1
|
Xu L, Bai X, Joong Oh E. Strategic approaches for designing yeast strains as protein secretion and display platforms. Crit Rev Biotechnol 2025; 45:491-508. [PMID: 39138023 DOI: 10.1080/07388551.2024.2385996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 08/15/2024]
Abstract
Yeast has been established as a versatile platform for expressing functional molecules, owing to its well-characterized biology and extensive genetic modification tools. Compared to prokaryotic systems, yeast possesses advanced cellular mechanisms that ensure accurate protein folding and post-translational modifications. These capabilities are particularly advantageous for the expression of human-derived functional proteins. However, designing yeast strains as an expression platform for proteins requires the integration of molecular and cellular functions. By delving into the complexities of yeast-based expression systems, this review aims to empower researchers with the knowledge to fully exploit yeast as a functional platform to produce a diverse range of proteins. This review includes an exploration of the host strains, gene cassette structures, as well as considerations for maximizing the efficiency of the expression system. Through this in-depth analysis, the review anticipates stimulating further innovation in the field of yeast biotechnology and protein engineering.
Collapse
Affiliation(s)
- Luping Xu
- Department of Food Science, Purdue University, West Lafayette, IN, USA
- Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN, USA
| | | | - Eun Joong Oh
- Department of Food Science, Purdue University, West Lafayette, IN, USA
- Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
2
|
Watkins R, Bockelman S, Vradi A, Grabarkewitz K, Pyun A, Stark J, Wysocki V, Alfonzo J, Musier-Forsyth K. Unexpected enzymatic function of an ancient nucleic acid-binding fold. Nucleic Acids Res 2025; 53:gkaf328. [PMID: 40274265 PMCID: PMC12021450 DOI: 10.1093/nar/gkaf328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/01/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) are indispensable for all living organisms and their associated aminoacyl-tRNA editing domains ensure the fidelity of translation. In eukaryotes, ARSs form a multi-aminoacyl-tRNA synthetase complex (MSC), which is assembled together with several nonsynthetase scaffolding proteins. The MSC found in Trypanosoma brucei (Tb) includes two proteins with oligosaccharide/oligonucleotide-binding (OB) folds-MSC-associated protein 1 (MCP1) and MCP2-and one known trans-editing factor, MCP3, an Ala-tRNA deacylase. The activity of MCP1 was unexplored until now. Our study shows that recombinantly-expressed and purified MCP1 also deacylates Ala-tRNAs despite lacking known tRNA-editing domain homology. Domain deletion studies reveal that the OB-fold houses the catalytic pocket and mutation of any one of three conserved OB-fold residues (K326, R331, S335) abolishes activity. Assays with Saccharomyces cerevisiae Arc1p reveal that MCP1's deacylation activity is conserved across organisms. This discovery explains the 3' CCA-end binding activity of this protein family and uncovers an ancient nucleic acid binding domain's unexpected enzymatic function.
Collapse
Affiliation(s)
- Rylan R Watkins
- Department of Chemistry and Biochemistry, Center for RNA Biology, Ohio State University, Columbus, OH, 43220, United States
| | - Stella Bockelman
- Department of Chemistry and Biochemistry, Center for RNA Biology, Ohio State University, Columbus, OH, 43220, United States
| | - Anna Vradi
- Department of Chemistry and Biochemistry, Center for RNA Biology, Ohio State University, Columbus, OH, 43220, United States
| | - Kaylee Grabarkewitz
- Department of Chemistry and Biochemistry, Center for RNA Biology, Ohio State University, Columbus, OH, 43220, United States
| | - Alexa Pyun
- Department of Chemistry and Biochemistry, Center for RNA Biology, Ohio State University, Columbus, OH, 43220, United States
| | - Josephine Stark
- Department of Chemistry and Biochemistry, Center for RNA Biology, Ohio State University, Columbus, OH, 43220, United States
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, Center for RNA Biology, Ohio State University, Columbus, OH, 43220, United States
| | - Juan D Alfonzo
- Department of Molecular Biology, Cell Biology and Biochemistry, The Brown RNA Center, Brown University, Providence, RI, 02912, United States
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for RNA Biology, Ohio State University, Columbus, OH, 43220, United States
| |
Collapse
|
3
|
Wang J, Luo J, Yang S, Deng Y, Chen P, Tan Y, Liu Y. Development and validation of disulfidptosis-related genes signature for patients with glioma. Discov Oncol 2024; 15:758. [PMID: 39692962 DOI: 10.1007/s12672-024-01664-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Disulfidptosis has recently emerged as a novel form of regulated cell death (RCD). Evasion of cell death is a hallmark of cancer, and the resistance of many tumors to apoptosis-inducing therapies has heightened interest in exploring alternative RCD mechanisms. METHODS Transcriptomic and clinical data were obtained from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Chinese Glioma Genome Atlas (CGGA). Glioma samples were classified using non-negative matrix factorization (NMF). A predictive model was constructed using Lasso regression analysis, and its performance was evaluated through receiver operating characteristic (ROC) and Kaplan-Meier survival analyses. The relationship between the model and the tumor immune microenvironment (TIME) as well as treatment sensitivity was also assessed. Finally, we validated the expression of key signature genes in glioma. RESULTS Glioma samples were categorized into two distinct subtypes based on disulfidptosis-related genes, showing significant differences in overall survival (OS) and progression-free survival (PFS) between the subtypes. A genetic risk score model was then developed using these genes. A nomogram predicting OS was constructed using the risk score and clinical variables. Patients were stratified into low- and high-risk groups based on the median risk score from the TCGA cohort. Low-risk patients had significantly better outcomes compared to high-risk patients (TCGA cohort, OS: p < 0.001; PFS: p < 0.001; CGGA cohort, OS: p < 0.001). The risk score was associated with HLA expression, immune checkpoint genes, immune cell infiltration, immune function, tumor mutation burden, tumor stemness score, and drug sensitivity. Lastly, the expression of 11 signature genes was confirmed in glioma tissues. CONCLUSIONS The disulfidptosis-related gene-based risk score model effectively predicted glioma outcomes and highlighted the role of disulfidptosis-related genes in tumor immunity. This study offers potential new avenues for glioma treatment by targeting disulfidptosis.
Collapse
Affiliation(s)
- Jia Wang
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Junchi Luo
- Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Sha Yang
- Guizhou University Medical College, Guiyang, 550025, Guizhou Province, China
| | - Yongbing Deng
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Peng Chen
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Ying Tan
- Zunyi Medical University, Zunyi, Guizhou Province, China
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yang Liu
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China.
| |
Collapse
|
4
|
Wilson RB, Chen YJ, Zhang R, Maini S, Andrews TS, Wang R, Borradaile NM. Elongation factor 1A1 inhibition elicits changes in lipid droplet size, the bulk transcriptome, and cell type-associated gene expression in MASLD mouse liver. Am J Physiol Gastrointest Liver Physiol 2024; 327:G608-G622. [PMID: 39136056 PMCID: PMC11482270 DOI: 10.1152/ajpgi.00276.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 09/19/2024]
Abstract
Eukaryotic elongation factor 1A1 (EEF1A1), originally identified for its role in protein synthesis, has additional functions in diverse cellular processes. Of note, we previously discovered a role for EEF1A1 in hepatocyte lipotoxicity. We also demonstrated that a 2-wk intervention with the EEF1A1 inhibitor didemnin B (DB) (50 µg/kg) decreased liver steatosis in a mouse model of obesity and metabolic dysfunction-associated steatotic liver disease (MASLD) [129S6/SvEvTac mice fed Western diet (42% fat) for 26 wk]. Here, we further characterized the hepatic changes occurring in these mice by assessing lipid droplet (LD) size, bulk differential expression, and cell type-associated alterations in gene expression. Consistent with the previously demonstrated decrease in hepatic steatosis, we observed decreased median LD size in response to DB. Bulk RNA sequencing (RNA-Seq) followed by gene set enrichment analysis revealed alterations in pathways related to energy metabolism and proteostasis in DB-treated mouse livers. Deconvolution of bulk data identified decreased cell type association scores for cholangiocytes, mononuclear phagocytes, and mesenchymal cells in response to DB. Overrepresentation analyses of bulk data using cell type marker gene sets further identified hepatocytes and cholangiocytes as the primary contributors to bulk differential expression in response to DB. Thus, we show that chemical inhibition of EEF1A1 decreases hepatic LD size and decreases gene expression signatures associated with several liver cell types implicated in MASLD progression. Furthermore, changes in hepatic gene expression were primarily attributable to hepatocytes and cholangiocytes. This work demonstrates that EEF1A1 inhibition may be a viable strategy to target aspects of liver biology implicated in MASLD progression.NEW & NOTEWORTHY Chemical inhibition of EEF1A1 decreases hepatic lipid droplet size and decreases gene expression signatures associated with liver cell types that contribute to MASLD progression. Furthermore, changes in hepatic gene expression are primarily attributable to hepatocytes and cholangiocytes. This work highlights the therapeutic potential of targeting EEF1A1 in the setting of MASLD, and the utility of RNA-Seq deconvolution to reveal valuable information about tissue cell type composition and cell type-associated gene expression from bulk RNA-Seq data.
Collapse
Affiliation(s)
- Rachel B Wilson
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Yun Jin Chen
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Richard Zhang
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Siddhant Maini
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Tallulah S Andrews
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Rennian Wang
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Nica M Borradaile
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
5
|
Wilson RB, Kozlov AM, Hatam Tehrani H, Twumasi-Ankrah JS, Chen YJ, Borrelli MJ, Sawyez CG, Maini S, Shepherd TG, Cumming RC, Betts DH, Borradaile NM. Elongation factor 1A1 regulates metabolic substrate preference in mammalian cells. J Biol Chem 2024; 300:105684. [PMID: 38272231 PMCID: PMC10891338 DOI: 10.1016/j.jbc.2024.105684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 01/27/2024] Open
Abstract
Eukaryotic elongation factor 1A1 (EEF1A1) is canonically involved in protein synthesis but also has noncanonical functions in diverse cellular processes. Previously, we identified EEF1A1 as a mediator of lipotoxicity and demonstrated that chemical inhibition of EEF1A1 activity reduced mouse liver lipid accumulation. These findings suggested a link between EEF1A1 and metabolism. Therefore, we investigated its role in regulating metabolic substrate preference. EEF1A1-deficient Chinese hamster ovary (2E2) cells displayed reduced media lactate accumulation. These effects were also observed with EEF1A1 knockdown in human hepatocyte-like HepG2 cells and in WT Chinese hamster ovary and HepG2 cells treated with selective EEF1A inhibitors, didemnin B, or plitidepsin. Extracellular flux analyses revealed decreased glycolytic ATP production and increased mitochondrial-to-glycolytic ATP production ratio in 2E2 cells, suggesting a more oxidative metabolic phenotype. Correspondingly, fatty acid oxidation was increased in 2E2 cells. Both 2E2 cells and HepG2 cells treated with didemnin B exhibited increased neutral lipid content, which may be required to support elevated oxidative metabolism. RNA-seq revealed a >90-fold downregulation of a rate-limiting glycolytic enzyme, hexokinase 2, which we confirmed through immunoblotting and enzyme activity assays. Pathway enrichment analysis identified downregulations in TNFA signaling via NFKB and MYC targets. Correspondingly, nuclear abundances of RELB and MYC were reduced in 2E2 cells. Thus, EEF1A1 deficiency may perturb glycolysis by limiting NFKB- and MYC-mediated gene expression, leading to decreased hexokinase expression and activity. This is the first evidence of a role for a translation elongation factor, EEF1A1, in regulating metabolic substrate utilization in mammalian cells.
Collapse
Affiliation(s)
- Rachel B Wilson
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | | | - Helia Hatam Tehrani
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jessica S Twumasi-Ankrah
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Yun Jin Chen
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Matthew J Borrelli
- The Mary & John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, London, Ontario, Canada; Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Cynthia G Sawyez
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Siddhant Maini
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Trevor G Shepherd
- The Mary & John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, London, Ontario, Canada; Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Robert C Cumming
- Department of Biology, Western University, London, Ontario, Canada; Genetics and Development Division, The Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Dean H Betts
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Department of Biology, Western University, London, Ontario, Canada; Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Genetics and Development Division, The Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Nica M Borradaile
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
| |
Collapse
|
6
|
Nahálková J. A new view on functions of the lysine demalonylase activity of SIRT5. Life Sci 2023; 320:121572. [PMID: 36921688 DOI: 10.1016/j.lfs.2023.121572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
AIMS The specificity of the lysine demalonylation substrates of the pharmaceutically attractive tumor promoter/suppressor SIRT5 is not comprehensively clarified. The present study re-analyses publicly available data and highlights potentially pharmaceutically interesting outcomes by the use of bioinformatics. MATERIALS AND METHODS The interaction networks of SIRT5 malonylome from the wild-type and ob/ob (obese pre-diabetic type) mice were subjected to the pathway enrichment and gene function prediction analysis using GeneMania (3.5.2) application run under Cytoscape (3.9.1) environment. KEY FINDINGS The analysis in the wild-type mice revealed the involvement of SIRT5 malonylome in Eukaryotic translation elongation (ETE; the nodes EF1A1, EEF2, EEF1D, and EEF1G), Amino acid and derivative metabolism (AADM), and Selenoamino acid metabolism (SAM). The tumor promoter/suppressor activity of SIRT5 is mediated through the tumor promoter substrates included in AADM (GLUD1, SHMT1, ACAT1), and the tumor suppressor substrates involved in AADM and SAM (ALDH9A1, BHMT, GNMT). Selen stimulates the expression of SIRT5 and other sirtuins. SIRT5 in turn regulates the selenocysteine synthesis, which creates a regulatory loop. The analysis of SIRT5 malonylome in pre-diabetic ob/ob mice identifies the mTORC1 pathway as a mechanism, which facilitates SIRT5 functions. The comparison of the outcomes of SIRT5 malonylome, succinylome, and glutarylome analysis disclosed several differences. SIGNIFICANCE The analysis showed additional aspects of SIRT5 malonylome functions besides the control of glucose metabolism. It defined several unique substrates and pathways, and it showed differences compared to other enzymatic activities of SIRT5, which could be used for pharmaceutical benefits.
Collapse
Affiliation(s)
- Jarmila Nahálková
- Biochemistry, Molecular, and Cell Biology Unit, Biochemworld Co., Snickar-Anders väg 17, 74394 Skyttorp, Uppsala County, Sweden.
| |
Collapse
|
7
|
Rubio A, Garland GD, Sfakianos A, Harvey RF, Willis AE. Aberrant protein synthesis and cancer development: The role of canonical eukaryotic initiation, elongation and termination factors in tumorigenesis. Semin Cancer Biol 2022; 86:151-165. [PMID: 35487398 DOI: 10.1016/j.semcancer.2022.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 01/27/2023]
Abstract
In tumourigenesis, oncogenes or dysregulated tumour suppressor genes alter the canonical translation machinery leading to a reprogramming of the translatome that, in turn, promotes the translation of selected mRNAs encoding proteins involved in proliferation and metastasis. It is therefore unsurprising that abnormal expression levels and activities of eukaryotic initiation factors (eIFs), elongation factors (eEFs) or termination factors (eRFs) are associated with poor outcome for patients with a wide range of cancers. In this review we discuss how RNA binding proteins (RBPs) within the canonical translation factor machinery are dysregulated in cancers and how targeting such proteins is leading to new therapeutic avenues.
Collapse
Affiliation(s)
- Angela Rubio
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK
| | - Gavin D Garland
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK
| | - Aristeidis Sfakianos
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK
| | - Robert F Harvey
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK
| | - Anne E Willis
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK.
| |
Collapse
|
8
|
Comparative Small RNA and Degradome Sequencing Provides Insights into Antagonistic Interactions in the Biocontrol Fungus Clonostachys rosea. Appl Environ Microbiol 2022; 88:e0064322. [PMID: 35695572 PMCID: PMC9275246 DOI: 10.1128/aem.00643-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Necrotrophic mycoparasitism is an intricate process involving recognition, physical mycelial contact, and killing of host fungi (mycohosts). During such interactions, mycoparasites undergo a complex developmental process involving massive regulatory changes of gene expression to produce a range of chemical compounds and proteins that contribute to the parasitism of the mycohosts. Small RNAs (sRNAs) are vital components of posttranscriptional gene regulation, although their role in gene expression regulation during mycoparasitisms remain understudied. Here, we investigated the role of sRNA-mediated gene regulation in mycoparasitism by performing sRNA and degradome tag sequencing of the mycoparasitic fungus Clonostachys rosea interacting with the plant-pathogenic mycohosts Botrytis cinerea and Fusarium graminearum at two time points. The majority of differentially expressed sRNAs were downregulated during the interactions with the mycohosts compared to a C. rosea self-interaction control, thus allowing desuppression (upregulation) of mycohost-responsive genes. Degradome analysis showed a positive correlation between high degradome counts and antisense sRNA mapping and led to the identification of 201 sRNA-mediated potential gene targets for 282 differentially expressed sRNAs. Analysis of sRNA potential gene targets revealed that the regulation of genes coding for membrane proteins was a common response against both mycohosts. The regulation of genes involved in oxidative stress tolerance and cellular metabolic and biosynthetic processes was exclusive against F. graminearum, highlighting common and mycohost-specific gene regulation of C. rosea. By combining these results with transcriptome data collected during a previous study, we expand the understanding of the role of sRNA in regulating interspecific fungal interactions and mycoparasitism. IMPORTANCE Small RNAs (sRNAs) are emerging as key players in pathogenic and mutualistic fungus-plant interactions; however, their role in fungus-fungus interactions remains elusive. In this study, we employed the necrotrophic mycoparasite Clonostachys rosea and the plant-pathogenic mycohosts Botrytis cinerea and Fusarium graminearum and investigated the sRNA-mediated gene regulation in mycoparasitic interactions. The combined approach of sRNA and degradome tag sequencing identified 201 sRNA-mediated putative gene targets for 282 differentially expressed sRNAs, highlighting the role of sRNA-mediated regulation of mycoparasitism in C. rosea. We also identified 36 known and 13 novel microRNAs (miRNAs) and their potential gene targets at the endogenous level and at a cross-species level in B. cinerea and F. graminearum, indicating a role of cross-species RNA interference (RNAi) in mycoparasitism, representing a novel mechanism in biocontrol interactions. Furthermore, we showed that C. rosea adapts its transcriptional response, and thereby its interaction mechanisms, based on the interaction stages and identity of the mycohost.
Collapse
|
9
|
Sopko B, Tejral G, Bitti G, Abate M, Medvedikova M, Hajduch M, Chloupek J, Fajmonova J, Skoric M, Amler E, Erban T. Glyphosate Interaction with eEF1α1 Indicates Altered Protein Synthesis: Evidence for Reduced Spermatogenesis and Cytostatic Effect. ACS OMEGA 2021; 6:14848-14857. [PMID: 34151066 PMCID: PMC8209799 DOI: 10.1021/acsomega.1c00449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
The broad-spectrum herbicide, glyphosate, is considered safe for animals because it selectively affects the shikimate pathway that is specific to plants and microorganisms. We sought a previously unknown mechanism to explain the concerns that glyphosate exposure can negatively affect animals, including humans. Computer modeling showed a probable interaction between glyphosate and eukaryotic translation elongation factor 1 subunit alpha 1 (eEF1α1), which was confirmed by microcalorimetry. Only restricted, nondisrupted spermatogenesis in rats was observed after chronic glyphosate treatments (0.7 and 7 mg/L). Cytostatic and antiproliferative effects of glyphosate in GC-1 and SUP-B15 cells were indicated. Meta-analysis of public health data suggested a possible effect of glyphosate use on sperm count. The in silico, in vitro, and in vivo experimental results as well as the metastatistics indicate side effects of chronic glyphosate exposure. Together, these findings indicate that glyphosate delays protein synthesis through an interaction with eEF1α1, thereby suppressing spermatogenesis and cell growth.
Collapse
Affiliation(s)
- Bruno Sopko
- Crop
Research Institute, Prague 161 06, Czechia
- Department
of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague 150 06, Czechia
- Laboratory
of Tissue Engineering, Institute of Experimental
Medicine, Academy of Sciences of the Czech Republic, Prague 142 20, Czechia
- Biomedicine
and Advanced Biomaterials Department, University Center for Energy
Efficient Buildings, The Czech Technical
University in Prague, Prague, Bustehrad 273 43, Czechia
| | - Gracian Tejral
- Laboratory
of Tissue Engineering, Institute of Experimental
Medicine, Academy of Sciences of the Czech Republic, Prague 142 20, Czechia
- Biomedicine
and Advanced Biomaterials Department, University Center for Energy
Efficient Buildings, The Czech Technical
University in Prague, Prague, Bustehrad 273 43, Czechia
- Department
of Biophysics, 2nd Faculty of Medicine, Charles University, Prague 150 06, Czechia
| | - Guissepe Bitti
- Laboratory
of Tissue Engineering, Institute of Experimental
Medicine, Academy of Sciences of the Czech Republic, Prague 142 20, Czechia
- Biomedicine
and Advanced Biomaterials Department, University Center for Energy
Efficient Buildings, The Czech Technical
University in Prague, Prague, Bustehrad 273 43, Czechia
| | - Marianna Abate
- Department
of Precision Medicine, University of Campania
“Luigi Vanvitelli”, Naples 80131, Italy
| | - Martina Medvedikova
- Institute
of Molecular and Translation Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc 779 00, Czechia
| | - Marian Hajduch
- Institute
of Molecular and Translation Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc 779 00, Czechia
| | - Jan Chloupek
- Department
of Pharmacology and Pharmacy, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences
Brno, Brno 612 42, Czechia
| | - Jolana Fajmonova
- Department
of Pharmacology and Pharmacy, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences
Brno, Brno 612 42, Czechia
| | - Misa Skoric
- Department
of Pathological Morphology and Parasitology, Faculty of Veterinary
Medicine, University of Veterinary and Pharmaceutical
Sciences Brno, Brno 612 42, Czechia
| | - Evzen Amler
- Biomedicine
and Advanced Biomaterials Department, University Center for Energy
Efficient Buildings, The Czech Technical
University in Prague, Prague, Bustehrad 273 43, Czechia
- Department
of Biophysics, 2nd Faculty of Medicine, Charles University, Prague 150 06, Czechia
| | - Tomas Erban
- Crop
Research Institute, Prague 161 06, Czechia
| |
Collapse
|
10
|
Nagai A, Mori K, Shiomi Y, Yoshihisa T. OTTER, a new method quantifying absolute amounts of tRNAs. RNA (NEW YORK, N.Y.) 2021; 27:rna.076489.120. [PMID: 33674420 PMCID: PMC8051270 DOI: 10.1261/rna.076489.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 02/27/2021] [Indexed: 05/03/2023]
Abstract
To maintain optimal proteome, both codon choice of each mRNA and supply of aminoacyl-tRNAs are two principal factors in translation. Recent reports have revealed that the amounts of tRNAs in cells are more dynamic than we had expected. High-throughput methods such as RNA-Seq and microarrays are versatile for comprehensive detection of changes in individual tRNA amounts, but they suffer from inability to assess signal production efficiencies of individual tRNA species. Thus, they are not the perfect choice to measure absolute amounts of tRNAs. Here, we introduce a novel method for this purpose, termed Oligonucleotide-directed Three-prime Terminal Extension of RNA (OTTER), which employs fluorescence-labeling at the 3'-terminus of a tRNA by optimized reverse primer extension and an assessment step of each labeling efficiency by northern blotting. Using this method, we quantified the absolute amounts of the 34 individual and 4 pairs of isoacceptor tRNAs out of the total 42 nuclear-encoded isoacceptors in the yeast Saccharomyces cerevisiae. We found that the amounts of tRNAs in log phase yeast cells grown in a rich glucose medium range from 0.030 to 0.73 pmol/µg RNA. The tRNA amounts seem to be altered at the isoacceptor level by a few folds in response to physiological growing conditions. The data obtained by OTTER are poorly correlated with those by simple RNA-Seq, marginally with those by microarrays and by microscale thermophoresis. However, the OTTER data showed good agreement with the data obtained by 2D-gel analysis of in vivo radiolabeled RNAs. Thus, OTTER is a suitable method for quantifying absolute amounts of tRNAs at the level of isoacceptor resolution.
Collapse
Affiliation(s)
- Akihisa Nagai
- Graduate School of Life Science, University of Hyogo
| | - Kohei Mori
- Graduate School of Life Science, University of Hyogo
| | - Yuma Shiomi
- Graduate School of Life Science, University of Hyogo
| | | |
Collapse
|
11
|
Mitterer V, Shayan R, Ferreira-Cerca S, Murat G, Enne T, Rinaldi D, Weigl S, Omanic H, Gleizes PE, Kressler D, Plisson-Chastang C, Pertschy B. Conformational proofreading of distant 40S ribosomal subunit maturation events by a long-range communication mechanism. Nat Commun 2019; 10:2754. [PMID: 31227701 PMCID: PMC6588571 DOI: 10.1038/s41467-019-10678-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 05/23/2019] [Indexed: 12/21/2022] Open
Abstract
Eukaryotic ribosomes are synthesized in a hierarchical process driven by a plethora of assembly factors, but how maturation events at physically distant sites on pre-ribosomes are coordinated is poorly understood. Using functional analyses and cryo-EM, we show that ribosomal protein Rps20 orchestrates communication between two multi-step maturation events across the pre-40S subunit. Our study reveals that during pre-40S maturation, formation of essential contacts between Rps20 and Rps3 permits assembly factor Ltv1 to recruit the Hrr25 kinase, thereby promoting Ltv1 phosphorylation. In parallel, a deeply buried Rps20 loop reaches to the opposite pre-40S side, where it stimulates Rio2 ATPase activity. Both cascades converge to the final maturation steps releasing Rio2 and phosphorylated Ltv1. We propose that conformational proofreading exerted via Rps20 constitutes a checkpoint permitting assembly factor release and progression of pre-40S maturation only after completion of all earlier maturation steps. The biogenesis of eukaryotic ribosomes is a multi-step process involving the action of more than 200 different ribosome assembly factors. Here the authors show that Rps20 acts as a conduit to coordinate maturation steps across the head domain of the nascent small ribosomal subunit.
Collapse
Affiliation(s)
- Valentin Mitterer
- Institute for Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010, Graz, Austria.,Biochemistry Centre, University of Heidelberg, 69120, Heidelberg, Germany
| | - Ramtin Shayan
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062, Toulouse Cedex, France
| | - Sébastien Ferreira-Cerca
- Biochemistry III - Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
| | - Guillaume Murat
- Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland
| | - Tanja Enne
- Institute for Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010, Graz, Austria
| | - Dana Rinaldi
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062, Toulouse Cedex, France
| | - Sarah Weigl
- Institute for Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010, Graz, Austria
| | - Hajrija Omanic
- Institute for Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010, Graz, Austria
| | - Pierre-Emmanuel Gleizes
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062, Toulouse Cedex, France
| | - Dieter Kressler
- Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland.
| | - Celia Plisson-Chastang
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062, Toulouse Cedex, France.
| | - Brigitte Pertschy
- Institute for Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010, Graz, Austria.
| |
Collapse
|
12
|
Shchepachev V, Bresson S, Spanos C, Petfalski E, Fischer L, Rappsilber J, Tollervey D. Defining the RNA interactome by total RNA-associated protein purification. Mol Syst Biol 2019; 15:e8689. [PMID: 30962360 PMCID: PMC6452921 DOI: 10.15252/msb.20188689] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/05/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022] Open
Abstract
The RNA binding proteome (RBPome) was previously investigated using UV crosslinking and purification of poly(A)-associated proteins. However, most cellular transcripts are not polyadenylated. We therefore developed total RNA-associated protein purification (TRAPP) based on 254 nm UV crosslinking and purification of all RNA-protein complexes using silica beads. In a variant approach (PAR-TRAPP), RNAs were labelled with 4-thiouracil prior to 350 nm crosslinking. PAR-TRAPP in yeast identified hundreds of RNA binding proteins, strongly enriched for canonical RBPs. In comparison, TRAPP identified many more proteins not expected to bind RNA, and this correlated strongly with protein abundance. Comparing TRAPP in yeast and E. coli showed apparent conservation of RNA binding by metabolic enzymes. Illustrating the value of total RBP purification, we discovered that the glycolytic enzyme enolase interacts with tRNAs. Exploiting PAR-TRAPP to determine the effects of brief exposure to weak acid stress revealed specific changes in late 60S ribosome biogenesis. Furthermore, we identified the precise sites of crosslinking for hundreds of RNA-peptide conjugates, using iTRAPP, providing insights into potential regulation. We conclude that TRAPP is a widely applicable tool for RBPome characterization.
Collapse
Affiliation(s)
- Vadim Shchepachev
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Stefan Bresson
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Christos Spanos
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | | | - Lutz Fischer
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - David Tollervey
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
13
|
Hopper AK, Nostramo RT. tRNA Processing and Subcellular Trafficking Proteins Multitask in Pathways for Other RNAs. Front Genet 2019; 10:96. [PMID: 30842788 PMCID: PMC6391926 DOI: 10.3389/fgene.2019.00096] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/29/2019] [Indexed: 01/28/2023] Open
Abstract
This article focuses upon gene products that are involved in tRNA biology, with particular emphasis upon post-transcriptional RNA processing and nuclear-cytoplasmic subcellular trafficking. Rather than analyzing these proteins solely from a tRNA perspective, we explore the many overlapping functions of the processing enzymes and proteins involved in subcellular traffic. Remarkably, there are numerous examples of conserved gene products and RNP complexes involved in tRNA biology that multitask in a similar fashion in the production and/or subcellular trafficking of other RNAs, including small structured RNAs such as snRNA, snoRNA, 5S RNA, telomerase RNA, and SRP RNA as well as larger unstructured RNAs such as mRNAs and RNA-protein complexes such as ribosomes. Here, we provide examples of steps in tRNA biology that are shared with other RNAs including those catalyzed by enzymes functioning in 5' end-processing, pseudoU nucleoside modification, and intron splicing as well as steps regulated by proteins functioning in subcellular trafficking. Such multitasking highlights the clever mechanisms cells employ for maximizing their genomes.
Collapse
Affiliation(s)
- Anita K Hopper
- Department of Molecular Genetics, Center for RNA Biology, Ohio State University, Columbus, OH, United States
| | - Regina T Nostramo
- Department of Molecular Genetics, Center for RNA Biology, Ohio State University, Columbus, OH, United States
| |
Collapse
|
14
|
Lin J, Hou Y, Huang S, Wang Z, Sun C, Wang Z, He X, Tam NL, Wu C, Wu L. Exportin-T promotes tumor proliferation and invasion in hepatocellular carcinoma. Mol Carcinog 2018; 58:293-304. [PMID: 30334580 PMCID: PMC6587849 DOI: 10.1002/mc.22928] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/12/2018] [Accepted: 10/13/2018] [Indexed: 12/12/2022]
Abstract
Exportin-T (XPOT) belongs to the RAN-GTPase exportin family that mediates export of tRNA from the nucleus to the cytoplasm. Up-regulation of XPOT indicates poor prognosis in breast cancer patients. However, the correlation between XPOT and hepatocellular carcinoma (HCC) remains unclear. Here, we found that high expression of XPOT in HCC indicated worse prognosis via bioinformatics analysis. Consistently, immunohistochemical staining of 95 pairs of tumors and adjacent normal liver tissues (ANLT) also showed up-regulation of XPOT. Small interfering (si) RNA transfection was used to down-regulate XPOT in HepG2 and 7721 cell lines. Cell Counting Kit-8 (CCK8) assays were performed to analyze cell proliferation. Cell migration and invasion were measured by scratch wound healing assays and migration assays. Subcutaneous xenograft models were using to explore the role of XPOT in tumor formation in vivo. Down-regulation of XPOT significantly inhibited tumor proliferation and invasion in vitro and vivo. Gene set enrichment analysis (GSEA) results indicated that XPOT may affect tumor progression through cell cycle and ubiquitin-mediated proteolysis. Furthermore, knockdown of XPOT caused a block in G0/G1 phase as evidenced by down-regulation of cyclin-dependent kinase 1 (CDK1), cyclin-dependent kinase 2 (CDK2), cyclin-dependent kinase 4 (CDK4), CyclinA1 (CCNA1), CyclinB1 (CCNB1), CyclinB2 (CCNB2), and CyclinE2 (CCNE2) in HCC cells. In conclusion, our findings indicate that XPOT could serve as a novel biomarker for prognoses and a potential therapeutic target for patients with HCC.
Collapse
Affiliation(s)
- Jianwei Lin
- Department of Organ Transplantation, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Department of Organ Transplantation, Shenzhen Third People's Hospital, Shenzhen, China
| | - Yuchen Hou
- Department of Organ Transplantation, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shanzhou Huang
- Department of Organ Transplantation, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ziming Wang
- Department of Biliary and Pancreatic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chengjun Sun
- Department of Organ Transplantation, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zekang Wang
- Department of Organ Transplantation, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaoshun He
- Department of Organ Transplantation, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Nga Lei Tam
- Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Chenglin Wu
- Department of Organ Transplantation, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Linwei Wu
- Department of Organ Transplantation, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
15
|
Qin P, Fan S, Deng L, Zhong G, Zhang S, Li M, Chen W, Wang G, Tu B, Wang Y, Chen X, Ma B, Li S. LML1, Encoding a Conserved Eukaryotic Release Factor 1 Protein, Regulates Cell Death and Pathogen Resistance by Forming a Conserved Complex with SPL33 in Rice. PLANT & CELL PHYSIOLOGY 2018; 59:887-902. [PMID: 29566164 DOI: 10.1093/pcp/pcy056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
Lesion mimic mutants are powerful tools for unveiling the molecular connections between cell death and pathogen resistance. Various proteins responsible for lesion mimics have been identified; however, the mechanisms underlying lesion formation and pathogen resistance are still unknown. Here, we identify a lesion mimic mutant in rice, lesion mimic leaf 1 (lml1). The lml1 mutant exhibited abnormal cell death and resistance to both bacterial blight and rice blast. LML1 is expressed in all types of leaf cells, and encodes a novel eukaryotic release factor 1 (eRF1) protein located in the endoplasmic reticulum. Protein sequences of LML1 orthologs are conserved in yeast, animals and plants. LML1 can partially rescue the growth delay phenotype of the LML1 yeast ortholog mutant, dom34. Both lml1 and mutants of AtLML1 (the LML1 Arabidopsis ortholog) exhibited a growth delay phenotype like dom34. This indicates that LML1 and its orthologs are functionally conserved. LML1 forms a functional complex with a eukaryotic elongation factor 1A (eEF1A)-like protein, SPL33/LMM5.1, whose mutant phenotype was similar to the lml1 phenotype. This complex was conserved between rice and yeast. Our work provides new insight into understanding the mechanism of cell death and pathogen resistance, and also lays a good foundation for studying the fundamental molecular function of Pelota/DOM34 and its orthologs in plants.
Collapse
Affiliation(s)
- Peng Qin
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
| | - Shijun Fan
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
| | - Luchang Deng
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 610066, China
| | - Guangrong Zhong
- Hybrid Rice Research Center of Neijiang Academy of Agricultural, Neijiang, Sichuan 641000, China
| | - Siwei Zhang
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
| | - Meng Li
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
| | - Weilan Chen
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
| | - Geling Wang
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
| | - Bin Tu
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
| | - Yuping Wang
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
| | - Xuewei Chen
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
| | - Bingtian Ma
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
| | - Shigui Li
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
| |
Collapse
|
16
|
Chatterjee K, Nostramo RT, Wan Y, Hopper AK. tRNA dynamics between the nucleus, cytoplasm and mitochondrial surface: Location, location, location. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:373-386. [PMID: 29191733 PMCID: PMC5882565 DOI: 10.1016/j.bbagrm.2017.11.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/19/2017] [Accepted: 11/23/2017] [Indexed: 01/20/2023]
Abstract
Although tRNAs participate in the essential function of protein translation in the cytoplasm, tRNA transcription and numerous processing steps occur in the nucleus. This subcellular separation between tRNA biogenesis and function requires that tRNAs be efficiently delivered to the cytoplasm in a step termed "primary tRNA nuclear export". Surprisingly, tRNA nuclear-cytoplasmic traffic is not unidirectional, but, rather, movement is bidirectional. Cytoplasmic tRNAs are imported back to the nucleus by the "tRNA retrograde nuclear import" step which is conserved from budding yeast to vertebrate cells and has been hijacked by viruses, such as HIV, for nuclear import of the viral reverse transcription complex in human cells. Under appropriate environmental conditions cytoplasmic tRNAs that have been imported into the nucleus return to the cytoplasm via the 3rd nuclear-cytoplasmic shuttling step termed "tRNA nuclear re-export", that again is conserved from budding yeast to vertebrate cells. We describe the 3 steps of tRNA nuclear-cytoplasmic movements and their regulation. There are multiple tRNA nuclear export and import pathways. The different tRNA nuclear exporters appear to possess substrate specificity leading to the tantalizing possibility that the cellular proteome may be regulated at the level of tRNA nuclear export. Moreover, in some organisms, such as budding yeast, the pre-tRNA splicing heterotetrameric endonuclease (SEN), which removes introns from pre-tRNAs, resides on the cytoplasmic surface of the mitochondria. Therefore, we also describe the localization of the SEN complex to mitochondria and splicing of pre-tRNA on mitochondria, which occurs prior to the participation of tRNAs in protein translation. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
Affiliation(s)
- Kunal Chatterjee
- The Ohio State University Comprehensive Cancer Research Center, United States; Department of Molecular Genetics, The Ohio State University, United States; Center for RNA Biology, The Ohio State University, United States
| | - Regina T Nostramo
- Department of Molecular Genetics, The Ohio State University, United States; Center for RNA Biology, The Ohio State University, United States
| | - Yao Wan
- The Ohio State University Comprehensive Cancer Research Center, United States; Department of Molecular Genetics, The Ohio State University, United States; Center for RNA Biology, The Ohio State University, United States
| | - Anita K Hopper
- Department of Molecular Genetics, The Ohio State University, United States; Center for RNA Biology, The Ohio State University, United States.
| |
Collapse
|
17
|
Yakobov N, Debard S, Fischer F, Senger B, Becker HD. Cytosolic aminoacyl-tRNA synthetases: Unanticipated relocations for unexpected functions. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1861:387-400. [PMID: 29155070 DOI: 10.1016/j.bbagrm.2017.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 12/13/2022]
Abstract
Prokaryotic and eukaryotic cytosolic aminoacyl-tRNA synthetases (aaRSs) are essentially known for their conventional function of generating the full set of aminoacyl-tRNA species that are needed to incorporate each organism's repertoire of genetically-encoded amino acids during ribosomal translation of messenger RNAs. However, bacterial and eukaryotic cytosolic aaRSs have been shown to exhibit other essential nonconventional functions. Here we review all the subcellular compartments that prokaryotic and eukaryotic cytosolic aaRSs can reach to exert either a conventional or nontranslational role. We describe the physiological and stress conditions, the mechanisms and the signaling pathways that trigger their relocation and the new functions associated with these relocating cytosolic aaRS. Finally, given that these relocating pools of cytosolic aaRSs participate to a wide range of cellular pathways beyond translation, but equally important for cellular homeostasis, we mention some of the pathologies and diseases associated with the dis-regulation or malfunctioning of these nontranslational functions.
Collapse
Affiliation(s)
- Nathaniel Yakobov
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Sylvain Debard
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Frédéric Fischer
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Bruno Senger
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Hubert Dominique Becker
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France.
| |
Collapse
|
18
|
Mohler K, Mann R, Bullwinkle TJ, Hopkins K, Hwang L, Reynolds NM, Gassaway B, Aerni HR, Rinehart J, Polymenis M, Faull K, Ibba M. Editing of misaminoacylated tRNA controls the sensitivity of amino acid stress responses in Saccharomyces cerevisiae. Nucleic Acids Res 2017; 45:3985-3996. [PMID: 28168297 PMCID: PMC5397148 DOI: 10.1093/nar/gkx077] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/26/2017] [Indexed: 12/11/2022] Open
Abstract
Amino acid starvation activates the protein kinase Gcn2p, leading to changes in gene expression and translation. Gcn2p is activated by deacylated tRNA, which accumulates when tRNA aminoacylation is limited by lack of substrates or inhibition of synthesis. Pairing of amino acids and deacylated tRNAs is catalyzed by aminoacyl-tRNA synthetases, which use quality control pathways to maintain substrate specificity. Phenylalanyl-tRNA synthetase (PheRS) maintains specificity via an editing pathway that targets non-cognate Tyr-tRNAPhe. While the primary role of aaRS editing is to prevent misaminoacylation, we demonstrate editing of misaminoacylated tRNA is also required for detection of amino acid starvation by Gcn2p. Ablation of PheRS editing caused accumulation of Tyr-tRNAPhe (5%), but not deacylated tRNAPhe during amino acid starvation, limiting Gcn2p kinase activity and suppressing Gcn4p-dependent gene expression. While the PheRS-editing ablated strain grew 50% slower and displayed a 27-fold increase in the rate of mistranslation of Phe codons as Tyr compared to wild type, the increase in mistranslation was insufficient to activate an unfolded protein stress response. These findings show that during amino acid starvation a primary role of aaRS quality control is to help the cell mount an effective stress response, independent of the role of editing in maintaining translational accuracy.
Collapse
Affiliation(s)
- Kyle Mohler
- Department of Microbiology, The Ohio State University, 318 West 12th Avenue, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Rebecca Mann
- Department of Microbiology, The Ohio State University, 318 West 12th Avenue, Columbus, OH 43210, USA
| | - Tammy J Bullwinkle
- Department of Microbiology, The Ohio State University, 318 West 12th Avenue, Columbus, OH 43210, USA
| | - Kyle Hopkins
- Department of Microbiology, The Ohio State University, 318 West 12th Avenue, Columbus, OH 43210, USA
| | - Lin Hwang
- Pasarow Mass Spectrometry Laboratory, Semel Institute of Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, 760 Westwood Plaza, Los Angeles, CA 90024, USA
| | - Noah M Reynolds
- Department of Microbiology, The Ohio State University, 318 West 12th Avenue, Columbus, OH 43210, USA
| | - Brandon Gassaway
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA.,Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Hans-Rudolf Aerni
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA.,Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Jesse Rinehart
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA.,Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Michael Polymenis
- Biochemistry and Biophysics, Texas A&M University, Rm 333, 2128 TAMU, College Station, TX 77843, USA
| | - Kym Faull
- Pasarow Mass Spectrometry Laboratory, Semel Institute of Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, 760 Westwood Plaza, Los Angeles, CA 90024, USA
| | - Michael Ibba
- Department of Microbiology, The Ohio State University, 318 West 12th Avenue, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
19
|
Kessler AC, Silveira d'Almeida G, Alfonzo JD. The role of intracellular compartmentalization on tRNA processing and modification. RNA Biol 2017; 15:554-566. [PMID: 28850002 DOI: 10.1080/15476286.2017.1371402] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
A signature of most eukaryotic cells is the presence of intricate membrane systems. Intracellular organization presumably evolved to provide order, and add layers for regulation of intracellular processes; compartmentalization also forcibly led to the appearance of sophisticated transport systems. With nucleus-encoded tRNAs, it led to the uncoupling of tRNA synthesis from many of the maturation steps it undergoes. It is now clear that tRNAs are actively transported across intracellular membranes and at any point, in any compartment, they can be post-transcriptionally modified; modification enzymes themselves may localize to any of the genome-containing compartments. In the following pages, we describe a number of well-known examples of how intracellular compartmentalization of tRNA processing and modification activities impact the function and fate of tRNAs. We raise the possibility that rates of intracellular transport may influence the level of modification and as such increase the diversity of differentially modified tRNAs in cells.
Collapse
Affiliation(s)
- Alan C Kessler
- a Department of Microbiology , The Ohio State University , Columbus , Ohio , USA.,b The Center for RNA Biology , The Ohio State University , Columbus , Ohio , USA
| | - Gabriel Silveira d'Almeida
- a Department of Microbiology , The Ohio State University , Columbus , Ohio , USA.,b The Center for RNA Biology , The Ohio State University , Columbus , Ohio , USA
| | - Juan D Alfonzo
- a Department of Microbiology , The Ohio State University , Columbus , Ohio , USA.,b The Center for RNA Biology , The Ohio State University , Columbus , Ohio , USA.,c The Ohio State Biochemistry Program , The Ohio State University , Columbus, Ohio , USA
| |
Collapse
|
20
|
Lord CL, Ospovat O, Wente SR. Nup100 regulates Saccharomyces cerevisiae replicative life span by mediating the nuclear export of specific tRNAs. RNA (NEW YORK, N.Y.) 2017; 23:365-377. [PMID: 27932586 PMCID: PMC5311497 DOI: 10.1261/rna.057612.116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 11/29/2016] [Indexed: 06/06/2023]
Abstract
Nuclear pore complexes (NPCs), which are composed of nucleoporins (Nups) and regulate transport between the nucleus and cytoplasm, significantly impact the replicative life span (RLS) of Saccharomyces cerevisiae We previously reported that deletion of the nonessential gene NUP100 increases RLS, although the molecular basis for this effect was unknown. In this study, we find that nuclear tRNA accumulation contributes to increased longevity in nup100Δ cells. Fluorescence in situ hybridization (FISH) experiments demonstrate that several specific tRNAs accumulate in the nuclei of nup100Δ mutants. Protein levels of the transcription factor Gcn4 are increased when NUP100 is deleted, and GCN4 is required for the elevated life spans of nup100Δ mutants, similar to other previously described tRNA export and ribosomal mutants. Northern blots indicate that tRNA splicing and aminoacylation are not significantly affected in nup100Δ cells, suggesting that Nup100 is largely required for nuclear export of mature, processed tRNAs. Distinct tRNAs accumulate in the nuclei of nup100Δ and msn5Δ mutants, while Los1-GFP nucleocytoplasmic shuttling is unaffected by Nup100. Thus, we conclude that Nup100 regulates tRNA export in a manner distinct from Los1 or Msn5. Together, these experiments reveal a novel Nup100 role in the tRNA life cycle that impacts the S. cerevisiae life span.
Collapse
Affiliation(s)
- Christopher L Lord
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37240, USA
| | - Ophir Ospovat
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37240, USA
| | - Susan R Wente
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37240, USA
| |
Collapse
|
21
|
Li L, Ng NKL, Koon AC, Chan HYE. Expanded polyalanine tracts function as nuclear export signals and promote protein mislocalization via eEF1A1 factor. J Biol Chem 2017; 292:5784-5800. [PMID: 28246169 DOI: 10.1074/jbc.m116.763599] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/24/2017] [Indexed: 12/14/2022] Open
Abstract
Polyalanine (poly(A)) diseases are caused by the expansion of translated GCN triplet nucleotide sequences encoding poly(A) tracts in proteins. To date, nine human disorders have been found to be associated with poly(A) tract expansions, including congenital central hypoventilation syndrome and oculopharyngeal muscular dystrophy. Previous studies have demonstrated that unexpanded wild-type poly(A)-containing proteins localize to the cell nucleus, whereas expanded poly(A)-containing proteins primarily localize to the cytoplasm. Because most of these poly(A) disease proteins are transcription factors, this mislocalization causes cellular transcriptional dysregulation leading to cellular dysfunction. Correcting this faulty localization could potentially point to strategies to treat the aforementioned disorders, so there is a pressing need to identify the mechanisms underlying the mislocalization of expanded poly(A) protein. Here, we performed a glutathione S-transferase pulldown assay followed by mass spectrometry and identified eukaryotic translation elongation factor 1 α1 (eEF1A1) as an interacting partner with expanded poly(A)-containing proteins. Strikingly, knockdown of eEF1A1 expression partially corrected the mislocalization of the expanded poly(A) proteins in the cytoplasm and restored their functions in the nucleus. We further demonstrated that the expanded poly(A) domain itself can serve as a nuclear export signal. Taken together, this study demonstrates that eEF1A1 regulates the subcellular location of expanded poly(A) proteins and is therefore a potential therapeutic target for combating the pathogenesis of poly(A) diseases.
Collapse
Affiliation(s)
- Li Li
- From the Laboratory of Drosophila Research.,Biochemistry Program
| | - Nelson Ka Lam Ng
- From the Laboratory of Drosophila Research.,Biochemistry Program
| | - Alex Chun Koon
- From the Laboratory of Drosophila Research.,Biochemistry Program
| | - Ho Yin Edwin Chan
- From the Laboratory of Drosophila Research, .,Biochemistry Program.,Cell and Molecular Biology Program, and.,Molecular Biotechnology Program, School of Life Sciences, Faculty of Science, and.,the Gerald Choa Neuroscience Centre, Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| |
Collapse
|
22
|
Tarrant DJ, Stirpe M, Rowe M, Howard MJ, von der Haar T, Gourlay CW. Inappropriate expression of the translation elongation factor 1A disrupts genome stability and metabolism. J Cell Sci 2016; 129:4455-4465. [PMID: 27807005 PMCID: PMC5201016 DOI: 10.1242/jcs.192831] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 10/26/2016] [Indexed: 02/02/2023] Open
Abstract
The translation elongation factor eEF1A is one of the most abundant proteins found within cells, and its role within protein synthesis is well documented. Levels of eEF1A are tightly controlled, with inappropriate expression linked to oncogenesis. However, the mechanisms by which increased eEF1A expression alters cell behaviour are unknown. Our analyses in yeast suggest that elevation of eEF1A levels leads to stabilisation of the spindle pole body and changes in nuclear organisation. Elevation of the eEF1A2 isoform also leads to altered nuclear morphology in cultured human cells, suggesting a conserved role in maintaining genome stability. Gene expression and metabolomic analyses reveal that the level of eEF1A is crucial for the maintenance of metabolism and amino acid levels in yeast, most likely because of its role in the control of vacuole function. Increased eEF1A2 levels trigger lysosome biogenesis in cultured human cells, also suggesting a conserved role within metabolic control mechanisms. Taken together, our data suggest that the control of eEF1A levels is important for the maintenance of a number of cell functions beyond translation and that its de-regulation might contribute to its oncogenic properties. Summary: The translation elongation factor eEF1A is elevated in some cancers. We use yeast and human cell models to show that eEF1A elevation leads to genome instability and metabolic alterations that might affect its oncogenic properties.
Collapse
Affiliation(s)
- Daniel J Tarrant
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Mariarita Stirpe
- Department of Biology and Biotechnology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Michelle Rowe
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Mark J Howard
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Tobias von der Haar
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Campbell W Gourlay
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| |
Collapse
|
23
|
Domanska A, Kaminska J. Role of Rsp5 ubiquitin ligase in biogenesis of rRNA, mRNA and tRNA in yeast. RNA Biol 2016; 12:1265-74. [PMID: 26403176 DOI: 10.1080/15476286.2015.1094604] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Rsp5 ubiquitin ligase is required for ubiquitination of a wide variety of proteins involved in essential processes. Rsp5 was shown to be involved in regulation of lipid biosynthesis, intracellular trafficking of proteins, response to various stresses, and many other processes. In this article, we provide a comprehensive review of the nuclear and cytoplasmic functions of Rsp5 with a focus on biogenesis of different RNAs. We also briefly describe the participation of Rsp5 in the regulation of the RNA polymerase II complex, and its potential role in the regulation of other RNA polymerases. Moreover, we emphasize the function of Rsp5 in the coordination of the different steps of rRNA, mRNA and tRNA metabolism in the context of protein biosynthesis. Finally, we highlight the involvement of Rsp5 in controlling diverse cellular mechanisms at multiple levels and in adaptation of the cell to changing growth conditions.
Collapse
Affiliation(s)
- Anna Domanska
- a Institute of Biochemistry and Biophysics, Polish Academy of Sciences ; Warsaw , Poland
| | - Joanna Kaminska
- a Institute of Biochemistry and Biophysics, Polish Academy of Sciences ; Warsaw , Poland
| |
Collapse
|
24
|
Abstract
RNA-binding proteins are often multifunctional, interact with a variety of protein partners and display complex localizations within cells. Mammalian cytoplasmic poly(A)-binding proteins (PABPs) are multifunctional RNA-binding proteins that regulate multiple aspects of mRNA translation and stability. Although predominantly diffusely cytoplasmic at steady state, they shuttle through the nucleus and can be localized to a variety of cytoplasmic foci, including those associated with mRNA storage and localized translation. Intriguingly, PABP sub-cellular distribution can alter dramatically in response to cellular stress or viral infection, becoming predominantly nuclear and/or being enriched in induced cytoplasmic foci. However, relatively little is known about the mechanisms that govern this distribution/relocalization and in many cases PABP functions within specific sites remain unclear. Here we discuss the emerging evidence with respect to these questions in mammals.
Collapse
|
25
|
Rodríguez-Galán O, García-Gómez JJ, Kressler D, de la Cruz J. Immature large ribosomal subunits containing the 7S pre-rRNA can engage in translation in Saccharomyces cerevisiae. RNA Biol 2016; 12:838-46. [PMID: 26151772 DOI: 10.1080/15476286.2015.1058477] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Evolution has provided eukaryotes with mechanisms that impede immature and/or aberrant ribosomes to engage in translation. These mechanisms basically either prevent the nucleo-cytoplasmic export of these particles or, once in the cytoplasm, the release of associated assembly factors, which interfere with the binding of translation initiation factors and/or the ribosomal subunit joining. We have previously shown that aberrant yeast 40S ribosomal subunits containing the 20S pre-rRNA can engage in translation. In this study, we describe that cells harbouring the dob1-1 allele, encoding a mutated version of the exosome-assisting RNA helicase Mtr4, accumulate otherwise nuclear pre-60S ribosomal particles containing the 7S pre-rRNA in the cytoplasm. Polysome fractionation analyses revealed that these particles are competent for translation and do not induce elongation stalls. This phenomenon is rather specific since most mutations in other exosome components or co-factors, impairing the 3' end processing of the mature 5.8S rRNA, accumulate 7S pre-rRNAs in the nucleus. In addition, we confirm that pre-60S ribosomal particles containing either 5.8S + 30 or 5.8S + 5 pre-rRNAs also engage in translation elongation. We propose that 7S pre-rRNA processing is not strictly required for pre-60S r-particle export and that, upon arrival in the cytoplasm, there is no specific mechanism to prevent translation by premature pre-60S r-particles containing 3' extended forms of mature 5.8S rRNA.
Collapse
Affiliation(s)
- Olga Rodríguez-Galán
- a Instituto de Biomedicina de Sevilla ; Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla ; Seville , Spain
| | | | | | | |
Collapse
|
26
|
Huang HY, Hopper AK. Multiple Layers of Stress-Induced Regulation in tRNA Biology. Life (Basel) 2016; 6:life6020016. [PMID: 27023616 PMCID: PMC4931453 DOI: 10.3390/life6020016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/14/2016] [Accepted: 03/17/2016] [Indexed: 01/28/2023] Open
Abstract
tRNAs are the fundamental components of the translation machinery as they deliver amino acids to the ribosomes during protein synthesis. Beyond their essential function in translation, tRNAs also function in regulating gene expression, modulating apoptosis and several other biological processes. There are multiple layers of regulatory mechanisms in each step of tRNA biogenesis. For example, tRNA 3′ trailer processing is altered upon nutrient stress; tRNA modification is reprogrammed under various stresses; nuclear accumulation of tRNAs occurs upon nutrient deprivation; tRNA halves accumulate upon oxidative stress. Here we address how environmental stresses can affect nearly every step of tRNA biology and we describe the possible regulatory mechanisms that influence the function or expression of tRNAs under stress conditions.
Collapse
Affiliation(s)
- Hsiao-Yun Huang
- Department of Biology, Indiana University, 915 E third St., Myers 300, Bloomington, IN 47405, USA.
| | - Anita K Hopper
- Department of Molecular Genetics and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
27
|
Sloan KE, Gleizes PE, Bohnsack MT. Nucleocytoplasmic Transport of RNAs and RNA-Protein Complexes. J Mol Biol 2015; 428:2040-59. [PMID: 26434509 DOI: 10.1016/j.jmb.2015.09.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/26/2015] [Accepted: 09/28/2015] [Indexed: 12/15/2022]
Abstract
RNAs and ribonucleoprotein complexes (RNPs) play key roles in mediating and regulating gene expression. In eukaryotes, most RNAs are transcribed, processed and assembled with proteins in the nucleus and then either function in the cytoplasm or also undergo a cytoplasmic phase in their biogenesis. This compartmentalization ensures that sequential steps in gene expression and RNP production are performed in the correct order and it allows important quality control mechanisms that prevent the involvement of aberrant RNAs/RNPs in these cellular pathways. The selective exchange of RNAs/RNPs between the nucleus and cytoplasm is enabled by nuclear pore complexes, which function as gateways between these compartments. RNA/RNP transport is facilitated by a range of nuclear transport receptors and adaptors, which are specifically recruited to their cargos and mediate interactions with nucleoporins to allow directional translocation through nuclear pore complexes. While some transport factors are only responsible for the export/import of a certain class of RNA/RNP, others are multifunctional and, in the case of large RNPs, several export factors appear to work together to bring about export. Recent structural studies have revealed aspects of the mechanisms employed by transport receptors to enable specific cargo recognition, and genome-wide approaches have provided the first insights into the diverse composition of pre-mRNPs during export. Furthermore, the regulation of RNA/RNP export is emerging as an important means to modulate gene expression under stress conditions and in disease.
Collapse
Affiliation(s)
- Katherine E Sloan
- Institute for Molecular Biology, Goettingen University Medical Department, 37073 Goettingen, Germany
| | - Pierre-Emmanuel Gleizes
- Laboratoire de Biologie Moléculaire Eucaryote, UMR 5099, Université de Toulouse-Paul Sabatier, CNRS, Toulouse, France
| | - Markus T Bohnsack
- Institute for Molecular Biology, Goettingen University Medical Department, 37073 Goettingen, Germany; Goettingen Centre for Molecular Biosciences, Georg-August-University, 37075 Goettingen, Germany.
| |
Collapse
|
28
|
Huang HY, Hopper AK. In vivo biochemical analyses reveal distinct roles of β-importins and eEF1A in tRNA subcellular traffic. Genes Dev 2015; 29:772-83. [PMID: 25838545 PMCID: PMC4387718 DOI: 10.1101/gad.258293.115] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Huang et al. developed in vivo β-importin complex co-IP assays to study the interactions of β-importins with tRNAs. Los1 (exportin-t) interacts with both unspliced and spliced tRNAs. In contrast, Msn5 (exportin-5) primarily interacts with spliced aminoacylated tRNAs. They demonstrate that Tef1/2 assembles with Msn5–tRNA complexes in a RanGTP-dependent manner. Bidirectional tRNA movement between the nucleus and the cytoplasm serves multiple biological functions. To gain a biochemical understanding of the mechanisms for tRNA subcellular dynamics, we developed in vivo β-importin complex coimmunoprecipitation (co-IP) assays using budding yeast. Our studies provide the first in vivo biochemical evidence that two β-importin family members, Los1 (exportin-t) and Msn5 (exportin-5), serve overlapping but distinct roles in tRNA nuclear export. Los1 assembles complexes with RanGTP and tRNA. Both intron-containing pre-tRNAs and spliced tRNAs, regardless of whether they are aminoacylated, assemble into Los1–RanGTP complexes, documenting that Los1 participates in both primary nuclear export and re-export of tRNAs to the cytoplasm. In contrast, β-importin Msn5 preferentially assembles with RanGTP and spliced, aminoacylated tRNAs, documenting its role in tRNA nuclear re-export. Tef1/2 (the yeast form of translation elongation factor 1α [eEF1A]) aids the specificity of Msn5 for aminoacylated tRNAs to form a quaternary complex consisting of Msn5, RanGTP, aminoacylated tRNA, and Tef1/2. Assembly and/or stability of this quaternary complex requires Tef1/2, thereby facilitating efficient re-export of aminoacylated tRNAs to the cytoplasm.
Collapse
Affiliation(s)
- Hsiao-Yun Huang
- Department of Molecular Genetics, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Anita K Hopper
- Department of Molecular Genetics, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
29
|
Khuperkar D, Helen M, Magre I, Joseph J. Inter-cellular transport of ran GTPase. PLoS One 2015; 10:e0125506. [PMID: 25894517 PMCID: PMC4403925 DOI: 10.1371/journal.pone.0125506] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 03/24/2015] [Indexed: 12/25/2022] Open
Abstract
Ran, a member of the Ras-GTPase superfamily, has a well-established role in regulating the transport of macromolecules across the nuclear envelope (NE). Ran has also been implicated in mitosis, cell cycle progression, and NE formation. Over-expression of Ran is associated with various cancers, although the molecular mechanism underlying this phenomenon is unclear. Serendipitously, we found that Ran possesses the ability to move from cell-to-cell when transiently expressed in mammalian cells. Moreover, we show that the inter-cellular transport of Ran is GTP-dependent. Importantly, Ran displays a similar distribution pattern in the recipient cells as that in the donor cell and co-localizes with the Ran binding protein Nup358 (also called RanBP2). Interestingly, leptomycin B, an inhibitor of CRM1-mediated export, or siRNA mediated depletion of CRM1, significantly impaired the inter-cellular transport of Ran, suggesting a function for CRM1 in this process. These novel findings indicate a possible role for Ran beyond nucleo-cytoplasmic transport, with potential implications in inter-cellular communication and cancers.
Collapse
Affiliation(s)
| | - Mary Helen
- National Centre for Cell Science, Ganeshkhind, Pune, India
| | - Indrasen Magre
- National Centre for Cell Science, Ganeshkhind, Pune, India
| | - Jomon Joseph
- National Centre for Cell Science, Ganeshkhind, Pune, India
| |
Collapse
|
30
|
Takano A, Kajita T, Mochizuki M, Endo T, Yoshihisa T. Cytosolic Hsp70 and co-chaperones constitute a novel system for tRNA import into the nucleus. eLife 2015; 4:e04659. [PMID: 25853343 PMCID: PMC4432389 DOI: 10.7554/elife.04659] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 04/05/2015] [Indexed: 01/31/2023] Open
Abstract
tRNAs are unique among various RNAs in that they shuttle between the nucleus and the cytoplasm, and their localization is regulated by nutrient conditions. Although nuclear export of tRNAs has been well documented, the import machinery is poorly understood. Here, we identified Ssa2p, a major cytoplasmic Hsp70 in Saccharomyces cerevisiae, as a tRNA-binding protein whose deletion compromises nuclear accumulation of tRNAs upon nutrient starvation. Ssa2p recognizes several structural features of tRNAs through its nucleotide-binding domain, but prefers loosely-folded tRNAs, suggesting that Ssa2p has a chaperone-like activity for RNAs. Ssa2p also binds Nup116, one of the yeast nucleoporins. Sis1p and Ydj1p, cytoplasmic co-chaperones for Ssa proteins, were also found to contribute to the tRNA import. These results unveil a novel function of the Ssa2p system as a tRNA carrier for nuclear import by a novel mode of substrate recognition. Such Ssa2p-mediated tRNA import likely contributes to quality control of cytosolic tRNAs.
Collapse
Affiliation(s)
- Akira Takano
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Takuya Kajita
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Makoto Mochizuki
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Toshiya Endo
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Tohru Yoshihisa
- Graduate School of Life Science, University of Hyogo, Kobe, Japan
| |
Collapse
|
31
|
Quality Control Pathways for Nucleus-Encoded Eukaryotic tRNA Biosynthesis and Subcellular Trafficking. Mol Cell Biol 2015; 35:2052-8. [PMID: 25848089 DOI: 10.1128/mcb.00131-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
tRNAs perform an essential role in translating the genetic code. They are long-lived RNAs that are generated via numerous posttranscriptional steps. Eukaryotic cells have evolved numerous layers of quality control mechanisms to ensure that the tRNAs are appropriately structured, processed, and modified. We describe the known tRNA quality control processes that check tRNAs and correct or destroy aberrant tRNAs. These mechanisms employ two types of exonucleases, CCA end addition, tRNA nuclear aminoacylation, and tRNA subcellular traffic. We arrange these processes in order of the steps that occur from generation of precursor tRNAs by RNA polymerase (Pol) III transcription to end maturation and modification in the nucleus to splicing and additional modifications in the cytoplasm. Finally, we discuss the tRNA retrograde pathway, which allows tRNA reimport into the nucleus for degradation or repair.
Collapse
|
32
|
RNA Export through the NPC in Eukaryotes. Genes (Basel) 2015; 6:124-49. [PMID: 25802992 PMCID: PMC4377836 DOI: 10.3390/genes6010124] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/27/2015] [Accepted: 03/10/2015] [Indexed: 02/08/2023] Open
Abstract
In eukaryotic cells, RNAs are transcribed in the nucleus and exported to the cytoplasm through the nuclear pore complex. The RNA molecules that are exported from the nucleus into the cytoplasm include messenger RNAs (mRNAs), ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), small nuclear RNAs (snRNAs), micro RNAs (miRNAs), and viral mRNAs. Each RNA is transported by a specific nuclear export receptor. It is believed that most of the mRNAs are exported by Nxf1 (Mex67 in yeast), whereas rRNAs, snRNAs, and a certain subset of mRNAs are exported in a Crm1/Xpo1-dependent manner. tRNAs and miRNAs are exported by Xpot and Xpo5. However, multiple export receptors are involved in the export of some RNAs, such as 60S ribosomal subunit. In addition to these export receptors, some adapter proteins are required to export RNAs. The RNA export system of eukaryotic cells is also used by several types of RNA virus that depend on the machineries of the host cell in the nucleus for replication of their genome, therefore this review describes the RNA export system of two representative viruses. We also discuss the NPC anchoring-dependent mRNA export factors that directly recruit specific genes to the NPC.
Collapse
|
33
|
Huang HY, Hopper AK. Separate responses of karyopherins to glucose and amino acid availability regulate nucleocytoplasmic transport. Mol Biol Cell 2014; 25:2840-52. [PMID: 25057022 PMCID: PMC4161518 DOI: 10.1091/mbc.e14-04-0948] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The subcellular distribution of yeast β-importins inverts upon acute glucose deprivation, likely due to collapse of the RanGTP nuclear–cytoplasmic gradient. This redistribution of β-importins likely results in rapid widespread alterations of the traffic of macromolecules between the nucleus and cytoplasm in response to glucose limitation. The importin-β family members (karyopherins) mediate the majority of nucleocytoplasmic transport. Msn5 and Los1, members of the importin-β family, function in tRNA nuclear export. tRNAs move bidirectionally between the nucleus and the cytoplasm. Nuclear tRNA accumulation occurs upon amino acid (aa) or glucose deprivation. To understand the mechanisms regulating tRNA subcellular trafficking, we investigated whether Msn5 and Los1 are regulated in response to nutrient availability. We provide evidence that tRNA subcellular trafficking is regulated by distinct aa-sensitive and glucose-sensitive mechanisms. Subcellular distributions of Msn5 and Los1 are altered upon glucose deprivation but not aa deprivation. Redistribution of tRNA exportins from the nucleus to the cytoplasm likely provides one mechanism for tRNA nuclear distribution upon glucose deprivation. We extended our studies to other members of the importin-β family and found that all tested karyopherins invert their subcellular distributions upon glucose deprivation but not aa deprivation. Glucose availability regulates the subcellular distributions of karyopherins likely due to alteration of the RanGTP gradient since glucose deprivation causes redistribution of Ran. Thus nuclear–cytoplasmic distribution of macromolecules is likely generally altered upon glucose deprivation due to collapse of the RanGTP gradient and redistribution of karyopherins between the nucleus and the cytoplasm.
Collapse
Affiliation(s)
- Hsiao-Yun Huang
- Department of Molecular Genetics and Center for RNA Biology, Ohio State University, Columbus, OH 43210 Graduate Program in Molecular, Cellular, and Developmental Biology, Ohio State University, Columbus, OH 43210
| | - Anita K Hopper
- Department of Molecular Genetics and Center for RNA Biology, Ohio State University, Columbus, OH 43210
| |
Collapse
|
34
|
Ermanoska B, Motley WW, Leitão-Gonçalves R, Asselbergh B, Lee LH, De Rijk P, Sleegers K, Ooms T, Godenschwege TA, Timmerman V, Fischbeck KH, Jordanova A. CMT-associated mutations in glycyl- and tyrosyl-tRNA synthetases exhibit similar pattern of toxicity and share common genetic modifiers in Drosophila. Neurobiol Dis 2014; 68:180-9. [PMID: 24807208 DOI: 10.1016/j.nbd.2014.04.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 04/17/2014] [Accepted: 04/27/2014] [Indexed: 01/29/2023] Open
Abstract
Aminoacyl-tRNA synthetases are ubiquitously expressed proteins that charge tRNAs with their cognate amino acids. By ensuring the fidelity of protein synthesis, these enzymes are essential for the viability of every cell. Yet, mutations in six tRNA synthetases specifically affect the peripheral nerves and cause Charcot-Marie-Tooth (CMT) disease. The CMT-causing mutations in tyrosyl- and glycyl-tRNA synthetases (YARS and GARS, respectively) alter the activity of the proteins in a range of ways (some mutations do not impact charging function, while others abrogate it), making a loss of function in tRNA charging unlikely to be the cause of disease pathology. It is currently unknown which cellular mechanisms are triggered by the mutant enzymes and how this leads to neurodegeneration. Here, by expressing two pathogenic mutations (G240R, P234KY) in Drosophila, we generated a model for GARS-associated neuropathy. We observed compromised viability, and behavioral, electrophysiological and morphological impairment in flies expressing the cytoplasmic isoform of mutant GARS. Their features recapitulated several hallmarks of CMT pathophysiology and were similar to the phenotypes identified in our previously described Drosophila model of YARS-associated neuropathy. Furthermore, CG8316 and CG15599 - genes identified in a retinal degeneration screen to modify mutant YARS, also modified the mutant GARS phenotypes. Our study presents genetic evidence for common mutant-specific interactions between two CMT-associated aminoacyl-tRNA synthetases, lending support for a shared mechanism responsible for the synthetase-induced peripheral neuropathies.
Collapse
Affiliation(s)
- Biljana Ermanoska
- Molecular Neurogenomics Group, Department of Molecular Genetics, VIB, University of Antwerp, Antwerp 2610, Belgium; Neurogenetics Laboratory, Institute Born-Bunge, University of Antwerp, Antwerp 2610, Belgium
| | - William W Motley
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ricardo Leitão-Gonçalves
- Molecular Neurogenomics Group, Department of Molecular Genetics, VIB, University of Antwerp, Antwerp 2610, Belgium; Neurogenetics Laboratory, Institute Born-Bunge, University of Antwerp, Antwerp 2610, Belgium; Peripheral Neuropathy Group, Department of Molecular Genetics, VIB, University of Antwerp, Antwerp 2610, Belgium
| | - Bob Asselbergh
- Neurogenetics Laboratory, Institute Born-Bunge, University of Antwerp, Antwerp 2610, Belgium; Centralized Service Facility, Department of Molecular Genetics, VIB, University of Antwerp, Antwerp 2610, Belgium
| | - LaTasha H Lee
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Peter De Rijk
- Applied Molecular Genomics Unit, Department of Molecular Genetics, VIB, University of Antwerp, Antwerp 2610, Belgium
| | - Kristel Sleegers
- Neurogenetics Laboratory, Institute Born-Bunge, University of Antwerp, Antwerp 2610, Belgium; Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIB, University of Antwerp, Antwerp 2610, Belgium
| | - Tinne Ooms
- Molecular Neurogenomics Group, Department of Molecular Genetics, VIB, University of Antwerp, Antwerp 2610, Belgium; Neurogenetics Laboratory, Institute Born-Bunge, University of Antwerp, Antwerp 2610, Belgium
| | - Tanja A Godenschwege
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Vincent Timmerman
- Neurogenetics Laboratory, Institute Born-Bunge, University of Antwerp, Antwerp 2610, Belgium; Peripheral Neuropathy Group, Department of Molecular Genetics, VIB, University of Antwerp, Antwerp 2610, Belgium
| | - Kenneth H Fischbeck
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Albena Jordanova
- Molecular Neurogenomics Group, Department of Molecular Genetics, VIB, University of Antwerp, Antwerp 2610, Belgium; Neurogenetics Laboratory, Institute Born-Bunge, University of Antwerp, Antwerp 2610, Belgium.
| |
Collapse
|
35
|
García-Gómez JJ, Fernández-Pevida A, Lebaron S, Rosado IV, Tollervey D, Kressler D, de la Cruz J. Final pre-40S maturation depends on the functional integrity of the 60S subunit ribosomal protein L3. PLoS Genet 2014; 10:e1004205. [PMID: 24603549 PMCID: PMC3945201 DOI: 10.1371/journal.pgen.1004205] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 01/13/2014] [Indexed: 01/21/2023] Open
Abstract
Ribosomal protein L3 is an evolutionarily conserved protein that participates in the assembly of early pre-60S particles. We report that the rpl3[W255C] allele, which affects the affinity and function of translation elongation factors, impairs cytoplasmic maturation of 20S pre-rRNA. This was not seen for other mutations in or depletion of L3 or other 60S ribosomal proteins. Surprisingly, pre-40S particles containing 20S pre-rRNA form translation-competent 80S ribosomes, and translation inhibition partially suppresses 20S pre-rRNA accumulation. The GTP-dependent translation initiation factor Fun12 (yeast eIF5B) shows similar in vivo binding to ribosomal particles from wild-type and rpl3[W255C] cells. However, the GTPase activity of eIF5B failed to stimulate processing of 20S pre-rRNA when assayed with ribosomal particles purified from rpl3[W255C] cells. We conclude that L3 plays an important role in the function of eIF5B in stimulating 3′ end processing of 18S rRNA in the context of 80S ribosomes that have not yet engaged in translation. These findings indicate that the correct conformation of the GTPase activation region is assessed in a quality control step during maturation of cytoplasmic pre-ribosomal particles. Recent progress has provided us with detailed knowledge of the structure and function of eukaryotic ribosomes. However, our understanding of the intricate processes of pre-ribosome assembly and the transition to translation-competent ribosomal subunits remains incomplete. The early and intermediate steps of ribosome assembly occur successively in the nucleolus and nucleoplasm. The pre-ribosomal subunits are then exported to the cytoplasm where final maturation steps, notably including D site cleavage of the 20S pre-rRNA to mature 18S rRNA, confer subunit joining and translation competence. Recent evidence indicates that pre-40S subunits are subject to a quality control step involving the GTP-dependent translation initiation factor eIF5B/Fun12, in the context of 80S-like ribosomes. Here, we demonstrate the involvement of 60S subunits in promoting 20S pre-rRNA cleavage. In particular, we show that a specific point mutation in the 60S subunit ribosomal protein L3 (rpl3[W255C]) leads to the accumulation of pre-40S particles that contain the 20S pre-rRNA but are translation-competent. Notably, this mutation prevents the stimulation of the GTPase activity of eIF5B/Fun12, which is also required for site D cleavage. We conclude that L3 plays an important role in regulating the function of eIF5B/Fun12 during 3′ end processing of 18S rRNA at site D, in the context of 80S ribosomes that have not yet engaged in translation.
Collapse
MESH Headings
- Alleles
- Cytoplasm/genetics
- Cytoplasm/metabolism
- Eukaryotic Initiation Factors/genetics
- Mutation
- Proteasome Endopeptidase Complex/genetics
- Proteasome Endopeptidase Complex/metabolism
- Protein Binding
- RNA Precursors/genetics
- RNA, Ribosomal, 18S/genetics
- Ribosomal Protein L3
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosome Subunits, Large, Eukaryotic/genetics
- Ribosome Subunits, Large, Eukaryotic/metabolism
- Ribosome Subunits, Small, Eukaryotic/genetics
- Ribosome Subunits, Small, Eukaryotic/metabolism
- Saccharomyces cerevisiae/genetics
Collapse
Affiliation(s)
- Juan J. García-Gómez
- Departamento de Genética, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Antonio Fernández-Pevida
- Departamento de Genética, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Simon Lebaron
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Iván V. Rosado
- Departamento de Genética, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Dieter Kressler
- Unit of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Jesús de la Cruz
- Departamento de Genética, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- * E-mail:
| |
Collapse
|
36
|
Strategies for Investigating Nuclear–Cytoplasmic tRNA Dynamics in Yeast and Mammalian Cells. Methods Cell Biol 2014; 122:415-36. [DOI: 10.1016/b978-0-12-417160-2.00019-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
37
|
Abstract
Construction of the eukaryotic ribosome begins in the nucleolus and requires >300 evolutionarily conserved nonribosomal trans-acting factors, which transiently associate with preribosomal subunits at distinct assembly stages. A subset of trans-acting and transport factors passage assembled preribosomal subunits in a functionally inactive state through the nuclear pore complexes (NPC) into the cytoplasm, where they undergo final maturation before initiating translation. Here, we summarize the repertoire of tools developed in the model organism budding yeast that are spearheading the functional analyses of trans-acting factors involved in the assembly and intracellular transport of preribosomal subunits. We elaborate on different GFP-tagged ribosomal protein reporters and a pre-rRNA reporter that reliably monitors the movement of preribosomal particles from the nucleolus to cytoplasm. We discuss the powerful yeast heterokaryon assay, which can be employed to uncover shuttling trans-acting factors that need to accompany preribosomal subunits to the cytoplasm to be released prior to initiating translation. Moreover, we present two biochemical approaches, namely sucrose gradient analyses and tandem affinity purification, that are rapidly facilitating the uncovering of regulatory processes that control the compositional dynamics of trans-acting factors on maturing preribosomal particles. Altogether, these approaches when combined with traditional analytical biochemistry, targeted proteomics and structural methodologies, will contribute to the dissection of the assembly and intracellular transport of preribosomal subunits, as well as other macromolecular assemblies that influence diverse biological pathways.
Collapse
MESH Headings
- Biological Transport/genetics
- Green Fluorescent Proteins/genetics
- In Situ Hybridization, Fluorescence/methods
- Karyopherins/genetics
- Mass Spectrometry/methods
- Microscopy, Fluorescence/methods
- Nuclear Pore/genetics
- Nuclear Pore/metabolism
- Nucleolus Organizer Region/genetics
- RNA, Ribosomal/biosynthesis
- RNA, Ribosomal/genetics
- Receptors, Cytoplasmic and Nuclear/genetics
- Ribosome Subunits, Large, Eukaryotic/genetics
- Ribosome Subunits, Large, Eukaryotic/metabolism
- Ribosome Subunits, Small, Eukaryotic/genetics
- Ribosome Subunits, Small, Eukaryotic/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Ultracentrifugation/methods
- Exportin 1 Protein
Collapse
Affiliation(s)
- Martin Altvater
- Institute of Biochemistry (IBC), ETH Zürich, Otto-Stern-Weg 3, Zurich, Switzerland; MLS Program, Life Science Zurich Graduate School, Winterthurerstrasse 190, Zurich, Switzerland
| | - Sabina Schütz
- Institute of Biochemistry (IBC), ETH Zürich, Otto-Stern-Weg 3, Zurich, Switzerland; MLS Program, Life Science Zurich Graduate School, Winterthurerstrasse 190, Zurich, Switzerland
| | - Yiming Chang
- Institute of Biochemistry (IBC), ETH Zürich, Otto-Stern-Weg 3, Zurich, Switzerland
| | - Vikram Govind Panse
- Institute of Biochemistry (IBC), ETH Zürich, Otto-Stern-Weg 3, Zurich, Switzerland
| |
Collapse
|
38
|
Protein kinase A is part of a mechanism that regulates nuclear reimport of the nuclear tRNA export receptors Los1p and Msn5p. EUKARYOTIC CELL 2013; 13:209-30. [PMID: 24297441 DOI: 10.1128/ec.00214-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The two main signal transduction mechanisms that allow eukaryotes to sense and respond to changes in glucose availability in the environment are the cyclic AMP (cAMP)/protein kinase A (PKA) and AMP-activated protein kinase (AMPK)/Snf1 kinase-dependent pathways. Previous studies have shown that the nuclear tRNA export process is inhibited in Saccharomyces cerevisiae deprived of glucose. However, the signal transduction pathway involved and the mechanism by which glucose availability regulates nuclear-cytoplasmic tRNA trafficking are not understood. Here, we show that inhibition of nuclear tRNA export is caused by a block in nuclear reimport of the tRNA export receptors during glucose deprivation. Cytoplasmic accumulation of the tRNA export receptors during glucose deprivation is not caused by activation of Snf1p. Evidence obtained suggests that PKA is part of the mechanism that regulates nuclear reimport of the tRNA export receptors in response to glucose availability. This mechanism does not appear to involve phosphorylation of the nuclear tRNA export receptors by PKA. The block in nuclear reimport of the tRNA export receptors appears to be caused by activation of an unidentified mechanism when PKA is turned off during glucose deprivation. Taken together, the data suggest that PKA facilitates return of the tRNA export receptors to the nucleus by inhibiting an unidentified activity that facilitates cytoplasmic accumulation of the tRNA export receptors when glucose in the environment is limiting. A PKA-independent mechanism was also found to regulate nuclear tRNA export in response to glucose availability. This mechanism, however, does not regulate nuclear reimport of the tRNA export receptors.
Collapse
|
39
|
Retrograde transfer RNA nuclear import provides a new level of tRNA quality control in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2013; 110:21042-7. [PMID: 24297920 DOI: 10.1073/pnas.1316579110] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In eukaryotes, transfer RNAs (tRNAs) are transcribed in the nucleus yet function in the cytoplasm; thus, tRNA movement within the cell was believed to be unidirectional--from the nucleus to the cytoplasm. It is now known that mature tRNAs also move in a retrograde direction from the cytoplasm to the nucleus via retrograde tRNA nuclear import, a process that is conserved from yeast to vertebrates. The biological significance of this tRNA nuclear import is not entirely clear. We hypothesized that retrograde tRNA nuclear import might function in proofreading tRNAs to ensure that only proper tRNAs reside in the cytoplasm and interact with the translational machinery. Here we identify two major types of aberrant tRNAs in yeast: a 5', 3' end-extended, spliced tRNA and hypomodified tRNAs. We show that both types of aberrant tRNAs accumulate in mutant cells that are defective in tRNA nuclear traffic, suggesting that they are normally imported into the nucleus and are repaired or degraded. The retrograde pathway functions in parallel with the cytoplasmic rapid tRNA decay pathway previously demonstrated to monitor tRNA quality, and cells are not viable if they lack both pathways. Our data support the hypothesis that the retrograde process provides a newly discovered level of tRNA quality control as a pathway that monitors both end processing of pre-tRNAs and the modification state of mature tRNAs.
Collapse
|
40
|
Transfer RNA post-transcriptional processing, turnover, and subcellular dynamics in the yeast Saccharomyces cerevisiae. Genetics 2013; 194:43-67. [PMID: 23633143 DOI: 10.1534/genetics.112.147470] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transfer RNAs (tRNAs) are essential for protein synthesis. In eukaryotes, tRNA biosynthesis employs a specialized RNA polymerase that generates initial transcripts that must be subsequently altered via a multitude of post-transcriptional steps before the tRNAs beome mature molecules that function in protein synthesis. Genetic, genomic, biochemical, and cell biological approaches possible in the powerful Saccharomyces cerevisiae system have led to exciting advances in our understandings of tRNA post-transcriptional processing as well as to novel insights into tRNA turnover and tRNA subcellular dynamics. tRNA processing steps include removal of transcribed leader and trailer sequences, addition of CCA to the 3' mature sequence and, for tRNA(His), addition of a 5' G. About 20% of yeast tRNAs are encoded by intron-containing genes. The three-step splicing process to remove the introns surprisingly occurs in the cytoplasm in yeast and each of the splicing enzymes appears to moonlight in functions in addition to tRNA splicing. There are 25 different nucleoside modifications that are added post-transcriptionally, creating tRNAs in which ∼15% of the residues are nucleosides other than A, G, U, or C. These modified nucleosides serve numerous important functions including tRNA discrimination, translation fidelity, and tRNA quality control. Mature tRNAs are very stable, but nevertheless yeast cells possess multiple pathways to degrade inappropriately processed or folded tRNAs. Mature tRNAs are also dynamic in cells, moving from the cytoplasm to the nucleus and back again to the cytoplasm; the mechanism and function of this retrograde process is poorly understood. Here, the state of knowledge for tRNA post-transcriptional processing, turnover, and subcellular dynamics is addressed, highlighting the questions that remain.
Collapse
|
41
|
Zinshteyn B, Gilbert WV. Loss of a conserved tRNA anticodon modification perturbs cellular signaling. PLoS Genet 2013; 9:e1003675. [PMID: 23935536 PMCID: PMC3731203 DOI: 10.1371/journal.pgen.1003675] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 06/12/2013] [Indexed: 11/29/2022] Open
Abstract
Transfer RNA (tRNA) modifications enhance the efficiency, specificity and fidelity of translation in all organisms. The anticodon modification mcm(5)s(2)U(34) is required for normal growth and stress resistance in yeast; mutants lacking this modification have numerous phenotypes. Mutations in the homologous human genes are linked to neurological disease. The yeast phenotypes can be ameliorated by overexpression of specific tRNAs, suggesting that the modifications are necessary for efficient translation of specific codons. We determined the in vivo ribosome distributions at single codon resolution in yeast strains lacking mcm(5)s(2)U. We found accumulations at AAA, CAA, and GAA codons, suggesting that translation is slow when these codons are in the ribosomal A site, but these changes appeared too small to affect protein output. Instead, we observed activation of the GCN4-mediated stress response by a non-canonical pathway. Thus, loss of mcm(5)s(2)U causes global effects on gene expression due to perturbation of cellular signaling.
Collapse
Affiliation(s)
- Boris Zinshteyn
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Wendy V. Gilbert
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
42
|
Xie X, Dubrovskaya V, Yacoub N, Walska J, Gleason T, Reid K, Dubrovsky EB. Developmental roles of Drosophila tRNA processing endonuclease RNase ZL as revealed with a conditional rescue system. Dev Biol 2013; 381:324-40. [PMID: 23867108 DOI: 10.1016/j.ydbio.2013.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/15/2013] [Accepted: 07/03/2013] [Indexed: 01/08/2023]
Abstract
Drosophila RNase Z(L) (dRNaseZ) belongs to a family of endoribonucleases with a major role in tRNA 3'-end processing. The biochemical function of RNase Z(L) is conserved from yeast to human. Here we present a study of its biological function during Drosophila development. In flies, dRNaseZ provides a non-redundant function, as the RNZ(ED24) knockout (KO) mutation causes early larval lethality. Mosaic and conditional rescue techniques were employed to determine dRNaseZ requirements at later stages. We found that dRNaseZ activity is essential for all phases of fly development that involve cell division, including growth of adult tissue progenitors during larval and metamorphic stages, and gametogenesis in adults. At the cellular level, two major phenotypes were identified-cell growth deficiency in endoreplicating tissues and cell cycle arrest in mitotic tissues. While cell growth and proliferation are both dependant on protein synthesis, the two phenotypes displayed reliance on different dRNaseZ functions. We found that dRNaseZ KO completely blocks tRNA maturation without diminishing the abundance of mature tRNA molecules. Our data indicate that growth arrest of endoreplicating cells is primarily attributed to the relocation of the pool of mature tRNAs into the nuclei causing a decrease in translation efficiency. Mitotically dividing cells appear to be less dependent on translation machinery as they maintain their normal size when deprived of dRNaseZ activity, but rather display a cell cycle arrest at the G2-M transition.
Collapse
Affiliation(s)
- Xie Xie
- Department of Biology, Fordham University, Bronx, NY 10458, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Eswara MBK, Clayton A, Mangroo D. Utp22p acts in concert with Utp8p to channel aminoacyl-tRNA from the nucleolus to the nuclear tRNA export receptor Los1p but not Msn5p. Biochem Cell Biol 2013. [PMID: 23194188 DOI: 10.1139/o2012-034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Utp8p is an essential nucleolar protein that channels aminoacyl-tRNAs from aminoacyl-tRNA synthetases in the nucleolus to the nuclear tRNA export receptors located in the nucleoplasm and nuclear pore complex in Saccharomyces cerevisiae. Utp8p is also part of the U3 snoRNA-associated protein complex involved in 18S rRNA biogenesis in the nucleolus. We report that Utp22p, which is another member of the U3 snoRNA-associated protein complex, is also an intranuclear component of the nuclear tRNA export machinery. Depletion of Utp22p results in nuclear retention of mature tRNAs derived from intron-containing and intronless precursors. Moreover, Utp22p copurifies with the nuclear tRNA export receptor Los1p, the aminoacyl-tRNA synthetase Tys1p and Utp8p, but not with the RanGTPase Gsp1p and the nuclear tRNA export receptor Msn5p. Utp22p interacts directly with Utp8p and Los1p in a tRNA-independent manner in vitro. Utp22p also interacts directly with Tys1p, but this binding is stimulated when Tys1p is bound to tRNA. However, Utp22p, unlike Utp8p, does not bind tRNA saturably. These data suggest that Utp22p recruits Utp8p to aminoacyl-tRNA synthetases in the nucleolus to collect aminoacyl-tRNA and then accompanies the Utp8p-tRNA complex to deliver the aminoacyl-tRNAs to Los1p but not Msn5p. It is possible that Nrap/Nol6, the mammalian orthologue of Utp22p, plays a role in channelling aminoacyl-tRNA to the nuclear tRNA export receptor exportin-t.
Collapse
Affiliation(s)
- Manoja B K Eswara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | | |
Collapse
|
44
|
Nozawa K, Ishitani R, Yoshihisa T, Sato M, Arisaka F, Kanamaru S, Dohmae N, Mangroo D, Senger B, Becker HD, Nureki O. Crystal structure of Cex1p reveals the mechanism of tRNA trafficking between nucleus and cytoplasm. Nucleic Acids Res 2013; 41:3901-14. [PMID: 23396276 PMCID: PMC3616705 DOI: 10.1093/nar/gkt010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In all eukaryotes, transcribed precursor tRNAs are maturated by processing and modification processes in nucleus and are transported to the cytoplasm. The cytoplasmic export protein (Cex1p) captures mature tRNAs from the nuclear export receptor (Los1p) on the cytoplasmic side of the nuclear pore complex, and it delivers them to eukaryotic elongation factor 1α. This conserved Cex1p function is essential for the quality control of mature tRNAs to ensure accurate translation. However, the structural basis of how Cex1p recognizes tRNAs and shuttles them to the translational apparatus remains unclear. Here, we solved the 2.2 Å resolution crystal structure of Saccharomyces cerevisiae Cex1p with C-terminal 197 disordered residues truncated. Cex1p adopts an elongated architecture, consisting of N-terminal kinase-like and a C-terminal α-helical HEAT repeat domains. Structure-based biochemical analyses suggested that Cex1p binds tRNAs on its inner side, using the positively charged HEAT repeat surface and the C-terminal disordered region. The N-terminal kinase-like domain acts as a scaffold to interact with the Ran-exportin (Los1p·Gsp1p) machinery. These results provide the structural basis of Los1p·Gsp1p·Cex1p·tRNA complex formation, thus clarifying the dynamic mechanism of tRNA shuttling from exportin to the translational apparatus.
Collapse
Affiliation(s)
- Kayo Nozawa
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, 113-0032 Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ali Z, Zhang DY, Xu ZL, Xu L, Yi JX, He XL, Huang YH, Liu XQ, Khan AA, Trethowan RM, Ma HX. Uncovering the salt response of soybean by unraveling its wild and cultivated functional genomes using tag sequencing. PLoS One 2012; 7:e48819. [PMID: 23209559 PMCID: PMC3509101 DOI: 10.1371/journal.pone.0048819] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 10/01/2012] [Indexed: 11/19/2022] Open
Abstract
Soil salinity has very adverse effects on growth and yield of crop plants. Several salt tolerant wild accessions and cultivars are reported in soybean. Functional genomes of salt tolerant Glycine soja and a salt sensitive genotype of Glycine max were investigated to understand the mechanism of salt tolerance in soybean. For this purpose, four libraries were constructed for Tag sequencing on Illumina platform. We identify around 490 salt responsive genes which included a number of transcription factors, signaling proteins, translation factors and structural genes like transporters, multidrug resistance proteins, antiporters, chaperons, aquaporins etc. The gene expression levels and ratio of up/down-regulated genes was greater in tolerant plants. Translation related genes remained stable or showed slightly higher expression in tolerant plants under salinity stress. Further analyses of sequenced data and the annotations for gene ontology and pathways indicated that soybean adapts to salt stress through ABA biosynthesis and regulation of translation and signal transduction of structural genes. Manipulation of these pathways may mitigate the effect of salt stress thus enhancing salt tolerance.
Collapse
Affiliation(s)
- Zulfiqar Ali
- Institute of Agro-Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Da Yong Zhang
- Institute of Agro-Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Zhao Long Xu
- Institute of Agro-Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Ling Xu
- Institute of Agro-Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Jin Xin Yi
- Institute of Agro-Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Xiao Lan He
- Institute of Agro-Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Yi Hong Huang
- Institute of Agro-Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Xiao Qing Liu
- Institute of Agro-Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Asif Ali Khan
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Richard M. Trethowan
- Plant Breeding Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Hong Xiang Ma
- Institute of Agro-Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| |
Collapse
|
46
|
Eswara MB, Clayton A, Mangroo D. Utp22p acts in concert with Utp8p to channel aminoacyl-tRNA from the nucleolus to the nuclear tRNA export receptor Los1p but not Msn5p. Biochem Cell Biol 2012. [DOI: 10.1139/bcb-2012-034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
47
|
Koch B, Mitterer V, Niederhauser J, Stanborough T, Murat G, Rechberger G, Bergler H, Kressler D, Pertschy B. Yar1 protects the ribosomal protein Rps3 from aggregation. J Biol Chem 2012; 287:21806-15. [PMID: 22570489 DOI: 10.1074/jbc.m112.365791] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
2000 ribosomes have to be synthesized in yeast every minute. Therefore the fast production of ribosomal proteins, their efficient delivery to the nucleus and correct incorporation into ribosomal subunits are prerequisites for optimal growth rates. Here, we report that the ankyrin repeat protein Yar1 directly interacts with the small ribosomal subunit protein Rps3 and accompanies newly synthesized Rps3 from the cytoplasm into the nucleus where Rps3 is assembled into pre-ribosomal subunits. A yar1 deletion strain displays a similar phenotype as an rps3 mutant strain, showing an accumulation of 20S pre-rRNA and a 40S export defect. The combination of an rps3 mutation with a yar1 deletion leads to an enhancement of these phenotypes, while increased expression of RPS3 suppresses the defects of a yar1 deletion strain. We further show that Yar1 protects Rps3 from aggregation in vitro and increases its solubility in vivo. Our data suggest that Yar1 is a specific chaperone for Rps3, which serves to keep Rps3 soluble until its incorporation into the pre-ribosome.
Collapse
Affiliation(s)
- Barbara Koch
- Institut für Molekulare Biowissenschaften, Universität Graz, Humboldtstrasse 50, A-8010 Graz, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Sasikumar AN, Perez WB, Kinzy TG. The many roles of the eukaryotic elongation factor 1 complex. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:543-55. [PMID: 22555874 DOI: 10.1002/wrna.1118] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The vast majority of proteins are believed to have one specific function. Throughout the course of evolution, however, some proteins have acquired additional functions to meet the demands of a complex cellular milieu. In some cases, changes in RNA or protein processing allow the cell to make the most of what is already encoded in the genome to produce slightly different forms. The eukaryotic elongation factor 1 (eEF1) complex subunits, however, have acquired such moonlighting functions without alternative forms. In this article, we discuss the canonical functions of the components of the eEF1 complex in translation elongation as well as the secondary interactions they have with other cellular factors outside of the translational apparatus. The eEF1 complex itself changes in composition as the complexity of eukaryotic organisms increases. Members of the complex are also subject to phosphorylation, a potential modulator of both canonical and non-canonical functions. Although alternative functions of the eEF1A subunit have been widely reported, recent studies are shedding light on additional functions of the eEF1B subunits. A thorough understanding of these alternate functions of eEF1 is essential for appreciating their biological relevance.
Collapse
Affiliation(s)
- Arjun N Sasikumar
- Department of Molecular Genetics, Microbiology and Immunology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, NJ, USA
| | | | | |
Collapse
|
49
|
Fu G, Xu T, Shi Y, Wei N, Yang XL. tRNA-controlled nuclear import of a human tRNA synthetase. J Biol Chem 2012; 287:9330-4. [PMID: 22291016 DOI: 10.1074/jbc.c111.325902] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aminoacyl-tRNA synthetases, essential components of the cytoplasmic translation apparatus, also have nuclear functions that continue to be elucidated. However, little is known about how the distribution between cytoplasmic and nuclear compartments is controlled. Using a combination of methods, here we showed that human tyrosyl-tRNA synthetase (TyrRS) distributes to the nucleus and that the nuclear import of human TyrRS is regulated by its cognate tRNA(Tyr). We identified a hexapeptide motif in the anticodon recognition domain that is critical for nuclear import of the synthetase. Remarkably, this nuclear localization signal (NLS) sequence motif is also important for interacting with tRNA(Tyr). As a consequence, mutational alteration of the hexapeptide simultaneously attenuated aminoacylation and nuclear localization. Because the NLS is sterically blocked when the cognate tRNA is bound to TyrRS, we hypothesized that the nuclear distribution of TyrRS is regulated by tRNA(Tyr). This expectation was confirmed by RNAi knockdown of tRNA(Tyr) expression, which led to robust nuclear import of TyrRS. Further bioinformatics analysis showed that to have nuclear import of TyrRS directly controlled by tRNA(Tyr) in higher organisms, the NLS of lower eukaryotes was abandoned, whereas the new NLS was evolved from an anticodon-binding hexapeptide motif. Thus, higher organisms developed a strategy to make tRNA a regulator of the nuclear trafficking of its cognate synthetase. The design in principle should coordinate nuclear import of a tRNA synthetase with the demands of protein synthesis in the cytoplasm.
Collapse
Affiliation(s)
- Guangsen Fu
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
50
|
McGuire AT, Mangroo D. Cex1p facilitates Rna1p-mediated dissociation of the Los1p-tRNA-Gsp1p-GTP export complex. Traffic 2011; 13:234-56. [PMID: 22008473 DOI: 10.1111/j.1600-0854.2011.01304.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 10/17/2011] [Accepted: 10/17/2011] [Indexed: 01/17/2023]
Abstract
Nuclear tRNA export plays an essential role in key cellular processes such as regulation of protein synthesis, cell cycle progression, response to nutrient availability and DNA damage and development. Like other nuclear export processes, assembly of the nuclear tRNA export complex in the nucleus is dependent on Ran-GTP/Gsp1p-GTP, and dissociation of the export receptor-tRNA-Ran-GTP/Gsp1p-GTP complex in the cytoplasm requires RanBP1/Yrb1p and RanGAP/Rna1p to activate the GTPase activity of Ran-GTP/Gsp1p-GTP. The Saccharomyces cerevisiae Cex1p and Human Scyl1 have also been proposed to participate in unloading of the tRNA export receptors at the cytoplasmic face of the nuclear pore complex (NPC). Here, we provide evidence suggesting that Cex1p is required for activation of the GTPase activity of Gsp1p and dissociation of the receptor-tRNA-Gsp1p export complex in S. cerevisiae. The data suggest that Cex1p recruits Rna1p from the cytoplasm to the NPC and facilitates Rna1p activation of the GTPase activity of Gsp1p by enabling Rna1p to gain access to Gsp1p-GTP bound to the export receptor tRNA complex. It is possible that this tRNA unloading mechanism is conserved in evolutionarily diverse organisms and that other Gsp1p-GTP-dependent export processes use a pathway-specific component to recruit Rna1p to the NPC.
Collapse
Affiliation(s)
- Andrew T McGuire
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | |
Collapse
|