes. On the other hand, abnormalities in nucleolar architecture and function are correlated with the deterioration of cardiac diseases. Notably, the cardiomyocytes of advanced ischemic and dilated cardiomyopathy display impaired silver-stained nucleolar organiser regions (AgNORs) and enlarged nucleoli, resembling the characteristics of tissue aging. Collectively, nucleolar abnormalities are critically involved in the development of cardiac diseases.
Collapse
Affiliation(s)
- Daliang Yan
- Department of Cardiovascular Surgery, Taizhou People’s Hospital, Taizhou, China
| | - Lu Hua
- Department of Oncology, Taizhou People’s Hospital, Taizhou, China
| |
Collapse
|
12
|
Zhou X, Xie J, Xu C, Cao X, Zou LH, Zhou M. Artificial optimization of bamboo Ppmar2 transposase and host factors effects on Ppmar2 transposition in yeast. FRONTIERS IN PLANT SCIENCE 2022; 13:1004732. [PMID: 36340339 PMCID: PMC9632168 DOI: 10.3389/fpls.2022.1004732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Mariner-like elements (MLEs) are promising tools for gene cloning, gene expression, and gene tagging. We have characterized two MLE transposons from moso bamboo, Ppmar1 and Ppmar2. Ppmar2, is smaller in size and has higher natural activities, thus making it a more potential genomic tool compared to Ppmar1. Using a two-component system consisting of a transposase expression cassette and a non-autonomous transposon cotransformed in yeast, we investigated the transposition activity of Ppmar2 and created hyperactive transposases. Five out of 19 amino acid mutations in Ppmar2 outperformed the wild-type in terms of catalytic activities, especially with the S347R mutant having 6.7-fold higher transposition activity. Moreover, 36 yeast mutants with single-gene deletion were chosen to screen the effects of the host factors on Ppmar2NA transposition. Compared to the control strain (his3Δ), the mobility of Ppmar2 was greatly increased in 9 mutants and dramatically decreased in 7 mutants. The transposition ability in the efm1Δ mutant was 15-fold higher than in the control, while it was lowered to 1/66 in the rtt10Δ mutant. Transcriptomic analysis exhibited that EFM1 defection led to the significantly impaired DDR2, HSP70 expression and dramatically boosted JEN1 expression, whereas RTT10 defection resulted in significantly suppressed expression of UTP20, RPA190 and RRP5. Protein methylation, chromatin and RNA transcription may affect the Ppmar2NA transposition efficiency in yeast. Overall, the findings provided evidence for transposition regulation and offered an alternative genomic tool for moso bamboo and other plants.
Collapse
|
13
|
Lin S, Rajan S, Lemberg S, Altawil M, Anderson K, Bryant R, Cappeta S, Chin B, Hamdan I, Hamer A, Hyzny R, Karp A, Lee D, Lim A, Nayak M, Palaniappan V, Park S, Satishkumar S, Seth A, Sri Dasari U, Toppari E, Vyas A, Walker J, Weston E, Zafar A, Zielke C, Mahabeleshwar GH, Tartakoff AM. Production of nascent ribosome precursors within the nucleolar microenvironment of Saccharomyces cerevisiae. Genetics 2022; 221:iyac070. [PMID: 35657327 PMCID: PMC9252279 DOI: 10.1093/genetics/iyac070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
35S rRNA transcripts include a 5'-external transcribed spacer followed by rRNAs of the small and large ribosomal subunits. Their processing yields massive precursors that include dozens of assembly factor proteins. In Saccharomyces cerevisiae, nucleolar assembly factors form 2 coaxial layers/volumes around ribosomal DNA. Most of these factors are cyclically recruited from a latent state to an operative state, and are extensively conserved. The layers match, at least approximately, known subcompartments found in higher eukaryotic cells. ∼80% of assembly factors are essential. The number of copies of these assembly factors is comparable to the number of nascent transcripts. Moreover, they exhibit "isoelectric balance," with RNA-binding candidate "nucleator" assembly factors being notably basic. The physical properties of pre-small subunit and pre-large subunit assembly factors are similar, as are their 19 motif signatures detected by hierarchical clustering, unlike motif signatures of the 5'-external transcribed spacer rRNP. Additionally, many assembly factors lack shared motifs. Taken together with the progression of rRNP composition during subunit maturation, and the realization that the ribosomal DNA cable is initially bathed in a subunit-nonspecific assembly factor reservoir/microenvironment, we propose a "3-step subdomain assembly model": Step (1): predominantly basic assembly factors sequentially nucleate sites along nascent rRNA; Step (2): the resulting rRNPs recruit numerous less basic assembly factors along with notably basic ribosomal proteins; Step (3): rRNPs in nearby subdomains consolidate. Cleavages of rRNA then promote release of rRNPs to the nucleoplasm, likely facilitated by the persistence of assembly factors that were already associated with nucleolar precursors.
Collapse
Affiliation(s)
- Samantha Lin
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Suchita Rajan
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sofia Lemberg
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mark Altawil
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Katherine Anderson
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ruth Bryant
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sebastian Cappeta
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Brandon Chin
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Isabella Hamdan
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Annelise Hamer
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Rachel Hyzny
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Andrew Karp
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Daniel Lee
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Alexandria Lim
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Medha Nayak
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Vishnu Palaniappan
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Soomin Park
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sarika Satishkumar
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Anika Seth
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Uva Sri Dasari
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Emili Toppari
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ayush Vyas
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Julianne Walker
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Evan Weston
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Atif Zafar
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Cecelia Zielke
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ganapati H Mahabeleshwar
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Alan M Tartakoff
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
14
|
Oborská-Oplová M, Gerhardy S, Panse VG. Orchestrating ribosomal RNA folding during ribosome assembly. Bioessays 2022; 44:e2200066. [PMID: 35751450 DOI: 10.1002/bies.202200066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/30/2022] [Accepted: 06/13/2022] [Indexed: 11/08/2022]
Abstract
Construction of the eukaryotic ribosome is a complex process in which a nascent ribosomal RNA (rRNA) emerging from RNA Polymerase I hierarchically folds into a native three-dimensional structure. Modular assembly of individual RNA domains through interactions with ribosomal proteins and a myriad of assembly factors permit efficient disentanglement of the error-prone RNA folding process. Following these dynamic events, long-range tertiary interactions are orchestrated to compact rRNA. A combination of genetic, biochemical, and structural studies is now providing clues into how a nascent rRNA is transformed into a functional ribosome with high precision. With this essay, we aim to draw attention to the poorly understood process of establishing correct RNA tertiary contacts during ribosome formation.
Collapse
Affiliation(s)
| | - Stefan Gerhardy
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Vikram Govind Panse
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.,Faculty of Science, University of Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Darriere T, Jobet E, Zavala D, Escande ML, Durut N, de Bures A, Blanco-Herrera F, Vidal EA, Rompais M, Carapito C, Gourbiere S, Sáez-Vásquez J. Upon heat stress processing of ribosomal RNA precursors into mature rRNAs is compromised after cleavage at primary P site in Arabidopsis thaliana. RNA Biol 2022; 19:719-734. [PMID: 35522061 PMCID: PMC9090299 DOI: 10.1080/15476286.2022.2071517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Transcription and processing of 45S rRNAs in the nucleolus are keystones of ribosome biogenesis. While these processes are severely impacted by stress conditions in multiple species, primarily upon heat exposure, we lack information about the molecular mechanisms allowing sessile organisms without a temperature-control system, like plants, to cope with such circumstances. We show that heat stress disturbs nucleolar structure, inhibits pre-rRNA processing and provokes imbalanced ribosome profiles in Arabidopsis thaliana plants. Notably, the accuracy of transcription initiation and cleavage at the primary P site in the 5’ETS (5’ External Transcribed Spacer) are not affected but the levels of primary 45S and 35S transcripts are, respectively, increased and reduced. In contrast, precursors of 18S, 5.8S and 25S RNAs are rapidly undetectable upon heat stress. Remarkably, nucleolar structure, pre-rRNAs from major ITS1 processing pathway and ribosome profiles are restored after returning to optimal conditions, shedding light on the extreme plasticity of nucleolar functions in plant cells. Further genetic and molecular analysis to identify molecular clues implicated in these nucleolar responses indicate that cleavage rate at P site and nucleolin protein expression can act as a checkpoint control towards a productive pre-rRNA processing pathway.
Collapse
Affiliation(s)
- T Darriere
- CNRS, Laboratoire Génome et D#x0E9;veloppement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France.,Univ. Perpignan Via Domitia, LGDP, UMR 5096, Perpignan, France
| | - E Jobet
- CNRS, Laboratoire Génome et D#x0E9;veloppement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France.,Univ. Perpignan Via Domitia, LGDP, UMR 5096, Perpignan, France
| | - D Zavala
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - M L Escande
- CNRS, Observatoire Océanologique de Banyuls s/ mer, Banyuls-sur-mer, France.,BioPIC Platform of the OOB, Banyuls-sur-mer, France
| | - N Durut
- CNRS, Laboratoire Génome et D#x0E9;veloppement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France.,Univ. Perpignan Via Domitia, LGDP, UMR 5096, Perpignan, France
| | - A de Bures
- CNRS, Laboratoire Génome et D#x0E9;veloppement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France.,Univ. Perpignan Via Domitia, LGDP, UMR 5096, Perpignan, France
| | - F Blanco-Herrera
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Millennium Institute for Integrative Biology (IBio), Santiago, Chile
| | - E A Vidal
- Millennium Institute for Integrative Biology (IBio), Santiago, Chile.,Bioinformática, Facultad de Ciencias, Universidad MayorCentro de Genómica y , Santiago, Chile
| | - M Rompais
- Laboratoire de Spectrométrie de Masse BioOrganique, Institut Pluridisciplinaire Hubert Curien, UMR7178 CNRS/Université de Strasbourg, Strasbourg, France
| | - C Carapito
- Laboratoire de Spectrométrie de Masse BioOrganique, Institut Pluridisciplinaire Hubert Curien, UMR7178 CNRS/Université de Strasbourg, Strasbourg, France
| | - S Gourbiere
- CNRS, Laboratoire Génome et D#x0E9;veloppement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France.,Univ. Perpignan Via Domitia, LGDP, UMR 5096, Perpignan, France
| | - J Sáez-Vásquez
- CNRS, Laboratoire Génome et D#x0E9;veloppement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France.,Univ. Perpignan Via Domitia, LGDP, UMR 5096, Perpignan, France
| |
Collapse
|
16
|
Nepomuceno-Mejía T, Florencio-Martínez LE, Pineda-García I, Martínez-Calvillo S. Identification of factors involved in ribosome assembly in the protozoan parasite Leishmania major. Acta Trop 2022; 228:106315. [PMID: 35041807 DOI: 10.1016/j.actatropica.2022.106315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 01/23/2023]
Abstract
Formation of the ribosome subunits is a complex and progressive cellular process that requires a plethora of non-ribosomal transient proteins and diverse small nucleolar RNAs, which are involved from the synthesis of the precursor ribosomal RNA in the nucleolus to the final ribosome processing steps in the cytoplasm. Employing PTP-tagged Nop56 as a fishing bait to capture pre-ribosomal particles by tandem affinity purifications, mass spectrometry assays and a robust in silico analysis, here we describe tens of ribosome assembly factors involved in the synthesis of both ribosomal subunits in the human pathogen Leishmania major, where the knowledge about ribosomal biogenesis is scarce. We identified a large number of proteins that participate in most stages of ribosome biogenesis in yeast and mammals. Among them, we found several putative orthologs of factors not previously identified in L. major, such as t-Utp4, t-Utp5, Rrp7, Nop9 and Nop15. Even more interesting is the fact that we identified several novel candidates that could participate in the assembly of the atypical 60S subunit in L. major, which contains eight different rRNA species. As these proteins do not seem to have a human counterpart, they have potential as targets for novel anti-leishmanial drugs. Also, numerous proteins whose function is not apparently linked to ribosome assembly were copurified, suggesting that the L. major nucleolus is a multifunctional nuclear body.
Collapse
|
17
|
Dörner K, Badertscher L, Horváth B, Hollandi R, Molnár C, Fuhrer T, Meier R, Sárazová M, van den Heuvel J, Zamboni N, Horvath P, Kutay U. Genome-wide RNAi screen identifies novel players in human 60S subunit biogenesis including key enzymes of polyamine metabolism. Nucleic Acids Res 2022; 50:2872-2888. [PMID: 35150276 PMCID: PMC8934630 DOI: 10.1093/nar/gkac072] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 12/19/2022] Open
Abstract
Ribosome assembly is an essential process that is linked to human congenital diseases and tumorigenesis. While great progress has been made in deciphering mechanisms governing ribosome biogenesis in eukaryotes, an inventory of factors that support ribosome synthesis in human cells is still missing, in particular regarding the maturation of the large 60S subunit. Here, we performed a genome-wide RNAi screen using an imaging-based, single cell assay to unravel the cellular machinery promoting 60S subunit assembly in human cells. Our screen identified a group of 310 high confidence factors. These highlight the conservation of the process across eukaryotes and reveal the intricate connectivity of 60S subunit maturation with other key cellular processes, including splicing, translation, protein degradation, chromatin organization and transcription. Intriguingly, we also identified a cluster of hits comprising metabolic enzymes of the polyamine synthesis pathway. We demonstrate that polyamines, which have long been used as buffer additives to support ribosome assembly in vitro, are required for 60S maturation in living cells. Perturbation of polyamine metabolism results in early defects in 60S but not 40S subunit maturation. Collectively, our data reveal a novel function for polyamines in living cells and provide a rich source for future studies on ribosome synthesis.
Collapse
Affiliation(s)
- Kerstin Dörner
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
- Molecular Life Sciences Ph.D. Program, 8057 Zurich, Switzerland
| | - Lukas Badertscher
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
- Molecular Life Sciences Ph.D. Program, 8057 Zurich, Switzerland
| | - Bianka Horváth
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
- Molecular Life Sciences Ph.D. Program, 8057 Zurich, Switzerland
| | - Réka Hollandi
- Synthetic and Systems Biology Unit, Biological Research Center, 6726 Szeged, Hungary
| | - Csaba Molnár
- Synthetic and Systems Biology Unit, Biological Research Center, 6726 Szeged, Hungary
| | - Tobias Fuhrer
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Roger Meier
- ScopeM, ETH Zürich, 8093 Zürich, Switzerland
| | - Marie Sárazová
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Jasmin van den Heuvel
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Peter Horvath
- Synthetic and Systems Biology Unit, Biological Research Center, 6726 Szeged, Hungary
- Institute for Molecular Medicine Finland, University of Helsinki, 00014 Helsinki, Finland
| | - Ulrike Kutay
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
18
|
Zhu S, Gu D, Lu C, Zhang C, Chen J, Yang R, Luo Q, Wang T, Zhang P, Chen H. Cold stress tolerance of the intertidal red alga Neoporphyra haitanensis. BMC PLANT BIOLOGY 2022; 22:114. [PMID: 35287582 PMCID: PMC8919617 DOI: 10.1186/s12870-022-03507-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Red algae Porphyra sensu lato grow naturally in the unfavorable intertidal environment, in which they are exposed to substantial temperature fluctuations. The strategies of Porphyra to tolerate cold stress are poorly understood. RESULTS Herein, investigations revealed that chilling and freezing induced alterations in the physiological properties, gene transcriptional profiles and metabolite levels in the economically important red algae species, Neoporphyra haitanensis. Control samples (kept at 20 °C) were compared to chilled thalli (10 and 4 °C) and to thalli under - 4 °C conditions. Chilling stress did not affect the health or photosynthetic efficiency of gametophytes, but freezing conditions resulted in the arrest of growth, death of some cells and a decrease in photosynthetic activity as calculated by Fv/Fm. Transcriptome sequencing analysis revealed that the photosynthetic system was down-regulated along with genes associated with carbon fixation and primary metabolic biosynthesis. Adaptive mechanisms included an increase in unsaturated fatty acids levels to improve membrane fluidity, an increase in floridoside and isofloridoside content to enhance osmotic resistance, and an elevation in levels of some resistance-associated phytohormones (abscisic acid, salicylic acid, and methyl jasmonic acid). These physiochemical alterations occurred together with the upregulation of ribosome biogenesis. CONCLUSIONS N. haitanensis adopts multiple protective mechanisms to maintain homeostasis of cellular physiology in tolerance to cold stress.
Collapse
Affiliation(s)
- Shanshan Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, Zhejiang, China
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Denghui Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Caiping Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Caixia Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Juanjuan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, Zhejiang, China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Rui Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, Zhejiang, China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Qijun Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, Zhejiang, China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Tiegan Wang
- Zhejiang Mariculture Research Institute, Wenzhou, 325005, China
| | - Peng Zhang
- Zhejiang Mariculture Research Institute, Wenzhou, 325005, China
| | - Haimin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, Zhejiang, China.
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
19
|
Abdelkhalek Elhefni MM, Abd El Moety AA, Baddour NM, El Sayed Salem P. The Role of Human U Three Protein 14a as a Predictor for Hepatocellular Carcinoma Recurrence After Microwave Ablation. Appl Immunohistochem Mol Morphol 2022; 30:171-177. [PMID: 35262522 DOI: 10.1097/pai.0000000000000994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 10/04/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Human U three protein 14a (hUTP14a) is a nucleolar protein which promotes carcinogenesis by causing degradation of the tumor suppressor protein, p53. AIMS This study aimed to investigate hUTP14a expression in hepatocellular carcinoma (HCC) and its value as a predictor for HCC recurrence after treatment with microwave ablation (MWA). MATERIALS AND METHODS The hUTP14a expression was evaluated using immunohistochemistry on ultrasound-guided fine needle aspiration biopsy material from the tumor and the surrounding cirrhotic nontumor tissues. The relation between hUTP14a expression and clinic-pathologic variables was analyzed. RESULTS Nuclear hUTP14a showed significant high expression in HCC tumor tissue compared with corresponding nontumor tissue (P<0.001). Tumoral hUTP14a expression was significantly higher in patients who experienced recurrence than those who were recurrence-free after MWA (P<0.001). CONCLUSION We concluded that, hUTP14a has an oncogenic potential, as it is highly expressed in HCC tissues compared with surrounding nontumor cirrhotic tissues. Moreover, nuclear hUTP14a could be used as a promising prognostic biomarker for prediction of HCC recurrence after treatment with MWA.
Collapse
Affiliation(s)
| | | | - Nahed M Baddour
- Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | |
Collapse
|
20
|
Dielforder T, Braun CM, Hölzgen F, Li S, Thiele M, Huber M, Ohmayer U, Perez-Fernandez J. Structural Probing with MNase Tethered to Ribosome Assembly Factors Resolves Flexible RNA Regions within the Nascent Pre-Ribosomal RNA. Noncoding RNA 2022; 8:ncrna8010001. [PMID: 35076539 PMCID: PMC8788456 DOI: 10.3390/ncrna8010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/02/2022] [Accepted: 01/05/2022] [Indexed: 12/04/2022] Open
Abstract
The synthesis of ribosomes involves the correct folding of the pre-ribosomal RNA within pre-ribosomal particles. The first ribosomal precursor or small subunit processome assembles stepwise on the nascent transcript of the 35S gene. At the earlier stages, the pre-ribosomal particles undergo structural and compositional changes, resulting in heterogeneous populations of particles with highly flexible regions. Structural probing methods are suitable for resolving these structures and providing evidence about the architecture of ribonucleoprotein complexes. Our approach used MNase tethered to the assembly factors Nan1/Utp17, Utp10, Utp12, and Utp13, which among other factors, initiate the formation of the small subunit processome. Our results provide dynamic information about the folding of the pre-ribosomes by elucidating the relative organization of the 5′ETS and ITS1 regions within the 35S and U3 snoRNA around the C-terminal domains of Nan1/Utp17, Utp10, Utp12, and Utp13.
Collapse
|
21
|
Bryant CJ, McCool MA, Abriola L, Surovtseva YV, Baserga SJ. A high-throughput assay for directly monitoring nucleolar rRNA biogenesis. Open Biol 2022; 12:210305. [PMID: 35078352 PMCID: PMC8790372 DOI: 10.1098/rsob.210305] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Studies of the regulation of nucleolar function are critical for ascertaining clearer insights into the basic biological underpinnings of ribosome biogenesis (RB), and for future development of therapeutics to treat cancer and ribosomopathies. A number of high-throughput primary assays based on morphological alterations of the nucleolus can indirectly identify hits affecting RB. However, there is a need for a more direct high-throughput assay for a nucleolar function to further evaluate hits. Previous reports have monitored nucleolar rRNA biogenesis using 5-ethynyl uridine (5-EU) in low-throughput. We report a miniaturized, high-throughput 5-EU assay that enables specific calculation of nucleolar rRNA biogenesis inhibition, based on co-staining of the nucleolar protein fibrillarin (FBL). The assay uses two siRNA controls: a negative non-targeting siRNA control and a positive siRNA control targeting RNA Polymerase 1 (RNAP1; POLR1A), and specifically quantifies median 5-EU signal within nucleoli. Maximum nuclear 5-EU signal can also be used to monitor the effects of putative small-molecule inhibitors of RNAP1, like BMH-21, or other treatment conditions that cause FBL dispersion. We validate the 5-EU assay on 68 predominately nucleolar hits from a high-throughput primary screen, showing that 58/68 hits significantly inhibit nucleolar rRNA biogenesis. Our new method establishes direct quantification of nucleolar function in high-throughput, facilitating closer study of RB in health and disease.
Collapse
Affiliation(s)
- Carson J. Bryant
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, 333 Cedar Street, New Haven, CT, USA
| | - Mason A. McCool
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, 333 Cedar Street, New Haven, CT, USA
| | - Laura Abriola
- Yale Center for Molecular Discovery, Yale University, West Haven, CT, USA
| | | | - Susan J. Baserga
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, 333 Cedar Street, New Haven, CT, USA,Department of Genetics, Yale School of Medicine, New Haven, CT, USA,Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
22
|
Schächner C, Merkl PE, Pilsl M, Schwank K, Hergert K, Kruse S, Milkereit P, Tschochner H, Griesenbeck J. Establishment and Maintenance of Open Ribosomal RNA Gene Chromatin States in Eukaryotes. Methods Mol Biol 2022; 2533:25-38. [PMID: 35796980 PMCID: PMC9761505 DOI: 10.1007/978-1-0716-2501-9_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In growing eukaryotic cells, nuclear ribosomal (r)RNA synthesis by RNA polymerase (RNAP) I accounts for the vast majority of cellular transcription. This high output is achieved by the presence of multiple copies of rRNA genes in eukaryotic genomes transcribed at a high rate. In contrast to most of the other transcribed genomic loci, actively transcribed rRNA genes are largely devoid of nucleosomes adapting a characteristic "open" chromatin state, whereas a significant fraction of rRNA genes resides in a transcriptionally inactive nucleosomal "closed" chromatin state. Here, we review our current knowledge about the nature of open rRNA gene chromatin and discuss how this state may be established.
Collapse
Affiliation(s)
- Christopher Schächner
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| | - Philipp E Merkl
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
- TUM ForTe, Technische Universität München, Munich, Germany
| | - Michael Pilsl
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| | - Katrin Schwank
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| | - Kristin Hergert
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| | - Sebastian Kruse
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| | - Philipp Milkereit
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany.
| | - Herbert Tschochner
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany.
| | - Joachim Griesenbeck
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany.
| |
Collapse
|
23
|
Li PP, Moulick R, Feng H, Sun X, Arbez N, Jin J, Marque LO, Hedglen E, Chan HE, Ross CA, Pulst SM, Margolis RL, Woodson S, Rudnicki DD. RNA Toxicity and Perturbation of rRNA Processing in Spinocerebellar Ataxia Type 2. Mov Disord 2021; 36:2519-2529. [PMID: 34390268 PMCID: PMC8884117 DOI: 10.1002/mds.28729] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/03/2021] [Accepted: 07/12/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disease caused by expansion of a CAG repeat in Ataxin-2 (ATXN2) gene. The mutant ATXN2 protein with a polyglutamine tract is known to be toxic and contributes to the SCA2 pathogenesis. OBJECTIVE Here, we tested the hypothesis that the mutant ATXN2 transcript with an expanded CAG repeat (expATXN2) is also toxic and contributes to SCA2 pathogenesis. METHODS The toxic effect of expATXN2 transcripts on SK-N-MC neuroblastoma cells and primary mouse cortical neurons was evaluated by caspase 3/7 activity and nuclear condensation assay, respectively. RNA immunoprecipitation assay was performed to identify RNA binding proteins (RBPs) that bind to expATXN2 RNA. Quantitative PCR was used to examine if ribosomal RNA (rRNA) processing is disrupted in SCA2 and Huntington's disease (HD) human brain tissue. RESULTS expATXN2 RNA induces neuronal cell death, and aberrantly interacts with RBPs involved in RNA metabolism. One of the RBPs, transducin β-like protein 3 (TBL3), involved in rRNA processing, binds to both expATXN2 and expanded huntingtin (expHTT) RNA in vitro. rRNA processing is disrupted in both SCA2 and HD human brain tissue. CONCLUSION These findings provide the first evidence of a contributory role of expATXN2 transcripts in SCA2 pathogenesis, and further support the role of expHTT transcripts in HD pathogenesis. The disruption of rRNA processing, mediated by aberrant interaction of RBPs with expATXN2 and expHTT transcripts, suggest a point of convergence in the pathogeneses of repeat expansion diseases with potential therapeutic implications. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Pan P. Li
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Roumita Moulick
- T.C. Jenkins Department of BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Hongxuan Feng
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Xin Sun
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Nicolas Arbez
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Jing Jin
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Leonard O. Marque
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Erin Hedglen
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - H.Y. Edwin Chan
- Biochemistry Program, School of Life SciencesThe Chinese University of Hong KongHong KongChina
| | - Christopher A. Ross
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Stefan M. Pulst
- Department of NeurologyUniversity of UtahSalt Lake CityUtahUSA
| | - Russell L. Margolis
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Sarah Woodson
- T.C. Jenkins Department of BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Dobrila D. Rudnicki
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
24
|
Mawer JSP, Massen J, Reichert C, Grabenhorst N, Mylonas C, Tessarz P. Nhp2 is a reader of H2AQ105me and part of a network integrating metabolism with rRNA synthesis. EMBO Rep 2021; 22:e52435. [PMID: 34409714 PMCID: PMC8490984 DOI: 10.15252/embr.202152435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 01/16/2023] Open
Abstract
Ribosome biogenesis is an essential cellular process that requires integration of extracellular cues, such as metabolic state, with intracellular signalling, transcriptional regulation and chromatin accessibility at the ribosomal DNA. Here, we demonstrate that the recently identified histone modification, methylation of H2AQ105 (H2AQ105me), is an integral part of a dynamic chromatin network at the rDNA locus. Its deposition depends on a functional mTor signalling pathway and acetylation of histone H3 at position K56, thus integrating metabolic and proliferative signals. Furthermore, we identify a first epigenetic reader of this modification, the ribonucleoprotein Nhp2, which specifically recognizes H2AQ105me. Based on functional and proteomic data, we suggest that Nhp2 functions as an adapter to bridge rDNA chromatin with components of the small subunit processome to efficiently coordinate transcription of rRNA with its post‐transcriptional processing. We support this by showing that an H2AQ105A mutant has a mild defect in early processing of rRNA.
Collapse
Affiliation(s)
- Julia S P Mawer
- Max Planck Research Group "Chromatin and Ageing", Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Jennifer Massen
- Max Planck Research Group "Chromatin and Ageing", Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Christina Reichert
- Max Planck Research Group "Chromatin and Ageing", Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Niklas Grabenhorst
- Max Planck Research Group "Chromatin and Ageing", Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Constantine Mylonas
- Max Planck Research Group "Chromatin and Ageing", Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Peter Tessarz
- Max Planck Research Group "Chromatin and Ageing", Max Planck Institute for Biology of Ageing, Cologne, Germany.,Cologne Excellence Cluster on Stress Responses in ageing-associated Diseases (CECAD), Cologne, Germany
| |
Collapse
|
25
|
Black JJ, Johnson AW. Genetics animates structure: leveraging genetic interactions to study the dynamics of ribosome biogenesis. Curr Genet 2021; 67:729-738. [PMID: 33844044 PMCID: PMC11979895 DOI: 10.1007/s00294-021-01187-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 11/26/2022]
Abstract
The assembly of eukaryotic ribosomes follows an assembly line-like pathway in which numerous trans-acting biogenesis factors act on discrete pre-ribosomal intermediates to progressively shape the nascent subunits into their final functional architecture. Recent advances in cryo-electron microscopy have led to high-resolution structures of many pre-ribosomal intermediates; however, these static snapshots do not capture the dynamic transitions between these intermediates. To this end, molecular genetics can be leveraged to reveal how the biogenesis factors drive these dynamic transitions. Here, we briefly review how we recently used the deletion of BUD23 (bud23∆) to understand its role in the assembly of the ribosomal small subunit. The strong growth defect of bud23∆ mutants places a selective pressure on yeast cells for the occurrence of extragenic suppressors that define a network of functional interactions among biogenesis factors. Mapping these suppressing mutations to recently published structures of pre-ribosomal complexes allowed us to contextualize these suppressing mutations and derive a detailed model in which Bud23 promotes a critical transition event to facilitate folding of the central pseudoknot of the small subunit. This mini-review highlights how genetics can be used to understand the dynamics of complex structures, such as the maturing ribosome.
Collapse
Affiliation(s)
- Joshua J Black
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Arlen W Johnson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
26
|
Jarrous N, Mani D, Ramanathan A. Coordination of transcription and processing of tRNA. FEBS J 2021; 289:3630-3641. [PMID: 33929081 DOI: 10.1111/febs.15904] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/02/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022]
Abstract
Coordination of transcription and processing of RNA is a basic principle in regulation of gene expression in eukaryotes. In the case of mRNA, coordination is primarily founded on a co-transcriptional processing mechanism by which a nascent precursor mRNA undergoes maturation via cleavage and modification by the transcription machinery. A similar mechanism controls the biosynthesis of rRNA. However, the coordination of transcription and processing of tRNA, a rather short transcript, remains unknown. Here, we present a model for high molecular weight initiation complexes of human RNA polymerase III that assemble on tRNA genes and process precursor transcripts to mature forms. These multifunctional initiation complexes may support co-transcriptional processing, such as the removal of the 5' leader of precursor tRNA by RNase P. Based on this model, maturation of tRNA is predetermined prior to transcription initiation.
Collapse
Affiliation(s)
- Nayef Jarrous
- Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Dhivakar Mani
- Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Aravind Ramanathan
- Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
27
|
Ogawa LM, Buhagiar AF, Abriola L, Leland BA, Surovtseva YV, Baserga SJ. Increased numbers of nucleoli in a genome-wide RNAi screen reveal proteins that link the cell cycle to RNA polymerase I transcription. Mol Biol Cell 2021; 32:956-973. [PMID: 33689394 PMCID: PMC8108525 DOI: 10.1091/mbc.e20-10-0670] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nucleoli are dynamic nuclear condensates in eukaryotic cells that originate through ribosome biogenesis at loci that harbor the ribosomal DNA. These loci are known as nucleolar organizer regions (NORs), and there are 10 in a human diploid genome. While there are 10 NORs, however, the number of nucleoli observed in cells is variable. Furthermore, changes in number are associated with disease, with increased numbers and size common in aggressive cancers. In the near-diploid human breast epithelial cell line, MCF10A, the most frequently observed number of nucleoli is two to three per cell. Here, to identify novel regulators of ribosome biogenesis we used high-throughput quantitative imaging of MCF10A cells to identify proteins that, when depleted, increase the percentage of nuclei with ≥5 nucleoli. Unexpectedly, this unique screening approach led to identification of proteins associated with the cell cycle. Functional analysis on a subset of hits further revealed not only proteins required for progression through the S and G2/M phase, but also proteins required explicitly for the regulation of RNA polymerase I transcription and protein synthesis. Thus, results from this screen for increased nucleolar number highlight the significance of the nucleolus in human cell cycle regulation, linking RNA polymerase I transcription to cell cycle progression.
Collapse
Affiliation(s)
- Lisa M Ogawa
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, CT 06520
| | - Amber F Buhagiar
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, CT 06520
| | - Laura Abriola
- Yale Center for Molecular Discovery, Yale University, West Haven, CT 06516
| | - Bryan A Leland
- Yale Center for Molecular Discovery, Yale University, West Haven, CT 06516
| | - Yulia V Surovtseva
- Yale Center for Molecular Discovery, Yale University, West Haven, CT 06516
| | - Susan J Baserga
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, CT 06520.,Department of Genetics, Yale University School of Medicine, New Haven, CT 06520.,Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
28
|
Cheng Y, Zhu H, Du Z, Guo X, Zhou C, Wang Z, He X. Eukaryotic translation factor eIF5A contributes to acetic acid tolerance in Saccharomyces cerevisiae via transcriptional factor Ume6p. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:38. [PMID: 33557922 PMCID: PMC7869214 DOI: 10.1186/s13068-021-01885-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/16/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND Saccharomyces cerevisiae is well-known as an ideal model system for basic research and important industrial microorganism for biotechnological applications. Acetic acid is an important growth inhibitor that has deleterious effects on both the growth and fermentation performance of yeast cells. Comprehensive understanding of the mechanisms underlying S. cerevisiae adaptive response to acetic acid is always a focus and indispensable for development of robust industrial strains. eIF5A is a specific translation factor that is especially required for the formation of peptide bond between certain residues including proline regarded as poor substrates for slow peptide bond formation. Decrease of eIF5A activity resulted in temperature-sensitive phenotype of yeast, while up-regulation of eIF5A protected transgenic Arabidopsis against high temperature, oxidative or osmotic stress. However, the exact roles and functional mechanisms of eIF5A in stress response are as yet largely unknown. RESULTS In this research, we compared cell growth between the eIF5A overexpressing and the control S. cerevisiae strains under various stressed conditions. Improvement of acetic acid tolerance by enhanced eIF5A activity was observed all in spot assay, growth profiles and survival assay. eIF5A prompts the synthesis of Ume6p, a pleiotropic transcriptional factor containing polyproline motifs, mainly in a translational related way. As a consequence, BEM4, BUD21 and IME4, the direct targets of Ume6p, were up-regulated in eIF5A overexpressing strain, especially under acetic acid stress. Overexpression of UME6 results in similar profiles of cell growth and target genes transcription to eIF5A overexpression, confirming the role of Ume6p and its association between eIF5A and acetic acid tolerance. CONCLUSION Translation factor eIF5A protects yeast cells against acetic acid challenge by the eIF5A-Ume6p-Bud21p/Ime4p/Bem4p axles, which provides new insights into the molecular mechanisms underlying the adaptive response and tolerance to acetic acid in S. cerevisiae and novel targets for construction of robust industrial strains.
Collapse
Affiliation(s)
- Yanfei Cheng
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hui Zhu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengda Du
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuena Guo
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chenyao Zhou
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaoyue Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiuping He
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
29
|
Sorino C, Catena V, Bruno T, De Nicola F, Scalera S, Bossi G, Fabretti F, Mano M, De Smaele E, Fanciulli M, Iezzi S. Che-1/AATF binds to RNA polymerase I machinery and sustains ribosomal RNA gene transcription. Nucleic Acids Res 2020; 48:5891-5906. [PMID: 32421830 PMCID: PMC7293028 DOI: 10.1093/nar/gkaa344] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
Originally identified as an RNA polymerase II interactor, Che-1/AATF (Che-1) has now been recognized as a multifunctional protein involved in cell-cycle regulation and cancer progression, as well as apoptosis inhibition and response to stress. This protein displays a peculiar nucleolar localization and it has recently been implicated in pre-rRNA processing and ribosome biogenesis. Here, we report the identification of a novel function of Che-1 in the regulation of ribosomal RNA (rRNA) synthesis, in both cancer and normal cells. We demonstrate that Che-1 interacts with RNA polymerase I and nucleolar upstream binding factor (UBF) and promotes RNA polymerase I-dependent transcription. Furthermore, this protein binds to the rRNA gene (rDNA) promoter and modulates its epigenetic state by contrasting the recruitment of HDAC1. Che-1 downregulation affects RNA polymerase I and UBF recruitment on rDNA and leads to reducing rDNA promoter activity and 47S pre-rRNA production. Interestingly, Che-1 depletion induces abnormal nucleolar morphology associated with re-distribution of nucleolar proteins. Finally, we show that upon DNA damage Che-1 re-localizes from rDNA to TP53 gene promoter to induce cell-cycle arrest. This previously uncharacterized function of Che-1 confirms the important role of this protein in the regulation of ribosome biogenesis, cellular proliferation and response to stress.
Collapse
Affiliation(s)
- Cristina Sorino
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy.,Department of Experimental Medicine, Sapienza-University of Rome, 00161 Rome, Italy
| | - Valeria Catena
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Tiziana Bruno
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Francesca De Nicola
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Stefano Scalera
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Gianluca Bossi
- Oncogenomic and Epigenetic Unit, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Francesca Fabretti
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50937 Cologne, Germany.,CECAD, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50931 Cologne, Germany
| | - Miguel Mano
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra 3060 197, Portugal
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza-University of Rome, 00161 Rome, Italy
| | - Maurizio Fanciulli
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Simona Iezzi
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| |
Collapse
|
30
|
Chen J, Zhang L, Ye K. Functional regions in the 5' external transcribed spacer of yeast pre-rRNA. RNA (NEW YORK, N.Y.) 2020; 26:866-877. [PMID: 32213618 PMCID: PMC7297118 DOI: 10.1261/rna.074807.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/21/2020] [Indexed: 05/07/2023]
Abstract
Ribosomal subunits are assembled on a precursor rRNA that includes four spacers in addition to mature rRNA sequences. The 5' external transcribed spacer (5' ETS) is the most prominent one that recruits U3 snoRNA and a plethora of proteins during the early assembly of 90S small subunit preribosomes. Here, we have conducted a comprehensive mutational analysis of 5' ETS by monitoring the processing and assembly of a plasmid-expressed pre-18S RNA. Remarkably, nearly half of the 5' ETS sequences, when depleted individually, are dispensable for 18S rRNA processing. The dispensable elements largely bind at the surface of the 90S structure. Defective assembly of 5' ETS completely blocks the last stage of 90S formation yet has little effect on the early assembly of 5' and central domains of 18S rRNA. Our study reveals the functional regions of 5' ETS and provides new insight into the assembly hierarchy of 90S preribosomes.
Collapse
Affiliation(s)
- Jing Chen
- PTN Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
- National Institute of Biological Sciences, Beijing 102206, China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Liman Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Keqiong Ye
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
31
|
Turowski TW, Petfalski E, Goddard BD, French SL, Helwak A, Tollervey D. Nascent Transcript Folding Plays a Major Role in Determining RNA Polymerase Elongation Rates. Mol Cell 2020; 79:488-503.e11. [PMID: 32585128 PMCID: PMC7427326 DOI: 10.1016/j.molcel.2020.06.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/01/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022]
Abstract
Transcription elongation rates influence RNA processing, but sequence-specific regulation is poorly understood. We addressed this in vivo, analyzing RNAPI in S. cerevisiae. Mapping RNAPI by Miller chromatin spreads or UV crosslinking revealed 5' enrichment and strikingly uneven local polymerase occupancy along the rDNA, indicating substantial variation in transcription speed. Two features of the nascent transcript correlated with RNAPI distribution: folding energy and GC content in the transcription bubble. In vitro experiments confirmed that strong RNA structures close to the polymerase promote forward translocation and limit backtracking, whereas high GC in the transcription bubble slows elongation. A mathematical model for RNAPI elongation confirmed the importance of nascent RNA folding in transcription. RNAPI from S. pombe was similarly sensitive to transcript folding, as were S. cerevisiae RNAPII and RNAPIII. For RNAPII, unstructured RNA, which favors slowed elongation, was associated with faster cotranscriptional splicing and proximal splice site use, indicating regulatory significance for transcript folding.
Collapse
Affiliation(s)
- Tomasz W Turowski
- Wellcome Centre for Cell Biology, The University of Edinburgh, Edinburgh, UK.
| | - Elisabeth Petfalski
- Wellcome Centre for Cell Biology, The University of Edinburgh, Edinburgh, UK
| | - Benjamin D Goddard
- School of Mathematics and Maxwell Institute for Mathematical Sciences, The University of Edinburgh, Edinburgh, UK
| | - Sarah L French
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Aleksandra Helwak
- Wellcome Centre for Cell Biology, The University of Edinburgh, Edinburgh, UK
| | - David Tollervey
- Wellcome Centre for Cell Biology, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
32
|
Braun CM, Hackert P, Schmid CE, Bohnsack MT, Bohnsack KE, Perez-Fernandez J. Pol5 is required for recycling of small subunit biogenesis factors and for formation of the peptide exit tunnel of the large ribosomal subunit. Nucleic Acids Res 2020; 48:405-420. [PMID: 31745560 PMCID: PMC7145529 DOI: 10.1093/nar/gkz1079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 01/24/2023] Open
Abstract
More than 200 assembly factors (AFs) are required for the production of ribosomes in yeast. The stepwise association and dissociation of these AFs with the pre-ribosomal subunits occurs in a hierarchical manner to ensure correct maturation of the pre-rRNAs and assembly of the ribosomal proteins. Although decades of research have provided a wealth of insights into the functions of many AFs, others remain poorly characterized. Pol5 was initially classified with B-type DNA polymerases, however, several lines of evidence indicate the involvement of this protein in ribosome assembly. Here, we show that depletion of Pol5 affects the processing of pre-rRNAs destined for the both the large and small subunits. Furthermore, we identify binding sites for Pol5 in the 5' external transcribed spacer and within domain III of the 25S rRNA sequence. Consistent with this, we reveal that Pol5 is required for recruitment of ribosomal proteins that form the polypeptide exit tunnel in the LSU and that depletion of Pol5 impairs the release of 5' ETS fragments from early pre-40S particles. The dual functions of Pol5 in 60S assembly and recycling of pre-40S AFs suggest that this factor could contribute to ensuring the stoichiometric production of ribosomal subunits.
Collapse
Affiliation(s)
- Christina M Braun
- Department of Biochemistry III, University of Regensburg, Universitätstrasse 31, 93053 Regensburg, Germany
| | - Philipp Hackert
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Catharina E Schmid
- Department of Biochemistry III, University of Regensburg, Universitätstrasse 31, 93053 Regensburg, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany.,Göttingen Center for Molecular Biosciences, Georg-August University, Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Jorge Perez-Fernandez
- Department of Biochemistry III, University of Regensburg, Universitätstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
33
|
Ramos-Sáenz A, González-Álvarez D, Rodríguez-Galán O, Rodríguez-Gil A, Gaspar SG, Villalobo E, Dosil M, de la Cruz J. Pol5 is an essential ribosome biogenesis factor required for 60S ribosomal subunit maturation in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2019; 25:1561-1575. [PMID: 31413149 PMCID: PMC6795146 DOI: 10.1261/rna.072116.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
In Saccharomyces cerevisiae, more than 250 trans-acting factors are involved in the maturation of 40S and 60S ribosomal subunits. The expression of most of these factors is transcriptionally coregulated to ensure correct ribosome production under a wide variety of environmental and intracellular conditions. Here, we identified the essential nucleolar Pol5 protein as a novel trans-acting factor required for the synthesis of 60S ribosomal subunits. Pol5 weakly and/or transiently associates with early to medium pre-60S ribosomal particles. Depletion of and temperature-sensitive mutations in Pol5 result in a deficiency of 60S ribosomal subunits and accumulation of half-mer polysomes. Both processing of 27SB pre-rRNA to mature 25S rRNA and release of pre-60S ribosomal particles from the nucle(ol)us to the cytoplasm are impaired in the Pol5-depleted strain. Moreover, we identified the genes encoding ribosomal proteins uL23 and eL27A as multicopy suppressors of the slow growth of a temperature-sensitive pol5 mutant. These results suggest that Pol5 could function in ensuring the correct folding of 25S rRNA domain III; thus, favoring the correct assembly of these two ribosomal proteins at their respective binding sites into medium pre-60S ribosomal particles. Pol5 is homologous to the human tumor suppressor Myb-binding protein 1A (MYBBP1A). However, expression of MYBBP1A failed to complement the lethal phenotype of a pol5 null mutant strain though interfered with 60S ribosomal subunit biogenesis.
Collapse
Affiliation(s)
- Ana Ramos-Sáenz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012, Seville, Spain
| | - Daniel González-Álvarez
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012, Seville, Spain
| | - Olga Rodríguez-Galán
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012, Seville, Spain
| | - Alfonso Rodríguez-Gil
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013, Seville, Spain
| | - Sonia G Gaspar
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, E-37007, Salamanca, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), CSIC-Universidad de Salamanca, E-37007, Salamanca, Spain
| | - Eduardo Villalobo
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013, Seville, Spain
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, E-41012, Seville, Spain
| | - Mercedes Dosil
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, E-37007, Salamanca, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), CSIC-Universidad de Salamanca, E-37007, Salamanca, Spain
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, E-37007, Salamanca, Spain
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012, Seville, Spain
| |
Collapse
|
34
|
Yao RW, Xu G, Wang Y, Shan L, Luan PF, Wang Y, Wu M, Yang LZ, Xing YH, Yang L, Chen LL. Nascent Pre-rRNA Sorting via Phase Separation Drives the Assembly of Dense Fibrillar Components in the Human Nucleolus. Mol Cell 2019; 76:767-783.e11. [PMID: 31540874 DOI: 10.1016/j.molcel.2019.08.014] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/04/2019] [Accepted: 08/13/2019] [Indexed: 12/21/2022]
Abstract
Fibrillar centers (FCs) and dense fibrillar components (DFCs) are essential morphologically distinct sub-regions of mammalian cell nucleoli for rDNA transcription and pre-rRNA processing. Here, we report that a human nucleolus consists of several dozen FC/DFC units, each containing 2-3 transcriptionally active rDNAs at the FC/DFC border. Pre-rRNA processing factors, such as fibrillarin (FBL), form 18-24 clusters that further assemble into the DFC surrounding the FC. Mechanistically, the 5' end of nascent 47S pre-rRNA binds co-transcriptionally to the RNA-binding domain of FBL. FBL diffuses to the DFC, where local self-association via its glycine- and arginine-rich (GAR) domain forms phase-separated clusters to immobilize FBL-interacting pre-rRNA, thus promoting directional traffic of nascent pre-rRNA while facilitating pre-rRNA processing and DFC formation. These results unveil FC/DFC ultrastructures in nucleoli and suggest a conceptual framework for considering nascent RNA sorting using multivalent interactions of their binding proteins.
Collapse
Affiliation(s)
- Run-Wen Yao
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Guang Xu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Ying Wang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Lin Shan
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Peng-Fei Luan
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yang Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Man Wu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Liang-Zhong Yang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yu-Hang Xing
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Li Yang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China.
| |
Collapse
|
35
|
Sleiman S, Dragon F. Recent Advances on the Structure and Function of RNA Acetyltransferase Kre33/NAT10. Cells 2019; 8:cells8091035. [PMID: 31491951 PMCID: PMC6770127 DOI: 10.3390/cells8091035] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/23/2019] [Accepted: 08/25/2019] [Indexed: 02/07/2023] Open
Abstract
Ribosome biogenesis is one of the most energy demanding processes in the cell. In eukaryotes, the main steps of this process occur in the nucleolus and include pre-ribosomal RNA (pre-rRNA) processing, post-transcriptional modifications, and assembly of many non-ribosomal factors and ribosomal proteins in order to form mature and functional ribosomes. In yeast and humans, the nucleolar RNA acetyltransferase Kre33/NAT10 participates in different maturation events, such as acetylation and processing of 18S rRNA, and assembly of the 40S ribosomal subunit. Here, we review the structural and functional features of Kre33/NAT10 RNA acetyltransferase, and we underscore the importance of this enzyme in ribosome biogenesis, as well as in acetylation of non-ribosomal targets. We also report on the role of human NAT10 in Hutchinson-Gilford progeria syndrome.
Collapse
Affiliation(s)
- Sophie Sleiman
- Département des Sciences Biologiques and Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada.
| | - Francois Dragon
- Département des Sciences Biologiques and Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada.
| |
Collapse
|
36
|
Sirri V, Grob A, Berthelet J, Jourdan N, Roussel P. Sirtuin 7 promotes 45S pre-rRNA cleavage at site 2 and determines the processing pathway. J Cell Sci 2019; 132:jcs228601. [PMID: 31331964 PMCID: PMC6771141 DOI: 10.1242/jcs.228601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 07/10/2019] [Indexed: 01/06/2023] Open
Abstract
In humans, ribosome biogenesis mainly occurs in nucleoli following two alternative pre-rRNA processing pathways differing in the order in which cleavages take place but not by the sites of cleavage. To uncover the role of the nucleolar NAD+-dependent deacetylase sirtuin 7 in the synthesis of ribosomal subunits, pre-rRNA processing was analyzed after sirtinol-mediated inhibition of sirtuin 7 activity or depletion of sirtuin 7 protein. We thus reveal that sirtuin 7 activity is a critical regulator of processing of 45S, 32S and 30S pre-rRNAs. Sirtuin 7 protein is primarily essential to 45S pre-rRNA cleavage at site 2, which is the first step of processing pathway 2. Furthermore, we demonstrate that sirtuin 7 physically interacts with Nop56 and the GAR domain of fibrillarin, and propose that this could interfere with fibrillarin-dependent cleavage. Sirtuin 7 depletion results in the accumulation of 5' extended forms of 32S pre-rRNA, and also influences the localization of fibrillarin. Thus, we establish a close relationship between sirtuin 7 and fibrillarin, which might determine the processing pathway used for ribosome biogenesis.
Collapse
Affiliation(s)
- Valentina Sirri
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRS, 4 rue Marie-Andrée Lagroua Weill-Hallé, F-75013 Paris, France
| | - Alice Grob
- Department of Life Sciences, Imperial College London, London SW7 2AZ, England, UK
| | - Jérémy Berthelet
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRS, 4 rue Marie-Andrée Lagroua Weill-Hallé, F-75013 Paris, France
| | - Nathalie Jourdan
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), UMR 8256, CNRS, 9 quai St Bernard, F-75005 Paris, France
| | - Pascal Roussel
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRS, 4 rue Marie-Andrée Lagroua Weill-Hallé, F-75013 Paris, France
| |
Collapse
|
37
|
Sáez-Vásquez J, Delseny M. Ribosome Biogenesis in Plants: From Functional 45S Ribosomal DNA Organization to Ribosome Assembly Factors. THE PLANT CELL 2019; 31:1945-1967. [PMID: 31239391 PMCID: PMC6751116 DOI: 10.1105/tpc.18.00874] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/28/2019] [Accepted: 06/25/2019] [Indexed: 05/11/2023]
Abstract
The transcription of 18S, 5.8S, and 18S rRNA genes (45S rDNA), cotranscriptional processing of pre-rRNA, and assembly of mature rRNA with ribosomal proteins are the linchpins of ribosome biogenesis. In yeast (Saccharomyces cerevisiae) and animal cells, hundreds of pre-rRNA processing factors have been identified and their involvement in ribosome assembly determined. These studies, together with structural analyses, have yielded comprehensive models of the pre-40S and pre-60S ribosome subunits as well as the largest cotranscriptionally assembled preribosome particle: the 90S/small subunit processome. Here, we present the current knowledge of the functional organization of 45S rDNA, pre-rRNA transcription, rRNA processing activities, and ribosome assembly factors in plants, focusing on data from Arabidopsis (Arabidopsis thaliana). Based on yeast and mammalian cell studies, we describe the ribonucleoprotein complexes and RNA-associated activities and discuss how they might specifically affect the production of 40S and 60S subunits. Finally, we review recent findings concerning pre-rRNA processing pathways and a novel mechanism involved in a ribosome stress response in plants.
Collapse
Affiliation(s)
- Julio Sáez-Vásquez
- CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, 66860 Perpignan, France, and Universite Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, F-66860 Perpignan, France
| | - Michel Delseny
- CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, 66860 Perpignan, France, and Universite Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, F-66860 Perpignan, France
| |
Collapse
|
38
|
Thermophile 90S Pre-ribosome Structures Reveal the Reverse Order of Co-transcriptional 18S rRNA Subdomain Integration. Mol Cell 2019; 75:1256-1269.e7. [DOI: 10.1016/j.molcel.2019.06.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/11/2019] [Accepted: 06/21/2019] [Indexed: 11/23/2022]
|
39
|
Scull CE, Schneider DA. Coordinated Control of rRNA Processing by RNA Polymerase I. Trends Genet 2019; 35:724-733. [PMID: 31358304 DOI: 10.1016/j.tig.2019.07.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/25/2019] [Accepted: 07/01/2019] [Indexed: 11/19/2022]
Abstract
Ribosomal RNA (rRNA) is co- and post-transcriptionally processed into active ribosomes. This process is dynamically regulated by direct covalent modifications of the polymerase that synthesizes the rRNA, RNA polymerase I (Pol I), and by interactions with cofactors that influence initiation, elongation, and termination activities of Pol I. The rate of transcription elongation by Pol I directly influences processing of nascent rRNA, and changes in Pol I transcription rate result in alternative rRNA processing events that lead to cellular signaling alterations and stress. It is clear that in divergent species, there exists robust organization of nascent rRNA processing events during transcription elongation. This review evaluates the current state of our understanding of the complex relationship between transcription elongation and rRNA processing.
Collapse
Affiliation(s)
- Catherine E Scull
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
40
|
Gallagher JEG. Proteins and RNA sequences required for the transition of the t-Utp complex into the SSU processome. FEMS Yeast Res 2019; 19:5184469. [PMID: 30445532 DOI: 10.1093/femsyr/foy120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 11/12/2018] [Indexed: 12/20/2022] Open
Abstract
Ribosomes are synthesized by large ribonucleoprotein complexes cleaving and properly assembling highly structured rRNAs with ribosomal proteins. Transcription and processing of pre-rRNAs are linked by the transcription-Utp sub-complex (t-Utps), a sub-complex of the small subunit (SSU) processome and prompted the investigations for the requirements of t-Utp formation and transition into the SSU processome. The rDNA promoter, the first 44 nucleotides of the 5΄ETS, and active transcription by pol I were sufficient to recruit the t-Utps to the rDNA. Pol5, accessory factor, dissociated as t-Utps matured into the UtpA complex which permitted later recruitment of the UtpB, U3 snoRNP and the Mpp10 complex into the SSU processome. The t-Utp complex associated with short RNAs 121 and 138 nucleotides long transcribed from the 5΄ETS. These transcripts were not present when pol II transcribed the rDNA or in nondividing cells. Depletion of a t-Utp, but not of other SSU processome components led to decreased levels of the short transcripts. However, ectopic expression of the short transcripts slowed the growth of yeast with impaired rDNA transcription. These results provide insight into how transcription of the rRNA primes the assemble of t-Utp complex with the pre-rRNA into the UtpA complex and the later association of SSU processome components.
Collapse
|
41
|
Albert B, Kos-Braun IC, Henras AK, Dez C, Rueda MP, Zhang X, Gadal O, Kos M, Shore D. A ribosome assembly stress response regulates transcription to maintain proteome homeostasis. eLife 2019; 8:45002. [PMID: 31124783 PMCID: PMC6579557 DOI: 10.7554/elife.45002] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/23/2019] [Indexed: 12/13/2022] Open
Abstract
Ribosome biogenesis is a complex and energy-demanding process requiring tight coordination of ribosomal RNA (rRNA) and ribosomal protein (RP) production. Given the extremely high level of RP synthesis in rapidly growing cells, alteration of any step in the ribosome assembly process may impact growth by leading to proteotoxic stress. Although the transcription factor Hsf1 has emerged as a central regulator of proteostasis, how its activity is coordinated with ribosome biogenesis is unknown. Here, we show that arrest of ribosome biogenesis in the budding yeast Saccharomyces cerevisiae triggers rapid activation of a highly specific stress pathway that coordinately upregulates Hsf1 target genes and downregulates RP genes. Activation of Hsf1 target genes requires neo-synthesis of RPs, which accumulate in an insoluble fraction and presumably titrate a negative regulator of Hsf1, the Hsp70 chaperone. RP aggregation is also coincident with that of the RP gene activator Ifh1, a transcription factor that is rapidly released from RP gene promoters. Our data support a model in which the levels of newly synthetized RPs, imported into the nucleus but not yet assembled into ribosomes, work to continuously balance Hsf1 and Ifh1 activity, thus guarding against proteotoxic stress during ribosome assembly. When yeast cells are growing at top speed, they can make 2,000 new ribosomes every minute. These enormous molecular assemblies are the protein-making machines of the cell. Building new ribosomes is one of the most energy-demanding parts of cell growth and, if the process goes wrong, the results can be catastrophic. The proteins that make up the ribosomes themselves are sticky. Left unattended, they start to form toxic clumps inside the compartment that houses most of the cell’s DNA, the nucleus. A protein called Heat shock factor 1, or Hsf1 for short, plays an important role in the cell's quality control systems. It helps to manage sticky proteins by switching on genes that break down protein clumps and prevent new clumps from forming. Hsf1 levels start to rise whenever cells are struggling to keep up with protein production. If it is half-finished ribosomes that are causing the problem, cells can stop making ribosome proteins. The protein in charge of this in yeast is Ifh1. It is a transcription factor that sits at the front of the genes for ribosome proteins, switching them on. When yeast cells get stressed, Ifh1 drops away from the genes within minutes, switching them off again. Yet how this happens, and how it links to Hsf1, is a mystery. To start to provide some answers, Albert et al. disrupted the production of ribosomes in yeast cells and examined the consequences. This revealed a new rescue response, that they named the “ribosome assembly stress response”. Both Hsf1 and Ifh1 are sensitive to the build-up of unfinished ribosomes in the nucleus. As expected, Hsf1 activated when ribosome proteins started to build up, and switched on the genes needed to manage the protein clumps. The effect on Isfh1, however, was unexpected. When the unassembled ribosome proteins started to build up, it was the clumps themselves that pulled the Ifh1 proteins off the genes. The unassembled ribosomes proteins seemed to be stopping their own production. Low levels of clumped ribosome proteins in the nuclei of unstressed cells also helped to keep Hsf1 active and pull Ifh1 off the ribosome genes. It is possible that this provides continual protection against a toxic protein build-up. These findings are not only important for understanding yeast cells; cancer cells also need to produce ribosomes at a very high rate to sustain their rapid growth. They too might be prone to stresses that interrupt their ribosome assembly. As such, understanding more about this process could one day lead to new therapies to target cancer cells.
Collapse
Affiliation(s)
- Benjamin Albert
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), Geneva, Switzerland
| | | | - Anthony K Henras
- Centre de Biologie Intégrative, Université Paul Sabatier, Toulouse, France
| | - Christophe Dez
- Centre de Biologie Intégrative, Université Paul Sabatier, Toulouse, France
| | - Maria Paula Rueda
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), Geneva, Switzerland
| | - Xu Zhang
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), Geneva, Switzerland
| | - Olivier Gadal
- Centre de Biologie Intégrative, Université Paul Sabatier, Toulouse, France
| | - Martin Kos
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - David Shore
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), Geneva, Switzerland
| |
Collapse
|
42
|
In yeast cells arrested at the early S-phase by hydroxyurea, rRNA gene promoters and chromatin are poised for transcription while rRNA synthesis is compromised. Mutat Res 2019; 815:20-29. [PMID: 31063901 DOI: 10.1016/j.mrfmmm.2019.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 03/25/2019] [Accepted: 04/23/2019] [Indexed: 11/19/2022]
Abstract
Hydroxyurea (HU) is an inhibitor of ribonucleotide reductase that is used as a chemotherapeutic agent to treat a number of chronic diseases. Addition of HU to cell cultures causes reduction of the dNTP cellular pool below levels that are required for DNA replication. This trigger dividing cells to arrest in early S-phase of the cell cycle. Cell division hinges on ribosome biogenesis, which is tightly regulated by rRNA synthesis. Remarkably, HU represses the expression of some genes the products of which are required for rRNA maturation. To gain more information on the cellular response to HU, we employed the yeast Saccharomyces cerevisiae as model organism and analyzed the changing aspects of closed to open forms of rRNA gene chromatin during cell cycle arrest, the arrangement of RNA polymerase-I (RNAPI) on the open genes, the presence of RNAPI transcription-factors, transcription and rRNA maturation. The rRNA gene chromatin structure was analyzed by psoralen crosslinking and the distribution of RNAPI was investigated by chromatin endogenous cleavage. In HU arrested cells nearly all rRNA genes were in the open form of chromatin, but only a portion of them was engaged with RNAPI. Analyses by chromatin immuno-precipitation confirmed that the overall formation of transcription pre-initiation complexes remained unchanged, suggesting that the onset of rRNA gene activation was not significantly affected by HU. Moreover, the in vitro transcription run-on assay indicated that RNAPI retained most of its transcription elongation activity. However, in HU treated cells, we found that: (1) RNAPI accumulated next to the 5'-end of rRNA genes; (2) considerably less rRNA filaments were observed in electron micrographs of rDNA transcription units; and (3) rRNA maturation was compromised. It is established that HU inhibition of ribonucleotide reductase holds back DNA replication. This study indicates a hitherto unexplored cellular response to HU, namely altered rRNA synthesis, which could participate to hamper cell division.
Collapse
|
43
|
Turi Z, Lacey M, Mistrik M, Moudry P. Impaired ribosome biogenesis: mechanisms and relevance to cancer and aging. Aging (Albany NY) 2019; 11:2512-2540. [PMID: 31026227 PMCID: PMC6520011 DOI: 10.18632/aging.101922] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/04/2019] [Indexed: 02/06/2023]
Abstract
The biosynthesis of ribosomes is a complex process that requires the coordinated action of many factors and a huge energy investment from the cell. Ribosomes are essential for protein production, and thus for cellular survival, growth and proliferation. Ribosome biogenesis is initiated in the nucleolus and includes: the synthesis and processing of ribosomal RNAs, assembly of ribosomal proteins, transport to the cytoplasm and association of ribosomal subunits. The disruption of ribosome biogenesis at various steps, with either increased or decreased expression of different ribosomal components, can promote cell cycle arrest, senescence or apoptosis. Additionally, interference with ribosomal biogenesis is often associated with cancer, aging and age-related degenerative diseases. Here, we review current knowledge on impaired ribosome biogenesis, discuss the main factors involved in stress responses under such circumstances and focus on examples with clinical relevance.
Collapse
Affiliation(s)
- Zsofia Turi
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Matthew Lacey
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Martin Mistrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Pavel Moudry
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| |
Collapse
|
44
|
Griffin JN, Sondalle SB, Robson A, Mis EK, Griffin G, Kulkarni SS, Deniz E, Baserga SJ, Khokha MK. RPSA, a candidate gene for isolated congenital asplenia, is required for pre-rRNA processing and spleen formation in Xenopus. Development 2018; 145:145/20/dev166181. [PMID: 30337486 DOI: 10.1242/dev.166181] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 09/13/2018] [Indexed: 12/14/2022]
Abstract
A growing number of tissue-specific inherited disorders are associated with impaired ribosome production, despite the universal requirement for ribosome function. Recently, mutations in RPSA, a protein component of the small ribosomal subunit, were discovered to underlie approximately half of all isolated congenital asplenia cases. However, the mechanisms by which mutations in this ribosome biogenesis factor lead specifically to spleen agenesis remain unknown, in part due to the lack of a suitable animal model for study. Here we reveal that RPSA is required for normal spleen development in the frog, Xenopus tropicalis Depletion of Rpsa in early embryonic development disrupts pre-rRNA processing and ribosome biogenesis, and impairs expression of the key spleen patterning genes nkx2-5, bapx1 and pod1 in the spleen anlage. Importantly, we also show that whereas injection of human RPSA mRNA can rescue both pre-rRNA processing and spleen patterning, injection of human mRNA bearing a common disease-associated mutation cannot. Together, we present the first animal model of RPSA-mediated asplenia and reveal a crucial requirement for RPSA in pre-rRNA processing and molecular patterning during early Xenopus development.
Collapse
Affiliation(s)
- John N Griffin
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Samuel B Sondalle
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Andrew Robson
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Emily K Mis
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Gerald Griffin
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Saurabh S Kulkarni
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Engin Deniz
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Susan J Baserga
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA .,Departments of Molecular Biophysics and Biochemistry, and Therapeutic Radiology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA .,Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| |
Collapse
|
45
|
TbUTP10, a protein involved in early stages of pre-18S rRNA processing in Trypanosoma brucei. Mol Biochem Parasitol 2018; 225:84-93. [PMID: 30248370 DOI: 10.1016/j.molbiopara.2018.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/28/2018] [Accepted: 09/15/2018] [Indexed: 12/19/2022]
Abstract
Ribosome biosynthesis, best studied in opisthokonts, is a highly complex process involving numerous protein and RNA factors. Yet, very little is known about the early stages of pre-18S rRNA processing even in these model organisms, let alone the conservation of this mechanism in other eukaryotes. Here we extend our knowledge of this process by identifying and characterizing the essential protein TbUTP10, a homolog of yeast U3 small nucleolar RNA-associated protein 10 - UTP10 (HEATR1 in human), in the excavate parasitic protist Trypanosoma brucei. We show that TbUTP10 localizes to the nucleolus and that its ablation by RNAi knock-down in two different T. brucei life cycle stages results in similar phenotypes: a disruption of pre-18S rRNA processing, exemplified by the accumulation of rRNA precursors, a reduction of mature 18S rRNA, and also a decrease in the level of U3 snoRNA. Moreover, polysome profiles of the RNAi-induced knock-down cells show a complete disappearance of the 40S ribosomal subunit, and a prominent accumulation of the 60S large ribosomal subunit, reflecting impaired ribosome assembly. Thus, TbUTP10 is an important protein in the processing of 18S rRNA.
Collapse
|
46
|
Choque E, Schneider C, Gadal O, Dez C. Turnover of aberrant pre-40S pre-ribosomal particles is initiated by a novel endonucleolytic decay pathway. Nucleic Acids Res 2018; 46:4699-4714. [PMID: 29481617 PMCID: PMC5961177 DOI: 10.1093/nar/gky116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/29/2018] [Accepted: 02/09/2018] [Indexed: 01/05/2023] Open
Abstract
Ribosome biogenesis requires more than 200 trans-acting factors to achieve the correct production of the two mature ribosomal subunits. Here, we have identified Efg1 as a novel, nucleolar ribosome biogenesis factor in Saccharomyces cerevisiae that is directly linked to the surveillance of pre-40S particles. Depletion of Efg1 impairs early pre-rRNA processing, leading to a strong decrease in 18S rRNA and 40S subunit levels and an accumulation of the aberrant 23S rRNA. Using Efg1 as bait, we revealed a novel degradation pathway of the 23S rRNA. Co-immunoprecipitation experiments showed that Efg1 is a component of 90S pre-ribosomes, as it is associated with the 35S pre-rRNA and U3 snoRNA, but has stronger affinity for 23S pre-rRNA and its novel degradation intermediate 11S rRNA. 23S is cleaved at a new site, Q1, within the 18S sequence by the endonuclease Utp24, generating 11S and 17S' rRNA. Both of these cleavage products are targeted for degradation by the TRAMP/exosome complexes. Therefore, the Q1 site defines a novel endonucleolytic cleavage site of ribosomal RNA exclusively dedicated to surveillance of pre-ribosomal particles.
Collapse
Affiliation(s)
- Elodie Choque
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse Cedex 9, France
| | - Claudia Schneider
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Olivier Gadal
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse Cedex 9, France
| | - Christophe Dez
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse Cedex 9, France
| |
Collapse
|
47
|
Hang R, Wang Z, Deng X, Liu C, Yan B, Yang C, Song X, Mo B, Cao X. Ribosomal RNA Biogenesis and Its Response to Chilling Stress in Oryza sativa. PLANT PHYSIOLOGY 2018; 177:381-397. [PMID: 29555785 PMCID: PMC5933117 DOI: 10.1104/pp.17.01714] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/02/2018] [Indexed: 05/20/2023]
Abstract
Ribosome biogenesis is crucial for plant growth and environmental acclimation. Processing of ribosomal RNAs (rRNAs) is an essential step in ribosome biogenesis and begins with transcription of the rDNA. The resulting precursor-rRNA (pre-rRNA) transcript undergoes systematic processing, where multiple endonucleolytic and exonucleolytic cleavages remove the external and internal transcribed spacers (ETS and ITS). The processing sites and pathways for pre-rRNA processing have been deciphered in Saccharomyces cerevisiae and, to some extent, in Xenopus laevis, mammalian cells, and Arabidopsis (Arabidopsis thaliana). However, the processing sites and pathways remain largely unknown in crops, particularly in monocots such as rice (Oryza sativa), one of the most important food resources in the world. Here, we identified the rRNA precursors produced during rRNA biogenesis and the critical endonucleolytic cleavage sites in the transcribed spacer regions of pre-rRNAs in rice. We further found that two pre-rRNA processing pathways, distinguished by the order of 5' ETS removal and ITS1 cleavage, coexist in vivo. Moreover, exposing rice to chilling stress resulted in the inhibition of rRNA biogenesis mainly at the pre-rRNA processing level, suggesting that these energy-intensive processes may be reduced to increase acclimation and survival at lower temperatures. Overall, our study identified the pre-rRNA processing pathway in rice and showed that ribosome biogenesis is quickly inhibited by low temperatures, which may shed light on the link between ribosome biogenesis and environmental acclimation in crop plants.
Collapse
MESH Headings
- Cold Temperature
- Models, Biological
- Oryza/genetics
- Oryza/physiology
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal/biosynthesis
- RNA, Ribosomal, 18S/metabolism
- Ribosome Subunits, Large/metabolism
- Ribosome Subunits, Small/metabolism
- Stress, Physiological
Collapse
Affiliation(s)
- Runlai Hang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, Guangdong Province, China
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhen Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunyan Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Yan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Chao Yang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xianwei Song
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, Guangdong Province, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China
| |
Collapse
|
48
|
Arimbasseri GA. Interactions between RNAP III transcription machinery and tRNA processing factors. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:354-360. [PMID: 29428193 DOI: 10.1016/j.bbagrm.2018.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/06/2018] [Accepted: 02/06/2018] [Indexed: 10/18/2022]
Abstract
Eukaryotes have at least three nuclear RNA polymerases to carry out transcription. While RNA polymerases I and II are responsible for ribosomal RNA transcription and messenger RNA transcription, respectively, RNA Polymerase III transcribes approximately up to 300 nt long noncoding RNAs, including tRNA. For all three RNAPs, the nascent transcripts generated undergo extensive post-transcriptional processing. Transcription of mRNAs by RNAP II and their processing are coupled with the aid of the C-terminal domain of the RNAP II. RNAP I transcription and the processing of its transcripts are co-localized to the nucleolus and to some extent, rRNA processing occurs co-transcriptionally. Here, I review the current evidence for the interaction between tRNA processing factors and RNA polymerase III. These interactions include the moonlighting functions of tRNA processing factors in RNAP III transcription and the indirect effect of tRNA transcription levels on tRNA modification machinery.
Collapse
Affiliation(s)
- G Aneeshkumar Arimbasseri
- Molecular Genetics Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
49
|
Abstract
Ribosome biogenesis is a complex and highly energy-demanding process that requires the concerted action of all three nuclear RNA polymerases (Pol I-III) in eukaryotes. The three largest ribosomal RNAs (rRNAs) originate from a precursor transcript (pre-rRNA) that is encoded by multicopy genes located in the nucleolus. Transcription of these rRNA genes (rDNA) by Pol I is the key regulation step in ribosome production and is tightly controlled by an intricate network of signaling pathways and epigenetic mechanisms. In this article, we give an overview of the composition of the basal Pol I machinery and rDNA chromatin. We discuss rRNA gene regulation in response to environmental signals and developmental cues and focus on perturbations occurring in diseases linked to either excessive or limited rRNA levels. Finally, we discuss the emerging view that rDNA integrity and activity may be involved in the aging process.
Collapse
Affiliation(s)
- Samim Sharifi
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University, 07745 Jena, Germany; , .,Leibniz-Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany
| | - Holger Bierhoff
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University, 07745 Jena, Germany; , .,Leibniz-Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany
| |
Collapse
|
50
|
Assembly and structure of the SSU processome-a nucleolar precursor of the small ribosomal subunit. Curr Opin Struct Biol 2018; 49:85-93. [PMID: 29414516 DOI: 10.1016/j.sbi.2018.01.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 12/22/2022]
Abstract
The small subunit processome is the first precursor of the small eukaryotic ribosomal subunit. During its assembly in the nucleolus, many ribosome biogenesis factors, an RNA chaperone, and ribosomal proteins associate with the nascent pre-rRNA. Biochemical studies have elucidated the rRNA-subdomain dependent recruitment of these factors during SSU processome assembly and have been complemented by structural studies of the assembled particle. Ribosome biogenesis factors encapsulate and guide subdomains of pre-ribosomal RNA in distinct compartments. This prevents uncoordinated maturation and enables processing of regions not accessible in the mature subunit. By sequentially reducing conformational freedom, flexible proteins facilitate the incorporation of dynamic subcomplexes into a globular particle. Large rearrangements within the SSU processome are required for compaction into the mature small ribosomal subunit.
Collapse
|