1
|
Francois-Campion V, Berger F, Oikawa M, Goumeidane M, Mouniée N, Chenouard V, Petrova K, Abreu JG, Fourgeux C, Poschmann J, Peshkin L, Gibeaux R, Jullien J. Sperm derived H2AK119ub1 is required for embryonic development in Xenopus laevis. Nat Commun 2025; 16:3268. [PMID: 40188103 PMCID: PMC11972363 DOI: 10.1038/s41467-025-58615-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/28/2025] [Indexed: 04/07/2025] Open
Abstract
Ubiquitylation of H2A (H2AK119ub1) by the polycomb repressive complexe-1 plays a key role in the initiation of facultative heterochromatin formation in somatic cells. Here we evaluate the contribution of sperm derived H2AK119ub1 to embryo development. In Xenopus laevis we found that H2AK119ub1 is present during spermiogenesis and into early embryonic development, highlighting its credential for a role in the transmission of epigenetic information from the sperm to the embryo. In vitro treatment of sperm with USP21, a H2AK119ub1 deubiquitylase, just prior to injection to egg, results in developmental defects associated with gene upregulation. Sperm H2AK119ub1 editing disrupts egg factor mediated paternal chromatin remodelling processes. It leads to post-replication accumulation of H2AK119ub1 on repeat element of the genome instead of CpG islands. This shift in post-replication H2AK119ub1 distribution triggered by sperm epigenome editing entails a loss of H2AK119ub1 from genes misregulated in embryos derived from USP21 treated sperm. We conclude that sperm derived H2AK119ub1 instructs egg factor mediated epigenetic remodelling of paternal chromatin and is required for embryonic development.
Collapse
Affiliation(s)
- Valentin Francois-Campion
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Florian Berger
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Mami Oikawa
- Laboratory of Regenerative Medicine, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan
| | - Maissa Goumeidane
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Nolwenn Mouniée
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Vanessa Chenouard
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | | | - Jose G Abreu
- Systems Biology, Harvard Medical School, Boston, MA, USA
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Cynthia Fourgeux
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Jeremie Poschmann
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Leonid Peshkin
- Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Romain Gibeaux
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, Rennes, France
| | - Jérôme Jullien
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France.
| |
Collapse
|
2
|
Trombley J, Rakozy AI, McClear CA, Jash E, Csankovszki G. Condensin IDC, DPY-21, and CEC-4 maintain X chromosome repression in C. elegans. PLoS Genet 2025; 21:e1011247. [PMID: 40203054 PMCID: PMC12013946 DOI: 10.1371/journal.pgen.1011247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/22/2025] [Accepted: 02/28/2025] [Indexed: 04/11/2025] Open
Abstract
Dosage compensation in Caenorhabditis elegans equalizes X-linked gene expression between XX hermaphrodites and XO males. The process depends on a condensin-containing dosage compensation complex (DCC), which binds the X chromosomes in hermaphrodites to repress gene expression by a factor of 2. Condensin IDC and an additional five DCC components must be present on the X during early embryogenesis in hermaphrodites to establish dosage compensation. However, whether the DCC's continued presence is required to maintain the repressed state once established is unknown. Beyond the role of condensin IDC in X chromosome compaction, additional mechanisms contribute to X-linked gene repression. DPY-21, a non-condensin IDC DCC component, is an H4K20me2/3 demethylase whose activity enriches the repressive histone mark, H4 lysine 20 monomethylation, on the X chromosomes. In addition, CEC-4, a protein that tethers H3K9me3-rich chromosomal regions to the nuclear lamina, also contributes to X-linked gene repression. To investigate the necessity of condensin IDC during the larval and adult stages of hermaphrodites, we used the auxin-inducible degradation system to deplete the condensin IDC subunit DPY-27. While DPY-27 depletion in the embryonic stages resulted in lethality, DPY-27 depleted larvae and adults survive. In these DPY-27 depleted strains, condensin IDC was no longer associated with the X chromosome, the X became decondensed, and the H4K20me1 mark was gradually lost, leading to X-linked gene derepression (about 1.4-fold). These results suggest that the stable maintenance of dosage compensation requires the continued presence of condensin IDC. A loss-of-function mutation in cec-4, in addition to the depletion of DPY-27 or the genetic mutation of dpy-21, led to even more significant increases in X-linked gene expression (about 1.7-fold), suggesting that CEC-4 helps stabilize repression mediated by condensin IDC and H4K20me1.
Collapse
Affiliation(s)
- Jessica Trombley
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Audry I. Rakozy
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Christian A. McClear
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Eshna Jash
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Györgyi Csankovszki
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
3
|
Shimojima Yamamoto K, Yamamoto S, Imaizumi T, Kumada S, Yamamoto T. Uniparental maternal tetrasomy X co-occurrence with paternal nondisjunction: investigation of the origin of 48,XXXX. Hum Genome Var 2024; 11:31. [PMID: 39152134 PMCID: PMC11329761 DOI: 10.1038/s41439-024-00289-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024] Open
Abstract
Tetrasomy X or 48,XXXX is a rare sex chromosome aneuploidy. The parental origin of tetrasomy X in a female patient with developmental delay was analyzed; all four X chromosomes were derived from the mother, and there were no paternally derived sex chromosomes. This finding indicates a rare incidental co-occurrence of maternal and paternal nondisjunction or polysomy rescue. The mechanism of 48,XXYY, which is related to developmental delay in males, was analyzed for comparison.
Collapse
Affiliation(s)
- Keiko Shimojima Yamamoto
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| | - Sakurako Yamamoto
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Fuchu, 183-0042, Japan
| | - Taichi Imaizumi
- Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki, 216-8511, Japan
| | - Satoko Kumada
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Fuchu, 183-0042, Japan
| | - Toshiyuki Yamamoto
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, 162-8666, Japan.
- Division of Gene Medicine, Graduate School of Medicine, Tokyo Women's Medical University, Tokyo, 162-8666, Japan.
| |
Collapse
|
4
|
Lister NC, Milton AM, Patel HR, Waters SA, Hanrahan BJ, McIntyre KL, Livernois AM, Horspool WB, Wee LK, Ringel AR, Mundlos S, Robson MI, Shearwin-Whyatt L, Grützner F, Graves JAM, Ruiz-Herrera A, Waters PD. Incomplete transcriptional dosage compensation of chicken and platypus sex chromosomes is balanced by post-transcriptional compensation. Proc Natl Acad Sci U S A 2024; 121:e2322360121. [PMID: 39074288 PMCID: PMC11317591 DOI: 10.1073/pnas.2322360121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/25/2024] [Indexed: 07/31/2024] Open
Abstract
Heteromorphic sex chromosomes (XY or ZW) present problems of gene dosage imbalance between sexes and with autosomes. A need for dosage compensation has long been thought to be critical in vertebrates. However, this was questioned by findings of unequal mRNA abundance measurements in monotreme mammals and birds. Here, we demonstrate unbalanced mRNA levels of X genes in platypus males and females and a correlation with differential loading of histone modifications. We also observed unbalanced transcripts of Z genes in chicken. Surprisingly, however, we found that protein abundance ratios were 1:1 between the sexes in both species, indicating a post-transcriptional layer of dosage compensation. We conclude that sex chromosome output is maintained in chicken and platypus (and perhaps many other non therian vertebrates) via a combination of transcriptional and post-transcriptional control, consistent with a critical importance of sex chromosome dosage compensation.
Collapse
Affiliation(s)
- Nicholas C. Lister
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales Sydney, Sydney, NSW2052, Australia
| | - Ashley M. Milton
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales Sydney, Sydney, NSW2052, Australia
| | - Hardip R. Patel
- John Curtin School of Medical Research, Australian National University, Canberra, ACT2600, Australia
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT2600, Australia
| | - Shafagh A. Waters
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW2052, Australia
| | - Benjamin J. Hanrahan
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales Sydney, Sydney, NSW2052, Australia
| | - Kim L. McIntyre
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales Sydney, Sydney, NSW2052, Australia
| | | | - William B. Horspool
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales Sydney, Sydney, NSW2052, Australia
| | - Lee Kian Wee
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales Sydney, Sydney, NSW2052, Australia
| | - Alessa R. Ringel
- Max Planck Institute for Molecular Genetics, Berlin14195, Germany
- Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin10117, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin14195, Germany
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, Berlin14195, Germany
- Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin10117, Germany
- Charité-Universitätsmedizin Berlin, Berlin Institute of Health Center for Regenerative Therapies, Berlin13353, Germany
| | - Michael I. Robson
- Max Planck Institute for Molecular Genetics, Berlin14195, Germany
- Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin10117, Germany
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, EdinburghEH8 9YL, United Kingdom
| | | | - Frank Grützner
- School of Biological Sciences, University of Adelaide, Adelaide, SA5000, Australia
| | - Jennifer A. Marshall Graves
- Department of Environment and Genetics, La Trobe University, Melbourne, VIC3068, Australia
- Institute of Applied Ecology, University of Canberra, Canberra, ACT2601, Australia
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cellular, Fisiologia I Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès08193, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès08193, Spain
| | - Paul D. Waters
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales Sydney, Sydney, NSW2052, Australia
| |
Collapse
|
5
|
Zhang S, Wang R, Zhang L, Birchler JA, Sun L. Inverse and Proportional Trans Modulation of Gene Expression in Human Aneuploidies. Genes (Basel) 2024; 15:637. [PMID: 38790266 PMCID: PMC11121296 DOI: 10.3390/genes15050637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Genomic imbalance in aneuploidy is often detrimental to organisms. To gain insight into the molecular basis of aneuploidies in humans, we analyzed transcriptome data from several autosomal and sex chromosome aneuploidies. The results showed that in human aneuploid cells, genes located on unvaried chromosomes are inversely or proportionally trans-modulated, while a subset of genes on the varied chromosomes are compensated. Less genome-wide modulation is found for sex chromosome aneuploidy compared with autosomal aneuploidy due to X inactivation and the retention of dosage sensitive regulators on both sex chromosomes to limit the effective dosage change. We also found that lncRNA and mRNA can have different responses to aneuploidy. Furthermore, we analyzed the relationship between dosage-sensitive transcription factors and their targets, which illustrated the modulations and indicates genomic imbalance is related to stoichiometric changes in components of gene regulatory complexes.In summary, this study demonstrates the existence of trans-acting effects and compensation mechanisms in human aneuploidies and contributes to our understanding of gene expression regulation in unbalanced genomes and disease states.
Collapse
Affiliation(s)
- Shuai Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (S.Z.); (R.W.); (L.Z.)
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Ruixue Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (S.Z.); (R.W.); (L.Z.)
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Ludan Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (S.Z.); (R.W.); (L.Z.)
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - James A. Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Lin Sun
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (S.Z.); (R.W.); (L.Z.)
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
6
|
Yang X, Bai Z, He Y, Wang N, Sun L, Li Y, Yin Z, Wang X, Zhang B, Han M, Lu X, Chen X, Wang D, Wang J, Wang S, Guo L, Chen C, Feng K, Ye W. Genome-wide characterization of DNA methyltransferase family genes implies GhDMT6 improving tolerance of salt and drought on cotton. BMC PLANT BIOLOGY 2024; 24:312. [PMID: 38649800 PMCID: PMC11036760 DOI: 10.1186/s12870-024-04985-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND DNA methylation is an important epigenetic mode of genomic DNA modification and plays a vital role in maintaining epigenetic content and regulating gene expression. Cytosine-5 DNA methyltransferase (C5-MTase) are the key enzymes in the process of DNA methylation. However, there is no systematic analysis of the C5-MTase in cotton so far, and the function of DNMT2 genes has not been studied. METHODS In this study, the whole genome of cotton C5-MTase coding genes was identified and analyzed using a bioinformatics method based on information from the cotton genome, and the function of GhDMT6 was further validated by VIGS experiments and subcellular localization analysis. RESULTS 33 C5-MTases were identified from three cotton genomes, and were divided into four subfamilies by systematic evolutionary analysis. After the protein domain alignment of C5-MTases in cotton, 6 highly conserved motifs were found in the C-terminus of 33 proteins involved in methylation modification, which indicated that C5-MTases had a basic catalytic methylation function. These proteins were divided into four classes based on the N-terminal difference, of which DNMT2 lacks the N-terminal regulatory domain. The expression of C5-MTases in different parts of cotton was different under different stress treatments, which indicated the functional diversity of cotton C5-MTase gene family. Among the C5-MTases, the GhDMT6 had a obvious up-regulated expression. After silencing GhDMT6 with VIGS, the phenotype of cotton seedlings under different stress treatments showed a significant difference. Compared with cotton seedlings that did not silence GhDMT6, cotton seedlings silencing GhDMT6 showed significant stress resistance. CONCLUSION The results show that C5-MTases plays an important role in cotton stress response, which is beneficial to further explore the function of DNMT2 subfamily genes.
Collapse
Affiliation(s)
- Xiaomin Yang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
- Cash Crop Research Institute of Jiangxi Province, Jiujiang, Jiangxi, 332105, China
| | - Zhigang Bai
- Cash Crop Research Institute of Jiangxi Province, Jiujiang, Jiangxi, 332105, China
| | - Yunxin He
- Hunan Institute of Cotton Science, Changde, Hunan, 415101, China
| | - Ning Wang
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, 730070, China
| | - Liangqing Sun
- Cash Crop Research Institute of Jiangxi Province, Jiujiang, Jiangxi, 332105, China
| | - Yongqi Li
- Cash Crop Research Institute of Jiangxi Province, Jiujiang, Jiangxi, 332105, China
| | - Zujun Yin
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Xiaoge Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Binglei Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Mingge Han
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Delong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Junjuan Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Lixue Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Chao Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Keyun Feng
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, 730070, China.
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China.
| |
Collapse
|
7
|
Sarel-Gallily R, Keshet G, Kinreich S, Haim-Abadi G, Benvenisty N. EpiTyping: analysis of epigenetic aberrations in parental imprinting and X-chromosome inactivation using RNA-seq. Nat Protoc 2023; 18:3881-3917. [PMID: 37914783 DOI: 10.1038/s41596-023-00898-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/28/2023] [Indexed: 11/03/2023]
Abstract
Human pluripotent stem cells (hPSCs) hold a central role in studying human development, in disease modeling and in regenerative medicine. These cells not only acquire genetic modifications when kept in culture, but they may also harbor epigenetic aberrations, mainly involving parental imprinting and X-chromosome inactivation. Here we present a detailed bioinformatic protocol for detecting such aberrations using RNA sequencing data. We provide a pipeline designed to process and analyze RNA sequencing data for the identification of abnormal biallelic expression of imprinted genes, and thus detect loss of imprinting. Furthermore, we show how to differentiate among X-chromosome inactivation, full activation and aberrant erosion of X chromosome in female hPSCs. In addition to providing bioinformatic tools, we discuss the impact of such epigenetic variations in hPSCs on their utility for various purposes. This pipeline can be used by any user with basic understanding of the Linux command line. It is available on GitHub as a software container ( https://github.com/Gal-Keshet/EpiTyping ) and produces reliable results in 1-4 d.
Collapse
Affiliation(s)
- Roni Sarel-Gallily
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gal Keshet
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Shay Kinreich
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Guy Haim-Abadi
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
8
|
Kudo R, Yoshida I, Matiz Ceron L, Mizushima S, Kuroki Y, Jogahara T, Kuroiwa A. The Neo-X Does Not Form a Barr Body but Shows a Slightly Condensed Structure in the Okinawa Spiny Rat (Tokudaia muenninki). Cytogenet Genome Res 2023; 162:632-643. [PMID: 37271129 DOI: 10.1159/000531275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/27/2023] [Indexed: 06/06/2023] Open
Abstract
X chromosome inactivation (XCI) is an essential mechanism for gene dosage compensation between male and female cells in mammals. The Okinawa spiny rat (Tokudaia muenninki) is a native rodent in Japan with XX/XY sex chromosomes, like most mammals; however, the X chromosome has acquired a neo-X region (Xp) by fusion with an autosome. We previously reported that dosage compensation has not yet evolved in the neo-X region; however, X-inactive-specific transcript (Xist) RNA (long non-coding RNA required for the initiation of XCI) is partially localized in the region. Here, we show that the neo-X region represents an early chromosomal state in the acquisition of XCI by analyses of heterochromatin and Barr body formation. We found no evidence for heterochromatin formation in the neo-X region by R-banding by acridine orange (RBA) assays and immunostaining of H3K27me3. Double-immunostaining of H3K27me3 and HP1, a component of the Barr body, revealed that the entire ancestral X chromosome region (Xq) showed a bipartite folded structure. By contrast, HP1 was not localized to the neo-X region. However, BAC-FISH revealed that the signals of genes on the neo-X region of the inactive X chromosome were concentrated in a narrow region. These findings indicated that although the neo-X region of the inactive X chromosome does not form a complete Barr body structure (e.g., it lacks HP1), it forms a slightly condensed structure. These findings combined with the previously reported partial binding of Xist RNA suggest that the neo-X region exhibits incomplete inactivation. This may represent an early chromosomal state in the acquisition of the XCI mechanism.
Collapse
Affiliation(s)
- Ryoma Kudo
- Reproductive and Developmental Sciences, Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Ikuya Yoshida
- Reproductive and Developmental Sciences, Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
- Division of Reproductive and Developmental Biology, Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Luisa Matiz Ceron
- Reproductive and Developmental Sciences, Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Shusei Mizushima
- Reproductive and Developmental Sciences, Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
- Division of Reproductive and Developmental Biology, Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Yoko Kuroki
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
- Division of Collaborative Research, National Center for Child Health and Development, Tokyo, Japan
- Division of Diversity Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Takamichi Jogahara
- Faculty of Law, Economics and Management, Okinawa University, Naha, Japan
| | - Asato Kuroiwa
- Reproductive and Developmental Sciences, Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
- Division of Reproductive and Developmental Biology, Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
9
|
Qian SH, Xiong YL, Chen L, Geng YJ, Tang XM, Chen ZX. Dynamic Spatial-temporal Expression Ratio of X Chromosome to Autosomes but Stable Dosage Compensation in Mammals. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:589-600. [PMID: 36031057 PMCID: PMC10787176 DOI: 10.1016/j.gpb.2022.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/03/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
In the evolutionary model of dosage compensation, per-allele expression level of the X chromosome has been proposed to have twofold up-regulation to compensate its dose reduction in males (XY) compared to females (XX). However, the expression regulation of X-linked genes is still controversial, and comprehensive evaluations are still lacking. By integrating multi-omics datasets in mammals, we investigated the expression ratios including X to autosomes (X:AA ratio) and X to orthologs (X:XX ratio) at the transcriptome, translatome, and proteome levels. We revealed a dynamic spatial-temporal X:AA ratio during development in humans and mice. Meanwhile, by tracing the evolution of orthologous gene expression in chickens, platypuses, and opossums, we found a stable expression ratio of X-linked genes in humans to their autosomal orthologs in other species (X:XX ≈ 1) across tissues and developmental stages, demonstrating stable dosage compensation in mammals. We also found that different epigenetic regulations contributed to the high tissue specificity and stage specificity of X-linked gene expression, thus affecting X:AA ratios. It could be concluded that the dynamics of X:AA ratios were attributed to the different gene contents and expression preferences of the X chromosome, rather than the stable dosage compensation.
Collapse
Affiliation(s)
- Sheng Hu Qian
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Li Xiong
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Chen
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying-Jie Geng
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Man Tang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhen-Xia Chen
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
10
|
Astro V, Fiacco E, Cardona-Londoño KJ, De Toma I, Alzahrani HS, Alama J, Kokandi A, Hamoda TAAAM, Felemban M, Adamo A. A transcriptomic signature of X chromosome overdosage in Saudi Klinefelter syndrome induced pluripotent stem cells. Endocr Connect 2023; 12:e220515. [PMID: 36971776 PMCID: PMC10160548 DOI: 10.1530/ec-22-0515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/27/2023] [Indexed: 03/29/2023]
Abstract
OBJECTIVE The transcriptional landscape of Klinefelter syndromeduring early embryogenesis remains elusive. This study aimed to evaluate the impact of X chromosome overdosage in 47,XXY males induced pluripotent stem cells (iPSCs) obtained from patients with different genomic backgrounds and ethnicities. DESIGN AND METHOD We derived and characterized 15 iPSC lines from four Saudi 47,XXY KS patients and one Saudi 46,XY male. We performed a comparative transcriptional analysis using the Saudi KS-iPSCs and a cohort of European and North American KS-iPSCs. RESULTS We identified a panel of X-linked and autosomal genes commonly dysregulated in Saudi and European/North American KS-iPSCs vs 46,XY controls. Our findings demonstrate that seven PAR1 and nine non-PAR escape genes are consistently dysregulated and mostly display comparable transcriptional levels in both groups. Finally, we focused on genes commonly dysregulated in both iPSC cohorts and identified several gene-ontology categories highly relevant to KS physiopathology, including aberrant cardiac muscle contractility, skeletal muscle defects, abnormal synaptic transmission, and behavioral alterations. CONCLUSIONS Our results indicate that a transcriptomic signature of X chromosome overdosage in KS is potentially attributable to a subset of X-linked genes sensitive to sex chromosome dosage and escaping X inactivation, regardless of the geographical area of origin, ethnicity, and genetic makeup.
Collapse
Affiliation(s)
- Veronica Astro
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Elisabetta Fiacco
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Kelly Johanna Cardona-Londoño
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - Hams Saeed Alzahrani
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jumana Alama
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amal Kokandi
- Department of Dermatology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Majed Felemban
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Antonio Adamo
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
11
|
Agarwal I, Fuller ZL, Myers SR, Przeworski M. Relating pathogenic loss-of-function mutations in humans to their evolutionary fitness costs. eLife 2023; 12:e83172. [PMID: 36648429 PMCID: PMC9937649 DOI: 10.7554/elife.83172] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/16/2023] [Indexed: 01/18/2023] Open
Abstract
Causal loss-of-function (LOF) variants for Mendelian and severe complex diseases are enriched in 'mutation intolerant' genes. We show how such observations can be interpreted in light of a model of mutation-selection balance and use the model to relate the pathogenic consequences of LOF mutations at present to their evolutionary fitness effects. To this end, we first infer posterior distributions for the fitness costs of LOF mutations in 17,318 autosomal and 679 X-linked genes from exome sequences in 56,855 individuals. Estimated fitness costs for the loss of a gene copy are typically above 1%; they tend to be largest for X-linked genes, whether or not they have a Y homolog, followed by autosomal genes and genes in the pseudoautosomal region. We compare inferred fitness effects for all possible de novo LOF mutations to those of de novo mutations identified in individuals diagnosed with one of six severe, complex diseases or developmental disorders. Probands carry an excess of mutations with estimated fitness effects above 10%; as we show by simulation, when sampled in the population, such highly deleterious mutations are typically only a couple of generations old. Moreover, the proportion of highly deleterious mutations carried by probands reflects the typical age of onset of the disease. The study design also has a discernible influence: a greater proportion of highly deleterious mutations is detected in pedigree than case-control studies, and for autism, in simplex than multiplex families and in female versus male probands. Thus, anchoring observations in human genetics to a population genetic model allows us to learn about the fitness effects of mutations identified by different mapping strategies and for different traits.
Collapse
Affiliation(s)
- Ipsita Agarwal
- Department of Biological Sciences, Columbia UniversityNew YorkUnited States
- Department of Statistics, University of OxfordOxfordUnited Kingdom
| | - Zachary L Fuller
- Department of Biological Sciences, Columbia UniversityNew YorkUnited States
| | - Simon R Myers
- Department of Statistics, University of OxfordOxfordUnited Kingdom
- The Wellcome Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
| | - Molly Przeworski
- Department of Biological Sciences, Columbia UniversityNew YorkUnited States
- Department of Systems Biology, Columbia UniversityNew YorkUnited States
| |
Collapse
|
12
|
|
13
|
Abstract
X chromosome inactivation (XCI) is the process of silencing one of the X chromosomes in cells of the female mammal which ensures dosage compensation between the sexes. Although theoretically random in somatic tissues, the choice of which X chromosome is chosen to be inactivated can be biased in mice by genetic element(s) associated with the so-called X-controlling element (Xce). Although the Xce was first described and genetically localized nearly 40 y ago, its mode of action remains elusive. In the approach presented here, we identify a single long noncoding RNA (lncRNA) within the Xce locus, Lppnx, which may be the driving factor in the choice of which X chromosome will be inactivated in the developing female mouse embryo. Comparing weak and strong Xce alleles we show that Lppnx modulates the expression of Xist lncRNA, one of the key factors in XCI, by controlling the occupancy of pluripotency factors at Intron1 of Xist. This effect is counteracted by enhanced binding of Rex1 in DxPas34, another key element in XCI regulating the activity of Tsix lncRNA, the main antagonist of Xist, in the strong but not in the weak Xce allele. These results suggest that the different susceptibility for XCI observed in weak and strong Xce alleles results from differential transcription factor binding of Xist Intron 1 and DxPas34, and that Lppnx represents a decisive factor in explaining the action of the Xce.
Collapse
|
14
|
Large-Scale Analysis of X Inactivation Variations between Primed and Naïve Human Embryonic Stem Cells. Cells 2022; 11:cells11111729. [PMID: 35681423 PMCID: PMC9179337 DOI: 10.3390/cells11111729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
X chromosome inactivation is a mammalian dosage compensation mechanism, where one of two X chromosomes is randomly inactivated in female cells. Previous studies have suggested that primed human embryonic stem cells (hESCs) maintain an eroded state of the X chromosome and do not express XIST, while in naïve transition, both XIST and the eroded X chromosome are reactivated. However, the pattern of chromosome X reactivation in naïve hESCs remains mainly unknown. In this study, we examine the variations in the status of X chromosome between primed and naïve hESCs by analyzing RNA sequencing samples from different studies. We show that most samples of naïve hESCs indeed reactivate XIST and there is an increase in gene expression levels on chromosome X. However, most of the naïve samples do not fully activate chromosome X in a uniform manner and present a distinct eroded pattern, probably as a result of XIST reactivation and initiation of re-inactivation of chromosome X. This large-scale analysis provides a higher-resolution description of the changes occurring in chromosome X during primed-to-naïve transition and emphasizes the importance of taking these variations into consideration when studying X inactivation in embryonic development.
Collapse
|
15
|
Astro V, Alowaysi M, Fiacco E, Saera-Vila A, Cardona-Londoño KJ, Aiese Cigliano R, Adamo A. Pseudoautosomal Region 1 Overdosage Affects the Global Transcriptome in iPSCs From Patients With Klinefelter Syndrome and High-Grade X Chromosome Aneuploidies. Front Cell Dev Biol 2022; 9:801597. [PMID: 35186953 PMCID: PMC8850648 DOI: 10.3389/fcell.2021.801597] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/28/2021] [Indexed: 01/19/2023] Open
Abstract
Klinefelter syndrome (KS) is the most prevalent aneuploidy in males and is characterized by a 47,XXY karyotype. Less frequently, higher grade sex chromosome aneuploidies (HGAs) can also occur. Here, using a paradigmatic cohort of KS and HGA induced pluripotent stem cells (iPSCs) carrying 49,XXXXY, 48,XXXY, and 47,XXY karyotypes, we identified the genes within the pseudoautosomal region 1 (PAR1) as the most susceptible to dosage-dependent transcriptional dysregulation and therefore potentially responsible for the progressively worsening phenotype in higher grade X aneuploidies. By contrast, the biallelically expressed non-PAR escape genes displayed high interclonal and interpatient variability in iPSCs and differentiated derivatives, suggesting that these genes could be associated with variable KS traits. By interrogating KS and HGA iPSCs at the single-cell resolution we showed that PAR1 and non-PAR escape genes are not only resilient to the X-inactive specific transcript (XIST)-mediated inactivation but also that their transcriptional regulation is disjointed from the absolute XIST expression level. Finally, we explored the transcriptional effects of X chromosome overdosage on autosomes and identified the nuclear respiratory factor 1 (NRF1) as a key regulator of the zinc finger protein X-linked (ZFX). Our study provides the first evidence of an X-dosage-sensitive autosomal transcription factor regulating an X-linked gene in low- and high-grade X aneuploidies.
Collapse
Affiliation(s)
- Veronica Astro
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Maryam Alowaysi
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Elisabetta Fiacco
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - Kelly J. Cardona-Londoño
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - Antonio Adamo
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- *Correspondence: Antonio Adamo,
| |
Collapse
|
16
|
Sex differences in immune gene expression in the brain of a small shorebird. Immunogenetics 2022; 74:487-496. [PMID: 35084547 PMCID: PMC8792134 DOI: 10.1007/s00251-022-01253-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/17/2022] [Indexed: 11/30/2022]
Abstract
Males and females often exhibit differences in behaviour, life histories, and ecology, many of which are typically reflected in their brains. Neuronal protection and maintenance include complex processes led by the microglia, which also interacts with metabolites such as hormones or immune components. Despite increasing interest in sex-specific brain function in laboratory animals, the significance of sex-specific immune activation in the brain of wild animals along with the variables that could affect it is widely lacking. Here, we use the Kentish plover (Charadrius alexandrinus) to study sex differences in expression of immune genes in the brain of adult males and females, in two wild populations breeding in contrasting habitats: a coastal sea-level population and a high-altitude inland population in China. Our analysis yielded 379 genes associated with immune function. We show a significant male-biased immune gene upregulation. Immune gene expression in the brain did not differ in upregulation between the coastal and inland populations. We discuss the role of dosage compensation in our findings and their evolutionary significance mediated by sex-specific survival and neuronal deterioration. Similar expression profiles in the coastal and inland populations suggest comparable genetic control by the microglia and possible similarities in pathogen pressures between habitats. We call for further studies on gene expression of males and females in wild population to understand the implications of immune function for life-histories and demography in natural systems.
Collapse
|
17
|
When Down Is Up: Heterochromatin, Nuclear Organization and X Upregulation. Cells 2021; 10:cells10123416. [PMID: 34943924 PMCID: PMC8700316 DOI: 10.3390/cells10123416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 12/21/2022] Open
Abstract
Organisms with highly differentiated sex chromosomes face an imbalance in X-linked gene dosage. Male Drosophila solve this problem by increasing expression from virtually every gene on their single X chromosome, a process known as dosage compensation. This involves a ribonucleoprotein complex that is recruited to active, X-linked genes to remodel chromatin and increase expression. Interestingly, the male X chromosome is also enriched for several proteins associated with heterochromatin. Furthermore, the polytenized male X is selectively disrupted by the loss of factors involved in repression, silencing, heterochromatin formation or chromatin remodeling. Mutations in many of these factors preferentially reduce male survival or enhance the lethality of mutations that prevent normal recognition of the X chromosome. The involvement of primarily repressive factors in a process that elevates expression has long been puzzling. Interestingly, recent work suggests that the siRNA pathway, often associated with heterochromatin formation and repression, also helps the dosage compensation machinery identify the X chromosome. In light of this finding, we revisit the evidence that links nuclear organization and heterochromatin to regulation of the male X chromosome.
Collapse
|
18
|
Goszczynski DE, Tinetti PS, Choi YH, Ross PJ, Hinrichs K. Allele-specific expression analysis reveals conserved and unique features of preimplantation development in equine ICSI embryos. Biol Reprod 2021; 105:1416-1426. [PMID: 34515759 DOI: 10.1093/biolre/ioab174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/17/2021] [Accepted: 09/10/2021] [Indexed: 12/30/2022] Open
Abstract
Embryonic genome activation and dosage compensation are major genetic events in early development. Combined analysis of single embryo RNA-seq data and parental genome sequencing was used to evaluate parental contributions to early development and investigate X-chromosome dynamics. In addition, we evaluated dimorphism in gene expression between male and female embryos. Evaluation of parent-specific gene expression revealed a minor increase in paternal expression at the 4-cell stage that increased at the 8-cell stage. We also detected eight genes with allelic expression bias that may have an important role in early development, notably NANOGNB. The main actor in X-chromosome inactivation, XIST, was significantly upregulated at the 8-cell, morula, and blastocyst stages in female embryos, with high expression at the latter. Sexual dimorphism in gene expression was identified at all stages, with strong representation of the X-chromosome in females from the 16-cell to the blastocyst stage. Female embryos showed biparental X-chromosome expression at all stages after the 4-cell stage, demonstrating the absence of imprinted X-inactivation at the embryo level. The analysis of gene dosage showed incomplete dosage compensation (0.5 < X:A < 1) in MII oocytes and embryos up to the 4-cell stage, an increase of the X:A ratio at the 16-cell and morula stages after genome activation, and a decrease of the X:A ratio at the blastocyst stage, which might be associated with the beginning of X-chromosome inactivation. This study represents the first critical analysis of parent- and sex-specific gene expression in early equine embryos produced in vitro.
Collapse
Affiliation(s)
- D E Goszczynski
- Department of Animal Science, University of California, Davis, CA, USA
| | - P S Tinetti
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Y H Choi
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - P J Ross
- Department of Animal Science, University of California, Davis, CA, USA
| | - K Hinrichs
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
19
|
Foss EJ, Sripathy S, Gatbonton-Schwager T, Kwak H, Thiesen AH, Lao U, Bedalov A. Chromosomal Mcm2-7 distribution and the genome replication program in species from yeast to humans. PLoS Genet 2021; 17:e1009714. [PMID: 34473702 PMCID: PMC8443269 DOI: 10.1371/journal.pgen.1009714] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 09/15/2021] [Accepted: 07/13/2021] [Indexed: 01/24/2023] Open
Abstract
The spatio-temporal program of genome replication across eukaryotes is thought to be driven both by the uneven loading of pre-replication complexes (pre-RCs) across the genome at the onset of S-phase, and by differences in the timing of activation of these complexes during S phase. To determine the degree to which distribution of pre-RC loading alone could account for chromosomal replication patterns, we mapped the binding sites of the Mcm2-7 helicase complex (MCM) in budding yeast, fission yeast, mouse and humans. We observed similar individual MCM double-hexamer (DH) footprints across the species, but notable differences in their distribution: Footprints in budding yeast were more sharply focused compared to the other three organisms, consistent with the relative sequence specificity of replication origins in S. cerevisiae. Nonetheless, with some clear exceptions, most notably the inactive X-chromosome, much of the fluctuation in replication timing along the chromosomes in all four organisms reflected uneven chromosomal distribution of pre-replication complexes. Gene-rich regions of the genome tend to replicate earlier in S phase than do repetitive and other non-genic regions. This may be an evolutionary consequence of the fact that replication later in S phase is associated with higher frequencies of mutation and genome rearrangement. Replication timing along the chromosome is determined by 1) events prior to S-phase that specify the locations where DNA replication can be initiated, referred to as origin licensing; and 2) the timing of activation of these licensed origins during S-phase, referred to as origin firing. To determine the relative importance of these two mechanisms, here we identify both the binding sites and the abundance of a key component of the origin licensing machinery in budding yeast, fission yeast, mice, and humans, namely the replicative helicase complex. We discovered that, with a few notable exceptions, which include the inactive X chromosome in mammals, the program of replication timing can be largely explained simply on the basis of origin licensing. Our results support a model for replication timing that emphasizes stochastic firing of origins that have been licensed before S phase begins.
Collapse
Affiliation(s)
- Eric J. Foss
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Smitha Sripathy
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Tonibelle Gatbonton-Schwager
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Hyunchang Kwak
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Adam H. Thiesen
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Uyen Lao
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Antonio Bedalov
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Medicine, Department of Biochemistry, University of Washington, Seattle Washington, United States of America
- * E-mail:
| |
Collapse
|
20
|
Zhang Z, He C, Chen Y, Li B, Tian S. DNA Methyltransferases Regulate Pathogenicity of Botrytis cinerea to Horticultural Crops. J Fungi (Basel) 2021; 7:jof7080659. [PMID: 34436198 PMCID: PMC8399656 DOI: 10.3390/jof7080659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 11/18/2022] Open
Abstract
Botrytis cinerea is one of the most destructive fungal pathogens that cause gray mold rot in horticultural products, including fresh fruits, vegetables, and flowers, leading to serious economic losses. B. cinerea is difficult to control because it has strong stress resistance and complex infection modes. The pathogenic mechanisms of B. cinerea have been revealed at multiple levels, but little is known at the epigenetic level. In this study, we first revealed the important role of DNA methyltransferases in regulating the development and pathogenicity of B. cinerea. We showed that two DNA methyltransferases, BcDIM2 and BcRID2, showed a strong synergistic effect in regulating the pathogenicity of B. cinerea. The double knockout mutant ΔBcdim2rid2 showed slower mycelial growth, lower spore germination, attenuated oxidative tolerance, and complete pathogenicity loss on various hosts, which is related to the reduced expression of virulence-related genes in ΔBcdim2rid2 and the induced resistance of the host. Although B. cinerea has multiple DNA methyltransferases, the global methylation level is very low, and few 5mC sites can be detected by BS-seq. These results first revealed the important role and the action mode of DNA methyltransferases in B. cinerea.
Collapse
Affiliation(s)
- Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Z.Z.); (C.H.); (Y.C.); (B.L.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chang He
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Z.Z.); (C.H.); (Y.C.); (B.L.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Z.Z.); (C.H.); (Y.C.); (B.L.)
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Z.Z.); (C.H.); (Y.C.); (B.L.)
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Z.Z.); (C.H.); (Y.C.); (B.L.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| |
Collapse
|
21
|
Sugrue VJ, Zoller JA, Narayan P, Lu AT, Ortega-Recalde OJ, Grant MJ, Bawden CS, Rudiger SR, Haghani A, Bond DM, Hore RR, Garratt M, Sears KE, Wang N, Yang XW, Snell RG, Hore TA, Horvath S. Castration delays epigenetic aging and feminizes DNA methylation at androgen-regulated loci. eLife 2021; 10:e64932. [PMID: 34227937 PMCID: PMC8260231 DOI: 10.7554/elife.64932] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 06/15/2021] [Indexed: 12/26/2022] Open
Abstract
In mammals, females generally live longer than males. Nevertheless, the mechanisms underpinning sex-dependent longevity are currently unclear. Epigenetic clocks are powerful biological biomarkers capable of precisely estimating chronological age and identifying novel factors influencing the aging rate using only DNA methylation data. In this study, we developed the first epigenetic clock for domesticated sheep (Ovis aries), which can predict chronological age with a median absolute error of 5.1 months. We have discovered that castrated male sheep have a decelerated aging rate compared to intact males, mediated at least in part by the removal of androgens. Furthermore, we identified several androgen-sensitive CpG dinucleotides that become progressively hypomethylated with age in intact males, but remain stable in castrated males and females. Comparable sex-specific methylation differences in MKLN1 also exist in bat skin and a range of mouse tissues that have high androgen receptor expression, indicating that it may drive androgen-dependent hypomethylation in divergent mammalian species. In characterizing these sites, we identify biologically plausible mechanisms explaining how androgens drive male-accelerated aging.
Collapse
Affiliation(s)
| | - Joseph Alan Zoller
- Department of Biostatistics, Fielding School of Public Health, University of California, Los AngelesLos AngelesUnited States
| | - Pritika Narayan
- Applied Translational Genetics Group, School of Biological Sciences, Centre for Brain Research, The University of AucklandAucklandNew Zealand
| | - Ake T Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | | | - Matthew J Grant
- Applied Translational Genetics Group, School of Biological Sciences, Centre for Brain Research, The University of AucklandAucklandNew Zealand
| | - C Simon Bawden
- Livestock and Farming Systems, South Australian Research and Development InstituteRoseworthyAustralia
| | - Skye R Rudiger
- Livestock and Farming Systems, South Australian Research and Development InstituteRoseworthyAustralia
| | - Amin Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Donna M Bond
- Department of Anatomy, University of OtagoDunedinNew Zealand
| | - Reuben R Hore
- Blackstone Hill Station, Becks, RD2OmakauNew Zealand
| | - Michael Garratt
- Department of Anatomy, University of OtagoDunedinNew Zealand
| | - Karen E Sears
- Department of Ecology and Evolutionary Biology, UCLALos AngelesUnited States
| | - Nan Wang
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles (UCLA)Los AngelesUnited States
| | - Xiangdong William Yang
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles (UCLA)Los AngelesUnited States
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLALos AngelesUnited States
| | - Russell G Snell
- Applied Translational Genetics Group, School of Biological Sciences, Centre for Brain Research, The University of AucklandAucklandNew Zealand
| | - Timothy A Hore
- Department of Anatomy, University of OtagoDunedinNew Zealand
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
22
|
Mendonca A, Sánchez OF, Xie J, Carneiro A, Lin L, Yuan C. Identifying distinct heterochromatin regions using combinatorial epigenetic probes in live cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194725. [PMID: 34174495 DOI: 10.1016/j.bbagrm.2021.194725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 10/21/2022]
Abstract
The 3D spatial organization of the genome controls gene expression and cell functionality. Heterochromatin (HC), which is the densely compacted and largely silenced part of the chromatin, is the driver for the formation and maintenance of nuclear organization in the mammalian nucleus. It is functionally divided into highly compact constitutive heterochromatin (cHC) and transcriptionally poised facultative heterochromatin (fHC). Long regarded as a static structure, the highly dynamic nature of the heterochromatin is being slowly understood and studied. These changes in HC occur on various temporal scales during the cell cycle and differentiation processes. Most methods that capture information about the heterochromatin are static techniques that cannot provide a readout of how the HC organization evolves with time. The delineation of specific areas such as fHC are also rendered difficult due to its diffusive nature and lack of specific features. Another degree of complexity in characterizing changes in heterochromatin occurs due to the heterogeneity in the HC organization of individual cells, necessitating single cell studies. Overall, there is a need for live cell compatible tools that can stably track the heterochromatin as it undergoes re-organization. In this work, we present an approach to track cHC and fHC based on the epigenetic hallmarks associated with them. Unlike conventional immunostaining approaches, we use small recombinant protein probes that allow us to dynamically monitor the HC by binding to modifications specific to the cHC and fHC, such as H3K9me3, DNA methylation and H3K27me3. We demonstrate the use of the probes to follow the changes in HC induced by drug perturbations at the single cell level. We also use the probe sets combinatorically to simultaneously track chromatin regions enriched in two selected epigenetic modifications using a FRET based approach that enabled us tracking distinctive chromatin features in situ.
Collapse
Affiliation(s)
- Agnes Mendonca
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Oscar F Sánchez
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Junkai Xie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Ana Carneiro
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Li Lin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47906, USA.
| |
Collapse
|
23
|
Song Y, Biernacka JM, Winham SJ. Testing and estimation of X-chromosome SNP effects: Impact of model assumptions. Genet Epidemiol 2021; 45:577-592. [PMID: 34082482 PMCID: PMC8453908 DOI: 10.1002/gepi.22393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/30/2021] [Accepted: 05/18/2021] [Indexed: 12/16/2022]
Abstract
Interest in analyzing X chromosome single nucleotide polymorphisms (SNPs) is growing and several approaches have been proposed. Prior studies have compared power of different approaches, but bias and interpretation of coefficients have received less attention. We performed simulations to demonstrate the impact of X chromosome model assumptions on effect estimates. We investigated the coefficient biases of SNP and sex effects with commonly used models for X chromosome SNPs, including models with and without assumptions of X chromosome inactivation (XCI), and with and without SNP–sex interaction terms. Sex and SNP coefficient biases were observed when assumptions made about XCI and sex differences in SNP effect in the analysis model were inconsistent with the data‐generating model. However, including a SNP–sex interaction term often eliminated these biases. To illustrate these findings, estimates under different genetic model assumptions are compared and interpreted in a real data example. Models to analyze X chromosome SNPs make assumptions beyond those made in autosomal variant analysis. Assumptions made about X chromosome SNP effects should be stated clearly when reporting and interpreting X chromosome associations. Fitting models with SNP × Sex interaction terms can avoid reliance on assumptions, eliminating coefficient bias even in the absence of sex differences in SNP effect.
Collapse
Affiliation(s)
- Yilin Song
- Department of Biostatistics, University of Washington, Seattle, Washington, USA.,Department of Mathematics, Statistics, and Computer Science, St. Olaf College, Northfield, Minnesota, USA
| | - Joanna M Biernacka
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Stacey J Winham
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
24
|
Nag DK, Dieme C, Lapierre P, Lasek-Nesselquist E, Kramer LD. RNA-Seq analysis of blood meal induced gene-expression changes in Aedes aegypti ovaries. BMC Genomics 2021; 22:396. [PMID: 34044772 PMCID: PMC8161926 DOI: 10.1186/s12864-021-07551-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 03/24/2021] [Indexed: 11/26/2022] Open
Abstract
Background Transmission of pathogens by vector mosquitoes is intrinsically linked with mosquito’s reproductive strategy because anautogenous mosquitoes require vertebrate blood to develop a batch of eggs. Each cycle of egg maturation is tightly linked with the intake of a fresh blood meal for most species. Mosquitoes that acquire pathogens during the first blood feeding can transmit the pathogens to susceptible hosts during subsequent blood feeding and also vertically to the next generation via infected eggs. Large-scale gene-expression changes occur following each blood meal in various tissues, including ovaries. Here we analyzed mosquito ovary transcriptome following a blood meal at three different time points to investigate blood-meal induced changes in gene expression in mosquito ovaries. Results We collected ovaries from Aedes aegypti that received a sugar meal or a blood meal on days 3, 10 and 20 post blood meal for transcriptome analysis. Over 4000 genes responded differentially following ingestion of a blood meal on day 3, and 660 and 780 genes on days 10 and 20, respectively. Proteins encoded by differentially expressed genes (DEGs) on day 3 include odorant binding proteins (OBPs), defense-specific proteins, and cytochrome P450 detoxification enzymes. In addition, we identified 580 long non-coding RNAs that are differentially expressed at three time points. Gene ontology analysis indicated that genes involved in peptidase activity, oxidoreductase activity, extracellular space, and hydrolase activity, among others were enriched on day 3. Although most of the DEGs returned to the nonsignificant level compared to the sugar-fed mosquito ovaries following oviposition on days 10 and 20, there remained differences in the gene expression pattern in sugar-fed and blood-fed mosquitoes. Conclusions Enrichment of OBPs following blood meal ingestion suggests that these genes may have other functions besides being part of the olfactory system. The enrichment of immune-specific genes and cytochrome P450 genes indicates that ovaries become well prepared to protect their germ line from any pathogens that may accompany the blood meal or from environmental contamination during oviposition, and to deal with the detrimental effects of toxic metabolites. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07551-z.
Collapse
Affiliation(s)
- Dilip K Nag
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, 12159, USA.
| | - Constentin Dieme
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, 12159, USA
| | - Pascal Lapierre
- Bioinformatics Core, Wadsworth Center, New York State Department of Health, Center for Medical Science, Albany, NY, 12208, USA
| | - Erica Lasek-Nesselquist
- Bioinformatics Core, Wadsworth Center, New York State Department of Health, Center for Medical Science, Albany, NY, 12208, USA.,Department of Biomedical Sciences, State University of New York, School of Public Health, Albany, NY, 12208, USA
| | - Laura D Kramer
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, 12159, USA.,Department of Biomedical Sciences, State University of New York, School of Public Health, Albany, NY, 12208, USA
| |
Collapse
|
25
|
de la Filia AG, Mongue AJ, Dorrens J, Lemon H, Laetsch DR, Ross L. Males That Silence Their Father's Genes: Genomic Imprinting of a Complete Haploid Genome. Mol Biol Evol 2021; 38:2566-2581. [PMID: 33706381 PMCID: PMC8136510 DOI: 10.1093/molbev/msab052] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genetic conflict is considered a key driver in the evolution of reproductive systems with non-Mendelian inheritance, where parents do not contribute equally to the genetic makeup of their offspring. One of the most extraordinary examples of non-Mendelian inheritance is paternal genome elimination (PGE), a form of haplodiploidy which has evolved repeatedly across arthropods. Under PGE, males are diploid but only transmit maternally inherited chromosomes, while the paternally inherited homologues are excluded from sperm. This asymmetric inheritance is thought to have evolved through an evolutionary arms race between the paternal and maternal genomes over transmission to future generations. In several PGE clades, such as the mealybugs (Hemiptera: Pseudococcidae), paternal chromosomes are not only eliminated from sperm, but also heterochromatinized early in development and thought to remain inactive, which could result from genetic conflict between parental genomes. Here, we present a parent-of-origin allele-specific transcriptome analysis in male mealybugs showing that expression is globally biased toward the maternal genome. However, up to 70% of somatically expressed genes are to some degree paternally expressed, while paternal genome expression is much more restricted in the male reproductive tract, with only 20% of genes showing paternal contribution. We also show that parent-of-origin-specific gene expression patterns are remarkably similar across genotypes, and that genes with completely biparental expression show elevated rates of molecular evolution. Our results provide the clearest example yet of genome-wide genomic imprinting in insects and enhance our understanding of PGE, which will aid future empirical tests of evolutionary theory regarding the origin of this unusual reproductive strategy.
Collapse
Affiliation(s)
- Andrés G de la Filia
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew J Mongue
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Jennifer Dorrens
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Hannah Lemon
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Dominik R Laetsch
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Laura Ross
- School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
26
|
Luo J, Qu L, Gao F, Lin J, Liu J, Lin A. LncRNAs: Architectural Scaffolds or More Potential Roles in Phase Separation. Front Genet 2021; 12:626234. [PMID: 33868368 PMCID: PMC8044363 DOI: 10.3389/fgene.2021.626234] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Biomolecules specifically aggregate in the cytoplasm and nucleus, driving liquid-liquid phase separation (LLPS) formation and diverse biological processes. Extensive studies have focused on revealing multiple functional membraneless organelles in both the nucleus and cytoplasm. Condensation compositions of LLPS, such as proteins and RNAs affecting the formation of phase separation, have been gradually unveiled. LncRNAs possessing abundant second structures usually promote phase separation formation by providing architectural scaffolds for diverse RNAs and proteins interaction in both the nucleus and cytoplasm. Beyond scaffolds, lncRNAs may possess more diverse functions, such as functioning as enhancer RNAs or buffers. In this review, we summarized current studies on the function of phase separation and its related lncRNAs, mainly in the nucleus. This review will facilitate our understanding of the formation and function of phase separation and the role of lncRNAs in these processes and related biological activities. A deeper understanding of the formation and maintaining of phase separation will be beneficial for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Jie Luo
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lei Qu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Feiran Gao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Jun Lin
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Aifu Lin
- College of Life Sciences, Zhejiang University, Hangzhou, China.,Breast Center of The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
Brekke TD, Moore EC, Campbell-Staton SC, Callahan CM, Cheviron ZA, Good JM. X chromosome-dependent disruption of placental regulatory networks in hybrid dwarf hamsters. Genetics 2021; 218:6168998. [PMID: 33710276 DOI: 10.1093/genetics/iyab043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/16/2021] [Indexed: 11/14/2022] Open
Abstract
Embryonic development in mammals is highly sensitive to changes in gene expression within the placenta. The placenta is also highly enriched for genes showing parent-of-origin or imprinted expression, which is predicted to evolve rapidly in response to parental conflict. However, little is known about the evolution of placental gene expression, or if divergence of placental gene expression plays an important role in mammalian speciation. We used crosses between two species of dwarf hamsters (Phodopus sungorus and Phodopus campbelli) to examine the genetic and regulatory underpinnings of severe placental overgrowth in their hybrids. Using quantitative genetic mapping and mitochondrial substitution lines, we show that overgrowth of hybrid placentas was primarily caused by genetic differences on the maternally inherited P. sungorus X chromosome. Mitochondrial interactions did not contribute to abnormal hybrid placental development, and there was only weak correspondence between placental disruption and embryonic growth. Genome-wide analyses of placental transcriptomes from the parental species and first- and second-generation hybrids revealed a central group of co-expressed X-linked and autosomal genes that were highly enriched for maternally biased expression. Expression of this gene network was strongly correlated with placental size and showed widespread misexpression dependent on epistatic interactions with X-linked hybrid incompatibilities. Collectively, our results indicate that the X chromosome is likely to play a prominent role in the evolution of placental gene expression and the accumulation of hybrid developmental barriers between mammalian species.
Collapse
Affiliation(s)
- Thomas D Brekke
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA.,School of Natural Sciences, Bangor University, Bangor, LL57 2UW, UK
| | - Emily C Moore
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
| | - Shane C Campbell-Staton
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA.,Department of Ecology and Evolutionary Biology; Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Colin M Callahan
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
| | - Zachary A Cheviron
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
| | - Jeffrey M Good
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
28
|
Rehnitz J, Youness B, Nguyen XP, Dietrich JE, Roesner S, Messmer B, Strowitzki T, Vogt PH. FMR1 expression in human granulosa cells and variable ovarian response: control by epigenetic mechanisms. Mol Hum Reprod 2021; 27:6119639. [PMID: 33493269 DOI: 10.1093/molehr/gaab001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 12/18/2020] [Indexed: 12/31/2022] Open
Abstract
In humans, FMR1 (fragile X mental retardation 1) is strongly expressed in granulosa cells (GCs) of the female germline and apparently controls efficiency of folliculogenesis. Major control mechanism(s) of the gene transcription rate seem to be based on the rate of CpG-methylation along the CpG island promoter. Conducting CpG-methylation-specific bisulfite-treated PCR assays and subsequent sequence analyses of both gene alleles, revealed three variably methylated CpG domains (FMR1-VMR (variably methylated region) 1, -2, -3) and one completely unmethylated CpG-region (FMR1-UMR) in this extended FMR1-promoter-region. FMR1-UMR in the core promoter was exclusively present only in female GCs, suggesting expression from both gene alleles, i.e., escaping the female-specific X-inactivation mechanism for the second gene allele. Screening for putative target sites of transcription factors binding with CpG methylation dependence, we identified a target site for the transcriptional activator E2F1 in FMR1-VMR3. Using specific electrophoretic mobility shift assays, we found E2F1 binding efficiency to be dependent on CpG-site methylation in its target sequence. Comparative analysis of these CpGs revealed that CpG 94-methylation in primary GCs of women with normal and reduced efficiency of folliculogenesis statistically significant differences. We therefore conclude that E2F1 binding to FMR1-VMR3 in human GCs is part of an epigenetic mechanism regulating the efficiency of human folliculogenesis. Our data indicate that epigenetic mechanisms may control GC FMR1-expression rates.
Collapse
Affiliation(s)
- Julia Rehnitz
- Division of Reproduction Genetics, Department of Gynecological Endocrinology and Fertility Disorders, University Women Hospital, Heidelberg, Germany.,Department of Gynecologic Endocrinology and Fertility Disorders, University Women Hospital, Heidelberg, Germany
| | - Berthe Youness
- Division of Reproduction Genetics, Department of Gynecological Endocrinology and Fertility Disorders, University Women Hospital, Heidelberg, Germany
| | - Xuan Phuoc Nguyen
- Division of Reproduction Genetics, Department of Gynecological Endocrinology and Fertility Disorders, University Women Hospital, Heidelberg, Germany
| | - Jens E Dietrich
- Department of Gynecologic Endocrinology and Fertility Disorders, University Women Hospital, Heidelberg, Germany
| | - Sabine Roesner
- Department of Gynecologic Endocrinology and Fertility Disorders, University Women Hospital, Heidelberg, Germany
| | - Birgitta Messmer
- Division of Reproduction Genetics, Department of Gynecological Endocrinology and Fertility Disorders, University Women Hospital, Heidelberg, Germany
| | - Thomas Strowitzki
- Department of Gynecologic Endocrinology and Fertility Disorders, University Women Hospital, Heidelberg, Germany
| | - Peter H Vogt
- Division of Reproduction Genetics, Department of Gynecological Endocrinology and Fertility Disorders, University Women Hospital, Heidelberg, Germany
| |
Collapse
|
29
|
DGK and DZHK position paper on genome editing: basic science applications and future perspective. Basic Res Cardiol 2021; 116:2. [PMID: 33449167 PMCID: PMC7810637 DOI: 10.1007/s00395-020-00839-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022]
Abstract
For a long time, gene editing had been a scientific concept, which was limited to a few applications. With recent developments, following the discovery of TALEN zinc-finger endonucleases and in particular the CRISPR/Cas system, gene editing has become a technique applicable in most laboratories. The current gain- and loss-of function models in basic science are revolutionary as they allow unbiased screens of unprecedented depth and complexity and rapid development of transgenic animals. Modifications of CRISPR/Cas have been developed to precisely interrogate epigenetic regulation or to visualize DNA complexes. Moreover, gene editing as a clinical treatment option is rapidly developing with first trials on the way. This article reviews the most recent progress in the field, covering expert opinions gathered during joint conferences on genome editing of the German Cardiac Society (DGK) and the German Center for Cardiovascular Research (DZHK). Particularly focusing on the translational aspect and the combination of cellular and animal applications, the authors aim to provide direction for the development of the field and the most frequent applications with their problems.
Collapse
|
30
|
Maksimenko OG, Fursenko DV, Belova EV, Georgiev PG. CTCF As an Example of DNA-Binding Transcription Factors Containing Clusters of C2H2-Type Zinc Fingers. Acta Naturae 2021; 13:31-46. [PMID: 33959385 PMCID: PMC8084297 DOI: 10.32607/actanaturae.11206] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
In mammals, most of the boundaries of topologically associating domains and all well-studied insulators are rich in binding sites for the CTCF protein. According to existing experimental data, CTCF is a key factor in the organization of the architecture of mammalian chromosomes. A characteristic feature of the CTCF is that the central part of the protein contains a cluster consisting of eleven domains of C2H2-type zinc fingers, five of which specifically bind to a long DNA sequence conserved in most animals. The class of transcription factors that carry a cluster of C2H2-type zinc fingers consisting of five or more domains (C2H2 proteins) is widely represented in all groups of animals. The functions of most C2H2 proteins still remain unknown. This review presents data on the structure and possible functions of these proteins, using the example of the vertebrate CTCF protein and several well- characterized C2H2 proteins in Drosophila and mammals.
Collapse
Affiliation(s)
- O. G. Maksimenko
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology RAS, Moscow, 119334 Russia
| | | | - E. V. Belova
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology RAS, Moscow, 119334 Russia
| | | |
Collapse
|
31
|
Fang H, Bonora G, Lewandowski JP, Thakur J, Filippova GN, Henikoff S, Shendure J, Duan Z, Rinn JL, Deng X, Noble WS, Disteche CM. Trans- and cis-acting effects of Firre on epigenetic features of the inactive X chromosome. Nat Commun 2020; 11:6053. [PMID: 33247132 PMCID: PMC7695720 DOI: 10.1038/s41467-020-19879-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Firre encodes a lncRNA involved in nuclear organization. Here, we show that Firre RNA expressed from the active X chromosome maintains histone H3K27me3 enrichment on the inactive X chromosome (Xi) in somatic cells. This trans-acting effect involves SUZ12, reflecting interactions between Firre RNA and components of the Polycomb repressive complexes. Without Firre RNA, H3K27me3 decreases on the Xi and the Xi-perinucleolar location is disrupted, possibly due to decreased CTCF binding on the Xi. We also observe widespread gene dysregulation, but not on the Xi. These effects are measurably rescued by ectopic expression of mouse or human Firre/FIRRE transgenes, supporting conserved trans-acting roles. We also find that the compact 3D structure of the Xi partly depends on the Firre locus and its RNA. In common lymphoid progenitors and T-cells Firre exerts a cis-acting effect on maintenance of H3K27me3 in a 26 Mb region around the locus, demonstrating cell type-specific trans- and cis-acting roles of this lncRNA.
Collapse
Affiliation(s)
- He Fang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Giancarlo Bonora
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Jordan P Lewandowski
- Department of Stem Cell and Regenerative Biology, Harvard University, Boston, MA, USA
| | | | - Galina N Filippova
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Zhijun Duan
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - John L Rinn
- Department of Biochemistry, University of Colorado at Boulder, Boulder, CO, USA
| | - Xinxian Deng
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| | - William S Noble
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA.
| | - Christine M Disteche
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
- Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
32
|
Bohnsack JP, Pandey SC. Histone modifications, DNA methylation, and the epigenetic code of alcohol use disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 156:1-62. [PMID: 33461661 DOI: 10.1016/bs.irn.2020.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Alcohol use disorder (AUD) is a leading cause of morbidity and mortality. Despite AUD's substantial contributions to lost economic productivity and quality of life, there are only a limited number of approved drugs for treatment of AUD in the United States. This chapter will update progress made on the epigenetic basis of AUD, with particular focus on histone post-translational modifications and DNA methylation and how these two epigenetic mechanisms interact to contribute to neuroadaptive processes leading to initiation, maintenance and progression of AUD pathophysiology. We will also evaluate epigenetic therapeutic strategies that have arisen from preclinical models of AUD and epigenetic biomarkers that have been discovered in human populations with AUD.
Collapse
Affiliation(s)
- John Peyton Bohnsack
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States; Jesse Brown VA Medical Center, Chicago, IL, United States; Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
33
|
Gahlaut V, Samtani H, Khurana P. Genome-wide identification and expression profiling of cytosine-5 DNA methyltransferases during drought and heat stress in wheat (Triticum aestivum). Genomics 2020; 112:4796-4807. [PMID: 32890700 DOI: 10.1016/j.ygeno.2020.08.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/17/2020] [Accepted: 08/25/2020] [Indexed: 01/25/2023]
Abstract
DNA methylation is a potential epigenetic mechanism that regulates genome stability, development, and stress mitigation in plants. It is mediated by cytosine-5 DNA methyltransferases (C5-MTases). We identified 52 wheat C5-MTases; and based on domain structure and phylogenetics, these 52 C5-MTases were classified into four sub-families including MET, CMT, DRM and DNMT2; and were distributed on 18 chromosomes. Cis-acting regulatory elements analysis identified abiotic stress-responsive, phytohormone-responsive, development-related and light-related elements in the promoters of TaC5-MTases. We also examined the transcript abundance of TaC5-MTases in different tissues, developmental stages and under abiotic stresses. Notably, most of the TaC5-MTases (TaCMT2, TaCMT3b, TaCMT3c, TaMET1, TaDRM10, TaDNMT2) showed differential regulation of their transcript abundance during drought and heat stress. Overall, the above results provide significant insights into the expression and the probable functions of TaC5-MTases and will also expedite future research programs to explore the mechanisms of epigenetic regulation in wheat.
Collapse
Affiliation(s)
- Vijay Gahlaut
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India.
| | - Harsha Samtani
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Paramjit Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| |
Collapse
|
34
|
Hosseini S, Meunier C, Nguyen D, Reimegård J, Johannesson H. Comparative analysis of genome-wide DNA methylation in Neurospora. Epigenetics 2020; 15:972-987. [PMID: 32228351 PMCID: PMC7518705 DOI: 10.1080/15592294.2020.1741758] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/14/2020] [Accepted: 02/27/2020] [Indexed: 12/18/2022] Open
Abstract
DNA methylation is an epigenetic mark that plays an important role in genetic regulation in eukaryotes. Major progress has been made in dissecting the molecular pathways that regulate DNA methylation. Yet, little is known about DNA methylation variation over evolutionary time. Here we present an investigation of the variation of DNA methylation and transposable element (TE) content in species of the filamentous ascomycetes Neurospora. We generated genome-wide DNA methylation data at single-base resolution, together with genomic TE content and gene expression data, of 10 individuals representing five closely related Neurospora species. We found that the methylation levels were low (ranging from 1.3% to 2.5%) and varied among the genomes in a species-specific way. Furthermore, we found that the TEs over 400 bp long were targeted by DNA methylation, and in all genomes, high methylation correlated with low GC, confirming a conserved link between DNA methylation and Repeat Induced Point (RIP) mutations in this group of fungi. Both TE content and DNA methylation pattern showed phylogenetic signal, and the species with the highest TE load (N. crassa) also exhibited the highest methylation level per TE. Our results suggest that DNA methylation is an evolvable trait and indicate that the genomes of Neurospora are shaped by an evolutionary arms race between TEs and host defence.
Collapse
Affiliation(s)
- Sara Hosseini
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Cécile Meunier
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- Department ECOBIO, UMR CNRS 6553, Université Rennes 1, Rennes, France
| | - Diem Nguyen
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Johan Reimegård
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Hanna Johannesson
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
35
|
Liu J, Ali M, Zhou Q. Establishment and evolution of heterochromatin. Ann N Y Acad Sci 2020; 1476:59-77. [PMID: 32017156 PMCID: PMC7586837 DOI: 10.1111/nyas.14303] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/31/2019] [Accepted: 01/02/2020] [Indexed: 12/12/2022]
Abstract
The eukaryotic genome is packaged into transcriptionally active euchromatin and silent heterochromatin, with most studies focused on the former encompassing the majority of protein-coding genes. The recent development of various sequencing techniques has refined this classic dichromatic partition and has better illuminated the composition, establishment, and evolution of this genomic and epigenomic "dark matter" in the context of topologically associated domains and phase-separated droplets. Heterochromatin includes genomic regions that can be densely stained by chemical dyes, which have been shown to be enriched for repetitive elements and epigenetic marks, including H3K9me2/3 and H3K27me3. Heterochromatin is usually replicated late, concentrated at the nuclear periphery or around nucleoli, and usually lacks highly expressed genes; and now it is considered to be as neither genetically inert nor developmentally static. Heterochromatin guards genome integrity against transposon activities and exerts important regulatory functions by targeting beyond its contained genes. Both its nucleotide sequences and regulatory proteins exhibit rapid coevolution between species. In addition, there are dynamic transitions between euchromatin and heterochromatin during developmental and evolutionary processes. We summarize here the ever-changing characteristics of heterochromatin and propose models and principles for the evolutionary transitions of heterochromatin that have been mainly learned from studies of Drosophila and yeast. Finally, we highlight the role of sex chromosomes in studying heterochromatin evolution.
Collapse
Affiliation(s)
- Jing Liu
- MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences InstituteZhejiang UniversityHangzhouChina
- Department of Molecular Evolution and DevelopmentUniversity of ViennaViennaAustria
| | - Mujahid Ali
- Department of Molecular Evolution and DevelopmentUniversity of ViennaViennaAustria
| | - Qi Zhou
- MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences InstituteZhejiang UniversityHangzhouChina
- Department of Molecular Evolution and DevelopmentUniversity of ViennaViennaAustria
- Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| |
Collapse
|
36
|
Abstract
Long non-coding RNA (lncRNA) Xist has emerged as a key modulator in dosage compensation by randomly inactivating one of the X chromosomes in mammals during embryonic development. Dysregulation of X chromosome inactivation (XCI) due to deletion of Xist has been proven to induce hematologic cancer in mice. However, this phenomenon is not consistent in humans as growing evidence suggests Xist can suppress or promote cancer growth in different organs of the human body. In this review, we discuss recent advances of XCI in human embryonic stem cells and provide an explanation for the seemingly contradictory roles of Xist in development of human cancer.
Collapse
Affiliation(s)
- Yung-Kang Chen
- School of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of General Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yun Yen
- Graduate Institute of Medical Informatics, Taipei Medical University, Taipei, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, 250 Wuxing Street, Taipei City, 110, Taiwan. .,Taipei Municipal Wanfang Hospital, Taipei Medical University, Taipei, Taiwan. .,Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
37
|
Bar S, Seaton LR, Weissbein U, Eldar-Geva T, Benvenisty N. Global Characterization of X Chromosome Inactivation in Human Pluripotent Stem Cells. Cell Rep 2020; 27:20-29.e3. [PMID: 30943402 DOI: 10.1016/j.celrep.2019.03.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/15/2019] [Accepted: 03/05/2019] [Indexed: 02/06/2023] Open
Abstract
Dosage compensation of sex-chromosome gene expression between male and female mammals is achieved via X chromosome inactivation (XCI) by employing epigenetic modifications to randomly silence one X chromosome during early embryogenesis. Human pluripotent stem cells (hPSCs) were reported to present various states of XCI that differ according to the expression of the long non-coding RNA XIST and the degree of X chromosome silencing. To obtain a comprehensive perspective on XCI in female hPSCs, we performed a large-scale analysis characterizing different XCI parameters in more than 700 RNA high-throughput sequencing samples. Our findings suggest differences in XCI status between most published samples of embryonic stem cells (ESCs) and induced PSCs (iPSCs). While the majority of iPSC lines maintain an inactive X chromosome, ESC lines tend to silence the expression of XIST and upregulate distal chromosomal regions. Our study highlights significant epigenetic heterogeneity within hPSCs, which may bear implications for their use in research and regenerative therapy.
Collapse
Affiliation(s)
- Shiran Bar
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Lev Roz Seaton
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Uri Weissbein
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Talia Eldar-Geva
- IVF Unit, Division of Obstetrics and Gynecology, Shaare Zedek Medical Center, Jerusalem, Israel; The Hebrew University School of Medicine, Jerusalem, Israel
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel.
| |
Collapse
|
38
|
DeOcesano-Pereira C, Machado RAC, Chudzinski-Tavassi AM, Sogayar MC. Emerging Roles and Potential Applications of Non-Coding RNAs in Glioblastoma. Int J Mol Sci 2020; 21:E2611. [PMID: 32283739 PMCID: PMC7178171 DOI: 10.3390/ijms21072611] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
Non-coding RNAs (ncRNAs) comprise a diversity of RNA species, which do not have the potential to encode proteins. Non-coding RNAs include two classes of RNAs, namely: short regulatory ncRNAs and long non-coding RNAs (lncRNAs). The short regulatory RNAs, containing up to 200 nucleotides, include small RNAs, such as microRNAs (miRNA), short interfering RNAs (siRNAs), piwi-interacting RNAs (piRNAs), and small nucleolar RNAs (snoRNAs). The lncRNAs include long antisense RNAs and long intergenic RNAs (lincRNAs). Non-coding RNAs have been implicated as master regulators of several biological processes, their expression being strictly regulated under physiological conditions. In recent years, particularly in the last decade, substantial effort has been made to investigate the function of ncRNAs in several human diseases, including cancer. Glioblastoma is the most common and aggressive type of brain cancer in adults, with deregulated expression of small and long ncRNAs having been implicated in onset, progression, invasiveness, and recurrence of this tumor. The aim of this review is to guide the reader through important aspects of miRNA and lncRNA biology, focusing on the molecular mechanism associated with the progression of this highly malignant cancer type.
Collapse
Affiliation(s)
- Carlos DeOcesano-Pereira
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, 1500 Vital Brazil Avenue, São Paulo 05503-900 SP, Brazil; (C.D.-P.); (A.M.C.-T.)
| | - Raquel A. C. Machado
- Department of Life Science and Medicine, University of Luxembourg, Campus Belval, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg;
| | - Ana Marisa Chudzinski-Tavassi
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, 1500 Vital Brazil Avenue, São Paulo 05503-900 SP, Brazil; (C.D.-P.); (A.M.C.-T.)
| | - Mari Cleide Sogayar
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo 05508-000, Brazil
- Cell and Molecular Therapy Center (NUCEL), School of Medicine, University of São Paulo, São Paulo 05360-130 SP, Brazil
| |
Collapse
|
39
|
Martone J, Mariani D, Desideri F, Ballarino M. Non-coding RNAs Shaping Muscle. Front Cell Dev Biol 2020; 7:394. [PMID: 32117954 PMCID: PMC7019099 DOI: 10.3389/fcell.2019.00394] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 12/26/2019] [Indexed: 12/19/2022] Open
Abstract
In 1957, Francis Crick speculated that RNA, beyond its protein-coding capacity, could have its own function. Decade after decade, this theory was dramatically boosted by the discovery of new classes of non-coding RNAs (ncRNAs), including long ncRNAs (lncRNAs) and circular RNAs (circRNAs), which play a fundamental role in the fine spatio-temporal control of multiple layers of gene expression. Recently, many of these molecules have been identified in a plethora of different tissues, and they have emerged to be more cell-type specific than protein-coding genes. These findings shed light on how ncRNAs are involved in the precise tuning of gene regulatory mechanisms governing tissues homeostasis. In this review, we discuss the recent findings on the mechanisms used by lncRNAs and circRNAs to sustain skeletal and cardiac muscle formation, paying particular attention to the technological developments that, over the last few years, have aided their genome-wide identification and study. Together with lncRNAs and circRNAs, the emerging contribution of Piwi-interacting RNAs and transfer RNA-derived fragments to myogenesis will be also discussed, with a glimpse on the impact of their dysregulation in muscle disorders, such as myopathies, muscle atrophy, and rhabdomyosarcoma degeneration.
Collapse
Affiliation(s)
- Julie Martone
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Davide Mariani
- Center for Human Technologies, Italian Institute of Technology, Genoa, Italy
| | - Fabio Desideri
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Monica Ballarino
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
40
|
Jons WA, Colby CL, McElroy SL, Frye MA, Biernacka JM, Winham SJ. Statistical methods for testing X chromosome variant associations: application to sex-specific characteristics of bipolar disorder. Biol Sex Differ 2019; 10:57. [PMID: 31818333 PMCID: PMC6902568 DOI: 10.1186/s13293-019-0272-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/21/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Bipolar disorder (BD) affects both sexes, but important sex differences exist with respect to its symptoms and comorbidities. For example, rapid cycling (RC) is more prevalent in females, and alcohol use disorder (AUD) is more prevalent in males. We hypothesize that X chromosome variants may be associated with sex-specific characteristics of BD. Few studies have explored the role of the X chromosome in BD, which is complicated by X chromosome inactivation (XCI). This process achieves "dosage compensation" for many X chromosome genes by silencing one of the two copies in females, and most statistical methods either ignore that XCI occurs or falsely assume that one copy is inactivated at all loci. We introduce new statistical methods that do not make these assumptions. METHODS We investigated this hypothesis in 1001 BD patients from the Genetic Association Information Network (GAIN) and 957 BD patients from the Mayo Clinic Bipolar Disorder Biobank. We examined the association of over 14,000 X chromosome single nucleotide polymorphisms (SNPs) with sex-associated BD traits using two statistical approaches that account for whether a SNP may be undergoing or escaping XCI. In the "XCI-informed approach," we fit a sex-adjusted logistic regression model assuming additive genetic effects where we coded the SNP either assuming one copy is expressed or two copies are expressed based on prior knowledge about which regions are inactivated. In the "XCI-robust approach," we fit a logistic regression model with sex, SNP, and SNP-sex interaction effects that is flexible to whether the region is inactivated or escaping XCI. RESULTS Using the "XCI-informed approach," which considers only the main effect of SNP and does not allow the SNP effect to differ by sex, no significant associations were identified for any of the phenotypes. Using the "XCI-robust approach," intergenic SNP rs5932307 was associated with BD (P = 8.3 × 10-8), with a stronger effect in females (odds ratio in males (ORM) = 1.13, odds ratio in females for a change of two allele copies (ORW2) = 3.86). CONCLUSION X chromosome association studies should employ methods which account for its unique biology. Future work is needed to validate the identified associations with BD, to formally assess the performance of both approaches under different true genetic architectures, and to apply these approaches to study sex differences in other conditions.
Collapse
Affiliation(s)
- William A. Jons
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905 USA
| | - Colin L. Colby
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905 USA
| | - Susan L. McElroy
- Lindner Center of HOPE, University of Cincinnati College of Medicine, Mason, OH 45040 USA
| | - Mark A. Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905 USA
| | - Joanna M. Biernacka
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905 USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905 USA
| | - Stacey J. Winham
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
41
|
Bordt EA, Ceasrine AM, Bilbo SD. Microglia and sexual differentiation of the developing brain: A focus on ontogeny and intrinsic factors. Glia 2019; 68:1085-1099. [PMID: 31743527 DOI: 10.1002/glia.23753] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/24/2019] [Accepted: 10/29/2019] [Indexed: 12/15/2022]
Abstract
Sexual differentiation of the brain during early development likely underlies the strong sex biases prevalent in many neurological conditions. Mounting evidence indicates that microglia, the innate immune cells of the central nervous system, are intricately involved in these sex-specific processes of differentiation. In this review, we synthesize literature demonstrating sex differences in microglial number, morphology, transcriptional state, and functionality throughout spatiotemporal development as well as highlight current literature regarding ontogeny of microglia. Along with vanRyzin et al. in this issue, we explore the idea that differences in microglia imparted by chromosomal or ontogeny-related programming can influence microglial-driven sexual differentiation of the brain, as well as the idea that extrinsic differences in the male and female brain microenvironment may in turn impart sex differences in microglia.
Collapse
Affiliation(s)
- Evan A Bordt
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital for Children, Harvard Medical School, Boston, Massachusetts
| | - Alexis M Ceasrine
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina
| | - Staci D Bilbo
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital for Children, Harvard Medical School, Boston, Massachusetts.,Department of Psychology and Neuroscience, Duke University, Durham, North Carolina
| |
Collapse
|
42
|
Wang Y, Buyse J, Courousse N, Tesseraud S, Métayer-Coustard S, Berri C, Schallier S, Everaert N, Collin A. Effects of sex and fasting/refeeding on hepatic AMPK signaling in chickens (Gallus gallus). Comp Biochem Physiol A Mol Integr Physiol 2019; 240:110606. [PMID: 31676410 DOI: 10.1016/j.cbpa.2019.110606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/10/2019] [Accepted: 10/18/2019] [Indexed: 11/16/2022]
Abstract
The alpha-1 isoform of chicken AMPK situates on the Z-chromosome, in contrast, the other isoforms in birds and the mammalian AMPKα1 are located on the autosomes. The present study aimed to investigate the role of hepatic AMPK signaling in adaptation to nutritional status and the potential sex-specific response in chickens. Hepatic genes and proteins were compared between the two sexes immediately after hatching. From 20d of age, chicks from each sex received feed treatments: Control was fed ad libitum; Fasted was starved for 24 h; Refed was fed for 4 h after a 24 h fasting. As a result, hepatic AMPKα1 mRNA level in males was significantly higher at both ages compared to females, due to the presence of Z-chromosomes. However, this did not make this kinase "male-bias" as it was eventually compensated at a translational level, which was not reported in previous studies. The protein levels and activation of AMPKα were even lower in newly-hatched male compared to female chicks, accompanied with a higher FAS and SREBP-1 gene expressions. Accordingly, hepatic G6PC2 mRNA levels in males were significantly lower associated with lower plasma glucose levels after hatching. Fasting activated hepatic AMPK, which in turn inhibited gene expression of GS, FAS and SREBP-1, and stimulated the downstream G6PC2 in both sexes. These changes recovered after refeeding. In conclusion, AMPK plays a role in adaptation to nutritional environment for both sexes. The Z-linked AMPK did not exert a sex-specific signaling, due to a "translational compensation" of AMPKα1.
Collapse
Affiliation(s)
- Yufeng Wang
- Laboratory of Livestock Physiology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, 3001 Leuven, Belgium
| | - Johan Buyse
- Laboratory of Livestock Physiology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, 3001 Leuven, Belgium.
| | | | | | | | - Cécile Berri
- BOA, INRA, Université de Tours, 37380 Nouzilly, France
| | - Seline Schallier
- Laboratory of Livestock Physiology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, 3001 Leuven, Belgium
| | - Nadia Everaert
- Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Anne Collin
- BOA, INRA, Université de Tours, 37380 Nouzilly, France
| |
Collapse
|
43
|
Signatures of replication timing, recombination, and sex in the spectrum of rare variants on the human X chromosome and autosomes. Proc Natl Acad Sci U S A 2019; 116:17916-17924. [PMID: 31427530 PMCID: PMC6731651 DOI: 10.1073/pnas.1900714116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The sources of human germline mutations are poorly understood. Part of the difficulty is that mutations occur very rarely, and so direct pedigree-based approaches remain limited in the numbers that they can examine. To address this problem, we consider the spectrum of low-frequency variants in a dataset (Genome Aggregation Database, gnomAD) of 13,860 human X chromosomes and autosomes. X-autosome differences are reflective of germline sex differences and have been used extensively to learn about male versus female mutational processes; what is less appreciated is that they also reflect chromosome-level biochemical features that differ between the X and autosomes. We tease these components apart by comparing the mutation spectrum in multiple genomic compartments on the autosomes and between the X and autosomes. In so doing, we are able to ascribe specific mutation patterns to replication timing and recombination and to identify differences in the types of mutations that accrue in males and females. In particular, we identify C > G as a mutagenic signature of male meiotic double-strand breaks on the X, which may result from late repair. Our results show how biochemical processes of damage and repair in the germline interact with sex-specific life history traits to shape mutation patterns on both the X chromosome and autosomes.
Collapse
|
44
|
Sarmiento L, Svensson J, Barchetta I, Giwercman A, Cilio CM. Copy number of the X-linked genes TLR7 and CD40L influences innate and adaptive immune responses. Scand J Immunol 2019; 90:e12776. [PMID: 31069824 DOI: 10.1111/sji.12776] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 12/29/2022]
Abstract
The number of the X chromosome-linked genes has been previously suggested to influence immune responses and the development of autoimmune diseases. In the present study, we aimed at evaluating the level of expression of CD40L (an X-linked gene involved in adaptive immunity) and TLR7 (an X-linked gene involved in innate immunity) in a variety of different karyotypes. Those included males, females and patients with X chromosome aneuploidy. Healthy females (46, XX; n = 10) and healthy males (46, XY; n = 10) were compared to females with Turner syndrome (TS) (45, X; n = 11) and males with Klinefelter syndrome (KS) (47, XXY; n = 5). Stimulation of peripheral blood mononuclear cells (PBMCs) with PMA and ionomycin resulted in higher percentage of CD3 + CD40L+ T cells (P < 0.001) and higher level expression of CD40L in T cell (P < 0.001) in female and KS patients compared with male and TS patients. TLR7-mediated IFN-alpha production by HLADR + CD3- CD19- cells was significantly upregulated in healthy women compared with healthy males, TS and KS patients (P < 0.001). TLR7 agonist-stimulated PBMCs from healthy females and KS patients expressed significantly higher levels of TLR7 mRNA than those from male and TS patients (P < 0.05). The increased expression of the X-linked genes TLR7 and CD40L in healthy females and KS patients suggests that the presence of two X chromosomes plays a major role in enhancing both innate and adaptive immune responses. These results may contribute to the explanation of sex-based differences in immune biology and the sex bias in predisposition to autoimmune diseases.
Collapse
Affiliation(s)
- Luis Sarmiento
- Cellular Autoimmunity Unit, Department of Clinical Sciences, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Johan Svensson
- Department of Pediatrics, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Ilaria Barchetta
- Cellular Autoimmunity Unit, Department of Clinical Sciences, Skåne University Hospital, Lund University, Malmö, Sweden.,Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Aleksander Giwercman
- Molecular Reproductive Medicine, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Corrado M Cilio
- Cellular Autoimmunity Unit, Department of Clinical Sciences, Skåne University Hospital, Lund University, Malmö, Sweden
| |
Collapse
|
45
|
Mendonça ADS, Silveira MM, Rios ÁFL, Mangiavacchi PM, Caetano AR, Dode MAN, Franco MM. DNA methylation and functional characterization of the XIST gene during in vitro early embryo development in cattle. Epigenetics 2019; 14:568-588. [PMID: 30925851 DOI: 10.1080/15592294.2019.1600828] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
XIST, in association with the shorter ncRNA RepA, are essential for the initiation of X chromosome inactivation (XCI) in mice. The molecular mechanisms controlling XIST and RepA expression are well characterized in that specie. However, little is known in livestock. We aimed to characterize the DNA methylation status along the 5' portion of XIST and to characterize its transcriptional profile during early development in cattle. Three genomic regions of XIST named here as promoter, RepA and DMR1 had their DNA methylation status characterized in gametes and embryos. Expression profile of XIST was evaluated, including sense and antisense transcription. Oocytes showed higher levels of methylation than spermatozoa that was demethylated. DMR1 was hypermethylated throughout oogenesis. At the 8-16-cell embryo stage DMR1 was completed demethylated. Interestingly, RepA gain methylation during oocyte maturation and was demethylated at the blastocyst stage, later than DMR1. These results suggest that DMR1 and RepA are transient differentially methylated regions in cattle. XIST RNA was detected in matured oocytes and in single cells from the 2-cell to the morula stage, confirming the presence of maternal and embryonic transcripts. Sense and antisense transcripts were detected along the XIST in blastocyst. In silico analysis identified 63 novel transcript candidates at bovine XIST locus from both the plus and minus strands. Taking together these results improve our understanding of the molecular mechanisms involved in XCI initiation in cattle. This information may be useful for the improvement of assisted reproductive technologies in livestock considering that in vitro conditions may impair epigenetic reprogramming.
Collapse
Affiliation(s)
- Anelise Dos Santos Mendonça
- a Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology , Parque Estação Biológica , Brasília , Brazil.,b Institute of Genetics and Biochemistry , Federal University of Uberlândia , Umuarama , Brazil.,c Federal Institute of Education, Science and Technology of Piauí , Uruçuí Campus , Portal dos Cerrados , Brazil
| | - Márcia Marques Silveira
- a Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology , Parque Estação Biológica , Brasília , Brazil.,b Institute of Genetics and Biochemistry , Federal University of Uberlândia , Umuarama , Brazil
| | - Álvaro Fabrício Lopes Rios
- d Biotechnology Laboratory, Center of Biosciences and Biotechnology , North Fluminense State University , Campos dos Goytacazes , Brazil
| | - Paula Magnelli Mangiavacchi
- e Laboratory of Reproduction and Animal Genetic Improvement, Center for Agricultural Sciences and Technologies , North Fluminense State University , Campos dos Goytacazes , Brazil
| | - Alexandre Rodrigues Caetano
- f Embrapa Genetic Resources and Biotechnology , Parque Estação Biológica , Brasília , Brazil.,g School of Agriculture and Veterinary Medicine , University of Brasília, Darcy Ribeiro Campus , Brasília , Brazil
| | - Margot Alves Nunes Dode
- a Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology , Parque Estação Biológica , Brasília , Brazil.,g School of Agriculture and Veterinary Medicine , University of Brasília, Darcy Ribeiro Campus , Brasília , Brazil
| | - Maurício Machaim Franco
- a Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology , Parque Estação Biológica , Brasília , Brazil.,b Institute of Genetics and Biochemistry , Federal University of Uberlândia , Umuarama , Brazil.,h Faculty of Veterinary Medicine , Federal University of Uberlândia , Umuarama , Brazil
| |
Collapse
|
46
|
Abstract
Mammalian sex chromosomes evolved from an ordinary pair of autosomes. The X chromosome is highly conserved, whereas the Y chromosome varies among species in size, structure, and gene content. Unlike autosomes that contain randomly mixed collections of genes, the sex chromosomes are enriched in testis-biased genes related to sexual development and reproduction, particularly in spermatogenesis and male fertility. This review focuses on how sex chromosome dosage compensation takes place and why meiotic sex chromosome inactivation occurs during spermatogenesis. Furthermore, the review also emphasizes how testis-biased genes are enriched on the sex chromosomes and their functions in male fertility. It is concluded that sex chromosomes are critical to sexual development and male fertility; however, our understanding of how sex chromosome genes direct sexual development and fertility has been hampered by the structural complexities of the sex chromosomes and by the multicopy nature of the testis gene families that also play a role in immunity, cancer development, and brain function.
Collapse
Affiliation(s)
- Wan-Sheng Liu
- Department of Animal Science, Center for Reproductive Biology and Health, College of Agricultural Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
47
|
An X, Ma H, Han P, Zhu C, Cao B, Bai Y. Genome-wide differences in DNA methylation changes in caprine ovaries between oestrous and dioestrous phases. J Anim Sci Biotechnol 2018; 9:85. [PMID: 30524725 PMCID: PMC6277999 DOI: 10.1186/s40104-018-0301-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/22/2018] [Indexed: 12/22/2022] Open
Abstract
Background DNA methylation plays a vital role in reproduction. Entire genome DNA methylation changes during the oestrous phase (ES) and dioestrous phase (DS) in the ovaries of Guanzhong dairy goats were investigated using bisulphite sequencing to understand the molecular biological mechanisms of these goats’ oestrous cycle. Results We discovered distinct genome-wide DNA methylation patterns in ES and DS ovaries. A total of 26,910 differentially methylated regions were upregulated and 21,453 differentially methylated regions were downregulated in the ES samples compared with the DS samples (P-values ≤0.05 and fold change of methylation ratios ≥2). Differentially methylated region analysis showed hypomethylation in the gene body regions and hypermethylation in the joining region between upstream regions and gene bodies. The methylation ratios of the STAR, FGF2, FGF12, BMP5 and SMAD6 genes in the ES samples were lower than those of the DS samples (P-values ≤0.05 and fold change of methylation ratios ≥2). Conversely, the methylation ratios of the EGFR, TGFBR2, IGF2BP1 and MMD2 genes increased in the ES samples compared with the DS samples. In addition, 223 differentially methylated genes were found in the GnRH signalling pathway (KO04912), ovarian steroidogenesis pathway (KO04913), oestrogen signalling pathway (KO04915), oxytocin signalling pathway (KO04921), insulin secretion pathway (KO04911) and MAPK signalling pathway (KO04010). Conclusions This study is the first large-scale comparison of the high-resolution DNA methylation landscapes of oestrous and dioestrous ovaries from dairy goats. Previous studies and our investigations have shown that the NR5A2, STAR, FGF2 and BMP5 genes might have potential application value in regulating caprine oestrus. Electronic supplementary material The online version of this article (10.1186/s40104-018-0301-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaopeng An
- 1College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100 People's Republic of China
| | - Haidong Ma
- 1College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100 People's Republic of China
| | - Peng Han
- 1College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100 People's Republic of China
| | - Chao Zhu
- 1College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100 People's Republic of China
| | - Binyun Cao
- 1College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100 People's Republic of China
| | - Yueyu Bai
- Animal Health Supervision Institute of Henan Province, No. 91 Jingsan Road, Zhengzhou, Henan 450008 People's Republic of China
| |
Collapse
|
48
|
Graves JAM. Marsupial genomics meet marsupial reproduction. Reprod Fertil Dev 2018; 31:1181-1188. [PMID: 30482268 DOI: 10.1071/rd18234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/08/2018] [Indexed: 11/23/2022] Open
Abstract
We came from very different backgrounds, with different skills and interests. Marilyn Renfree was recognised as 'a giant of marsupial embryology'; I had spent my working life studying genes and chromosomes. We teamed up out of mutual respect (awe on my side) to form, with Des Cooper, the ARC Centre of Excellence in Kangaroo Genomics. This is the story of how our collaboration came to be, and what it has produced for our knowledge of some of the world's most remarkable animals.
Collapse
|
49
|
Zhang H, Ali A, Hou F, Wu T, Guo D, Zeng X, Wang F, Zhao H, Chen X, Xu P, Wu X. Effects of ploidy variation on promoter DNA methylation and gene expression in rice (Oryza sativa L.). BMC PLANT BIOLOGY 2018; 18:314. [PMID: 30497392 PMCID: PMC6267922 DOI: 10.1186/s12870-018-1553-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Polyploidy, or whole-genome duplication (WGD) promotes genetic diversification in plants. However, whether WGD is accompanied by epigenetic regulation especially DNA methylation remains yet elusive. Methylation of different region in genomic DNA play discrete role in gene regulation and developmental processes in plants. RESULTS In our study, we used an apomictic rice line (SARII-628) that produces twin seedlings of different ploidy for methylated DNA immunoprecipitation sequencing (MeDIP-seq). We compared the level of methylation and mRNA expression in three different (CG, CHG, and CHH) sequence contexts of promoter region among haploid (1X), diploid (2X), and triploid (3X) seedling. We used MeDIP-Seq analysis of 14 genes to investigate whole genome DNA methylation and found that relative level of DNA methylation across different ploidy was in following order e.g. diploid > triploid > haploid. GO functional classification of differentially methylated genes into 9 comparisons group of promoter, intergenic and intragenic region discovered, these genes were mostly enriched for cellular component, molecular function, and biological process. By the comparison of methylome data, digital gene expression (DGE), mRNA expression profile, and Q-PCR findings LOC_ Os07g31450 and LOC_ Os01g59320 were analyzed for BS-Seq (Bisulphite sequencing). CONCLUSIONS We found that (1) The level of the promoter DNA methylation is negatively correlated with gene expression within each ploidy level. (2) Among all ploidy levels, CG sequence context had highest methylation frequency, and demonstrated that the high CG methylation did reduce gene expression change suggesting that DNA methylation exert repressive function and ensure genome stability during WGD. (3) Alteration in ploidy (from diploid to haploid, or diploid to triploid) reveals supreme changes in methylation frequency of CHH sequence context. Our finding will contribute an understanding towards lower stability of CHH sequence context and educate the effect of promoter region methylation during change in ploidy state in rice.
Collapse
Affiliation(s)
- Hongyu Zhang
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Asif Ali
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Feixue Hou
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Tingkai Wu
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Daiming Guo
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Xiufeng Zeng
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Fangfang Wang
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Huixia Zhao
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Xiaoqiong Chen
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Peizhou Xu
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Xianjun Wu
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| |
Collapse
|
50
|
Rafiee A, Riazi-Rad F, Havaskary M, Nuri F. Long noncoding RNAs: regulation, function and cancer. Biotechnol Genet Eng Rev 2018; 34:153-180. [PMID: 30071765 DOI: 10.1080/02648725.2018.1471566] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Long noncoding RNAs (lncRNAs) are non-protein-coding RNA transcripts that exert a key role in many cellular processes and have potential toward addressing disease etiology. Here, we review existing noncoding RNA classes and then describe a variety of mechanisms and functions by which lncRNAs regulate gene expression such as chromatin remodeling, genomic imprinting, gene transcription and post-transcriptional processing. We also examine several lncRNAs that contribute significantly to pathogenesis, oncogenesis, tumor suppression and cell cycle arrest of diverse cancer types and also give a summary of the pathways that lncRNAs might be involved in.
Collapse
Affiliation(s)
- Aras Rafiee
- a Department of Biology , Central Tehran Branch, Islamic Azad University , Tehran , Iran
| | - Farhad Riazi-Rad
- b Immunology Department , Pasteur institute of Iran , Tehran , Iran
| | - Mohammad Havaskary
- c Young Researchers Club, Central Tehran Branch, Islamic Azad University , Tehran , Iran
| | - Fatemeh Nuri
- d Department of Biology , Central Tehran Branch, Islamic Azad University , Tehran , Iran
| |
Collapse
|