1
|
Blazickova J, Trivedi S, Bowman R, Sivakumar Geetha S, Subah S, Scuzzarella M, Chang A, Chandran UR, Yanowitz JL, Smolikove S, Jantsch V, Zetka M, Silva N. Overlapping and separable activities of BRA-2 and HIM-17 promote occurrence and regulation of pairing and synapsis during Caenorhabditis elegans meiosis. Nat Commun 2025; 16:2516. [PMID: 40082424 PMCID: PMC11906835 DOI: 10.1038/s41467-025-57862-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 02/26/2025] [Indexed: 03/16/2025] Open
Abstract
Faithful meiotic segregation requires pairwise alignment of the homologous chromosomes and their synaptonemal complex (SC) mediated stabilization. Here, we investigate factors that promote and coordinate these events during C. elegans meiosis. We identify BRA-2 (BMP Receptor Associated family member 2) as an interactor of HIM-17, previously shown to promote double-strand break formation. We found that loss of bra-2 impairs synapsis elongation without affecting homolog recognition, chromosome movement or SC maintenance. Epistasis analyses reveal previously unrecognized activities for HIM-17 in regulating homolog pairing and SC assembly in a partially overlapping manner with BRA-2. We show that removing bra-2 or him-17 restores nuclear clustering, recruitment of PLK-2 at the nuclear periphery, and abrogation of ectopic synapsis in htp-1 mutants, suggesting intact CHK-2-mediated signaling and presence of a barrier that prevents SC polymerization in the absence of homology. Our findings shed light on the regulatory mechanisms ensuring faithful pairing and synapsis.
Collapse
Affiliation(s)
- Jitka Blazickova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Shalini Trivedi
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Richard Bowman
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Sowmya Sivakumar Geetha
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna Biocenter, Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Chromosome Biology, Vienna Biocenter, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | - Silma Subah
- Department of Biology, Faculty of Science, McGill University, Montreal, QC, Canada
| | | | - Alexander Chang
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Uma R Chandran
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Judith L Yanowitz
- Magee-Womens Research Institute, Pittsburgh, PA, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sarit Smolikove
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Verena Jantsch
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna Biocenter, Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Chromosome Biology, Vienna Biocenter, Vienna, Austria
| | - Monique Zetka
- Department of Biology, Faculty of Science, McGill University, Montreal, QC, Canada
| | - Nicola Silva
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
2
|
Gold AL, Hurlock ME, Guevara AM, Isenberg LYZ, Kim Y. Identification of the Polo-like kinase substrate required for homologous synapsis. J Cell Biol 2025; 224:e202408092. [PMID: 39680026 DOI: 10.1083/jcb.202408092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
The synaptonemal complex (SC) is a zipper-like protein structure that aligns homologous chromosome pairs and regulates recombination during meiosis. Despite its conserved appearance and function, how synapsis occurs between chromosome axes remains elusive. Here, we demonstrate that Polo-like kinases (PLKs) phosphorylate a single conserved residue in the disordered C-terminal tails of two paralogous SC subunits, SYP-5 and SYP-6, to establish an electrostatic interface between the SC central region and chromosome axes in C. elegans. While SYP-5/6 phosphorylation is dispensable for the ability of SC proteins to self-assemble, local phosphorylation by PLKs at the pairing center is crucial for SC elongation between homologous chromosome axes. Additionally, SYP-5/6 phosphorylation is essential for asymmetric SC disassembly and proper PLK-2 localization after crossover designation, which drives chromosome remodeling required for homolog separation during meiosis I. This work identifies a key regulatory mechanism by which localized PLK activity mediates the SC-axis interaction through phosphorylation of SYP-5/6, coupling synapsis initiation to homolog pairing.
Collapse
Affiliation(s)
- Ariel L Gold
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | | | - Alicia M Guevara
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | | | - Yumi Kim
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
3
|
Patel B, Grobler M, Herrera A, Logari E, Ortiz V, Bhalla N. The conserved ATPase PCH-2 controls the number and distribution of crossovers by antagonizing their formation in Caenorhabditis elegans. eLife 2025; 13:RP102409. [PMID: 39964851 PMCID: PMC11835387 DOI: 10.7554/elife.102409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
Meiotic crossover recombination is essential for both accurate chromosome segregation and the generation of new haplotypes for natural selection to act upon. This requirement is known as crossover assurance and is one example of crossover control. While the conserved role of the ATPase, PCH-2, during meiotic prophase has been enigmatic, a universal phenotype when pch-2 or its orthologs are mutated is a change in the number and distribution of meiotic crossovers. Here, we show that PCH-2 controls the number and distribution of crossovers by antagonizing their formation. This antagonism produces different effects at different stages of meiotic prophase: early in meiotic prophase, PCH-2 prevents double-strand breaks from becoming crossover-eligible intermediates, limiting crossover formation at sites of initial double-strand break formation and homolog interactions. Later in meiotic prophase, PCH-2 winnows the number of crossover-eligible intermediates, contributing to the designation of crossovers and ultimately, crossover assurance. We also demonstrate that PCH-2 accomplishes this regulation through the meiotic HORMAD, HIM-3. Our data strongly support a model in which PCH-2's conserved role is to remodel meiotic HORMADs throughout meiotic prophase to destabilize crossover-eligible precursors and coordinate meiotic recombination with synapsis, ensuring the progressive implementation of meiotic recombination and explaining its function in the pachytene checkpoint and crossover control.
Collapse
Affiliation(s)
- Bhumil Patel
- Department of Molecular, Cell and Developmental Biology, University of California, Santa CruzSanta CruzUnited States
| | - Maryke Grobler
- Department of Molecular, Cell and Developmental Biology, University of California, Santa CruzSanta CruzUnited States
| | - Alberto Herrera
- Department of Molecular, Cell and Developmental Biology, University of California, Santa CruzSanta CruzUnited States
| | - Elias Logari
- Department of Molecular, Cell and Developmental Biology, University of California, Santa CruzSanta CruzUnited States
| | - Valery Ortiz
- Department of Molecular, Cell and Developmental Biology, University of California, Santa CruzSanta CruzUnited States
| | - Needhi Bhalla
- Department of Molecular, Cell and Developmental Biology, University of California, Santa CruzSanta CruzUnited States
| |
Collapse
|
4
|
Moescheid MF, Lu Z, Soria CD, Quack T, Puckelwaldt O, Holroyd N, Holzaepfel P, Haeberlein S, Rinaldi G, Berriman M, Grevelding CG. The retinoic acid family-like nuclear receptor SmRAR identified by single-cell transcriptomics of ovarian cells controls oocyte differentiation in Schistosoma mansoni. Nucleic Acids Res 2025; 53:gkae1228. [PMID: 39676663 PMCID: PMC11879061 DOI: 10.1093/nar/gkae1228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/30/2024] [Accepted: 11/28/2024] [Indexed: 12/17/2024] Open
Abstract
Studies on transcription regulation in platyhelminth development are scarce, especially for parasitic flatworms. Here, we employed single-cell transcriptomics to identify genes involved in reproductive development in the trematode model Schistosoma mansoni. This parasite causes schistosomiasis, a major neglected infectious disease affecting >240 million people worldwide. The pathology of schistosomiasis is closely associated with schistosome eggs deposited in host organs including the liver. Unlike other trematodes, schistosomes exhibit distinct sexes, with egg production reliant on the pairing-dependent maturation of female reproductive organs. Despite this significance, the molecular mechanisms underlying ovary development and oocyte differentiation remain largely unexplored. Utilizing an organ isolation approach for S. mansoni, we extracted ovaries of paired females followed by single-cell RNA sequencing (RNA-seq) with disassociated oocytes. A total of 1967 oocytes expressing 7872 genes passed quality control (QC) filtering. Unsupervised clustering revealed four distinct cell clusters: somatic, germ cells and progeny, intermediate and late germ cells. Among distinct marker genes for each cluster, we identified a hitherto uncharacterized transcription factor of the retinoic acid receptor family, SmRAR. Functional analyses of SmRAR and associated genes like Smmeiob (meiosis-specific, oligonucleotide/oligosaccharide binding motif (OB) domain-containing) demonstrated their pairing-dependent and ovary-preferential expression and their decisive roles in oocyte differentiation of S. mansoni.
Collapse
Affiliation(s)
- Max F Moescheid
- Institute of Parasitology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany
| | - Zhigang Lu
- Institute of Parasitology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10, 1SA, UK
| | - Carmen Diaz Soria
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10, 1SA, UK
| | - Thomas Quack
- Institute of Parasitology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany
| | - Oliver Puckelwaldt
- Institute of Parasitology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany
| | - Nancy Holroyd
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10, 1SA, UK
| | - Pauline Holzaepfel
- Institute of Parasitology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany
| | - Simone Haeberlein
- Institute of Parasitology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany
| | - Gabriel Rinaldi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10, 1SA, UK
- Department of Life Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, SY23 3DA, UK
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10, 1SA, UK
- School of Infection and Immunity, College of Medicine, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Christoph G Grevelding
- Institute of Parasitology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany
| |
Collapse
|
5
|
Köhler S, Wojcik M, Xu K, Dernburg AF. Dynamic molecular architecture of the synaptonemal complex. SCIENCE ADVANCES 2025; 11:eadq9374. [PMID: 39841849 PMCID: PMC11753403 DOI: 10.1126/sciadv.adq9374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/20/2024] [Indexed: 01/24/2025]
Abstract
During meiosis, pairing between homologous chromosomes is stabilized by the assembly of the synaptonemal complex (SC). The SC ensures the formation of crossovers between homologous chromosomes and regulates their distribution. However, how the SC regulates crossover formation remains elusive. We isolated an unusual mutation in Caenorhabditis elegans that disrupts crossover interference but not SC assembly. This mutation alters the unique C terminal domain of an essential SC protein, SYP-4, a likely ortholog of the vertebrate SC protein SIX6OS1. We use three-dimensional stochastic optical reconstruction microscopy (3D-STORM) to interrogate the molecular architecture of the SC from wild-type and mutant C. elegans animals. Using a probabilistic mapping approach to analyze super-resolution image data, we detect changes in the organization of the synaptonemal complex in wild-type animals that coincide with crossover designation. We also found that our syp-4 mutant perturbs SC architecture. Our findings add to growing evidence that the SC is an active material whose molecular organization contributes to chromosome-wide crossover regulation.
Collapse
Affiliation(s)
- Simone Köhler
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815, USA
| | - Michal Wojcik
- Department of Chemistry, University of California, Berkeley, Berkeley CA 94720-3220, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, Berkeley CA 94720-3220, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- California Institute for Quantitative Biosciences, Berkeley CA 94720, USA
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Abby F. Dernburg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815, USA
- California Institute for Quantitative Biosciences, Berkeley CA 94720, USA
| |
Collapse
|
6
|
Patel B, Grobler M, Herrera A, Logari E, Ortiz V, Bhalla N. The conserved ATPase PCH-2 controls the number and distribution of crossovers by antagonizing their formation in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607819. [PMID: 39185160 PMCID: PMC11343117 DOI: 10.1101/2024.08.13.607819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Meiotic crossover recombination is essential for both accurate chromosome segregation and the generation of new haplotypes for natural selection to act upon. This requirement is known as crossover assurance and is one example of crossover control. While the conserved role of the ATPase, PCH-2, during meiotic prophase has been enigmatic, a universal phenotype when pch-2 or its orthologs are mutated is a change in the number and distribution of meiotic crossovers. Here, we show that PCH-2 controls the number and distribution of crossovers by antagonizing their formation. This antagonism produces different effects at different stages of meiotic prophase: early in meiotic prophase, PCH-2 prevents double strand breaks from becoming crossover-eligible intermediates, limiting crossover formation at sites of initial double strand break formation and homolog interactions. Later in meiotic prophase, PCH-2 winnows the number of crossover-eligible intermediates, contributing to the designation of crossovers and ultimately, crossover assurance. We also demonstrate that PCH-2 accomplishes this regulation through the meiotic HORMAD, HIM-3. Our data strongly support a model in which PCH-2's conserved role is to remodel meiotic HORMADs throughout meiotic prophase to destabilize crossover-eligible precursors, coordinate meiotic recombination with synapsis, and contribute to the progressive implementation of meiotic recombination, guaranteeing crossover control.
Collapse
Affiliation(s)
- Bhumil Patel
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Maryke Grobler
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Alberto Herrera
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Elias Logari
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Valery Ortiz
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Needhi Bhalla
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| |
Collapse
|
7
|
Chu L, Zhuang J, Geng M, Zhang Y, Zhu J, Zhang C, Schnittger A, Yi B, Yang C. ASYNAPSIS3 has diverse dosage-dependent effects on meiotic crossover formation in Brassica napus. THE PLANT CELL 2024; 36:3838-3856. [PMID: 39047149 PMCID: PMC11371185 DOI: 10.1093/plcell/koae207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/24/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Crossovers create genetic diversity and are required for equal chromosome segregation during meiosis. Crossover number and distribution are highly regulated by different mechanisms that are not yet fully understood, including crossover interference. The chromosome axis is crucial for crossover formation. Here, we explore the function of the axis protein ASYNAPSIS3. To this end, we use the allotetraploid species Brassica napus; due to its polyploid nature, this system allows a fine-grained dissection of the dosage of meiotic regulators. The simultaneous mutation of all 4 ASY3 alleles results in defective synapsis and drastic reduction of crossovers, which is largely rescued by the presence of only one functional ASY3 allele. Crucially, while the number of class I crossovers in mutants with 2 functional ASY3 alleles is comparable to that in wild type, this number is significantly increased in mutants with only one functional ASY3 allele, indicating that reducing ASY3 dosage increases crossover formation. Moreover, the class I crossovers on each bivalent in mutants with 1 functional ASY3 allele follow a random distribution, indicating compromised crossover interference. These results reveal the distinct dosage-dependent effects of ASY3 on crossover formation and provide insights into the role of the chromosome axis in patterning recombination.
Collapse
Affiliation(s)
- Lei Chu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jixin Zhuang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Miaowei Geng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yashi Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Zhu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Arp Schnittger
- Department of Developmental Biology, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg 22609, Germany
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
8
|
Gold AL, Hurlock ME, Guevara AM, Isenberg LYZ, Kim Y. Identification of the Polo-like kinase substrate required for homologous synapsis in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607834. [PMID: 39211260 PMCID: PMC11361119 DOI: 10.1101/2024.08.13.607834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The synaptonemal complex (SC) is a zipper-like protein structure that aligns homologous chromosome pairs and regulates recombination during meiosis. Despite its conserved appearance and function, how synapsis occurs between chromosome axes remains elusive. Here, we demonstrate that Polo-like kinases (PLKs) phosphorylate a single conserved residue in the disordered C-terminal tails of two paralogous SC subunits, SYP-5 and SYP-6, to establish an electrostatic interface between the SC central region and chromosome axes in C. elegans . While SYP-5/6 phosphorylation is dispensable for the ability of SC proteins to self-assemble, local phosphorylation by PLKs at the pairing center is crucial for SC elongation between homologous chromosome axes. Additionally, SYP-5/6 phosphorylation is essential for asymmetric SC disassembly and proper PLK-2 localization after crossover designation, which drives chromosome remodeling required for homolog separation during meiosis I. This work identifies a key regulatory mechanism by which localized PLK activity mediates the SC-axis interaction through phosphorylation of SYP-5/6, coupling synapsis initiation to homolog pairing.
Collapse
|
9
|
Dubois E, Boisnard S, Bourbon HM, Yefsah K, Budin K, Debuchy R, Zhang L, Kleckner N, Zickler D, Espagne E. Canonical and noncanonical roles of Hop1 are crucial for meiotic prophase in the fungus Sordaria macrospora. PLoS Biol 2024; 22:e3002705. [PMID: 38950075 PMCID: PMC11244814 DOI: 10.1371/journal.pbio.3002705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 07/12/2024] [Accepted: 06/07/2024] [Indexed: 07/03/2024] Open
Abstract
We show here that in the fungus Sordaria macrospora, the meiosis-specific HORMA-domain protein Hop1 is not essential for the basic early events of chromosome axis development, recombination initiation, or recombination-mediated homolog coalignment/pairing. In striking contrast, Hop1 plays a critical role at the leptotene/zygotene transition which is defined by transition from pairing to synaptonemal complex (SC) formation. During this transition, Hop1 is required for maintenance of normal axis structure, formation of SC from telomere to telomere, and development of recombination foci. These hop1Δ mutant defects are DSB dependent and require Sme4/Zip1-mediated progression of the interhomolog interaction program, potentially via a pre-SC role. The same phenotype occurs not only in hop1Δ but also in absence of the cohesin Rec8 and in spo76-1, a non-null mutant of cohesin-associated Spo76/Pds5. Thus, Hop1 and cohesins collaborate at this crucial step of meiotic prophase. In addition, analysis of 4 non-null mutants that lack this transition defect reveals that Hop1 also plays important roles in modulation of axis length, homolog-axis juxtaposition, interlock resolution, and spreading of the crossover interference signal. Finally, unexpected variations in crossover density point to the existence of effects that both enhance and limit crossover formation. Links to previously described roles of the protein in other organisms are discussed.
Collapse
Affiliation(s)
- Emeline Dubois
- Université Paris-Saclay, Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Stéphanie Boisnard
- Université Paris-Saclay, Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Henri-Marc Bourbon
- Centre de Biologie Intégrative, Molecular, Cellular & Developmental Biology Unit, Université Fédérale de Toulouse, Toulouse, France
| | - Kenza Yefsah
- Université Paris-Saclay, Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Karine Budin
- Université Paris-Saclay, Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Robert Debuchy
- Université Paris-Saclay, Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Liangran Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Denise Zickler
- Université Paris-Saclay, Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Eric Espagne
- Université Paris-Saclay, Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
10
|
Wang R, Li J, Tian Y, Sun Y, Zhang Y, Liu M, Zhang R, Zhao L, Li Q, Meng X, Zhou J, Gao J. The dynamic recruitment of LAB proteins senses meiotic chromosome axis differentiation in C. elegans. J Cell Biol 2024; 223:e202212035. [PMID: 38010234 PMCID: PMC10666650 DOI: 10.1083/jcb.202212035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 09/19/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023] Open
Abstract
During meiosis, cohesin and meiosis-specific proteins organize chromatin into an axis-loop architecture, coordinating homologous synapsis, recombination, and ordered chromosome segregation. However, how the meiotic chromosome axis is assembled and differentiated with meiotic progression remains elusive. Here, we explore the dynamic recruitment of two long arms of the bivalent proteins, LAB-1 and LAB-2, in Caenorhabditis elegans. LAB proteins directly interact with the axis core HORMA complexes and weak interactions contribute to their recruitment. LAB proteins phase separate in vitro, and this capacity is promoted by HORMA complexes. During early prophase, synapsis oppositely regulates the axis enrichment of LAB proteins. After the pachytene exit, LAB proteins switch from a reciprocal localization pattern to a colocalization pattern, and the normal dynamic pattern of LAB proteins is altered in meiotic mutants. We propose that LAB recruitment senses axis differentiation, and phase separation of meiotic structures helps subdomain establishment and accurate segregation of the chromosomes.
Collapse
Affiliation(s)
- Ruoxi Wang
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, China
| | - Jiaxiang Li
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, China
| | - Yuqi Tian
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, China
| | - Yating Sun
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, China
| | - Yu Zhang
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, China
| | - Mengfei Liu
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, China
| | - Ruirui Zhang
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, China
| | - Li Zhao
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, China
| | - Qian Li
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaoqian Meng
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, China
| | - Jun Zhou
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, China
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, China
| | - Jinmin Gao
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan, China
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
11
|
Cahoon CK, Richter CM, Dayton AE, Libuda DE. Sexual dimorphic regulation of recombination by the synaptonemal complex in C. elegans. eLife 2023; 12:e84538. [PMID: 37796106 PMCID: PMC10611432 DOI: 10.7554/elife.84538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 10/02/2023] [Indexed: 10/06/2023] Open
Abstract
In sexually reproducing organisms, germ cells faithfully transmit the genome to the next generation by forming haploid gametes, such as eggs and sperm. Although most meiotic proteins are conserved between eggs and sperm, many aspects of meiosis are sexually dimorphic, including the regulation of recombination. The synaptonemal complex (SC), a large ladder-like structure that forms between homologous chromosomes, is essential for regulating meiotic chromosome organization and promoting recombination. To assess whether sex-specific differences in the SC underpin sexually dimorphic aspects of meiosis, we examined Caenorhabditis elegans SC central region proteins (known as SYP proteins) in oogenesis and spermatogenesis and uncovered sex-specific roles for the SYPs in regulating meiotic recombination. We find that SC composition, specifically SYP-2, SYP-3, SYP-5, and SYP-6, is regulated by sex-specific mechanisms throughout meiotic prophase I. During pachytene, both oocytes and spermatocytes differentially regulate the stability of SYP-2 and SYP-3 within an assembled SC. Further, we uncover that the relative amount of SYP-2 and SYP-3 within the SC is independently regulated in both a sex-specific and a recombination-dependent manner. Specifically, we find that SYP-2 regulates the early steps of recombination in both sexes, while SYP-3 controls the timing and positioning of crossover recombination events across the genomic landscape in only oocytes. Finally, we find that SYP-2 and SYP-3 dosage can influence the composition of the other SYPs in the SC via sex-specific mechanisms during pachytene. Taken together, we demonstrate dosage-dependent regulation of individual SC components with sex-specific functions in recombination. These sexual dimorphic features of the SC provide insights into how spermatogenesis and oogenesis adapted similar chromosome structures to differentially regulate and execute recombination.
Collapse
Affiliation(s)
- Cori K Cahoon
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - Colette M Richter
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - Amelia E Dayton
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - Diana E Libuda
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| |
Collapse
|
12
|
Yamaya K, Wang B, Memar N, Odiba A, Woglar A, Gartner A, Villeneuve A. Disparate roles for C. elegans DNA translocase paralogs RAD-54.L and RAD-54.B in meiotic prophase germ cells. Nucleic Acids Res 2023; 51:9183-9202. [PMID: 37548405 PMCID: PMC10516670 DOI: 10.1093/nar/gkad638] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/06/2023] [Accepted: 07/20/2023] [Indexed: 08/08/2023] Open
Abstract
RAD54 family DNA translocases partner with RAD51 recombinases to ensure stable genome inheritance, exhibiting biochemical activities both in promoting recombinase removal and in stabilizing recombinase association with DNA. Understanding how such disparate activities of RAD54 paralogs align with their biological roles is an ongoing challenge. Here we investigate the in vivo functions of Caenorhabditis elegans RAD54 paralogs RAD-54.L and RAD-54.B during meiotic prophase, revealing distinct contributions to the dynamics of RAD-51 association with DNA and to the progression of meiotic double-strand break repair (DSBR). While RAD-54.L is essential for RAD-51 removal from meiotic DSBR sites to enable recombination progression, RAD-54.B is largely dispensable for meiotic DSBR. However, RAD-54.B is required to prevent hyperaccumulation of RAD-51 on unbroken DNA during the meiotic sub-stage when DSBs and early recombination intermediates form. Moreover, DSB-independent hyperaccumulation of RAD-51 foci in the absence of RAD-54.B is RAD-54.L-dependent, revealing a hidden activity of RAD-54.L in promoting promiscuous RAD-51 association that is antagonized by RAD-54.B. We propose a model wherein a division of labor among RAD-54 paralogs allows germ cells to ramp up their capacity for efficient homologous recombination that is crucial to successful meiosis while counteracting potentially deleterious effects of unproductive RAD-51 association with unbroken DNA.
Collapse
Affiliation(s)
- Kei Yamaya
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Bin Wang
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, 530007 Nanning, China
| | - Nadin Memar
- IBS Center for Genomic Integrity and Department for Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Arome Solomon Odiba
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, 530007 Nanning, China
| | - Alexander Woglar
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
- Swiss Institute for Experimental Cancer Research (ISREC) and School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Anton Gartner
- IBS Center for Genomic Integrity and Department for Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Anne M Villeneuve
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
13
|
Gordon SG, Rog O. Building the synaptonemal complex: Molecular interactions between the axis and the central region. PLoS Genet 2023; 19:e1010822. [PMID: 37471284 PMCID: PMC10359014 DOI: 10.1371/journal.pgen.1010822] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
The successful delivery of genetic material to gametes requires tightly regulated interactions between the parental chromosomes. Central to this regulation is a conserved chromosomal interface called the synaptonemal complex (SC), which brings the parental chromosomes in close proximity along their length. While many of its components are known, the interfaces that mediate the assembly of the SC remain a mystery. Here, we survey findings from different model systems while focusing on insight gained in the nematode C. elegans. We synthesize our current understanding of the structure, dynamics, and biophysical properties of the SC and propose mechanisms for SC assembly.
Collapse
Affiliation(s)
- Spencer G. Gordon
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Ofer Rog
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
14
|
Davis GM, Hipwell H, Boag PR. Oogenesis in Caenorhabditis elegans. Sex Dev 2023; 17:73-83. [PMID: 37232019 PMCID: PMC10659005 DOI: 10.1159/000531019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/01/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND The nematode, Caenorhabditis elegans has proven itself as a valuable model for investigating metazoan biology. C. elegans have a transparent body, an invariant cell lineage, and a high level of genetic conservation which makes it a desirable model organism. Although used to elucidate many aspects of somatic biology, a distinct advantage of C. elegans is its well annotated germline which allows all aspects of oogenesis to be observed in real time within a single animal. C. elegans hermaphrodites have two U-shaped gonad arms which produce their own sperm that is later stored to fertilise their own oocytes. These two germlines take up much of the internal space of each animal and germ cells are therefore the most abundant cell present within each animal. This feature and the genetic phenotypes observed for mutant worm gonads have allowed many novel findings that established our early understanding of germ cell dynamics. The mutant phenotypes also allowed key features of meiosis and germ cell maturation to be unveiled. SUMMARY This review will focus on the key aspects that make C. elegans an outstanding model for exploring each feature of oogenesis. This will include the fundamental steps associated with germline function and germ cell maturation and will be of use for those interested in exploring reproductive metazoan biology. KEY MESSAGES Since germ cell biology is highly conserved in animals, much can be gained from study of a simple metazoan like C. elegans. Past findings have enhanced understanding on topics that would be more laborious or challenging in more complex animal models.
Collapse
Affiliation(s)
- Gregory M. Davis
- Institute of Innovation, Science and Sustainability, Federation University, Churchill, VIC, Australia
| | - Hayleigh Hipwell
- Department of Biochemistry and Molecular Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| | - Peter R. Boag
- Department of Biochemistry and Molecular Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| |
Collapse
|
15
|
Russo AE, Giacopazzi S, Deshong A, Menon M, Ortiz V, Ego KM, Corbett KD, Bhalla N. The conserved AAA ATPase PCH-2 distributes its regulation of meiotic prophase events through multiple meiotic HORMADs in C. elegans. PLoS Genet 2023; 19:e1010708. [PMID: 37058535 PMCID: PMC10132761 DOI: 10.1371/journal.pgen.1010708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/26/2023] [Accepted: 03/21/2023] [Indexed: 04/15/2023] Open
Abstract
During meiotic prophase, the essential events of homolog pairing, synapsis, and recombination are coordinated with meiotic progression to promote fidelity and prevent aneuploidy. The conserved AAA+ ATPase PCH-2 coordinates these events to guarantee crossover assurance and accurate chromosome segregation. How PCH-2 accomplishes this coordination is poorly understood. Here, we provide evidence that PCH-2 decelerates pairing, synapsis and recombination in C. elegans by remodeling meiotic HORMADs. We propose that PCH-2 converts the closed versions of these proteins, which drive these meiotic prophase events, to unbuckled conformations, destabilizing interhomolog interactions and delaying meiotic progression. Further, we find that PCH-2 distributes this regulation among three essential meiotic HORMADs in C. elegans: PCH-2 acts through HTP-3 to regulate pairing and synapsis, HIM-3 to promote crossover assurance, and HTP-1 to control meiotic progression. In addition to identifying a molecular mechanism for how PCH-2 regulates interhomolog interactions, our results provide a possible explanation for the expansion of the meiotic HORMAD family as a conserved evolutionary feature of meiosis. Taken together, our work demonstrates that PCH-2's remodeling of meiotic HORMADs has functional consequences for the rate and fidelity of homolog pairing, synapsis, recombination and meiotic progression, ensuring accurate meiotic chromosome segregation.
Collapse
Affiliation(s)
- Anna E. Russo
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, United States of America
| | - Stefani Giacopazzi
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, United States of America
| | - Alison Deshong
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, United States of America
| | - Malaika Menon
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, United States of America
| | - Valery Ortiz
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, United States of America
| | - Kaori M. Ego
- Department of Cellular and Molecular Medicine, University of California, San Diego, California, United States of America
| | - Kevin D. Corbett
- Department of Cellular and Molecular Medicine, University of California, San Diego, California, United States of America
| | - Needhi Bhalla
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, United States of America
| |
Collapse
|
16
|
Rourke C, Jaramillo-Lambert A. TOP-2 is differentially required for the proper maintenance of the cohesin subunit REC-8 on meiotic chromosomes in Caenorhabditis elegans spermatogenesis and oogenesis. Genetics 2022; 222:iyac120. [PMID: 35951744 PMCID: PMC9526062 DOI: 10.1093/genetics/iyac120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/01/2022] [Indexed: 11/14/2022] Open
Abstract
During meiotic prophase I, accurate segregation of homologous chromosomes requires the establishment of chromosomes with a meiosis-specific architecture. The sister chromatid cohesin complex and the enzyme Topoisomerase II (TOP-2) are important components of meiotic chromosome architecture, but the relationship of these proteins in the context of meiotic chromosome segregation is poorly defined. Here, we analyzed the role of TOP-2 in the timely release of the sister chromatid cohesin subunit REC-8 during spermatogenesis and oogenesis of Caenorhabditis elegans. We show that there is a different requirement for TOP-2 in meiosis of spermatogenesis and oogenesis. The loss-of-function mutation top-2(it7) results in premature REC-8 removal in spermatogenesis, but not oogenesis. This correlates with a failure to maintain the HORMA-domain proteins HTP-1 and HTP-2 (HTP-1/2) on chromosome axes at diakinesis and mislocalization of the downstream components that control REC-8 release including Aurora B kinase. In oogenesis, top-2(it7) causes a delay in the localization of Aurora B to oocyte chromosomes but can be rescued through premature activation of the maturation promoting factor via knockdown of the inhibitor kinase WEE-1.3. The delay in Aurora B localization is associated with an increase in the length of diakinesis bivalents and wee-1.3 RNAi mediated rescue of Aurora B localization in top-2(it7) is associated with a decrease in diakinesis bivalent length. Our results imply that the sex-specific effects of TOP-2 on REC-8 release are due to differences in the temporal regulation of meiosis and chromosome structure in late prophase I in spermatogenesis and oogenesis.
Collapse
Affiliation(s)
- Christine Rourke
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | | |
Collapse
|
17
|
Čavka I, Power RM, Walsh D, Zimmermann T, Köhler S. Super-Resolution Microscopy of the Synaptonemal Complex within the Caenorhabditis elegans Germline. J Vis Exp 2022:10.3791/64363. [PMID: 36190293 PMCID: PMC7614930 DOI: 10.3791/64363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023] Open
Abstract
During meiosis, homologous chromosomes must recognize and adhere to one another to allow for their correct segregation. One of the key events that secures the interaction of homologous chromosomes is the assembly of the synaptonemal complex (SC) in meiotic prophase I. Even though there is little sequence homology between protein components within the SC among different species, the general structure of the SC has been highly conserved during evolution. In electron micrographs, the SC appears as a tripartite, ladder-like structure composed of lateral elements or axes, transverse filaments, and a central element. However, precisely identifying the localization of individual components within the complex by electron microscopy to determine the molecular structure of the SC remains challenging. By contrast, fluorescence microscopy allows for the identification of individual protein components within the complex. However, since the SC is only ~100 nm wide, its substructure cannot be resolved by diffraction-limited conventional fluorescence microscopy. Thus, determining the molecular architecture of the SC requires super-resolution light microscopy techniques such as structured illumination microscopy (SIM), stimulated-emission depletion (STED) microscopy, or single-molecule localization microscopy (SMLM). To maintain the structure and interactions of individual components within the SC, it is important to observe the complex in an environment that is close to its native environment in the germ cells. Therefore, we demonstrate an immunohistochemistry and imaging protocol that enables the study of the substructure of the SC in intact, extruded Caenorhabditis elegans germline tissue with SMLM and STED microscopy. Directly fixing the tissue to the coverslip reduces the movement of the samples during imaging and minimizes aberrations in the sample to achieve the high resolution necessary to visualize the substructure of the SC in its biological context.
Collapse
Affiliation(s)
- Ivana Čavka
- Cell Biology and Biophysics, European Molecular Biology Laboratory; Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences
| | - Rory M Power
- EMBL Imaging Centre, European Molecular Biology Laboratory
| | - Dietrich Walsh
- EMBL Imaging Centre, European Molecular Biology Laboratory
| | - Timo Zimmermann
- Cell Biology and Biophysics, European Molecular Biology Laboratory; EMBL Imaging Centre, European Molecular Biology Laboratory;
| | - Simone Köhler
- Cell Biology and Biophysics, European Molecular Biology Laboratory;
| |
Collapse
|
18
|
Shodhan A, Xaver M, Wheeler D, Lichten M. Turning coldspots into hotspots: targeted recruitment of axis protein Hop1 stimulates meiotic recombination in Saccharomyces cerevisiae. Genetics 2022; 222:iyac106. [PMID: 35876814 PMCID: PMC9434160 DOI: 10.1093/genetics/iyac106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/01/2022] [Indexed: 11/15/2022] Open
Abstract
The DNA double-strand breaks that initiate meiotic recombination are formed in the context of the meiotic chromosome axis, which in Saccharomyces cerevisiae contains a meiosis-specific cohesin isoform and the meiosis-specific proteins Hop1 and Red1. Hop1 and Red1 are important for double-strand break formation; double-strand break levels are reduced in their absence and their levels, which vary along the lengths of chromosomes, are positively correlated with double-strand break levels. How axis protein levels influence double-strand break formation and recombination remains unclear. To address this question, we developed a novel approach that uses a bacterial ParB-parS partition system to recruit axis proteins at high levels to inserts at recombination coldspots where Hop1 and Red1 levels are normally low. Recruiting Hop1 markedly increased double-strand breaks and homologous recombination at target loci, to levels equivalent to those observed at endogenous recombination hotspots. This local increase in double-strand breaks did not require Red1 or the meiosis-specific cohesin component Rec8, indicating that, of the axis proteins, Hop1 is sufficient to promote double-strand break formation. However, while most crossovers at endogenous recombination hotspots are formed by the meiosis-specific MutLγ resolvase, crossovers that formed at an insert locus were only modestly reduced in the absence of MutLγ, regardless of whether or not Hop1 was recruited to that locus. Thus, while local Hop1 levels determine local double-strand break levels, the recombination pathways that repair these breaks can be determined by other factors, raising the intriguing possibility that different recombination pathways operate in different parts of the genome.
Collapse
Affiliation(s)
- Anura Shodhan
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Martin Xaver
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - David Wheeler
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Michael Lichten
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
19
|
Fernando LM, Quesada-Candela C, Murray M, Ugoaru C, Yanowitz JL, Allen AK. Proteasomal subunit depletions differentially affect germline integrity in C. elegans. Front Cell Dev Biol 2022; 10:901320. [PMID: 36060813 PMCID: PMC9428126 DOI: 10.3389/fcell.2022.901320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022] Open
Abstract
The 26S proteasome is a multi-subunit protein complex that is canonically known for its ability to degrade proteins in cells and maintain protein homeostasis. Non-canonical or non-proteolytic roles of proteasomal subunits exist but remain less well studied. We provide characterization of germline-specific functions of different 19S proteasome regulatory particle (RP) subunits in C. elegans using RNAi specifically from the L4 stage and through generation of endogenously tagged 19S RP lid subunit strains. We show functions for the 19S RP in regulation of proliferation and maintenance of integrity of mitotic zone nuclei, in polymerization of the synaptonemal complex (SC) onto meiotic chromosomes and in the timing of SC subunit redistribution to the short arm of the bivalent, and in turnover of XND-1 proteins at late pachytene. Furthermore, we report that certain 19S RP subunits are required for proper germ line localization of WEE-1.3, a major meiotic kinase. Additionally, endogenous fluorescent labeling revealed that the two isoforms of the essential 19S RP proteasome subunit RPN-6.1 are expressed in a tissue-specific manner in the hermaphrodite. Also, we demonstrate that the 19S RP subunits RPN-6.1 and RPN-7 are crucial for the nuclear localization of the lid subunits RPN-8 and RPN-9 in oocytes, further supporting the ability to utilize the C. elegans germ line as a model to study proteasome assembly real-time. Collectively, our data support the premise that certain 19S RP proteasome subunits are playing tissue-specific roles, especially in the germ line. We propose C. elegans as a versatile multicellular model to study the diverse proteolytic and non-proteolytic roles that proteasome subunits play in vivo.
Collapse
Affiliation(s)
| | - Cristina Quesada-Candela
- Magee-Womens Research Institute and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Makaelah Murray
- Department of Biology, Howard University, Washington, DC, United States
| | - Caroline Ugoaru
- Department of Biology, Howard University, Washington, DC, United States
| | - Judith L. Yanowitz
- Magee-Womens Research Institute and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Departments of Developmental Biology, Microbiology, and Molecular Genetics, The Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- *Correspondence: Judith L. Yanowitz, ; Anna K. Allen,
| | - Anna K. Allen
- Department of Biology, Howard University, Washington, DC, United States
- *Correspondence: Judith L. Yanowitz, ; Anna K. Allen,
| |
Collapse
|
20
|
Roelens B, Villeneuve AM. Localization of HIM-19 in the C. elegans germline. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000624. [PMID: 36035776 PMCID: PMC9412189 DOI: 10.17912/micropub.biology.000624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022]
Abstract
A complex series of interconnected events during meiotic prophase creates the physical connections between homologous chromosomes essential to ensure their proper partitioning during the first meiotic division. HIM-19 is an important factor that regulates meiotic prophase progression in C. elegans , but its molecular function(s) and localization have remained unclear. We show here that tagged HIM-19 expressed from its endogenous locus exhibits dynamic localization in germ cell nuclei that support its proposed role as a regulator of the CHK-2 protein kinase.
Collapse
Affiliation(s)
- Baptiste Roelens
- Stanford University School of Medicine, Department of Developmental Biology, Stanford, CA, USA
| | - Anne M Villeneuve
- Stanford University School of Medicine, Departments of Developmental Biology and Genetics, Stanford, CA, USA
,
Correspondence to: Anne M Villeneuve (
)
| |
Collapse
|
21
|
Abstract
Sexual reproduction and the specialized cell division it relies upon, meiosis, are biological processes that present an incredible degree of both evolutionary conservation and divergence. One clear example of this paradox is the role of the evolutionarily ancient PCH-2/HORMAD module during meiosis. On one hand, the complex, and sometimes disparate, meiotic defects observed when PCH-2 and/or the meiotic HORMADS are mutated in different model systems have prevented a straightforward characterization of their conserved functions. On the other hand, these functional variations demonstrate the impressive molecular rewiring that accompanies evolution of the meiotic processes these factors are involved in. While the defects observed in pch-2 mutants appear to vary in different systems, in this review, I argue that PCH-2 has a conserved meiotic function: to coordinate meiotic recombination with synapsis to ensure an appropriate number and distribution of crossovers. Further, given the dramatic variation in how the events of recombination and synapsis are themselves regulated in different model systems, the mechanistic differences in PCH-2 and meiotic HORMAD function make biological sense when viewed as species-specific elaborations layered onto this fundamental, conserved role.
Collapse
Affiliation(s)
- Needhi Bhalla
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States.
| |
Collapse
|
22
|
Morgan C, Nayak A, Hosoya N, Smith GR, Lambing C. Meiotic chromosome organization and its role in recombination and cancer. Curr Top Dev Biol 2022; 151:91-126. [PMID: 36681479 PMCID: PMC10022578 DOI: 10.1016/bs.ctdb.2022.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chromosomes adopt specific conformations to regulate various cellular processes. A well-documented chromosome configuration is the highly compacted chromosome structure during metaphase. More regional chromatin conformations have also been reported, including topologically associated domains encompassing mega-bases of DNA and local chromatin loops formed by kilo-bases of DNA. In this review, we discuss the changes in chromatin conformation taking place between somatic and meiotic cells, with a special focus on the establishment of a proteinaceous structure, called the chromosome axis, at the beginning of meiosis. The chromosome axis is essential to support key meiotic processes such as chromosome pairing, homologous recombination, and balanced chromosome segregation to transition from a diploid to a haploid stage. We review the role of the chromosome axis in meiotic chromatin organization and provide a detailed description of its protein composition. We also review the conserved and distinct roles between species of axis proteins in meiotic recombination, which is a major factor contributing to the creation of genetic diversity and genome evolution. Finally, we discuss situations where the chromosome axis is deregulated and evaluate the effects on genome integrity and the consequences from protein deregulation in meiocytes exposed to heat stress, and aberrant expression of genes encoding axis proteins in mammalian somatic cells associated with certain types of cancers.
Collapse
Affiliation(s)
| | - Aditya Nayak
- Department of Biology, Institute of Molecular Plant Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zürich, Switzerland
| | - Noriko Hosoya
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Gerald R Smith
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Christophe Lambing
- Plant Science Department, Rothamsted Research, Harpenden, United Kingdom.
| |
Collapse
|
23
|
Dello Stritto MR, Vojtassakova N, Velkova M, Hamminger P, Ulm P, Jantsch V. The topoisomerase 3 zinc finger domain cooperates with the RMI1 scaffold to promote stable association of the BTR complex to recombination intermediates in the Caenorhabditis elegans germline. Nucleic Acids Res 2022; 50:5652-5671. [PMID: 35639927 PMCID: PMC9178014 DOI: 10.1093/nar/gkac408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/01/2022] [Accepted: 05/09/2022] [Indexed: 11/14/2022] Open
Abstract
Homologous recombination is the predominant DNA repair pathway used in the gonad. Of the excess DNA double-strand breaks formed in meiosis, only a subset matures into crossovers, with the remainder repaired as non-crossovers. The conserved BTR complex (comprising Bloom helicase, topoisomerase 3 and RMI1/2 scaffold proteins) acts at multiple steps during recombination to dismantle joint DNA molecules, thereby mediating the non-crossover outcome and chromosome integrity. Furthermore, the complex displays a role at the crossover site that is less well understood. Besides catalytic and TOPRIM domains, topoisomerase 3 enzymes contain a variable number of carboxy terminal zinc finger (ZnF) domains. Here, we studied the Caenorhabditis elegans mutant, in which the single ZnF domain is deleted. In contrast to the gene disruption allele, the top-3-ZnF mutant is viable, with no replication defects; the allele appears to be a hypomorph. The TOP-3-ZnF protein is recruited into foci but the mutant has increased numbers of crossovers along its chromosomes, with minor defects in repressing heterologous recombination, and a marked delay in the maturation/processing of recombination intermediates after loading of the RAD-51 recombinase. The ZnF domain cooperates with the RMI1 homolog RMH-2 to stabilize association of the BTR complex with recombination intermediates and to prevent recombination between heterologous DNA sequences.
Collapse
Affiliation(s)
| | - Nina Vojtassakova
- Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter, Austria
| | - Maria Velkova
- Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter, Austria
| | - Patricia Hamminger
- Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter, Austria
| | - Patricia Ulm
- Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter, Austria
| | - Verena Jantsch
- Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter, Austria
| |
Collapse
|
24
|
Das D, Trivedi S, Blazícková J, Arur S, Silva N. Phosphorylation of HORMA-domain protein HTP-3 at Serine 285 is dispensable for crossover formation. G3 (BETHESDA, MD.) 2022; 12:jkac079. [PMID: 35389463 PMCID: PMC9073698 DOI: 10.1093/g3journal/jkac079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/31/2022] [Indexed: 11/30/2022]
Abstract
Generation of functional gametes is accomplished through a multilayered and finely orchestrated succession of events during meiotic progression. In the Caenorhabditis elegans germline, the HORMA-domain-containing protein HTP-3 plays pivotal roles for the establishment of chromosome axes and the efficient induction of programmed DNA double-strand breaks, both of which are crucial for crossover formation. Double-strand breaks allow for accurate chromosome segregation during the first meiotic division and therefore are an essential requirement for the production of healthy gametes. Phosphorylation-dependent regulation of HORMAD protein plays important roles in controlling meiotic chromosome behavior. Here, we document a phospho-site in HTP-3 at Serine 285 that is constitutively phosphorylated during meiotic prophase I. pHTP-3S285 localization overlaps with panHTP-3 except in nuclei undergoing physiological apoptosis, in which pHTP-3 is absent. Surprisingly, we observed that phosphorylation of HTP-3 at S285 is independent of the canonical kinases that control meiotic progression in nematodes. During meiosis, the htp-3(S285A) mutant displays accelerated RAD-51 turnover, but no other meiotic abnormalities. Altogether, these data indicate that the Ser285 phosphorylation is independent of canonical meiotic protein kinases and does not regulate HTP-3-dependent meiotic processes. We propose a model wherein phosphorylation of HTP-3 occurs through noncanonical or redundant meiotic kinases and/or is likely redundant with additional phospho-sites for function in vivo.
Collapse
Affiliation(s)
- Debabrata Das
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shalini Trivedi
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Jitka Blazícková
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Swathi Arur
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nicola Silva
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| |
Collapse
|
25
|
Rodriguez-Crespo D, Nanchen M, Rajopadhye S, Wicky C. The zinc-finger transcription factor LSL-1 is a major regulator of the germline transcriptional program in Caenorhabditis elegans. Genetics 2022; 221:iyac039. [PMID: 35262739 PMCID: PMC9071529 DOI: 10.1093/genetics/iyac039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Specific gene transcriptional programs are required to ensure the proper proliferation and differentiation processes underlying the production of specialized cells during development. Gene activity is mainly regulated by the concerted action of transcription factors and chromatin proteins. In the nematode Caenorhabditis elegans, mechanisms that silence improper transcriptional programs in germline and somatic cells have been well studied, however, how are tissue-specific sets of genes turned on is less known. LSL-1 is herein defined as a novel crucial transcriptional regulator of germline genes in C. elegans. LSL-1 is first detected in the P4 blastomere and remains present at all stages of germline development, from primordial germ cell proliferation to the end of meiotic prophase. lsl-1 loss-of-function mutants exhibit many defects including meiotic prophase progression delay, a high level of germline apoptosis, and production of almost no functional gametes. Transcriptomic analysis and ChIP-seq data show that LSL-1 binds to promoters and acts as a transcriptional activator of germline genes involved in various processes, including homologous chromosome pairing, recombination, and genome stability. Furthermore, we show that LSL-1 functions by antagonizing the action of the heterochromatin proteins HPL-2/HP1 and LET-418/Mi2 known to be involved in the repression of germline genes in somatic cells. Based on our results, we propose LSL-1 to be a major regulator of the germline transcriptional program during development.
Collapse
Affiliation(s)
| | - Magali Nanchen
- Department of Biology, University of Fribourg, Fribourg 1700, Switzerland
| | - Shweta Rajopadhye
- Department of Biology, University of Fribourg, Fribourg 1700, Switzerland
| | - Chantal Wicky
- Department of Biology, University of Fribourg, Fribourg 1700, Switzerland
| |
Collapse
|
26
|
Prince JP, Martinez-Perez E. Functions and Regulation of Meiotic HORMA-Domain Proteins. Genes (Basel) 2022; 13:777. [PMID: 35627161 PMCID: PMC9141381 DOI: 10.3390/genes13050777] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 11/20/2022] Open
Abstract
During meiosis, homologous chromosomes must recognize, pair, and recombine with one another to ensure the formation of inter-homologue crossover events, which, together with sister chromatid cohesion, promote correct chromosome orientation on the first meiotic spindle. Crossover formation requires the assembly of axial elements, proteinaceous structures that assemble along the length of each chromosome during early meiosis, as well as checkpoint mechanisms that control meiotic progression by monitoring pairing and recombination intermediates. A conserved family of proteins defined by the presence of a HORMA (HOp1, Rev7, MAd2) domain, referred to as HORMADs, associate with axial elements to control key events of meiotic prophase. The highly conserved HORMA domain comprises a flexible safety belt sequence, enabling it to adopt at least two of the following protein conformations: one closed, where the safety belt encircles a small peptide motif present within an interacting protein, causing its topological entrapment, and the other open, where the safety belt is reorganized and no interactor is trapped. Although functional studies in multiple organisms have revealed that HORMADs are crucial regulators of meiosis, the mechanisms by which HORMADs implement key meiotic events remain poorly understood. In this review, we summarize protein complexes formed by HORMADs, discuss their roles during meiosis in different organisms, draw comparisons to better characterize non-meiotic HORMADs (MAD2 and REV7), and highlight possible areas for future research.
Collapse
Affiliation(s)
- Josh P. Prince
- Meiosis Group, MRC London Institute of Medical Sciences, London W12 0NN, UK;
| | - Enrique Martinez-Perez
- Meiosis Group, MRC London Institute of Medical Sciences, London W12 0NN, UK;
- Faculty of Medicine, Imperial College London, London W12 0NN, UK
| |
Collapse
|
27
|
Baudrimont A, Paouneskou D, Mohammad A, Lichtenberger R, Blundon J, Kim Y, Hartl M, Falk S, Schedl T, Jantsch V. Release of CHK-2 from PPM-1.D anchorage schedules meiotic entry. SCIENCE ADVANCES 2022; 8:eabl8861. [PMID: 35171669 PMCID: PMC8849337 DOI: 10.1126/sciadv.abl8861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/22/2021] [Indexed: 05/13/2023]
Abstract
Transition from the stem/progenitor cell fate to meiosis is mediated by several redundant posttranscriptional regulatory pathways in Caenorhabditis elegans. Interfering with all three branches causes tumorous germ lines. SCFPROM-1 comprises one branch and mediates a scheduled degradation step at entry into meiosis. prom-1 mutants show defects in the timely initiation of meiotic prophase I events, resulting in high rates of embryonic lethality. Here, we identify the phosphatase PPM-1.D/Wip1 as crucial substrate for PROM-1. We report that PPM-1.D antagonizes CHK-2 kinase, a key regulator for meiotic prophase initiation, including DNA double-strand breaks, chromosome pairing, and synaptonemal complex formation. We propose that PPM-1.D controls the amount of active CHK-2 via both catalytic and noncatalytic activities; notably, noncatalytic regulation seems to be crucial at meiotic entry. PPM-1.D sequesters CHK-2 at the nuclear periphery, and programmed SCFPROM-1-mediated degradation of PPM-1.D liberates the kinase and promotes meiotic entry.
Collapse
Affiliation(s)
- Antoine Baudrimont
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Dimitra Paouneskou
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Ariz Mohammad
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Raffael Lichtenberger
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Joshua Blundon
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Yumi Kim
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Markus Hartl
- Mass Spectrometry Facility, Max Perutz Labs, Vienna BioCenter, Vienna, Austria
| | - Sebastian Falk
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Tim Schedl
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Verena Jantsch
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| |
Collapse
|
28
|
Liu Y, Zhao Q, Nie H, Zhang F, Fu T, Zhang Z, Qi F, Wang R, Zhou J, Gao J. SYP-5 regulates meiotic thermotolerance in Caenorhabditis elegans. J Mol Cell Biol 2021; 13:662-675. [PMID: 34081106 PMCID: PMC8648394 DOI: 10.1093/jmcb/mjab035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Meiosis produces the haploid gametes required by all sexually reproducing organisms, occurring in specific temperature ranges in different organisms. However, how meiotic thermotolerance is regulated remains largely unknown. Using the model organism Caenorhabditis elegans, here, we identified the synaptonemal complex (SC) protein SYP-5 as a critical regulator of meiotic thermotolerance. syp-5-null mutants maintained a high percentage of viable progeny at 20°C but produced significantly fewer viable progeny at 25°C, a permissive temperature in wild-type worms. Cytological analysis of meiotic events in the mutants revealed that while SC assembly and disassembly, as well as DNA double-strand break repair kinetics, were not affected by the elevated temperature, crossover designation, and bivalent formation were significantly affected. More severe homolog segregation errors were also observed at elevated temperature. A temperature switching assay revealed that late meiotic prophase events were not temperature-sensitive and that meiotic defects during pachytene stage were responsible for the reduced viability of syp-5 mutants at the elevated temperature. Moreover, SC polycomplex formation and hexanediol sensitivity analysis suggested that SYP-5 was required for the normal properties of the SC, and charge-interacting elements in SC components were involved in regulating meiotic thermotolerance. Together, these findings provide a novel molecular mechanism for meiotic thermotolerance regulation.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Qiuchen Zhao
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Hui Nie
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Fengguo Zhang
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Tingting Fu
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Zhenguo Zhang
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Feifei Qi
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Ruoxi Wang
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Jun Zhou
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Jinmin Gao
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
29
|
Zhang FG, Zhang RR, Gao JM. The organization, regulation, and biological functions of the synaptonemal complex. Asian J Androl 2021; 23:580-589. [PMID: 34528517 PMCID: PMC8577265 DOI: 10.4103/aja202153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The synaptonemal complex (SC) is a meiosis-specific proteinaceous macromolecular structure that assembles between paired homologous chromosomes during meiosis in various eukaryotes. The SC has a highly conserved ultrastructure and plays critical roles in controlling multiple steps in meiotic recombination and crossover formation, ensuring accurate meiotic chromosome segregation. Recent studies in different organisms, facilitated by advances in super-resolution microscopy, have provided insights into the macromolecular structure of the SC, including the internal organization of the meiotic chromosome axis and SC central region, the regulatory pathways that control SC assembly and dynamics, and the biological functions exerted by the SC and its substructures. This review summarizes recent discoveries about how the SC is organized and regulated that help to explain the biological functions associated with this meiosis-specific structure.
Collapse
Affiliation(s)
- Feng-Guo Zhang
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Rui-Rui Zhang
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Jin-Min Gao
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
30
|
Hinman AW, Yeh HY, Roelens B, Yamaya K, Woglar A, Bourbon HMG, Chi P, Villeneuve AM. Caenorhabditis elegans DSB-3 reveals conservation and divergence among protein complexes promoting meiotic double-strand breaks. Proc Natl Acad Sci U S A 2021; 118:e2109306118. [PMID: 34389685 PMCID: PMC8379965 DOI: 10.1073/pnas.2109306118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Meiotic recombination plays dual roles in the evolution and stable inheritance of genomes: Recombination promotes genetic diversity by reassorting variants, and it establishes temporary connections between pairs of homologous chromosomes that ensure their future segregation. Meiotic recombination is initiated by generation of double-strand DNA breaks (DSBs) by the conserved topoisomerase-like protein Spo11. Despite strong conservation of Spo11 across eukaryotic kingdoms, auxiliary complexes that interact with Spo11 complexes to promote DSB formation are poorly conserved. Here, we identify DSB-3 as a DSB-promoting protein in the nematode Caenorhabditis elegans Mutants lacking DSB-3 are proficient for homolog pairing and synapsis but fail to form crossovers. Lack of crossovers in dsb-3 mutants reflects a requirement for DSB-3 in meiotic DSB formation. DSB-3 concentrates in meiotic nuclei with timing similar to DSB-1 and DSB-2 (predicted homologs of yeast/mammalian Rec114/REC114), and DSB-1, DSB-2, and DSB-3 are interdependent for this localization. Bioinformatics analysis and interactions among the DSB proteins support the identity of DSB-3 as a homolog of MEI4 in conserved DSB-promoting complexes. This identification is reinforced by colocalization of pairwise combinations of DSB-1, DSB-2, and DSB-3 foci in structured illumination microscopy images of spread nuclei. However, unlike yeast Rec114, DSB-1 can interact directly with SPO-11, and in contrast to mouse REC114 and MEI4, DSB-1, DSB-2, and DSB-3 are not concentrated predominantly at meiotic chromosome axes. We speculate that variations in the meiotic program that have coevolved with distinct reproductive strategies in diverse organisms may contribute to and/or enable diversification of essential components of the meiotic machinery.
Collapse
Affiliation(s)
- Albert W Hinman
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Hsin-Yi Yeh
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Baptiste Roelens
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Kei Yamaya
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Alexander Woglar
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Henri-Marc G Bourbon
- Centre de Biologie Intégrative, Molecular, Cellular & Developmental Biology Unit, Université Fédérale de Toulouse, 31000 Toulouse, France
| | - Peter Chi
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Anne M Villeneuve
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305;
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
31
|
Velkova M, Silva N, Dello Stritto MR, Schleiffer A, Barraud P, Hartl M, Jantsch V. Caenorhabditis elegans RMI2 functional homolog-2 (RMIF-2) and RMI1 (RMH-1) have both overlapping and distinct meiotic functions within the BTR complex. PLoS Genet 2021; 17:e1009663. [PMID: 34252074 PMCID: PMC8318279 DOI: 10.1371/journal.pgen.1009663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/28/2021] [Accepted: 06/11/2021] [Indexed: 12/23/2022] Open
Abstract
Homologous recombination is a high-fidelity repair pathway for DNA double-strand breaks employed during both mitotic and meiotic cell divisions. Such repair can lead to genetic exchange, originating from crossover (CO) generation. In mitosis, COs are suppressed to prevent sister chromatid exchange. Here, the BTR complex, consisting of the Bloom helicase (HIM-6 in worms), topoisomerase 3 (TOP-3), and the RMI1 (RMH-1 and RMH-2) and RMI2 scaffolding proteins, is essential for dismantling joint DNA molecules to form non-crossovers (NCOs) via decatenation. In contrast, in meiosis COs are essential for accurate chromosome segregation and the BTR complex plays distinct roles in CO and NCO generation at different steps in meiotic recombination. RMI2 stabilizes the RMI1 scaffolding protein, and lack of RMI2 in mitosis leads to elevated sister chromatid exchange, as observed upon RMI1 knockdown. However, much less is known about the involvement of RMI2 in meiotic recombination. So far, RMI2 homologs have been found in vertebrates and plants, but not in lower organisms such as Drosophila, yeast, or worms. We report the identification of the Caenorhabditis elegans functional homolog of RMI2, which we named RMIF-2. The protein shows a dynamic localization pattern to recombination foci during meiotic prophase I and concentration into recombination foci is mutually dependent on other BTR complex proteins. Comparative analysis of the rmif-2 and rmh-1 phenotypes revealed numerous commonalities, including in regulating CO formation and directing COs toward chromosome arms. Surprisingly, the prevalence of heterologous recombination was several fold lower in the rmif-2 mutant, suggesting that RMIF-2 may be dispensable or less strictly required for some BTR complex-mediated activities during meiosis. Bloom syndrome is caused by mutations in proteins of the BTR complex (consisting of the Bloom helicase, topoisomerase 3, and the RMI1 and RMI2 scaffolding proteins) and the clinical characteristics are growth deficiency, short stature, skin photosensitivity, and increased cancer predisposition. At the cellular level, characteristic features are the presence of increased sister chromatid exchange on chromosomes; unresolved DNA recombination intermediates that eventually cause genome instability; and erroneous DNA repair by heterologous recombination (recombination between non-identical sequences, extremely rare in wild type animals), which can trigger translocations and chromosomal rearrangements. Identification of the Caenorhabditis elegans ortholog of RMI2 (called RMIF-2) allowed us to compare heterologous recombination in the germline of mutants of various BTR complex proteins. The heterologous recombination rate was several fold lower in rmif-2 mutants than in mutants of rmh-1 and him-6 (worm homologs of RMI1 and the Bloom helicase, respectively). Nevertheless, many phenotypic features point at RMIF-2 working together with RMH-1. If these germline functions of RMI2/RMIF-2 are conserved in humans, this might mean that individuals with RMI2 mutations have a lower risk of translocations and genome rearrangements than those with mutations in the other BTR complex genes.
Collapse
Affiliation(s)
- Maria Velkova
- Department of Chromosome Biology, Max Perutz Labs, Vienna BioCenter, Vienna, Austria
| | - Nicola Silva
- Department of Chromosome Biology, Max Perutz Labs, Vienna BioCenter, Vienna, Austria
| | | | - Alexander Schleiffer
- Research Institute of Molecular Pathology, Campus Vienna BioCenter, Vienna 1, Vienna, Austria
- Institute of Molecular Biotechnology, Campus Vienna BioCenter, Vienna, Austria
| | - Pierre Barraud
- Expression Génétique Microbienne, UMR 8261, Centre national de la recherche scientifique, Université de Paris, Institut de Biologie Physico-Chimique, Paris, France
| | - Markus Hartl
- Mass Spectrometry Facility, Max Perutz Labs, Vienna BioCenter, Vienna, Austria
| | - Verena Jantsch
- Department of Chromosome Biology, Max Perutz Labs, Vienna BioCenter, Vienna, Austria
- * E-mail:
| |
Collapse
|
32
|
Dello Stritto MR, Bauer B, Barraud P, Jantsch V. DNA topoisomerase 3 is required for efficient germ cell quality control. J Cell Biol 2021; 220:211935. [PMID: 33798260 PMCID: PMC8025215 DOI: 10.1083/jcb.202012057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/21/2021] [Accepted: 03/12/2021] [Indexed: 12/31/2022] Open
Abstract
An important quality control mechanism eliminates meiocytes that have experienced recombination failure during meiosis. The culling of defective oocytes in Caenorhabditis elegans meiosis resembles late oocyte elimination in female mammals. Here we show that topoisomerase 3 depletion generates DNA lesions in both germline mitotic and meiotic compartments that are less capable of triggering p53 (cep-1)–dependent apoptosis, despite the activation of DNA damage and apoptosis signaling. Elimination of nonhomologous, alternative end joining and single strand annealing repair factors (CKU-70, CKU-80, POLQ-1, and XPF-1) can alleviate the apoptosis block. Remarkably, the ability of single mutants in the other members of the Bloom helicase-topoisomerase-RMI1 complex to elicit apoptosis is not compromised, and depletion of Bloom helicase in topoisomerase 3 mutants restores an effective apoptotic response. Therefore, uncontrolled Bloom helicase activity seems to direct DNA repair toward normally not used repair pathways, and this counteracts efficient apoptosis. This implicates an as-yet undescribed requirement for topoisomerase 3 in mounting an effective apoptotic response to ensure germ cell quality control.
Collapse
Affiliation(s)
- Maria Rosaria Dello Stritto
- Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Bernd Bauer
- Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Pierre Barraud
- Expression Génétique Microbienne, UMR 8261, Centre Nationale de la Recherche Scientific, Université de Paris, Institut de Biologie Physico-Chimique, Paris, France
| | - Verena Jantsch
- Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria
| |
Collapse
|
33
|
Cuacos M, Lambing C, Pachon-Penalba M, Osman K, Armstrong SJ, Henderson IR, Sanchez-Moran E, Franklin FCH, Heckmann S. Meiotic chromosome axis remodelling is critical for meiotic recombination in Brassica rapa. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3012-3027. [PMID: 33502451 PMCID: PMC8023211 DOI: 10.1093/jxb/erab035] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/21/2021] [Indexed: 05/23/2023]
Abstract
Meiosis generates genetic variation through homologous recombination (HR) that is harnessed during breeding. HR occurs in the context of meiotic chromosome axes and the synaptonemal complex. To study the role of axis remodelling in crossover (CO) formation in a crop species, we characterized mutants of the axis-associated protein ASY1 and the axis-remodelling protein PCH2 in Brassica rapa. asy1 plants form meiotic chromosome axes that fail to synapse. CO formation is almost abolished, and residual chiasmata are proportionally enriched in terminal chromosome regions, particularly in the nucleolar organizing region (NOR)-carrying chromosome arm. pch2 plants show impaired ASY1 loading and remodelling, consequently achieving only partial synapsis, which leads to reduced CO formation and loss of the obligatory CO. PCH2-independent chiasmata are proportionally enriched towards distal chromosome regions. Similarly, in Arabidopsis pch2, COs are increased towards telomeric regions at the expense of (peri-) centromeric COs compared with the wild type. Taken together, in B. rapa, axis formation and remodelling are critical for meiotic fidelity including synapsis and CO formation, and in asy1 and pch2 CO distributions are altered. While asy1 plants are sterile, pch2 plants are semi-sterile and thus PCH2 could be an interesting target for breeding programmes.
Collapse
Affiliation(s)
- Maria Cuacos
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, D-06466 Seeland, Germany
| | - Christophe Lambing
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | | | - Kim Osman
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Susan J Armstrong
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | | | | | - Stefan Heckmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, D-06466 Seeland, Germany
| |
Collapse
|
34
|
Sato-Carlton A, Nakamura-Tabuchi C, Li X, Boog H, Lehmer MK, Rosenberg SC, Barroso C, Martinez-Perez E, Corbett KD, Carlton PM. Phosphoregulation of HORMA domain protein HIM-3 promotes asymmetric synaptonemal complex disassembly in meiotic prophase in Caenorhabditis elegans. PLoS Genet 2020; 16:e1008968. [PMID: 33175901 PMCID: PMC7717579 DOI: 10.1371/journal.pgen.1008968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 12/04/2020] [Accepted: 10/17/2020] [Indexed: 11/27/2022] Open
Abstract
In the two cell divisions of meiosis, diploid genomes are reduced into complementary haploid sets through the discrete, two-step removal of chromosome cohesion, a task carried out in most eukaryotes by protecting cohesion at the centromere until the second division. In eukaryotes without defined centromeres, however, alternative strategies have been innovated. The best-understood of these is found in the nematode Caenorhabditis elegans: after the single off-center crossover divides the chromosome into two segments, or arms, several chromosome-associated proteins or post-translational modifications become specifically partitioned to either the shorter or longer arm, where they promote the correct timing of cohesion loss through as-yet unknown mechanisms. Here, we investigate the meiotic axis HORMA-domain protein HIM-3 and show that it becomes phosphorylated at its C-terminus, within the conserved “closure motif” region bound by the related HORMA-domain proteins HTP-1 and HTP-2. Binding of HTP-2 is abrogated by phosphorylation of the closure motif in in vitro assays, strongly suggesting that in vivo phosphorylation of HIM-3 likely modulates the hierarchical structure of the chromosome axis. Phosphorylation of HIM-3 only occurs on synapsed chromosomes, and similarly to other previously-described phosphorylated proteins of the synaptonemal complex, becomes restricted to the short arm after designation of crossover sites. Regulation of HIM-3 phosphorylation status is required for timely disassembly of synaptonemal complex central elements from the long arm, and is also required for proper timing of HTP-1 and HTP-2 dissociation from the short arm. Phosphorylation of HIM-3 thus plays a role in establishing the identity of short and long arms, thereby contributing to the robustness of the two-step chromosome segregation. To segregate properly in meiosis, cohesion between replicated chromosomes must remain after the first meiotic cell division, so chromosomes can be held together until they finally separate in the second division. While the majority of organisms use centromeres to protect chromosome cohesion in the first division, the nematode worm C. elegans, which lacks single centromeres, instead protects cohesion only on a segment of the chromosome known as the “long arm”. The long arm (and its complement, the short arm) are known to accumulate specific proteins and protein modifications, but it is not known how the short and long arms are first distinguished, nor how their separate functions are carried out. We report here that the chromosome axis protein HIM-3 and its modification by phosphorylation is important for ensuring the robust establishment of short and long arm functions. We show that phosphorylated HIM-3 partitions to the short arms after crossover recombination sites are designated, and HIM-3 mutants that mimic constitutive phosphorylation delay the normal establishment of the two complementary arm domains. Our findings reveal another layer of regulation to an outstanding mystery in chromosome biology.
Collapse
Affiliation(s)
| | | | - Xuan Li
- Kyoto University, Graduate School of Biostudies, Japan
| | - Hendrik Boog
- Kyoto University, Graduate School of Biostudies, Japan
| | - Madison K. Lehmer
- Department of Chemistry and Biochemistry, University of California, San Diego, United States of America
| | - Scott C. Rosenberg
- Department of Chemistry and Biochemistry, University of California, San Diego, United States of America
| | - Consuelo Barroso
- MRC London Institute of Medical Sciences, Imperial College, London
| | | | - Kevin D. Corbett
- Department of Chemistry and Biochemistry, University of California, San Diego, United States of America
- Department of Cellular and Molecular Medicine, University of California, San Diego, United States of America
- Ludwig Institute for Cancer Research, San Diego Branch, United States of America
| | - Peter Mark Carlton
- Kyoto University, Graduate School of Biostudies, Japan
- Kyoto University, Radiation Biology Center, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Japan
- * E-mail:
| |
Collapse
|
35
|
Das D, Chen SY, Arur S. ERK phosphorylates chromosomal axis component HORMA domain protein HTP-1 to regulate oocyte numbers. SCIENCE ADVANCES 2020; 6:6/44/eabc5580. [PMID: 33127680 PMCID: PMC7608811 DOI: 10.1126/sciadv.abc5580] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/18/2020] [Indexed: 05/10/2023]
Abstract
Oocyte numbers, a critical determinant of female reproductive fitness, are highly regulated, yet the mechanisms underlying this regulation remain largely undefined. In the Caenorhabditis elegans gonad, RAS/extracellular signal-regulated kinase (ERK) signaling regulates oocyte numbers; mechanisms are unknown. We show that the RAS/ERK pathway phosphorylates meiotic chromosome axis protein HTP-1 at serine-325 to control chromosome dynamics and regulate oocyte number. Phosphorylated HTP-1(S325) accumulates in vivo in an ERK-dependent manner in early-mid pachytene stage germ cells and is necessary for synaptonemal complex extension and/or maintenance. Lack of HTP-1 phosphorylation leads to asynapsis and persistence of meiotic double-strand breaks, causing delayed meiotic progression and reduced oocyte number. In contrast, early onset of ERK activation causes precocious meiotic progression, resulting in increased oocyte number, which is reversed by removal of HTP-1 phosphorylation. The RAS/ERK/HTP-1 signaling cascade thus functions to monitor formation and maintenance of synapsis for timely resolution of double-strand breaks, oocyte production, and reproductive fitness.
Collapse
Affiliation(s)
- Debabrata Das
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shin-Yu Chen
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Swathi Arur
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
36
|
Janisiw E, Raices M, Balmir F, Paulin LF, Baudrimont A, von Haeseler A, Yanowitz JL, Jantsch V, Silva N. Poly(ADP-ribose) glycohydrolase coordinates meiotic DNA double-strand break induction and repair independent of its catalytic activity. Nat Commun 2020; 11:4869. [PMID: 32978394 PMCID: PMC7519143 DOI: 10.1038/s41467-020-18693-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
Poly(ADP-ribosyl)ation is a reversible post-translational modification synthetized by ADP-ribose transferases and removed by poly(ADP-ribose) glycohydrolase (PARG), which plays important roles in DNA damage repair. While well-studied in somatic tissues, much less is known about poly(ADP-ribosyl)ation in the germline, where DNA double-strand breaks are introduced by a regulated program and repaired by crossover recombination to establish a tether between homologous chromosomes. The interaction between the parental chromosomes is facilitated by meiotic specific adaptation of the chromosome axes and cohesins, and reinforced by the synaptonemal complex. Here, we uncover an unexpected role for PARG in coordinating the induction of meiotic DNA breaks and their homologous recombination-mediated repair in Caenorhabditis elegans. PARG-1/PARG interacts with both axial and central elements of the synaptonemal complex, REC-8/Rec8 and the MRN/X complex. PARG-1 shapes the recombination landscape and reinforces the tightly regulated control of crossover numbers without requiring its catalytic activity. We unravel roles in regulating meiosis, beyond its enzymatic activity in poly(ADP-ribose) catabolism. Poly(ADP-ribose) glycohydrolase (PARG) is involved in different cellular processes including DNA repair. Here the authors reveal a role for PARG in regulating meiotic DNA double strand break induction and repair in Caenorhabditis elegans.
Collapse
Affiliation(s)
- Eva Janisiw
- Department of Chromosome Biology, Max Perutz Laboratories, Vienna Biocenter, University of Vienna, Vienna, Austria.,Centre for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Marilina Raices
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fabiola Balmir
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,AHN Center for Reproductive Medicine, AHN McCandless, Pittsburgh, PA, USA
| | - Luis F Paulin
- Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Laboratories, Medical University of Vienna, Vienna BioCenter, University of Vienna, Vienna, Austria
| | - Antoine Baudrimont
- Department of Chromosome Biology, Max Perutz Laboratories, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Arndt von Haeseler
- Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Laboratories, Medical University of Vienna, Vienna BioCenter, University of Vienna, Vienna, Austria.,Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Judith L Yanowitz
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Verena Jantsch
- Department of Chromosome Biology, Max Perutz Laboratories, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Nicola Silva
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
37
|
Systematic analysis of long intergenic non-coding RNAs in C. elegans germline uncovers roles in somatic growth. RNA Biol 2020; 18:435-445. [PMID: 32892705 DOI: 10.1080/15476286.2020.1814549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Long intergenic non-coding RNAs (lincRNAs) are transcripts longer than 200 nucleotides that are transcribed from non-coding loci yet undergo biosynthesis similar to coding mRNAs. The disproportional number of lincRNAs expressed in testes suggests that lincRNAs are important during gametogenesis, but experimental evidence has implicated very few lincRNAs in this process. We took advantage of the relatively limited number of lincRNAs in the genome of the nematode Caenorhabditis elegans to systematically analyse the functions of lincRNAs during meiosis. We deleted six lincRNA genes that are highly and dynamically expressed in the C. elegans gonad and tested the effects on central meiotic processes. Surprisingly, whereas the lincRNA deletions did not strongly impact fertility, germline apoptosis, crossovers, or synapsis, linc-4 was required for somatic growth. Slower growth was observed in linc-4-deletion mutants and in worms depleted of linc-4 using RNAi, indicating that linc-4 transcripts are required for this post-embryonic process. Unexpectedly, analysis of worms depleted of linc-4 in soma versus germline showed that the somatic role stems from linc-4 expression in germline cells. This unique feature suggests that some lincRNAs, like some small non-coding RNAs, are required for germ-soma interactions.
Collapse
|
38
|
Castellano-Pozo M, Pacheco S, Sioutas G, Jaso-Tamame AL, Dore MH, Karimi MM, Martinez-Perez E. Surveillance of cohesin-supported chromosome structure controls meiotic progression. Nat Commun 2020; 11:4345. [PMID: 32859945 PMCID: PMC7455720 DOI: 10.1038/s41467-020-18219-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Chromosome movements and programmed DNA double-strand breaks (DSBs) promote homologue pairing and initiate recombination at meiosis onset. Meiotic progression involves checkpoint-controlled termination of these events when all homologue pairs achieve synapsis and form crossover precursors. Exploiting the temporo-spatial organisation of the C. elegans germline and time-resolved methods of protein removal, we show that surveillance of the synaptonemal complex (SC) controls meiotic progression. In nuclei with fully synapsed homologues and crossover precursors, removing different meiosis-specific cohesin complexes, which are individually required for SC stability, or a SC central region component causes functional redeployment of the chromosome movement and DSB machinery, triggering whole-nucleus reorganisation. This apparent reversal of the meiotic programme requires CHK-2 kinase reactivation via signalling from chromosome axes containing HORMA proteins, but occurs in the absence of transcriptional changes. Our results uncover an unexpected plasticity of the meiotic programme and show how chromosome signalling orchestrates nuclear organisation and meiotic progression.
Collapse
Affiliation(s)
| | - Sarai Pacheco
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
| | | | | | - Marian H Dore
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
| | | | - Enrique Martinez-Perez
- MRC London Institute of Medical Sciences, London, W12 0NN, UK.
- Imperial College Faculty of Medicine, London, W12 0NN, UK.
| |
Collapse
|
39
|
Woglar A, Yamaya K, Roelens B, Boettiger A, Köhler S, Villeneuve AM. Quantitative cytogenetics reveals molecular stoichiometry and longitudinal organization of meiotic chromosome axes and loops. PLoS Biol 2020; 18:e3000817. [PMID: 32813728 PMCID: PMC7458323 DOI: 10.1371/journal.pbio.3000817] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/31/2020] [Accepted: 07/31/2020] [Indexed: 11/18/2022] Open
Abstract
During meiosis, chromosomes adopt a specialized organization involving assembly of a cohesin-based axis along their lengths, with DNA loops emanating from this axis. We applied novel, quantitative, and widely applicable cytogenetic strategies to elucidate the molecular bases of this organization using Caenorhabditis elegans. Analyses of wild-type (WT) chromosomes and de novo circular minichromosomes revealed that meiosis-specific HORMA-domain proteins assemble into cohorts in defined numbers and co-organize the axis together with 2 functionally distinct cohesin complexes (REC-8 and COH-3/4) in defined stoichiometry. We further found that REC-8 cohesins, which load during S phase and mediate sister-chromatid cohesion, usually occur as individual complexes, supporting a model wherein sister cohesion is mediated locally by a single cohesin ring. REC-8 complexes are interspersed in an alternating pattern with cohorts of axis-organizing COH-3/4 complexes (averaging 3 per cohort), which are insufficient to confer cohesion but can bind to individual chromatids, suggesting a mechanism to enable formation of asymmetric sister-chromatid loops. Indeed, immunofluorescence/fluorescence in situ hybridization (immuno-FISH) assays demonstrate frequent asymmetry in genomic content between the loops formed on sister chromatids. We discuss how features of chromosome axis/loop architecture inferred from our data can help to explain enigmatic, yet essential, aspects of the meiotic program.
Collapse
Affiliation(s)
- Alexander Woglar
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Kei Yamaya
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Baptiste Roelens
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Alistair Boettiger
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Simone Köhler
- European Molecular Biology Laboratory, Heidelberg, Heidelberg, Germany
| | - Anne M. Villeneuve
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
40
|
PCH-2 collaborates with CMT-1 to proofread meiotic homolog interactions. PLoS Genet 2020; 16:e1008904. [PMID: 32730253 PMCID: PMC7433886 DOI: 10.1371/journal.pgen.1008904] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 08/18/2020] [Accepted: 06/01/2020] [Indexed: 11/19/2022] Open
Abstract
The conserved ATPase, PCH-2/TRIP13, is required during both the spindle checkpoint and meiotic prophase. However, its specific role in regulating meiotic homolog pairing, synapsis and recombination has been enigmatic. Here, we report that this enzyme is required to proofread meiotic homolog interactions. We generated a mutant version of PCH-2 in C. elegans that binds ATP but cannot hydrolyze it: pch-2E253Q. In vitro, this mutant can bind a known substrate but is unable to remodel it. This mutation results in some non-homologous synapsis and impaired crossover assurance. Surprisingly, worms with a null mutation in PCH-2's adapter protein, CMT-1, the ortholog of p31comet, localize PCH-2 to meiotic chromosomes, exhibit non-homologous synapsis and lose crossover assurance. The similarity in phenotypes between cmt-1 and pch-2E253Q mutants suggest that PCH-2 can bind its meiotic substrates in the absence of CMT-1, in contrast to its role during the spindle checkpoint, but requires its adapter to hydrolyze ATP and remodel them.
Collapse
|
41
|
ASY1 acts as a dosage-dependent antagonist of telomere-led recombination and mediates crossover interference in Arabidopsis. Proc Natl Acad Sci U S A 2020; 117:13647-13658. [PMID: 32499315 PMCID: PMC7306779 DOI: 10.1073/pnas.1921055117] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
During meiosis, interhomolog recombination produces crossovers and noncrossovers to create genetic diversity. Meiotic recombination frequency varies at multiple scales, with high subtelomeric recombination and suppressed centromeric recombination typical in many eukaryotes. During recombination, sister chromatids are tethered as loops to a polymerized chromosome axis, which, in plants, includes the ASY1 HORMA domain protein and REC8-cohesin complexes. Using chromatin immunoprecipitation, we show an ascending telomere-to-centromere gradient of ASY1 enrichment, which correlates strongly with REC8-cohesin ChIP-seq data. We mapped crossovers genome-wide in the absence of ASY1 and observe that telomere-led recombination becomes dominant. Surprisingly, asy1/+ heterozygotes also remodel crossovers toward subtelomeric regions at the expense of the pericentromeres. Telomeric recombination increases in asy1/+ occur in distal regions where ASY1 and REC8 ChIP enrichment are lowest in wild type. In wild type, the majority of crossovers show interference, meaning that they are more widely spaced along the chromosomes than expected by chance. To measure interference, we analyzed double crossover distances, MLH1 foci, and fluorescent pollen tetrads. Interestingly, while crossover interference is normal in asy1/+, it is undetectable in asy1 mutants, indicating that ASY1 is required to mediate crossover interference. Together, this is consistent with ASY1 antagonizing telomere-led recombination and promoting spaced crossover formation along the chromosomes via interference. These findings provide insight into the role of the meiotic axis in patterning recombination frequency within plant genomes.
Collapse
|
42
|
Hurlock ME, Čavka I, Kursel LE, Haversat J, Wooten M, Nizami Z, Turniansky R, Hoess P, Ries J, Gall JG, Rog O, Köhler S, Kim Y. Identification of novel synaptonemal complex components in C. elegans. J Cell Biol 2020; 219:e201910043. [PMID: 32211899 PMCID: PMC7199856 DOI: 10.1083/jcb.201910043] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/04/2020] [Accepted: 02/26/2020] [Indexed: 11/22/2022] Open
Abstract
The synaptonemal complex (SC) is a tripartite protein scaffold that forms between homologous chromosomes during meiosis. Although the SC is essential for stable homologue pairing and crossover recombination in diverse eukaryotes, it is unknown how individual components assemble into the highly conserved SC structure. Here we report the biochemical identification of two new SC components, SYP-5 and SYP-6, in Caenorhabditis elegans. SYP-5 and SYP-6 are paralogous to each other and play redundant roles in synapsis, providing an explanation for why these genes have evaded previous genetic screens. Superresolution microscopy reveals that they localize between the chromosome axes and span the width of the SC in a head-to-head manner, similar to the orientation of other known transverse filament proteins. Using genetic redundancy and structure-function analyses to truncate C-terminal tails of SYP-5/6, we provide evidence supporting the role of SC in both limiting and promoting crossover formation.
Collapse
Affiliation(s)
| | - Ivana Čavka
- The European Molecular Biology Laboratory, Heidelberg, Germany
| | - Lisa E. Kursel
- School of Biological Sciences, University of Utah, Salt Lake City, UT
| | | | - Matthew Wooten
- Department of Biology, Johns Hopkins University, Baltimore, MD
| | - Zehra Nizami
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD
| | | | - Philipp Hoess
- The European Molecular Biology Laboratory, Heidelberg, Germany
- Collaboration for joint PhD degree between European Molecular Biology Laboratory and Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Jonas Ries
- The European Molecular Biology Laboratory, Heidelberg, Germany
| | - Joseph G. Gall
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD
| | - Ofer Rog
- School of Biological Sciences, University of Utah, Salt Lake City, UT
| | - Simone Köhler
- The European Molecular Biology Laboratory, Heidelberg, Germany
| | - Yumi Kim
- Department of Biology, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
43
|
Garcia-Muse T, Galindo-Diaz U, Garcia-Rubio M, Martin JS, Polanowska J, O'Reilly N, Aguilera A, Boulton SJ. A Meiotic Checkpoint Alters Repair Partner Bias to Permit Inter-sister Repair of Persistent DSBs. Cell Rep 2020; 26:775-787.e5. [PMID: 30650366 PMCID: PMC6334227 DOI: 10.1016/j.celrep.2018.12.074] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/28/2018] [Accepted: 12/17/2018] [Indexed: 11/30/2022] Open
Abstract
Accurate meiotic chromosome segregation critically depends on the formation of inter-homolog crossovers initiated by double-strand breaks (DSBs). Inaccuracies in this process can drive aneuploidy and developmental defects, but how meiotic cells are protected from unscheduled DNA breaks remains unexplored. Here we define a checkpoint response to persistent meiotic DSBs in C. elegans that phosphorylates the synaptonemal complex (SC) to switch repair partner from the homolog to the sister chromatid. A key target of this response is the core SC component SYP-1, which is phosphorylated in response to ionizing radiation (IR) or unrepaired meiotic DSBs. Failure to phosphorylate (syp-16A) or dephosphorylate (syp-16D) SYP-1 in response to DNA damage results in chromosome non-dysjunction, hyper-sensitivity to IR-induced DSBs, and synthetic lethality with loss of brc-1BRCA1. Since BRC-1 is required for inter-sister repair, these observations reveal that checkpoint-dependent SYP-1 phosphorylation safeguards the germline against persistent meiotic DSBs by channelling repair to the sister chromatid. Meiotic DNA damage triggers phosphorylation of the synaptonemal complex (SC) ATM-ATR kinases phosphorylate the SC in response to excessive meiotic DSBs SC phosphorylation channels DNA repair to the sister chromatid
Collapse
Affiliation(s)
- Tatiana Garcia-Muse
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Av. Américo Vespucio 24, 41092 Seville, Spain; Clare Hall Laboratories, Blanche Lane, South Mimms EN6 3LD, UK.
| | - U Galindo-Diaz
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Av. Américo Vespucio 24, 41092 Seville, Spain
| | - M Garcia-Rubio
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Av. Américo Vespucio 24, 41092 Seville, Spain
| | - J S Martin
- Clare Hall Laboratories, Blanche Lane, South Mimms EN6 3LD, UK
| | - J Polanowska
- Clare Hall Laboratories, Blanche Lane, South Mimms EN6 3LD, UK
| | - N O'Reilly
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, Midland Road, London, UK
| | - A Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Av. Américo Vespucio 24, 41092 Seville, Spain.
| | - Simon J Boulton
- Clare Hall Laboratories, Blanche Lane, South Mimms EN6 3LD, UK; DSB Repair Metabolism Laboratory, The Francis Crick Institute, Midland Road, London, UK.
| |
Collapse
|
44
|
Alleva B, Clausen S, Koury E, Hefel A, Smolikove S. CRL4 regulates recombination and synaptonemal complex aggregation in the Caenorhabditis elegans germline. PLoS Genet 2019; 15:e1008486. [PMID: 31738749 PMCID: PMC6886871 DOI: 10.1371/journal.pgen.1008486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 12/02/2019] [Accepted: 10/21/2019] [Indexed: 01/08/2023] Open
Abstract
To maintain the integrity of the genome, meiotic DNA double strand breaks (DSBs) need to form by the meiosis-specific nuclease Spo11 and be repaired by homologous recombination. One class of products formed by recombination are crossovers, which are required for proper chromosome segregation in the first meiotic division. The synaptonemal complex (SC) is a protein structure that connects homologous chromosomes during meiotic prophase I. The proper assembly of the SC is important for recombination, crossover formation, and the subsequent chromosome segregation. Here we identify the components of Cullin RING E3 ubiquitin ligase 4 (CRL4) that play a role in SC assembly in Caenorhabditis elegans. Mutants of the CRL4 complex (cul-4, ddb-1, and gad-1) show defects in SC assembly manifested in the formation of polycomplexes (PCs), impaired progression of meiotic recombination, and reduction in crossover numbers. PCs that are formed in cul-4 mutants lack the mobile properties of wild type SC, but are likely not a direct target of ubiquitination. In C. elegans, SC assembly does not require recombination and there is no evidence that PC formation is regulated by recombination as well. However, in one cul-4 mutant PC formation is dependent upon early meiotic recombination, indicating that proper assembly of the SC can be diminished by recombination in some scenarios. Lastly, our studies suggest that CUL-4 deregulation leads to transposition of the Tc3 transposable element, and defects in formation of SPO-11-mediated DSBs. Our studies highlight previously unknown functions of CRL4 in C. elegans meiosis and show that CUL-4 likely plays multiple roles in meiosis that are essential for maintaining genome integrity. Defects in the formation of the structure named the synaptonemal complex (SC) lead to the missegregation of chromosomes in the divisions that generate sperm and egg cells. In humans, this chromosome missegregation is associated with infertility and developmental disabilities of the surviving progeny. Abnormal SC structures composed of misfolded and aggregated SC proteins are associated with an inability to properly repair DNA damage and accurately segregate meiotic chromosomes. How SC proteins assemble such that they do not form misfolded protein aggregates is poorly understood. The germlines of nematodes (Caenorhabditis elegans) that lack protein components of the Cullin 4 E3 Ubiquitin ligase complex (CRL4), have defects in the formation of the SC that can be due to misfolding of SC proteins and their aggregation. CRL4 appears to be involved in other germline functions that directly affect chromosome stability (DNA damage repair and transposition), indicating that CRL4 has a central function in the formation of functional sperm and egg cells.
Collapse
Affiliation(s)
- Benjamin Alleva
- The department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Sean Clausen
- The department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Emily Koury
- The department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Adam Hefel
- The department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Sarit Smolikove
- The department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
45
|
Hatkevich T, Boudreau V, Rubin T, Maddox PS, Huynh JR, Sekelsky J. Centromeric SMC1 promotes centromere clustering and stabilizes meiotic homolog pairing. PLoS Genet 2019; 15:e1008412. [PMID: 31609962 PMCID: PMC6812850 DOI: 10.1371/journal.pgen.1008412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/24/2019] [Accepted: 09/10/2019] [Indexed: 01/16/2023] Open
Abstract
During meiosis, each chromosome must selectively pair and synapse with its own unique homolog to enable crossover formation and subsequent segregation. How homolog pairing is maintained in early meiosis to ensure synapsis occurs exclusively between homologs is unknown. We aimed to further understand this process by examining the meiotic defects of a unique Drosophila mutant, Mcm5A7. We found that Mcm5A7 mutants are proficient in homolog pairing at meiotic onset yet fail to maintain pairing as meiotic synapsis ensues, causing seemingly normal synapsis between non-homologous loci. This pairing defect corresponds with a reduction of SMC1-dependent centromere clustering at meiotic onset. Overexpressing SMC1 in this mutant significantly restores centromere clustering, homolog pairing, and crossover formation. These data indicate that the initial meiotic pairing of homologs is not sufficient to yield synapsis exclusively between homologs and provide a model in which meiotic homolog pairing must be stabilized by centromeric SMC1 to ensure proper synapsis. Sexually reproducing organisms must produce gametes (sperm and eggs) that have one copy of each chromosome. This is accomplished through a special cell division called meiosis. Each chromosome replicates to generate identical sister chromatids, then finds and pairs with its unique partner chromosome. A well-regulated recombination process then generates crossovers between paired maternal/paternal partners; these crossovers ensure accurate chromosome segregation in meiosis. The pairing process is very poorly understood. The Drosophila melanogaster (fruit fly) Mcm5A7 mutation was previously shown to reduce crossovers but we show here that this is due to defects in meiotic chromosome pairing. We trace the primary defect to failure to load cohesins, which hold sister chromatids together but have additional roles in meiosis, at the centromere–the region that will later direct chromosome segregation. Thus, defects in centromeric cohesion lead to loss of chromosome pairing and loss of recombination along the arms of the chromosomes, and ultimately loss of fidelity during chromosome segregation.
Collapse
Affiliation(s)
- Talia Hatkevich
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Vincent Boudreau
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Thomas Rubin
- CIRB, Collège de France, PSL Research University, CNRS UMR7241, Inserm U1050, Paris, France
| | - Paul S. Maddox
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Jean-René Huynh
- CIRB, Collège de France, PSL Research University, CNRS UMR7241, Inserm U1050, Paris, France
| | - Jeff Sekelsky
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Integrative Program in Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
46
|
Roelens B, Barroso C, Montoya A, Cutillas P, Zhang W, Woglar A, Girard C, Martinez-Perez E, Villeneuve AM. Spatial Regulation of Polo-Like Kinase Activity During Caenorhabditis elegans Meiosis by the Nucleoplasmic HAL-2/HAL-3 Complex. Genetics 2019; 213:79-96. [PMID: 31345995 PMCID: PMC6727811 DOI: 10.1534/genetics.119.302479] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 07/11/2019] [Indexed: 01/01/2023] Open
Abstract
Proper partitioning of homologous chromosomes during meiosis relies on the coordinated execution of multiple interconnected events: Homologs must locate, recognize, and align with their correct pairing partners. Further, homolog pairing must be coupled to assembly of the synaptonemal complex (SC), a meiosis-specific tripartite structure that maintains stable associations between the axes of aligned homologs and regulates formation of crossovers between their DNA molecules to create linkages that enable their segregation. Here, we identify HAL-3 (Homolog Alignment 3) as an important player in coordinating these key events during Caenorhabditis elegans meiosis. HAL-3, and the previously identified HAL-2, are interacting and interdependent components of a protein complex that localizes to the nucleoplasm of germ cells. hal-3 (or hal-2) mutants exhibit multiple meiotic prophase defects including failure to establish homolog pairing, inappropriate loading of SC subunits onto unpaired chromosome axes, and premature loss of synapsis checkpoint protein PCH-2. Further, loss of hal function results in misregulation of the subcellular localization and activity of Polo-like kinases (PLK-1 and PLK-2), which dynamically localize to different defined subnuclear sites during wild-type prophase progression to regulate distinct cellular events. Moreover, loss of PLK-2 activity partially restores tripartite SC structure in a hal mutant background, suggesting that the defect in pairwise SC assembly in hal mutants reflects inappropriate PLK activity. Together, our data support a model in which the nucleoplasmic HAL-2/HAL-3 protein complex constrains both localization and activity of meiotic Polo-like kinases, thereby preventing premature interaction with stage-inappropriate targets.
Collapse
Affiliation(s)
- Baptiste Roelens
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, California 94305
| | - Consuelo Barroso
- MRC London Institute of Medical Sciences, Imperial College London, W12 0NN, UK
| | - Alex Montoya
- MRC London Institute of Medical Sciences, Imperial College London, W12 0NN, UK
| | - Pedro Cutillas
- MRC London Institute of Medical Sciences, Imperial College London, W12 0NN, UK
| | - Weibin Zhang
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, California 94305
| | - Alexander Woglar
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, California 94305
| | - Chloe Girard
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, California 94305
| | | | - Anne M Villeneuve
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, California 94305
| |
Collapse
|
47
|
West AMV, Komives EA, Corbett KD. Conformational dynamics of the Hop1 HORMA domain reveal a common mechanism with the spindle checkpoint protein Mad2. Nucleic Acids Res 2019; 46:279-292. [PMID: 29186573 PMCID: PMC5758881 DOI: 10.1093/nar/gkx1196] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/16/2017] [Indexed: 12/19/2022] Open
Abstract
The HORMA domain is a highly conserved protein–protein interaction module found in eukaryotic signaling proteins including the spindle assembly checkpoint protein Mad2 and the meiotic HORMAD proteins. HORMA domain proteins interact with short ‘closure motifs’ in partner proteins by wrapping their C-terminal ‘safety belt’ region entirely around these motifs, forming topologically-closed complexes. Closure motif binding and release requires large-scale conformational changes in the HORMA domain, but such changes have only been observed in Mad2. Here, we show that Saccharomyces cerevisiae Hop1, a master regulator of meiotic recombination, possesses conformational dynamics similar to Mad2. We identify closure motifs in the Hop1 binding partner Red1 and in Hop1 itself, revealing that HORMA domain–closure motif interactions underlie both Hop1’s initial recruitment to the chromosome axis and its self-assembly on the axis. We further show that Hop1 adopts two distinct folded states in solution, one corresponding to the previously-observed ‘closed’ conformation, and a second more extended state in which the safety belt region has disengaged from the HORMA domain core. These data reveal strong mechanistic similarities between meiotic HORMADs and Mad2, and provide a mechanistic basis for understanding both meiotic chromosome axis assembly and its remodeling by the AAA+ ATPase Pch2/TRIP13.
Collapse
Affiliation(s)
- Alan M V West
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093, USA.,Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kevin D Corbett
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093, USA.,Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
48
|
Rohožková J, Hůlková L, Fukalová J, Flachs P, Hozák P. Pairing of homologous chromosomes in C. elegans meiosis requires DEB-1 - an orthologue of mammalian vinculin. Nucleus 2019; 10:93-115. [PMID: 31068058 PMCID: PMC6527391 DOI: 10.1080/19491034.2019.1602337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
During meiosis, homologous chromosomes undergo a dramatic movement in order to correctly align. This is a critical meiotic event but the molecular properties of this 'chromosomal dance' still remainunclear. We identified DEB-1 - an orthologue of mammalian vinculin - as a new component of the mechanistic modules responsible for attaching the chromosomes to the nuclear envelope as apart of the LINC complex. In early meiotic nuclei of C. elegans, DEB-1 is localized to the nuclear periphery and alongside the synaptonemal complex of paired homologues. Upon DEB-1 depletion, chromosomes attached to SUN-1 foci remain highly motile until late pachytene. Although the initiation of homologue pairing started normally, irregularities in the formation of the synaptonemal complex occur, and these results in meiotic defects such as increased number of univalents at diakinesis and high embryonic lethality. Our data identify DEB-1 as a new player regulating chromosome dynamics and pairing during meiotic prophase I.
Collapse
Affiliation(s)
- Jana Rohožková
- a Department of Epigenetics of the Cell Nucleus , Institute of Molecular Genetics AS CR, v.v.i. division BIOCEV , Vestec , Czech Republic
| | - Lenka Hůlková
- a Department of Epigenetics of the Cell Nucleus , Institute of Molecular Genetics AS CR, v.v.i. division BIOCEV , Vestec , Czech Republic
| | - Jana Fukalová
- b Department of Biology of the Cell Nucleus , Institute of Molecular Genetics AS CR, v.v.i. , Prague , Czech Republic
| | - Petr Flachs
- a Department of Epigenetics of the Cell Nucleus , Institute of Molecular Genetics AS CR, v.v.i. division BIOCEV , Vestec , Czech Republic
| | - Pavel Hozák
- a Department of Epigenetics of the Cell Nucleus , Institute of Molecular Genetics AS CR, v.v.i. division BIOCEV , Vestec , Czech Republic.,b Department of Biology of the Cell Nucleus , Institute of Molecular Genetics AS CR, v.v.i. , Prague , Czech Republic.,c Microscopy centre , Institute of Molecular Genetics AS CR, v.v.i. , Prague , Czech Republic
| |
Collapse
|
49
|
Achache H, Laurent L, Hecker-Mimoun Y, Ishtayeh H, Rappaport Y, Kroizer E, Colaiácovo MP, Tzur YB. Progression of Meiosis Is Coordinated by the Level and Location of MAPK Activation Via OGR-2 in Caenorhabditis elegans. Genetics 2019; 212:213-229. [PMID: 30867196 PMCID: PMC6499523 DOI: 10.1534/genetics.119.302080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/07/2019] [Indexed: 02/07/2023] Open
Abstract
During meiosis, a series of evolutionarily conserved events allow for reductional chromosome division, which is required for sexual reproduction. Although individual meiotic processes have been extensively studied, we currently know far less about how meiosis is regulated and coordinated. In the Caenorhabditis elegans gonad, mitogen-activated protein kinase (MAPK) signaling drives oogenesis while undergoing spatial activation and deactivation waves. However, it is currently unclear how MAPK activation is governed and how it facilitates the progression of oogenesis. Here, we show that the oocyte and germline-related 2 (ogr-2) gene affects proper progression of oogenesis. Complete deletion of ogr-2 results in delayed meiotic entry and late spatial onset of double-strand break repair. Elevated levels of apoptosis are observed in this mutant, independent of the meiotic canonical checkpoints; however, they are dependent on the MAPK terminal member MPK-1/ERK. MPK-1 activation is elevated in diplotene in ogr-2 mutants and its aberrant spatial activation correlates with stages where meiotic progression defects are evident. Deletion of ogr-2 significantly reduces the expression of lip-1, a phosphatase reported to repress MPK-1, which is consistent with OGR-2 localization at chromatin in germ cells. We suggest that OGR-2 modulates the expression of lip-1 to promote the timely progression of meiosis through MPK-1 spatial deactivation.
Collapse
Affiliation(s)
- Hanna Achache
- Department of Genetics, Institute of Life Sciences, Hebrew University, Givat-Ram, Jerusalem 91904, Israel
| | - Lévana Laurent
- Department of Genetics, Institute of Life Sciences, Hebrew University, Givat-Ram, Jerusalem 91904, Israel
| | - Yaël Hecker-Mimoun
- Department of Genetics, Institute of Life Sciences, Hebrew University, Givat-Ram, Jerusalem 91904, Israel
| | - Hasan Ishtayeh
- Department of Genetics, Institute of Life Sciences, Hebrew University, Givat-Ram, Jerusalem 91904, Israel
| | - Yisrael Rappaport
- Department of Genetics, Institute of Life Sciences, Hebrew University, Givat-Ram, Jerusalem 91904, Israel
| | - Eitan Kroizer
- Department of Genetics, Institute of Life Sciences, Hebrew University, Givat-Ram, Jerusalem 91904, Israel
| | | | - Yonatan B Tzur
- Department of Genetics, Institute of Life Sciences, Hebrew University, Givat-Ram, Jerusalem 91904, Israel
| |
Collapse
|
50
|
Roelens B, Zawadzki KA, Villeneuve AM. me98 is a new allele of rad-54. MICROPUBLICATION BIOLOGY 2019; 2019:10.17912/micropub.biology.000108. [PMID: 32550460 PMCID: PMC7252391 DOI: 10.17912/micropub.biology.000108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Baptiste Roelens
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine
| | - Karl A Zawadzki
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine
| | - Anne M Villeneuve
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine,
Correspondence to: Anne M Villeneuve ()
| |
Collapse
|