1
|
Prichard A, Johansson M, Kirkpatrick DT, Clarke DJ. Histone H3 tail modifications required for meiosis in Saccharomyces cerevisiae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.09.627563. [PMID: 39713340 PMCID: PMC11661218 DOI: 10.1101/2024.12.09.627563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Histone tail phosphorylation has diverse effects on a myriad of cellular processes, including cell division, and is highly conserved throughout eukaryotes. Histone H3 phosphorylation at threonine 3 (H3T3) during mitosis occurs at the inner centromeres and is required for proper biorientation of chromosomes on the mitotic spindle. While H3T3 is also phosphorylated during meiosis, a possible role for this modification has not been tested. Here, we asked if H3T3 phosphorylation (H3T3ph) is important for meiotic division by quantifying sporulation efficiency and spore viability in Saccharomyces cerevisiae mutants with a T3A amino acid substitution. The T3A substitution resulted in greatly reduced sporulation efficiency and reduced spore viability. Analysis of two other H3 tail mutants, K4A and S10A, revealed different effects on sporulation efficiency and spore viability compared to the T3A mutant, suggesting that these phenotypes are due to failures in distinct functions. To determine if the spindle checkpoint promotes spore viability of the T3A mutant, the MAD2 gene required for the spindle assembly checkpoint was deleted to abolish spindle assembly checkpoint function. This resulted in a severe reduction in spore viability following meiosis. Altogether, the data reveal a critical function for histone H3 threonine 3 that requires monitoring by the spindle checkpoint to ensure successful completion of meiosis.
Collapse
Affiliation(s)
- Amy Prichard
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN, USA
| | - Marnie Johansson
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN, USA
| | - David T. Kirkpatrick
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN, USA
| | - Duncan J. Clarke
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
2
|
Neiman AM. Membrane and organelle rearrangement during ascospore formation in budding yeast. Microbiol Mol Biol Rev 2024; 88:e0001324. [PMID: 38899894 PMCID: PMC11426023 DOI: 10.1128/mmbr.00013-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
SUMMARYIn ascomycete fungi, sexual spores, termed ascospores, are formed after meiosis. Ascospore formation is an unusual cell division in which daughter cells are created within the cytoplasm of the mother cell by de novo generation of membranes that encapsulate each of the haploid chromosome sets created by meiosis. This review describes the molecular events underlying the creation, expansion, and closure of these membranes in the budding yeast, Saccharomyces cerevisiae. Recent advances in our understanding of the regulation of gene expression and the dynamic behavior of different membrane-bound organelles during this process are detailed. While less is known about ascospore formation in other systems, comparison to the distantly related fission yeast suggests that the molecular events will be broadly similar throughout the ascomycetes.
Collapse
Affiliation(s)
- Aaron M Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
3
|
Nie H, Kong X, Song X, Guo X, Li Z, Fan C, Zhai B, Yang X, Wang Y. Roles of histone post-translational modifications in meiosis†. Biol Reprod 2024; 110:648-659. [PMID: 38224305 DOI: 10.1093/biolre/ioae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024] Open
Abstract
Histone post-translational modifications, such as phosphorylation, methylation, acetylation, and ubiquitination, play vital roles in various chromatin-based cellular processes. Meiosis is crucial for organisms that depend on sexual reproduction to produce haploid gametes, during which chromatin undergoes intricate conformational changes. An increasing body of evidence is clarifying the essential roles of histone post-translational modifications during meiotic divisions. In this review, we concentrate on the post-translational modifications of H2A, H2B, H3, and H4, as well as the linker histone H1, that are required for meiosis, and summarize recent progress in understanding how these modifications influence diverse meiotic events. Finally, challenges and exciting open questions for future research in this field are discussed. Summary Sentence Diverse histone post-translational modifications exert important effects on the meiotic cell cycle and these "histone codes" in meiosis might lead to the development of novel therapeutic strategies against reproductive diseases.
Collapse
Affiliation(s)
- Hui Nie
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Xueyu Kong
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Xiaoyu Song
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Xiaoyu Guo
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Zhanyu Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Cunxian Fan
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Binyuan Zhai
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Xiao Yang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Ying Wang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| |
Collapse
|
4
|
de la Iglesia A, Jodar M, Oliva R, Castillo J. Insights into the sperm chromatin and implications for male infertility from a protein perspective. WIREs Mech Dis 2023; 15:e1588. [PMID: 36181449 DOI: 10.1002/wsbm.1588] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022]
Abstract
Male germ cells undergo an extreme but fascinating process of chromatin remodeling that begins in the testis during the last phase of spermatogenesis and continues through epididymal sperm maturation. Most of the histones are replaced by small proteins named protamines, whose high basicity leads to a tight genomic compaction. This process is epigenetically regulated at many levels, not only by posttranslational modifications, but also by readers, writers, and erasers, in a context of a highly coordinated postmeiotic gene expression program. Protamines are key proteins for acquiring this highly specialized chromatin conformation, needed for sperm functionality. Interestingly, and contrary to what could be inferred from its very specific DNA-packaging function across protamine-containing species, human sperm chromatin contains a wide spectrum of protamine proteoforms, including truncated and posttranslationally modified proteoforms. The generation of protamine knock-out models revealed not only chromatin compaction defects, but also collateral sperm alterations contributing to infertile phenotypes, evidencing the importance of sperm chromatin protamination toward the generation of a new individual. The unique features of sperm chromatin have motivated its study, applying from conventional to the most ground-breaking techniques to disentangle its peculiarities and the cellular mechanisms governing its successful conferment, especially relevant from the protein point of view due to the important epigenetic role of sperm nuclear proteins. Gathering and contextualizing the most striking discoveries will provide a global understanding of the importance and complexity of achieving a proper chromatin compaction and exploring its implications on postfertilization events and beyond. This article is categorized under: Reproductive System Diseases > Genetics/Genomics/Epigenetics Reproductive System Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Alberto de la Iglesia
- Molecular Biology of Reproduction and Development Research Group, Fundació Clínic per a la Recerca Biomèdica, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona (UB), Barcelona, Spain
| | - Meritxell Jodar
- Molecular Biology of Reproduction and Development Research Group, Fundació Clínic per a la Recerca Biomèdica, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona (UB), Barcelona, Spain.,Biochemistry and Molecular Genetics Service, Hospital Clinic, Barcelona, Spain
| | - Rafael Oliva
- Molecular Biology of Reproduction and Development Research Group, Fundació Clínic per a la Recerca Biomèdica, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona (UB), Barcelona, Spain.,Biochemistry and Molecular Genetics Service, Hospital Clinic, Barcelona, Spain
| | - Judit Castillo
- Molecular Biology of Reproduction and Development Research Group, Fundació Clínic per a la Recerca Biomèdica, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
5
|
Odroniec A, Olszewska M, Kurpisz M. Epigenetic markers in the embryonal germ cell development and spermatogenesis. Basic Clin Androl 2023; 33:6. [PMID: 36814207 PMCID: PMC9948345 DOI: 10.1186/s12610-022-00179-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/25/2022] [Indexed: 02/24/2023] Open
Abstract
Spermatogenesis is the process of generation of male reproductive cells from spermatogonial stem cells in the seminiferous epithelium of the testis. During spermatogenesis, key spermatogenic events such as stem cell self-renewal and commitment to meiosis, meiotic recombination, meiotic sex chromosome inactivation, followed by cellular and chromatin remodeling of elongating spermatids occur, leading to sperm cell production. All the mentioned events are at least partially controlled by the epigenetic modifications of DNA and histones. Additionally, during embryonal development in primordial germ cells, global epigenetic reprogramming of DNA occurs. In this review, we summarized the most important epigenetic modifications in the particular stages of germ cell development, in DNA and histone proteins, starting from primordial germ cells, during embryonal development, and ending with histone-to-protamine transition during spermiogenesis.
Collapse
Affiliation(s)
- Amadeusz Odroniec
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60–479 Poznan, Poland
| | - Marta Olszewska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60–479 Poznan, Poland
| | - Maciej Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60–479 Poznan, Poland
| |
Collapse
|
6
|
Chou KY, Lee JY, Kim KB, Kim E, Lee HS, Ryu HY. Histone modification in Saccharomyces cerevisiae: A review of the current status. Comput Struct Biotechnol J 2023; 21:1843-1850. [PMID: 36915383 PMCID: PMC10006725 DOI: 10.1016/j.csbj.2023.02.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
The budding yeast Saccharomyces cerevisiae is a well-characterized and popular model system for investigating histone modifications and the inheritance of chromatin states. The data obtained from this model organism have provided essential and critical information for understanding the complexity of epigenetic interactions and regulation in eukaryotes. Recent advances in biotechnology have facilitated the detection and quantitation of protein post-translational modification (PTM), including acetylation, methylation, phosphorylation, ubiquitylation, sumoylation, and acylation, and led to the identification of several novel modification sites in histones. Determining the cellular function of these new histone markers is essential for understanding epigenetic mechanisms and their impact on various biological processes. In this review, we describe recent advances and current views on histone modifications and their effects on chromatin dynamics in S. cerevisiae.
Collapse
Key Words
- AdoMet, S-adenosylmethionine
- CAF-1, chromatin assembly factor-1
- CTD, C-terminal domain
- DSB, double-strand break
- E Glu, glutamic acid
- HAT, histone acetyltransferase
- HDAC, histone deacetylase
- Histone acetylation
- Histone acylation
- Histone methylation
- Histone phosphorylation
- Histone sumoylation
- Histone ubiquitylation
- JMJC, Jumonji C
- K Lys, lysine
- PTM, post-translational modification
- R Arg, arginine
- S, serine
- SAGA, Spt-Ada-Gcn5 acetyltransferase
- STUbL, SUMO-targeted ubiquitin ligase
- SUMO, small ubiquitin-like modifier
- T, threonine
- Y, tyrosine
Collapse
Affiliation(s)
- Kwon Young Chou
- School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jun-Yeong Lee
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kee-Beom Kim
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Eunjeong Kim
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyun-Shik Lee
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hong-Yeoul Ryu
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
7
|
Mao B, Zhang W, Zheng Y, Li D, Chen MY, Wang YF. Comparative phosphoproteomics reveal new candidates in the regulation of spermatogenesis of Drosophila melanogaster. INSECT SCIENCE 2022; 29:1703-1720. [PMID: 35271765 DOI: 10.1111/1744-7917.13031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
The most common phenotype induced by the endosymbiont Wolbachia in insects is cytoplasmic incompatibility, where none or fewer progenies can be produced when Wolbachia-infected males mate with uninfected females. This suggests that some modifications are induced in host sperms during spermatogenesis by Wolbachia. To identify the proteins whose phosphorylation states play essential roles in male reproduction in Drosophila melanogaster, we applied isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic strategy combined with titanium dioxide (TiO2 ) enrichment to compare the phosphoproteome of Wolbachia-infected with that of uninfected male reproductive systems in D. melanogaster. We identified 182 phosphopeptides, defining 140 phosphoproteins, that have at least a 1.2 fold change in abundance with a P-value of <0.05. Most of the differentially abundant phosphoproteins (DAPPs) were associated with microtubule cytoskeleton organization and spermatid differentiation. The DAPPs included proteins already known to be associated with spermatogenesis, as well as many not previously studied during this process. Six genes coding for DAPPs were knocked down, respectively, in Wolbachia-free fly testes. Among them, Slmap knockdown caused the most severe damage in spermatogenesis, with no mature sperm observed in seminal vesicles. Immunofluorescence staining showed that the formation of individualization complex composed of actin cones was completely disrupted. These results suggest that Wolbachia may induce wide changes in the abundance of phosphorylated proteins which are closely related to male reproduction. By identifying phospho-modulated proteins we also provide a significant candidate set for future studies on their roles in spermatogenesis.
Collapse
Affiliation(s)
- Bin Mao
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Wei Zhang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Ya Zheng
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Dong Li
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Meng-Yan Chen
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Yu-Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| |
Collapse
|
8
|
Sing TL, Brar GA, Ünal E. Gametogenesis: Exploring an Endogenous Rejuvenation Program to Understand Cellular Aging and Quality Control. Annu Rev Genet 2022; 56:89-112. [PMID: 35878627 PMCID: PMC9712276 DOI: 10.1146/annurev-genet-080320-025104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Gametogenesis is a conserved developmental program whereby a diploid progenitor cell differentiates into haploid gametes, the precursors for sexually reproducing organisms. In addition to ploidy reduction and extensive organelle remodeling, gametogenesis naturally rejuvenates the ensuing gametes, leading to resetting of life span. Excitingly, ectopic expression of the gametogenesis-specific transcription factor Ndt80 is sufficient to extend life span in mitotically dividing budding yeast, suggesting that meiotic rejuvenation pathways can be repurposed outside of their natural context. In this review, we highlight recent studies of gametogenesis that provide emerging insight into natural quality control, organelle remodeling, and rejuvenation strategies that exist within a cell. These include selective inheritance, programmed degradation, and de novo synthesis, all of which are governed by the meiotic gene expression program entailing many forms of noncanonical gene regulation. Finally, we highlight critical questions that remain in the field and provide perspective on the implications of gametogenesis research on human health span.
Collapse
Affiliation(s)
- Tina L Sing
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| | - Gloria A Brar
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| |
Collapse
|
9
|
Chigweshe L, MacQueen AJ, Holmes SG. Histone variant H2A.Z promotes meiotic chromosome axis organization in Saccharomyces cerevisiae. G3 GENES|GENOMES|GENETICS 2022; 12:6591205. [PMID: 35608312 PMCID: PMC9339299 DOI: 10.1093/g3journal/jkac128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 05/07/2022] [Indexed: 11/14/2022]
Abstract
Progression through meiosis is associated with significant reorganization of chromosome structure, regulated in part by changes in histones and chromatin. Prior studies observed defects in meiotic progression in yeast strains lacking the linker histone H1 or variant histone H2A.Z. To further define the contributions of these chromatin factors, we have conducted genetic and cytological analysis of cells undergoing meiosis in the absence of H1 and H2A.Z. We find that a spore viability defect observed in strains lacking H2A.Z can be partially suppressed if cells also lack histone H1, while the combined loss of both H1 and H2A.Z is associated with elevated gene conversion events. Cytological analysis of Red1 and Rec8 staining patterns indicates that a subset of cells lacking H2A.Z fail to assemble a proper chromosome axis, and the staining pattern of the synaptonemal complex protein Zip1 in htz1Δ/htz1Δ cells mimics that of cells deficient for Rec8-dependent meiotic cohesion. Our results suggest a role for H2A.Z in the establishment or maintenance of the meiotic chromosome axis, possibly by promoting the efficient chromosome cohesion.
Collapse
Affiliation(s)
- Lorencia Chigweshe
- Department of Molecular Biology and Biochemistry, Wesleyan University , Middletown, CT 06459, USA
| | - Amy J MacQueen
- Department of Molecular Biology and Biochemistry, Wesleyan University , Middletown, CT 06459, USA
| | - Scott G Holmes
- Department of Molecular Biology and Biochemistry, Wesleyan University , Middletown, CT 06459, USA
| |
Collapse
|
10
|
Etier A, Dumetz F, Chéreau S, Ponts N. Post-Translational Modifications of Histones Are Versatile Regulators of Fungal Development and Secondary Metabolism. Toxins (Basel) 2022; 14:toxins14050317. [PMID: 35622565 PMCID: PMC9145779 DOI: 10.3390/toxins14050317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/16/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Chromatin structure is a major regulator of DNA-associated processes, such as transcription, DNA repair, and replication. Histone post-translational modifications, or PTMs, play a key role on chromatin dynamics. PTMs are involved in a wide range of biological processes in eukaryotes, including fungal species. Their deposition/removal and their underlying functions have been extensively investigated in yeasts but much less in other fungi. Nonetheless, the major role of histone PTMs in regulating primary and secondary metabolisms of filamentous fungi, including human and plant pathogens, has been pinpointed. In this review, an overview of major identified PTMs and their respective functions in fungi is provided, with a focus on filamentous fungi when knowledge is available. To date, most of these studies investigated histone acetylations and methylations, but the development of new methodologies and technologies increasingly allows the wider exploration of other PTMs, such as phosphorylation, ubiquitylation, sumoylation, and acylation. Considering the increasing number of known PTMs and the full range of their possible interactions, investigations of the subsequent Histone Code, i.e., the biological consequence of the combinatorial language of all histone PTMs, from a functional point of view, are exponentially complex. Better knowledge about histone PTMs would make it possible to efficiently fight plant or human contamination, avoid the production of toxic secondary metabolites, or optimize the industrial biosynthesis of certain beneficial compounds.
Collapse
|
11
|
DNA Damage-Induced Phosphorylation of Histone H2A at Serine 15 Is Linked to DNA End Resection. Mol Cell Biol 2021; 41:e0005621. [PMID: 34570618 DOI: 10.1128/mcb.00056-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The repair of DNA double-strand breaks (DSBs) occurs in chromatin, and several histone posttranslational modifications have been implicated in the process. Modifications of the histone H2A N-terminal tail have also been linked to DNA damage response, through acetylation or ubiquitination of lysine residues that regulate repair pathway choice. Here, we characterize a new DNA damage-induced phosphorylation on chromatin, at serine 15 of H2A in yeast. We show that this SQ motif functions independently of the classical S129 C-terminal site (γ-H2A) and that mutant-mimicking constitutive phosphorylation increases cell sensitivity to DNA damage. H2AS129ph is induced by Tel1ATM and Mec1ATR, and the loss of Lcd1ATRIP or Mec1 signaling decreases γ-H2A spreading distal to the DSB. In contrast, H2AS15ph is completely dependent on Lcd1ATRIP, indicating that this modification only happens when end resection is engaged. This is supported by an increase in replication protein A (RPA) and a decrease in DNA signal near the DSB in H2A-S15E phosphomimic mutants, indicating higher resection. In mammals, this serine is replaced by a lysine (H2AK15) which undergoes an acetyl-monoubiquityl switch to regulate binding of 53BP1 and resection. This regulation seems functionally conserved with budding yeast H2AS15 and 53BP1-homolog Rad9, using different posttranslational modifications between organisms but achieving the same function.
Collapse
|
12
|
Li Y, Mi P, Chen X, Wu J, Qin W, Shen Y, Zhang P, Tang Y, Cheng CY, Sun F. Dynamic Profiles and Transcriptional Preferences of Histone Modifications During Spermiogenesis. Endocrinology 2021; 162:5974117. [PMID: 33175103 DOI: 10.1210/endocr/bqaa210] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Indexed: 02/07/2023]
Abstract
During spermiogenesis, extensive histone modifications take place in developing haploid spermatids besides morphological alterations of the genetic material to form compact nuclei. Better understanding on the overall transcriptional dynamics and preferences of histones and enzymes involved in histone modifications may provide valuable information to dissect the epigenetic characteristics and unique chromatin status during spermiogenesis. Using single-cell RNA-Sequencing, the expression dynamics of histone variants, writers, erasers, and readers of histone acetylation and methylation, as well as histone phosphorylation, ubiquitination, and chaperones were assessed through transcriptome profiling during spermiogenesis. This approach provided an unprecedented panoramic perspective of the involving genes in epigenetic modifier/histone variant expression during spermiogenesis. Results reported here revealed the transcriptional ranks of histones, histone modifications, and their readers during spermiogenesis, emphasizing the unique preferences of epigenetic regulation in spermatids. These findings also highlighted the impact of spermatid metabolic preferences on epigenetic modifications. Despite the observed rising trend on transcription levels of all encoding genes and histone variants, the transcriptome profile of genes in histone modifications and their readers displayed a downward expression trend, suggesting that spermatid nuclei condensation is a progressive process that occurred in tandem with a gradual decrease in overall epigenetic activity during spermiogenesis.
Collapse
Affiliation(s)
- Yinchuan Li
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Panpan Mi
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xue Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Jiabao Wu
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou, China
| | - Weibing Qin
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou, China
| | - Yiqi Shen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Pingbao Zhang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Yunge Tang
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
13
|
Fulton MD, Dang T, Brown T, Zheng YG. Effects of substrate modifications on the arginine dimethylation activities of PRMT1 and PRMT5. Epigenetics 2020; 17:1-18. [PMID: 33380261 DOI: 10.1080/15592294.2020.1864170] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Histone arginine methylation is a prevalent posttranslational modification (PTM) in eukaryotic cells and contributes to the histone codes for epigenetic regulation of gene transcription. In this study, we determined how local changes on adjacent residues in the histone H4 substrate regulate arginine asymmetric dimethylation and symmetric dimethylation catalysed by the major protein arginine methyltransferase (PRMT) enzymes PRMT1 and PRMT5, respectively. We found that phosphorylation at histone H4 Ser-1 site (H4S1) was inhibitory to activities of PRMT1 and PRMT5 in both monomethylating and dimethylating H4R3. Also, a positively charged H4K5 was important for PRMT1 catalysis because acetylation of H4K5 or the loss of the H4K5 ε-amine had a similar effect in reducing the catalytic efficiency of asymmetric dimethylation of H4R3. An opposite effect was observed in that acetylation of H4K5 or the loss of the H4K5 ε-amine enhanced PRMT5-mediated symmetric dimethylation of H4R3. Furthermore, we observed that N-terminal acetylation of H4 modestly decreased asymmetric dimethylation of H4R3 by PRMT1 and symmetric dimethylation of H4R3 by PRMT5. This work highlights the significance of local chemical changes in the substrate to regulating PRMT activity and unravels the pattern complexities and subtleties of histone codes.
Collapse
Affiliation(s)
- Melody D Fulton
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia,USA
| | - Tran Dang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia,USA
| | - Tyler Brown
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia,USA
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia,USA
| |
Collapse
|
14
|
Paulissen SM, Hunt CA, Seitz BC, Slubowski CJ, Yu Y, Mucelli X, Truong D, Wallis Z, Nguyen HT, Newman-Toledo S, Neiman AM, Huang LS. A Noncanonical Hippo Pathway Regulates Spindle Disassembly and Cytokinesis During Meiosis in Saccharomyces cerevisiae. Genetics 2020; 216:447-462. [PMID: 32788308 PMCID: PMC7536847 DOI: 10.1534/genetics.120.303584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 08/09/2020] [Indexed: 11/18/2022] Open
Abstract
Meiosis in the budding yeast Saccharomyces cerevisiae is used to create haploid yeast spores from a diploid mother cell. During meiosis II, cytokinesis occurs by closure of the prospore membrane, a membrane that initiates at the spindle pole body and grows to surround each of the haploid meiotic products. Timely prospore membrane closure requires SPS1, which encodes an STE20 family GCKIII kinase. To identify genes that may activate SPS1, we utilized a histone phosphorylation defect of sps1 mutants to screen for genes with a similar phenotype and found that cdc15 shared this phenotype. CDC15 encodes a Hippo-like kinase that is part of the mitotic exit network. We find that Sps1 complexes with Cdc15, that Sps1 phosphorylation requires Cdc15, and that CDC15 is also required for timely prospore membrane closure. We also find that SPS1, like CDC15, is required for meiosis II spindle disassembly and sustained anaphase II release of Cdc14 in meiosis. However, the NDR-kinase complex encoded by DBF2/DBF20MOB1 which functions downstream of CDC15 in mitotic cells, does not appear to play a role in spindle disassembly, timely prospore membrane closure, or sustained anaphase II Cdc14 release. Taken together, our results suggest that the mitotic exit network is rewired for exit from meiosis II, such that SPS1 replaces the NDR-kinase complex downstream of CDC15.
Collapse
Affiliation(s)
- Scott M Paulissen
- Department of Biology, University of Massachusetts Boston, Massachusetts 02125
| | - Cindy A Hunt
- Department of Biology, University of Massachusetts Boston, Massachusetts 02125
| | - Brian C Seitz
- Department of Biology, University of Massachusetts Boston, Massachusetts 02125
| | | | - Yao Yu
- Department of Biochemistry and Cell Biology, Stony Brook University, New York 11794
| | - Xheni Mucelli
- Department of Biology, University of Massachusetts Boston, Massachusetts 02125
| | - Dang Truong
- Department of Biology, University of Massachusetts Boston, Massachusetts 02125
| | - Zoey Wallis
- Department of Biology, University of Massachusetts Boston, Massachusetts 02125
| | - Hung T Nguyen
- Department of Biology, University of Massachusetts Boston, Massachusetts 02125
| | | | - Aaron M Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, New York 11794
| | - Linda S Huang
- Department of Biology, University of Massachusetts Boston, Massachusetts 02125
| |
Collapse
|
15
|
Crespo M, Luense LJ, Arlotto M, Hu J, Dorsey J, García-Oliver E, Shah PP, Pflieger D, Berger SL, Govin J. Systematic genetic and proteomic screens during gametogenesis identify H2BK34 methylation as an evolutionary conserved meiotic mark. Epigenetics Chromatin 2020; 13:35. [PMID: 32933557 PMCID: PMC7493871 DOI: 10.1186/s13072-020-00349-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/03/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Gametes are highly differentiated cells specialized to carry and protect the parental genetic information. During male germ cell maturation, histone proteins undergo distinct changes that result in a highly compacted chromatin organization. Technical difficulties exclude comprehensive analysis of precise histone mutations during mammalian spermatogenesis. The model organism Saccharomyces cerevisiae possesses a differentiation pathway termed sporulation which exhibits striking similarities to mammalian spermatogenesis. This study took advantage of this yeast pathway to first perform systematic mutational and proteomics screens on histones, revealing amino acid residues which are essential for the formation of spores. METHODS A systematic mutational screen has been performed on the histones H2A and H2B, generating ~ 250 mutants using two genetic backgrounds and assessing their ability to form spores. In addition, histones were purified at key stages of sporulation and post-translational modifications analyzed by mass spectrometry. RESULTS The mutation of 75 H2A H2B residues affected sporulation, many of which were localized to the nucleosome lateral surface. The use of different genetic backgrounds confirmed the importance of many of the residues, as 48% of yeast histone mutants exhibited impaired formation of spores in both genetic backgrounds. Extensive proteomic analysis identified 67 unique post-translational modifications during sporulation, 27 of which were previously unreported in yeast. Furthermore, 33 modifications are located on residues that were found to be essential for efficient sporulation in our genetic mutation screens. The quantitative analysis of these modifications revealed a massive deacetylation of all core histones during the pre-meiotic phase and a close interplay between H4 acetylation and methylation during yeast sporulation. Methylation of H2BK37 was also identified as a new histone marker of meiosis and the mouse paralog, H2BK34, was also enriched for methylation during meiosis in the testes, establishing conservation during mammalian spermatogenesis. CONCLUSION Our results demonstrate that a combination of genetic and proteomic approaches applied to yeast sporulation can reveal new aspects of chromatin signaling pathways during mammalian spermatogenesis.
Collapse
Affiliation(s)
- Marion Crespo
- Univ. Grenoble Alpes, CEA, Inserm, IRIG-BGE, 38000, Grenoble, France
- CNRS, IRIG-BGE, 38000, Grenoble, France
| | - Lacey J Luense
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Marie Arlotto
- Univ. Grenoble Alpes, CEA, Inserm, IRIG-BGE, 38000, Grenoble, France
- CNRS, IRIG-BGE, 38000, Grenoble, France
- Univ. Grenoble Alpes, Inserm, CNRS, IAB, 38000, Grenoble, France
| | - Jialei Hu
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jean Dorsey
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Encar García-Oliver
- Univ. Grenoble Alpes, CEA, Inserm, IRIG-BGE, 38000, Grenoble, France
- Institut de Génétique Moléculaire de Montpellier, 3400, Montpellier, France
| | - Parisha P Shah
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Delphine Pflieger
- Univ. Grenoble Alpes, CEA, Inserm, IRIG-BGE, 38000, Grenoble, France
- CNRS, IRIG-BGE, 38000, Grenoble, France
| | - Shelley L Berger
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jérôme Govin
- Univ. Grenoble Alpes, CEA, Inserm, IRIG-BGE, 38000, Grenoble, France.
- Univ. Grenoble Alpes, Inserm, CNRS, IAB, 38000, Grenoble, France.
| |
Collapse
|
16
|
Chioccarelli T, Pierantoni R, Manfrevola F, Porreca V, Fasano S, Chianese R, Cobellis G. Histone Post-Translational Modifications and CircRNAs in Mouse and Human Spermatozoa: Potential Epigenetic Marks to Assess Human Sperm Quality. J Clin Med 2020; 9:jcm9030640. [PMID: 32121034 PMCID: PMC7141194 DOI: 10.3390/jcm9030640] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/14/2022] Open
Abstract
Spermatozoa (SPZ) are motile cells, characterized by a cargo of epigenetic information including histone post-translational modifications (histone PTMs) and non-coding RNAs. Specific histone PTMs are present in developing germ cells, with a key role in spermatogenic events such as self-renewal and commitment of spermatogonia (SPG), meiotic recombination, nuclear condensation in spermatids (SPT). Nuclear condensation is related to chromatin remodeling events and requires a massive histone-to-protamine exchange. After this event a small percentage of chromatin is condensed by histones and SPZ contain nucleoprotamines and a small fraction of nucleohistone chromatin carrying a landascape of histone PTMs. Circular RNAs (circRNAs), a new class of non-coding RNAs, characterized by a nonlinear back-spliced junction, able to play as microRNA (miRNA) sponges, protein scaffolds and translation templates, have been recently characterized in both human and mouse SPZ. Since their abundance in eukaryote tissues, it is challenging to deepen their biological function, especially in the field of reproduction. Here we review the critical role of histone PTMs in male germ cells and the profile of circRNAs in mouse and human SPZ. Furthermore, we discuss their suggested role as novel epigenetic biomarkers to assess sperm quality and improve artificial insemination procedure.
Collapse
|
17
|
Zhang Z, Mu S, Chen T, Sun Z, Shu Z, Li Y, Kang X. H4S1ph, an alternative epigenetic marker for sperm maturity. Andrologia 2019; 52:e13352. [PMID: 31746491 DOI: 10.1111/and.13352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/31/2019] [Accepted: 05/16/2019] [Indexed: 12/11/2022] Open
Abstract
Histone phosphorylation, an epigenetic post-translational modification, plays essential roles in male gamete chromatin compaction during spermatogenesis and sperm maturity. Previously, we studied the epigenetic marker of phosphorylated serine 1 of histone H2A and H4 (HS1ph) during spermatogenesis in mice and crabs, which was shown to be closely related to the sperm maturity. To further investigate the correlation between phosphorylated serine 1 of histone H4 (H4S1ph) and sperm maturation, a comparison study was conducted in this work between the healthy and the precocious crabs. It was discovered that the distribution of H4S1ph was similar for the two groups of crabs during spermatogenesis before maturity, but totally different in the sperm nuclei. H4S1ph vanished in the nuclei of healthy crab spermatozoa mostly, while retained in the precocious crabs just like what it was in elongated spermatid of both kinds of crabs. The results showed that a high level of H4S1ph conservation was closely associated with immaturity and might indicate inefficient fertility of male precocious crabs. Thus, H4S1ph was suggested to be an epigenetic marker of sperm maturity.
Collapse
Affiliation(s)
- Zhaohui Zhang
- College of Life Sciences, Hebei University, Baoding, China.,Department of Reproductive Medicine, Baoding First Central Hospital, Baoding, China
| | - Shumei Mu
- College of Life Sciences, Hebei University, Baoding, China
| | - Tingrong Chen
- College of Life Sciences, Hebei University, Baoding, China
| | - Zhe Sun
- College of Life Sciences, Hebei University, Baoding, China
| | - Zhiquan Shu
- School of Mechanical and Materials Engineering, Washington State University, Everett, Washington
| | - Yanqin Li
- College of Life Sciences, Hebei University, Baoding, China
| | - Xianjiang Kang
- College of Life Sciences, Hebei University, Baoding, China
| |
Collapse
|
18
|
Wang T, Gao H, Li W, Liu C. Essential Role of Histone Replacement and Modifications in Male Fertility. Front Genet 2019; 10:962. [PMID: 31649732 PMCID: PMC6792021 DOI: 10.3389/fgene.2019.00962] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/10/2019] [Indexed: 01/19/2023] Open
Abstract
Spermiogenesis is a complex cellular differentiation process that the germ cells undergo a distinct morphological change, and the protamines replace the core histones to facilitate chromatin compaction in the sperm head. Recent studies show the essential roles of epigenetic events during the histone-to-protamine transition. Defects in either the replacement or the modification of histones might cause male infertility with azoospermia, oligospermia or teratozoospermia. Here, we summarize recent advances in our knowledge of how epigenetic regulators, such as histone variants, histone modification and their related chromatin remodelers, facilitate the histone-to-protamine transition during spermiogenesis. Understanding the molecular mechanism underlying the modification and replacement of histones during spermiogenesis will enable the identification of epigenetic biomarkers of male infertility, and shed light on potential therapies for these patients in the future.
Collapse
Affiliation(s)
- Tong Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hui Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Chen T, Sun Z, Mu S, Jiang L, Li C, Li L, Guo M, Zhang Z, Kang X. Ultrastructure of spermiogenesis and the distribution of spermatozoal nuclear histones in the Japanese mantis shrimp, Oratosquilla oratoria (Crustacea: Stomatopoda). J Morphol 2019; 280:1170-1184. [PMID: 31141207 PMCID: PMC6771690 DOI: 10.1002/jmor.21008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/11/2019] [Accepted: 05/14/2019] [Indexed: 12/30/2022]
Abstract
The Japanese mantis shrimp Oratosquilla oratoria (Stomatopoda; Crustacea) is one of the most economically important aquatic species of Pacific shrimp and it is distributed from Japan to the coast of China, the Philippines, the Malay Peninsula, and the Hawaiian Islands. Early studies described certain characteristics of spermatogenesis and the sperm ultrastructure in Stomatopoda, but the composition of sperm basic nuclear proteins (SBNPs) remains completely unknown. We studied the sperm ultrastructure of O. oratoria using transmission electron microscopy and the histone composition using immunofluorescence and immunoelectron microscopy. We found that the spherical nucleus is adjacent to the electron translucent external coat, which occurs in early spermatids. The acrosomal structure begins to form at the junction of the nucleus and the external coat. At the mid-spermatid stage, part of the chromatin appears to be more electron-dense than the external coat side. The aflagellate sperm of O. oratoria, are rounded or slightly ovoid in shape and have a consistent granular nucleus, an acrosome structure of pushpin shape and a spherical vesicular body in which faintly granular material is scattered. The acrosome consists of an acrosomal vesicle, perforatorium, and subacrosomal material. The sperm contains histones H2A, H2B, H3, H4, H3.3, H2AX, and H2AZ as well as some histone modifications, that is, H3K9me3, H3K4me2, H3S10ph, H4Kac, and H2A + H4S1ph. Histones are localized not only in the nucleus of the sperm but also in other structures outside the nucleus. The results may provide new perspectives for systematic studies of crustaceans and their sperm chromatin components. These findings extend the study of the sperm structure of Stomatopoda and provide basic data to elucidate the epigenetic mechanism of fertilization.
Collapse
Affiliation(s)
- Tingrong Chen
- College of Life Sciences, Hebei University, Baoding, Hebei, China
| | - Zhe Sun
- College of Life Sciences, Hebei University, Baoding, Hebei, China
| | - Shumei Mu
- College of Life Sciences, Hebei University, Baoding, Hebei, China
| | - Lingling Jiang
- College of Life Sciences, Hebei University, Baoding, Hebei, China
| | - Chao Li
- College of Life Sciences, Hebei University, Baoding, Hebei, China
| | - Lu Li
- College of Life Sciences, Hebei University, Baoding, Hebei, China
| | - Mingshen Guo
- College of Life Sciences, Hebei University, Baoding, Hebei, China
| | - Zhaohui Zhang
- Department of Reproductive Medicine, Baoding No. 1 Central Hospital, Baoding, Hebei, China
| | - Xianjiang Kang
- College of Life Sciences, Hebei University, Baoding, Hebei, China
| |
Collapse
|
20
|
Repression of Middle Sporulation Genes in Saccharomyces cerevisiae by the Sum1-Rfm1-Hst1 Complex Is Maintained by Set1 and H3K4 Methylation. G3-GENES GENOMES GENETICS 2017; 7:3971-3982. [PMID: 29066473 PMCID: PMC5714494 DOI: 10.1534/g3.117.300150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The conserved yeast histone methyltransferase Set1 targets H3 lysine 4 (H3K4) for mono, di, and trimethylation and is linked to active transcription due to the euchromatic distribution of these methyl marks and the recruitment of Set1 during transcription. However, loss of Set1 results in increased expression of multiple classes of genes, including genes adjacent to telomeres and middle sporulation genes, which are repressed under normal growth conditions because they function in meiotic progression and spore formation. The mechanisms underlying Set1-mediated gene repression are varied, and still unclear in some cases, although repression has been linked to both direct and indirect action of Set1, associated with noncoding transcription, and is often dependent on the H3K4me2 mark. We show that Set1, and particularly the H3K4me2 mark, are implicated in repression of a subset of middle sporulation genes during vegetative growth. In the absence of Set1, there is loss of the DNA-binding transcriptional regulator Sum1 and the associated histone deacetylase Hst1 from chromatin in a locus-specific manner. This is linked to increased H4K5ac at these loci and aberrant middle gene expression. These data indicate that, in addition to DNA sequence, histone modification status also contributes to proper localization of Sum1 Our results also show that the role for Set1 in middle gene expression control diverges as cells receive signals to undergo meiosis. Overall, this work dissects an unexplored role for Set1 in gene-specific repression, and provides important insights into a new mechanism associated with the control of gene expression linked to meiotic differentiation.
Collapse
|
21
|
Kumar R, Deivendran S, Santhoshkumar TR, Pillai MR. Signaling coupled epigenomic regulation of gene expression. Oncogene 2017. [DOI: 10.1038/onc.2017.201] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Sun YC, Wang YY, Ge W, Cheng SF, Dyce PW, Shen W. Epigenetic regulation during the differentiation of stem cells to germ cells. Oncotarget 2017; 8:57836-57844. [PMID: 28915715 PMCID: PMC5593687 DOI: 10.18632/oncotarget.18444] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/08/2017] [Indexed: 01/08/2023] Open
Abstract
Gametogenesis is an essential process to ensure the transfer of genetic information from one generation to the next. It also provides a mechanism by which genetic evolution can take place. Although the genome of primordial germ cells (PGCs) is exactly the same with somatic cells within an organism, there are significant differences between their developments. For example, PGCs eventually undergo meiosis to become functional haploid gametes, and prior to that they undergo epigenetic imprinting which greatly alter their genetic regulation. Epigenetic imprinting of PGCs involves the erasure of DNA methylation and the reestablishment of them during sperm and oocyte formation. These processes are necessary and important during gametogenesis. Also, histone modification and X-chromosome inactivation have important roles during germ cell development. Recently, several studies have reported that functional sperm or oocytes can be derived from stem cells in vivo or in vitro. To produce functional germ cells, induction of germ cells from stem cells must recapitulate these processes similar to endogenous germ cells, such as epigenetic modifications. This review focuses on the epigenetic regulation during the process of germ cell development and discusses their importance during the differentiation from stem cells to germ cells.
Collapse
Affiliation(s)
- Yuan-Chao Sun
- College of Animal Science and Technology, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yong-Yong Wang
- College of Animal Science and Technology, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Ge
- College of Animal Science and Technology, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Shun-Feng Cheng
- College of Animal Science and Technology, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Paul W Dyce
- Department of Animal Sciences, Auburn University, Auburn, AL 36849, USA
| | - Wei Shen
- College of Animal Science and Technology, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
23
|
Jezek M, Gast A, Choi G, Kulkarni R, Quijote J, Graham-Yooll A, Park D, Green EM. The histone methyltransferases Set5 and Set1 have overlapping functions in gene silencing and telomere maintenance. Epigenetics 2016; 12:93-104. [PMID: 27911222 DOI: 10.1080/15592294.2016.1265712] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Genes adjacent to telomeres are subject to transcriptional repression mediated by an integrated set of chromatin modifying and remodeling factors. The telomeres of Saccharomyces cerevisiae have served as a model for dissecting the function of diverse chromatin proteins in gene silencing, and their study has revealed overlapping roles for many chromatin proteins in either promoting or antagonizing gene repression. The H3K4 methyltransferase Set1, which is commonly linked to transcriptional activation, has been implicated in telomere silencing. Set5 is an H4 K5, K8, and K12 methyltransferase that functions with Set1 to promote repression at telomeres. Here, we analyzed the combined role for Set1 and Set5 in gene expression control at native yeast telomeres. Our data reveal that Set1 and Set5 promote a Sir protein-independent mechanism of repression that may primarily rely on regulation of H4K5ac and H4K8ac at telomeric regions. Furthermore, cells lacking both Set1 and Set5 have highly correlated transcriptomes to mutants in telomere maintenance pathways and display defects in telomere stability, linking their roles in silencing to protection of telomeres. Our data therefore provide insight into and clarify potential mechanisms by which Set1 contributes to telomere silencing and shed light on the function of Set5 at telomeres.
Collapse
Affiliation(s)
- Meagan Jezek
- a Department of Biological Sciences , University of Maryland Baltimore County , Baltimore , MD , USA
| | - Alison Gast
- a Department of Biological Sciences , University of Maryland Baltimore County , Baltimore , MD , USA
| | - Grace Choi
- b Department of Mathematics and Statistics , University of Maryland Baltimore County , Baltimore , MD , USA
| | - Rushmie Kulkarni
- a Department of Biological Sciences , University of Maryland Baltimore County , Baltimore , MD , USA
| | - Jeremiah Quijote
- b Department of Mathematics and Statistics , University of Maryland Baltimore County , Baltimore , MD , USA
| | - Andrew Graham-Yooll
- a Department of Biological Sciences , University of Maryland Baltimore County , Baltimore , MD , USA
| | - DoHwan Park
- b Department of Mathematics and Statistics , University of Maryland Baltimore County , Baltimore , MD , USA
| | - Erin M Green
- a Department of Biological Sciences , University of Maryland Baltimore County , Baltimore , MD , USA
| |
Collapse
|
24
|
Choose Your Own Adventure: The Role of Histone Modifications in Yeast Cell Fate. J Mol Biol 2016; 429:1946-1957. [PMID: 27769718 DOI: 10.1016/j.jmb.2016.10.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/07/2016] [Accepted: 10/07/2016] [Indexed: 12/16/2022]
Abstract
When yeast cells are challenged by a fluctuating environment, signaling networks activate differentiation programs that promote their individual or collective survival. These programs include the initiation of meiotic sporulation, the formation of filamentous growth structures, and the activation of programmed cell death pathways. The establishment and maintenance of these distinct cell fates are driven by massive gene expression programs that promote the necessary changes in morphology and physiology. While these genomic reprogramming events depend on a specialized network of transcription factors, a diverse set of chromatin regulators, including histone-modifying enzymes, chromatin remodelers, and histone variants, also play essential roles. Here, we review the broad functions of histone modifications in initiating cell fate transitions, with particular focus on their contribution to the control of expression of key genes required for the differentiation programs and chromatin reorganization that accompanies these cell fates.
Collapse
|
25
|
Honigberg SM. Similar environments but diverse fates: Responses of budding yeast to nutrient deprivation. MICROBIAL CELL 2016; 3:302-328. [PMID: 27917388 PMCID: PMC5134742 DOI: 10.15698/mic2016.08.516] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diploid budding yeast (Saccharomyces cerevisiae) can adopt one
of several alternative differentiation fates in response to nutrient limitation,
and each of these fates provides distinct biological functions. When different
strain backgrounds are taken into account, these various fates occur in response
to similar environmental cues, are regulated by the same signal transduction
pathways, and share many of the same master regulators. I propose that the
relationships between fate choice, environmental cues and signaling pathways are
not Boolean, but involve graded levels of signals, pathway activation and
master-regulator activity. In the absence of large differences between
environmental cues, small differences in the concentration of cues may be
reinforced by cell-to-cell signals. These signals are particularly essential for
fate determination within communities, such as colonies and biofilms, where fate
choice varies dramatically from one region of the community to another. The lack
of Boolean relationships between cues, signaling pathways, master regulators and
cell fates may allow yeast communities to respond appropriately to the wide
range of environments they encounter in nature.
Collapse
Affiliation(s)
- Saul M Honigberg
- Division of Cell Biology and Biophysics, University of Missouri-Kansas City, 5007 Rockhill Rd, Kansas City MO 64110, USA
| |
Collapse
|
26
|
Timely Closure of the Prospore Membrane Requires SPS1 and SPO77 in Saccharomyces cerevisiae. Genetics 2016; 203:1203-16. [PMID: 27182947 DOI: 10.1534/genetics.115.183939] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 05/09/2016] [Indexed: 11/18/2022] Open
Abstract
During sporulation in Saccharomyces cerevisiae, a double lipid bilayer called the prospore membrane is formed de novo, growing around each meiotic nucleus and ultimately closing to create four new cells within the mother cell. Here we show that SPS1, which encodes a kinase belonging to the germinal center kinase III family, is involved in prospore membrane development and is required for prospore membrane closure. We find that SPS1 genetically interacts with SPO77 and see that loss of either gene disrupts prospore membrane closure in a similar fashion. Specifically, cells lacking SPS1 and SPO77 produce hyperelongated prospore membranes from which the leading edge protein complex is not removed from the prospore membrane in a timely fashion. The SPS1/SPO77 pathway is required for the proper phosphorylation and stability of Ssp1, a member of the leading edge protein complex that is removed and degraded when the prospore membrane closes. Genetic dissection of prospore membrane closure finds SPS1 and SPO77 act in parallel to a previously described pathway of prospore membrane closure that involves AMA1, an activator of the meiotic anaphase promoting complex.
Collapse
|
27
|
Dynamics of histone H2A, H4 and HS1ph during spermatogenesis with a focus on chromatin condensation and maturity of spermatozoa. Sci Rep 2016; 6:25089. [PMID: 27121047 PMCID: PMC4848542 DOI: 10.1038/srep25089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/08/2016] [Indexed: 11/09/2022] Open
Abstract
Histones and histone phosphorylation play vital roles during animal spermatogenesis and spermatozoa maturation. The dynamic distribution of histones H2A and H4 and phosphorylated H2A and H4 at serine 1 (HS1ph) was explored in mammalian and Decapoda germ cells, with a special focus on the distribution of H2A, H4 and HS1ph between mouse condensed spermatozoa chromatin and crab non-condensed spermatozoa chromatin. The distribution of histone marks was also analysed in mature spermatozoa with different chromatin structures. Histone H2A and H4 marks were closely associated with the relatively loose chromatin structure in crab spermatozoa. The significant decrease in the HS1ph signal during spermatogenesis suggests that eliminating most of these epigenetic marks in the nucleusis closely associated with spermatozoa maturity.
Collapse
|
28
|
Bao J, Bedford MT. Epigenetic regulation of the histone-to-protamine transition during spermiogenesis. Reproduction 2016; 151:R55-70. [PMID: 26850883 DOI: 10.1530/rep-15-0562] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/05/2016] [Indexed: 12/19/2022]
Abstract
In mammals, male germ cells differentiate from haploid round spermatids to flagella-containing motile sperm in a process called spermiogenesis. This process is distinct from somatic cell differentiation in that the majority of the core histones are replaced sequentially, first by transition proteins and then by protamines, facilitating chromatin hyper-compaction. This histone-to-protamine transition process represents an excellent model for the investigation of how epigenetic regulators interact with each other to remodel chromatin architecture. Although early work in the field highlighted the critical roles of testis-specific transcription factors in controlling the haploid-specific developmental program, recent studies underscore the essential functions of epigenetic players involved in the dramatic genome remodeling that takes place during wholesale histone replacement. In this review, we discuss recent advances in our understanding of how epigenetic players, such as histone variants and histone writers/readers/erasers, rewire the haploid spermatid genome to facilitate histone substitution by protamines in mammals.
Collapse
Affiliation(s)
- Jianqiang Bao
- Department of Epigenetics and Molecular CarcinogenesisThe University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular CarcinogenesisThe University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| |
Collapse
|
29
|
Hu J, Donahue G, Dorsey J, Govin J, Yuan Z, Garcia BA, Shah PP, Berger SL. H4K44 Acetylation Facilitates Chromatin Accessibility during Meiosis. Cell Rep 2015; 13:1772-80. [PMID: 26628362 DOI: 10.1016/j.celrep.2015.10.070] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 08/10/2015] [Accepted: 10/24/2015] [Indexed: 01/02/2023] Open
Abstract
Meiotic recombination hotspots are associated with histone post-translational modifications and open chromatin. However, it remains unclear how histone modifications and chromatin structure regulate meiotic recombination. Here, we identify acetylation of histone H4 at Lys44 (H4K44ac) occurring on the nucleosomal lateral surface. We show that H4K44 is acetylated at pre-meiosis and meiosis and displays genome-wide enrichment at recombination hotspots in meiosis. Acetylation at H4K44 is required for normal meiotic recombination, normal levels of double-strand breaks (DSBs) during meiosis, and optimal sporulation. Non-modifiable H4K44R results in increased nucleosomal occupancy around DSB hotspots. Our results indicate that H4K44ac functions to facilitate chromatin accessibility favorable for normal DSB formation and meiotic recombination.
Collapse
Affiliation(s)
- Jialei Hu
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Program, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Greg Donahue
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Program, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jean Dorsey
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Program, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jérôme Govin
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Laboratoire Biologie à Grande Echelle, INSERM, U1038 Grenoble, France
| | - Zuofei Yuan
- Epigenetics Program, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, Epigenetics Program, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin A Garcia
- Epigenetics Program, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, Epigenetics Program, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Parisha P Shah
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Program, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Shelley L Berger
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Program, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
30
|
Sequestration of mRNAs Modulates the Timing of Translation during Meiosis in Budding Yeast. Mol Cell Biol 2015. [PMID: 26217015 DOI: 10.1128/mcb.00189-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Starvation of diploid cells of the budding yeast Saccharomyces cerevisiae induces them to enter meiosis and differentiate into haploid spores. During meiosis, the precise timing of gene expression is controlled at the level of transcription, and also translation. If cells are returned to rich medium after they have committed to meiosis, the transcript levels of most meiotically upregulated genes decrease rapidly. However, for a subset of transcripts whose translation is delayed until the end of meiosis II, termed protected transcripts, the transcript levels remain stable even after nutrients are reintroduced. The Ime2-Rim4 regulatory circuit controls both the delayed translation and the stability of protected transcripts. These protected mRNAs localize in discrete foci, which are not seen for transcripts of genes with different translational timing and are regulated by Ime2. These results suggest that Ime2 and Rim4 broadly regulate translational delay but that additional factors, such as mRNA localization, modulate this delay to tune the timing of gene expression to developmental transitions during sporulation.
Collapse
|
31
|
Feng L, Chen X. Epigenetic regulation of germ cells-remember or forget? Curr Opin Genet Dev 2015; 31:20-7. [PMID: 25930104 DOI: 10.1016/j.gde.2015.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/02/2015] [Indexed: 12/18/2022]
Abstract
Unlike somatic cells, germ cells retain the potential to reproduce an entire new organism upon fertilization. In order to accomplish the process of fertilization, germ cells undergo an extreme cellular differentiation process known as gametogenesis in order to produce morphologically and functionally distinct oocyte and sperm. In addition to changes in genetic content changes from diploid to haploid, epigenetic mechanisms that modify chromatin state without altering primary DNA sequences have profound influence on germ cell differentiation and moreover, the transgenerational effect. In this review, we will go over the most recent discoveries on epigenetic regulations in germline differentiation and transgenerational inheritance across different metazoan species.
Collapse
Affiliation(s)
- Lijuan Feng
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, United States
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, United States.
| |
Collapse
|
32
|
Slubowski CJ, Paulissen SM, Huang LS. The GCKIII kinase Sps1 and the 14-3-3 isoforms, Bmh1 and Bmh2, cooperate to ensure proper sporulation in Saccharomyces cerevisiae. PLoS One 2014; 9:e113528. [PMID: 25409301 PMCID: PMC4237420 DOI: 10.1371/journal.pone.0113528] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/28/2014] [Indexed: 11/19/2022] Open
Abstract
Sporulation in the budding yeast Saccharomyces cerevisiae is a developmental program initiated in response to nutritional deprivation. Sps1, a serine/threonine kinase, is required for sporulation, but relatively little is known about the molecular mechanisms through which it regulates this process. Here we show that SPS1 encodes a bona-fide member of the GCKIII subfamily of STE20 kinases, both through phylogenetic analysis of the kinase domain and examination of its C-terminal regulatory domain. Within the regulatory domain, we find Sps1 contains an invariant ExxxPG region conserved from plant to human GCKIIIs that we call the EPG motif; we show this EPG motif is important for SPS1 function. We also find that Sps1 is phosphorylated near its N-terminus on Threonine 12, and that this phosphorylation is required for the efficient production of spores. In Sps1, Threonine 12 lies within a 14-3-3 consensus binding sequence, and we show that the S. cerevisiae 14-3-3 proteins Bmh1 and Bmh2 bind Sps1 in a Threonine 12-dependent fashion. This interaction is significant, as BMH1 and BMH2 are required during sporulation and genetically interact with SPS1 in sporulating cells. Finally, we observe that Sps1, Bmh1 and Bmh2 are present in both the nucleus and cytoplasm during sporulation. We identify a nuclear localization sequence in Sps1 at amino acids 411-415, and show that this sequence is necessary and sufficient for nuclear localization. Taken together, these data identify regions within Sps1 critical for its function and indicate that SPS1 and 14-3-3s act together to promote proper sporulation in S. cerevisiae.
Collapse
Affiliation(s)
- Christian J. Slubowski
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Scott M. Paulissen
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Linda S. Huang
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
33
|
Lim C, Tarayrah L, Chen X. Transcriptional regulation during Drosophila spermatogenesis. SPERMATOGENESIS 2014; 2:158-166. [PMID: 23087835 PMCID: PMC3469439 DOI: 10.4161/spmg.21775] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Drosophila spermatogenesis has become a paradigmatic system for the study of mechanisms that regulate adult stem cell maintenance, proliferation and differentiation. The dramatic cellular differentiation process from germline stem cell (GSC) to mature sperm is accompanied by dynamic changes in gene expression, which are regulated at transcriptional, post-transcriptional (including translational) and post-translational levels. Post-transcriptional regulation has been proposed as a unique feature of germ cells. However, recent studies have provided new insights into transcriptional regulation during Drosophila spermatogenesis. Both signaling pathways and epigenetic mechanisms act to orchestrate the transcriptional regulation of distinct genes at different germ cell differentiation stages. Many of the regulatory pathways that control male gamete differentiation in Drosophila are conserved in mammals. Therefore, studies using Drosophila spermatogenesis will provide insight into the molecular mechanisms that regulate mammalian germ cell differentiation pathways.
Collapse
Affiliation(s)
- Cindy Lim
- Department of Biology; The Johns Hopkins University; Baltimore, MD USA
| | | | | |
Collapse
|
34
|
Wang WL, Anderson LC, Nicklay JJ, Chen H, Gamble MJ, Shabanowitz J, Hunt DF, Shechter D. Phosphorylation and arginine methylation mark histone H2A prior to deposition during Xenopus laevis development. Epigenetics Chromatin 2014; 7:22. [PMID: 25302076 PMCID: PMC4191874 DOI: 10.1186/1756-8935-7-22] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/14/2014] [Indexed: 01/21/2023] Open
Abstract
Background Stored, soluble histones in eggs are essential for early development, in particular during the maternally controlled early cell cycles in the absence of transcription. Histone post-translational modifications (PTMs) direct and regulate chromatin-templated transactions, so understanding the nature and function of pre-deposition maternal histones is essential to deciphering mechanisms of regulation of development, chromatin assembly, and transcription. Little is known about histone H2A pre-deposition modifications nor known about the transitions that occur upon the onset of zygotic control of the cell cycle and transcription at the mid-blastula transition (MBT). Results We isolated histones from staged Xenopus laevis oocytes, eggs, embryos, and assembled pronuclei to identify changes in histone H2A modifications prior to deposition and in chromatin. Soluble and chromatin-bound histones from eggs and embryos demonstrated distinct patterns of maternal and zygotic H2A PTMs, with significant pre-deposition quantities of S1ph and R3me1, and R3me2s. We observed the first functional distinction between H2A and H4 S1 phosphorylation, as we showed that H2A and H2A.X-F (also known as H2A.X.3) serine 1 (S1) is phosphorylated concomitant with germinal vesicle breakdown (GVBD) while H4 serine 1 phosphorylation occurs post-MBT. In egg extract H2A/H4 S1 phosphorylation is independent of the cell cycle, chromatin assembly, and DNA replication. H2AS1ph is highly enriched on blastula chromatin during repression of zygotic gene expression while H4S1ph is correlated with the beginning of maternal gene expression and the lengthening of the cell cycle, consistent with distinct biological roles for H2A and H4 S1 phosphorylation. We isolated soluble H2A and H2A.X-F from the egg and chromatin-bound in pronuclei and analyzed them by mass spectrometry analysis to quantitatively determine abundances of S1ph and R3 methylation. We show that H2A and H4 S1ph, R3me1 and R3me2s are enriched on nucleosomes containing both active and repressive histone PTMs in human A549 cells and Xenopus embryos. Conclusions Significantly, we demonstrated that H2A phosphorylation and H4 arginine methylation form a new class of bona fide pre-deposition modifications in the vertebrate embryo. We show that S1ph and R3me containing chromatin domains are not correlated with H3 regulatory PTMs, suggesting a unique role for phosphorylation and arginine methylation.
Collapse
Affiliation(s)
- Wei-Lin Wang
- Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA
| | - Lissa C Anderson
- Department of Chemistry, Health Sciences Center, University of Virginia, Charlottesville, VA 22904, USA
| | - Joshua J Nicklay
- Department of Chemistry, Health Sciences Center, University of Virginia, Charlottesville, VA 22904, USA
| | - Hongshan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA
| | - Matthew J Gamble
- Department of Molecular Pharmacology, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA
| | - Jeffrey Shabanowitz
- Department of Chemistry, Health Sciences Center, University of Virginia, Charlottesville, VA 22904, USA
| | - Donald F Hunt
- Department of Chemistry, Health Sciences Center, University of Virginia, Charlottesville, VA 22904, USA ; Department of Pathology, Health Sciences Center, University of Virginia, Charlottesville, VA 22904, USA
| | - David Shechter
- Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA
| |
Collapse
|
35
|
Shirakata Y, Hiradate Y, Inoue H, Sato E, Tanemura K. Histone h4 modification during mouse spermatogenesis. J Reprod Dev 2014; 60:383-7. [PMID: 25087733 PMCID: PMC4219996 DOI: 10.1262/jrd.2014-018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The core histone is composed of four proteins (H2A, H2B, H3 and H4). Investigation of the modification patterns of histones is critical to understanding their roles in biological processes. Although histone modification is observed in multiple cells and tissues, little is known about its function in spermatogenesis. We focused on the modification patterns of histone H4 during murine spermatogenesis. We demonstrated that the individual N-terminal sites of H4 show different modification patterns during the differentiation of male germ cells. The methylation pattern varied depending on the residues that were mono-, di-, or tri-methylated. All the H4 modifications were high during the meiotic prophase, suggesting that histone H4 modification plays an important role during this stage of spermatogenesis. Elongating spermatids showed increased acetylation of histone H4, which may be associated with a histone-to-protamine substitution. Our results provide further insight into the specific relationship between histone H4 modification and gene expression during spermatogenesis, which could help to elucidate the epigenetic disorders underlying male infertility.
Collapse
Affiliation(s)
- Yoshiki Shirakata
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | | | | | | | | |
Collapse
|
36
|
Cognitive recovery and restoration of cell proliferation in the dentate gyrus in the 5XFAD transgenic mice model of Alzheimer's disease following 2-hydroxy-DHA treatment. Biogerontology 2013; 14:763-75. [PMID: 24114505 DOI: 10.1007/s10522-013-9461-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 08/30/2013] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder in the elderly. In the last years, abnormalities of lipid metabolism and in particular of docosahexaenoic acid (DHA) have been recently linked with the development of the disease. According to the recent studies showing how hydroxylation of fatty acids enhances their biological activity, here we show that chronic treatment with a hydroxylated derivative of DHA, the 2-hydroxy-DHA (2OHDHA) in the 5XFAD transgenic mice model of AD improves performance in the radial arm maze test and restores cell proliferation in the dentate gyrus, with no changes in the presence of beta amyloid (Aβ) plaques. These results suggest that 2OHDHA induced restoration of cell proliferation can be regarded as a major component in memory recovery that is independent of Aβ load thus, setting the starting point for the development of a new drug for the treatment of AD.
Collapse
|
37
|
Schiza V, Molina-Serrano D, Kyriakou D, Hadjiantoniou A, Kirmizis A. N-alpha-terminal acetylation of histone H4 regulates arginine methylation and ribosomal DNA silencing. PLoS Genet 2013; 9:e1003805. [PMID: 24068969 PMCID: PMC3778019 DOI: 10.1371/journal.pgen.1003805] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 08/03/2013] [Indexed: 11/24/2022] Open
Abstract
Post-translational modifications of histones play a key role in DNA-based processes, like transcription, by modulating chromatin structure. N-terminal acetylation is unique among the numerous histone modifications because it is deposited on the N-alpha amino group of the first residue instead of the side-chain of amino acids. The function of this modification and its interplay with other internal histone marks has not been previously addressed. Here, we identified N-terminal acetylation of H4 (N-acH4) as a novel regulator of arginine methylation and chromatin silencing in Saccharomyces cerevisiae. Lack of the H4 N-alpha acetyltransferase (Nat4) activity results specifically in increased deposition of asymmetric dimethylation of histone H4 arginine 3 (H4R3me2a) and in enhanced ribosomal-DNA silencing. Consistent with this, H4 N-terminal acetylation impairs the activity of the Hmt1 methyltransferase towards H4R3 in vitro. Furthermore, combinatorial loss of N-acH4 with internal histone acetylation at lysines 5, 8 and 12 has a synergistic induction of H4R3me2a deposition and rDNA silencing that leads to a severe growth defect. This defect is completely rescued by mutating arginine 3 to lysine (H4R3K), suggesting that abnormal deposition of a single histone modification, H4R3me2a, can impact on cell growth. Notably, the cross-talk between N-acH4 and H4R3me2a, which regulates rDNA silencing, is induced under calorie restriction conditions. Collectively, these findings unveil a molecular and biological function for H4 N-terminal acetylation, identify its interplay with internal histone modifications, and provide general mechanistic implications for N-alpha-terminal acetylation, one of the most common protein modifications in eukaryotes. The genome of eukaryotic cells is packaged into nucleosomes consisting of an octamer of histone proteins that is wrapped around by DNA. Histone proteins are often modified with chemical groups that can influence the arrangement of nucleosomes and thereby affect DNA-based processes like transcription. Histone N-terminal acetylation, which comprises the addition of a chemical group at the tip of the histone tail, is an abundant modification whose function is unknown. In this work, we show that N-terminal acetylation of histone H4 can strongly inhibit the occurrence of a neighboring modification, namely dimethylation at the third arginine. To do this, N-terminal acetylation cooperates with other internal lysine acetylation marks. We find that the communication amongst these histone modifications is necessary for controlling the expression of ribosomal RNA genes that are required for protein synthesis and cell growth. Our experiments show that in the absence of both N-terminal acetylation and lysine acetylation there is a strong increase in H4 arginine 3 dimethylation levels leading to cell lethality. This growth defect can be rescued by a point mutation on H4 that blocks methylation at position 3. Together, our results unveil a molecular and biological function for the previously uncharacterized N-terminal acetylation of histones.
Collapse
Affiliation(s)
- Vassia Schiza
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | | | - Dimitris Kyriakou
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | | | - Antonis Kirmizis
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
- * E-mail:
| |
Collapse
|
38
|
Hennig W, Weyrich A. Histone modifications in the male germ line of Drosophila. BMC DEVELOPMENTAL BIOLOGY 2013; 13:7. [PMID: 23433182 PMCID: PMC3602674 DOI: 10.1186/1471-213x-13-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 01/31/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND In the male germ line of Drosophila chromatin remains decondensed and highly transcribed during meiotic prophase until it is rapidly compacted. A large proportion of the cell cycle-regulated histone H3.1 is replaced by H3.3, a histone variant encoded outside the histone repeat cluster and not subject to cell cycle controlled expression. RESULTS We investigated histone modification patterns in testes of D. melanogaster and D. hydei. In somatic cells of the testis envelope and in germ cells these modification patterns differ from those typically seen in eu- and heterochromatin of other somatic cells. During the meiotic prophase some modifications expected in active chromatin are not found or are found at low level. The absence of H4K16ac suggests that dosage compensation does not take place. Certain histone modifications correspond to either the cell cycle-regulated histone H3.1 or to the testis-specific variant H3.3. In spermatogonia we found H3K9 methylation in cytoplasmic histones, most likely corresponding to the H3.3 histone variant. Most histone modifications persist throughout the meiotic divisions. The majority of modifications persist until the early spermatid nuclei, and only a minority further persist until the final chromatin compaction stages before individualization of the spermatozoa. CONCLUSION Histone modification patterns in the male germ line differ from expected patterns. They are consistent with an absence of dosage compensation of the X chromosome during the male meiotic prophase. The cell cycle-regulated histone variant H3.1 and H3.3, expressed throughout the cell cycle, also vary in their modification patterns. Postmeiotically, we observed a highly complex pattern of the histone modifications until late spermatid nuclear elongation stages. This may be in part due to postmeiotic transcription and in part to differential histone replacement during chromatin condensation.
Collapse
Affiliation(s)
- Wolfgang Hennig
- DAAD Laboratory, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | | |
Collapse
|
39
|
Rossetto D, Avvakumov N, Côté J. Histone phosphorylation: a chromatin modification involved in diverse nuclear events. Epigenetics 2012; 7:1098-108. [PMID: 22948226 DOI: 10.4161/epi.21975] [Citation(s) in RCA: 384] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Histone posttranslational modifications are key components of diverse processes that modulate chromatin structure. These marks function as signals during various chromatin-based events, and act as platforms for recruitment, assembly or retention of chromatin-associated factors. The best-known function of histone phosphorylation takes place during cellular response to DNA damage, when phosphorylated histone H2A(X) demarcates large chromatin domains around the site of DNA breakage. However, multiple studies have also shown that histone phosphorylation plays crucial roles in chromatin remodeling linked to other nuclear processes. In this review, we summarize the current knowledge of histone phosphorylation and describe the many kinases and phosphatases that regulate it. We discuss the key roles played by this histone mark in DNA repair, transcription and chromatin compaction during cell division and apoptosis. Additionally, we describe the intricate crosstalk that occurs between phosphorylation and other histone modifications and allows for sophisticated control over the chromatin remodeling processes.
Collapse
Affiliation(s)
- Dorine Rossetto
- Laval University Cancer Research Center, Hôtel-Dieu de Québec, Quebec City, QC, Canada
| | | | | |
Collapse
|
40
|
Bryant JM, Govin J, Zhang L, Donahue G, Pugh BF, Berger SL. The linker histone plays a dual role during gametogenesis in Saccharomyces cerevisiae. Mol Cell Biol 2012; 32:2771-83. [PMID: 22586276 PMCID: PMC3416202 DOI: 10.1128/mcb.00282-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/07/2012] [Indexed: 11/20/2022] Open
Abstract
The differentiation of gametes involves dramatic changes to chromatin, affecting transcription, meiosis, and cell morphology. Sporulation in Saccharomyces cerevisiae shares many chromatin features with spermatogenesis, including a 10-fold compaction of the nucleus. To identify new proteins involved in spore nuclear organization, we purified chromatin from mature spores and discovered a significant enrichment of the linker histone (Hho1). The function of Hho1 has proven to be elusive during vegetative growth, but here we demonstrate its requirement for efficient sporulation and full compaction of the spore genome. Hho1 chromatin immunoprecipitation followed by sequencing (ChIP-seq) revealed increased genome-wide binding in mature spores and provides novel in vivo evidence of the linker histone binding to nucleosomal linker DNA. We also link Hho1 function to the transcription factor Ume6, the master repressor of early meiotic genes. Hho1 and Ume6 are depleted during meiosis, and analysis of published ChIP-chip data obtained during vegetative growth reveals a high binding correlation of both proteins at promoters of early meiotic genes. Moreover, Ume6 promotes binding of Hho1 to meiotic gene promoters. Thus, Hho1 may play a dual role during sporulation: Hho1 and Ume6 depletion facilitates the onset of meiosis via activation of Ume6-repressed early meiotic genes, whereas Hho1 enrichment in mature spores contributes to spore genome compaction.
Collapse
Affiliation(s)
- Jessica M. Bryant
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biomedical Graduate Studies, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jérôme Govin
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Liye Zhang
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
- The Integrative Biosciences Graduate Program in Cell and Developmental Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Greg Donahue
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - B. Franklin Pugh
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Shelley L. Berger
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
41
|
Abstract
In response to nitrogen starvation in the presence of a poor carbon source, diploid cells of the yeast Saccharomyces cerevisiae undergo meiosis and package the haploid nuclei produced in meiosis into spores. The formation of spores requires an unusual cell division event in which daughter cells are formed within the cytoplasm of the mother cell. This process involves the de novo generation of two different cellular structures: novel membrane compartments within the cell cytoplasm that give rise to the spore plasma membrane and an extensive spore wall that protects the spore from environmental insults. This article summarizes what is known about the molecular mechanisms controlling spore assembly with particular attention to how constitutive cellular functions are modified to create novel behaviors during this developmental process. Key regulatory points on the sporulation pathway are also discussed as well as the possible role of sporulation in the natural ecology of S. cerevisiae.
Collapse
|
42
|
Cohen I, Poręba E, Kamieniarz K, Schneider R. Histone modifiers in cancer: friends or foes? Genes Cancer 2011; 2:631-47. [PMID: 21941619 DOI: 10.1177/1947601911417176] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Covalent modifications of histones can regulate all DNA-dependent processes. In the last few years, it has become more and more evident that histone modifications are key players in the regulation of chromatin states and dynamics as well as in gene expression. Therefore, histone modifications and the enzymatic machineries that set them are crucial regulators that can control cellular proliferation, differentiation, plasticity, and malignancy processes. This review discusses the biology and biochemistry of covalent histone posttranslational modifications (PTMs) and evaluates the dual role of their modifiers in cancer: as oncogenes that can initiate and amplify tumorigenesis or as tumor suppressors.
Collapse
Affiliation(s)
- Idan Cohen
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | | | | |
Collapse
|
43
|
Abstract
Although discovered long ago, posttranslational phosphorylation of histones has been in the spotlight only recently. Information is accumulating almost daily on phosphorylation of histones and their roles in cellular physiology and human diseases. An extensive cross talk exists between phosphorylation and other posttranslational modifications, which together regulate various biological processes, including gene transcription, DNA repair, and cell cycle progression. Recent research on histone phosphorylation has demonstrated that nearly all histone types are phosphorylated at specific residues and that these modifications act as a critical intermediate step in chromosome condensation during cell division, transcriptional regulation, and DNA damage repair. As with all young fields, apparently conflicting and sometimes controversial observations about histone phosphorylations and their true functions in different species are found in the literature. Accumulating evidence suggests that instead of functioning strictly as part of a general code, histone phosphorylation probably functions by establishing cross talk with other histone modifications and serving as a platform for recruitment or release of effector proteins, leading to a downstream cascade of events. Here we extensively review published information on the complexities of histone phosphorylation, the roles of proteins recognizing these modifications and the resuting physiological outcome, and, importantly, future challenges and opportunities in this fast-moving field.
Collapse
|
44
|
Ünal E, Amon A. Gamete formation resets the aging clock in yeast. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2011; 76:73-80. [PMID: 21890640 DOI: 10.1101/sqb.2011.76.011379] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Gametogenesis is a process whereby a germ cell differentiates into haploid gametes. We found that, in budding yeast, replicatively aged cells remove age-induced cellular damage during gametogenesis. Importantly, gametes of aged cells have the same replicative potential as those derived from young cells, indicating that life span resets during gametogenesis. Here, we explore the potential mechanisms responsible for gametogenesis-induced rejuvenation and discuss putative analogous mechanisms in higher eukaryotes.
Collapse
Affiliation(s)
- E Ünal
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | | |
Collapse
|
45
|
A Screen for Germination Mutants in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2011; 1:143-9. [PMID: 22384326 PMCID: PMC3276131 DOI: 10.1534/g3.111.000323] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 05/13/2011] [Indexed: 11/29/2022]
Abstract
Spore germination in Saccharomyces cerevisiae is a process in which a quiescent cell begins to divide. During germination, the cell undergoes dramatic changes in cell wall and membrane composition, as well as in gene expression. To understand germination in greater detail, we screened the S. cerevisiae deletion set for germination mutants. Our results identified two genes, TRF4 and ERG6, that are required for normal germination on solid media. TRF4 is a member of the TRAMP complex that, together with the exosome, degrades RNA polymerase II transcripts. ERG6 encodes a key step in ergosterol biosynthesis. Taken together, these results demonstrate the complex nature of germination and two genes important in the process.
Collapse
|
46
|
Sridhara V, Marchler-Bauer A, Bryant SH, Geer LY. Automatic annotation of experimentally derived, evolutionarily conserved post-translational modifications onto multiple genomes. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2011; 2011:bar019. [PMID: 21571812 PMCID: PMC3096321 DOI: 10.1093/database/bar019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
New generation sequencing technologies have resulted in significant increases in the number of complete genomes. Functional characterization of these genomes, such as by high-throughput proteomics, is an important but challenging task due to the difficulty of scaling up existing experimental techniques. By use of comparative genomics techniques, experimental results can be transferred from one genome to another, while at the same time minimizing errors by requiring discovery in multiple genomes. In this study, protein phosphorylation, an essential component of many cellular processes, is studied using data from large-scale proteomics analyses of the phosphoproteome. Phosphorylation sites from Homo sapiens, Mus musculus and Drosophila melanogaster phosphopeptide data sets were mapped onto conserved domains in NCBI’s manually curated portion of Conserved Domain Database (CDD). In this subset, 25 phosphorylation sites are found to be evolutionarily conserved between the three species studied. Transfer of phosphorylation annotation of these conserved sites onto sequences sharing the same conserved domains yield 3253 phosphosite annotations for proteins from coelomata, the taxonomic division that spans H. sapiens, M. musculus and D. melanogaster. The method scales automatically, so as the amount of experimental phosphoproteomics data increases, more conserved phosphorylation sites may be revealed.
Collapse
Affiliation(s)
- Viswanadham Sridhara
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, MD, USA
| | | | | | | |
Collapse
|
47
|
Zhang L, Ma H, Pugh BF. Stable and dynamic nucleosome states during a meiotic developmental process. Genome Res 2011; 21:875-84. [PMID: 21515815 DOI: 10.1101/gr.117465.110] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The plasticity of chromatin organization as chromosomes undergo a full compendium of transactions including DNA replication, recombination, chromatin compaction, and changes in transcription during a developmental program is unknown. We generated genome-wide maps of individual nucleosome organizational states, including positions and occupancy of all nucleosomes, and H3K9 acetylation and H3K4, K36, K79 tri-methylation, during meiotic spore development (gametogenesis) in Saccharomyces. Nucleosome organization was remarkably constant as the genome underwent compaction. However, during an acute meiotic starvation response, nucleosomes were repositioned to alter the accessibility of select transcriptional start sites. Surprisingly, the majority of the meiotic programs did not use this nucleosome repositioning, but was dominated by antisense control. Histone modification states were also remarkably stable, being abundant at specific nucleosome positions at three-quarters of all genes, despite most genes being rarely transcribed. Our findings suggest that, during meiosis, the basic features of genomic chromatin organization are essentially a fixed property of chromosomes, but tweaked in a restricted and program-specific manner.
Collapse
Affiliation(s)
- Liye Zhang
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
48
|
Escribá MC, Giardini MC, Goday C. Histone H3 phosphorylation and non-disjunction of the maternal X chromosome during male meiosis in sciarid flies. J Cell Sci 2011; 124:1715-25. [PMID: 21511731 DOI: 10.1242/jcs.083022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An extremely unorthodox method of chromosome segregation is found in sciarid flies (Diptera, Sciaridae), where at male meiosis, the whole paternal complement is eliminated and the maternal X chromosome undergoes non-disjunction. At meiosis I, a monopolar spindle directs the segregation of maternal chromosomes to the single pole, whereas paternal chromosomes are discarded. At meiosis II, although maternal autosomes segregate normally, the X chromosome remains undivided. A cis-acting locus within the heterochromatin proximal to the centromere is known to regulate X centromere activity. By immunofluorescence analysis in spermatocytes from Sciara ocellaris and Sciara coprophila, we investigated histone H3 phosphorylation at Ser10, Ser28, Thr3 and Thr11 during male meiosis. We found that chromosome condensation and H3 phosphorylation patterns differ between chromosomes of different parental origin at the time of paternal set elimination. Importantly, at meiosis II, the maternal X chromosome differs from the rest of the chromosomes in that its centromeric region does not become phosphorylated at the four histone H3 sites. We provide here the first evidence linking the under-phosphorylated H3 status of the X chromosome centromeric region with its meiotic non-disjunction in sciarid flies. Our findings strongly support the idea that the deficiency in local H3 phosphorylation inactivates the X centromere at the transition from meiosis I to meiosis II.
Collapse
Affiliation(s)
- M Carmen Escribá
- Departamento de Proliferación Celular y Desarrollo, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | |
Collapse
|
49
|
Abstract
Histones were discovered over a century ago and have since been found to be the most extensively posttranslationally modified proteins, although tyrosine phosphorylation of histones had remained elusive until recently. The year 2009 proved to be a landmark year for histone tyrosine (Y) phosphorylation as five research groups independently discovered this modification. Three groups describe phosphorylation of Y142 in the variant histone H2A.X, where it may be involved in the cellular decision making process to either undergo DNA repair or apoptosis in response to DNA damage. Further, one group suggests that phosphorylation of histone H3 on Y99 is crucial for its regulated proteolysis in yeast, while another found that Y41 phosphorylation modulates chromatin architecture and oncogenesis in mammalian cells. These pioneering studies provide the initial conceptual framework for further analyses of the diverse roles of tyrosine phosphorylation on different histones, with far reaching implications for human health and disease.
Collapse
Affiliation(s)
- Rakesh Kumar Singh
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | | |
Collapse
|
50
|
Rousseaux S, Boussouar F, Gaucher J, Reynoird N, Montellier E, Curtet S, Vitte AL, Khochbin S. Molecular models for post-meiotic male genome reprogramming. Syst Biol Reprod Med 2011; 57:50-3. [PMID: 21208144 DOI: 10.3109/19396368.2010.498076] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The molecular basis of post-meiotic male genome reorganization and compaction constitutes one of the last black boxes in modern biology. Although the successive transitions in DNA packaging have been well described, the molecular factors driving these near genome-wide reorganizations remain obscure. We have used a combination of different approaches aiming at the discovery of critical factors capable of directing the post-meiotic male genome reprogramming, which is now shedding new light on the nature of the fundamental mechanisms controlling post-meiotic histone replacement and genome compaction. Here we present a summary of these findings. The identification of the first factor capable of reading a precise combination of histone acetylation marks, BRDT, allowed highlighting a critical role for the genome-wide histone hyperacetylation that occurs before generalized histone replacement. In this context, the recent identification of a group of new histone variants capable of forming novel DNA packaging structures on specific regions during late spermatogenesis, when hyperacetylated histones are massively replaced in spermatids, also revealed the occurrence of a post-meiotic region-specific genome reprogramming. Additionally, the functional characterization of other molecular actors and chaperones in action in post-meiotic cells now allows one to describe the first general traits of the mechanisms underlying the structural transitions taking place during the post-meiotic reorganization and epigenetic reprogramming of the male genome.
Collapse
Affiliation(s)
- Sophie Rousseaux
- INSERM, U823, Université Joseph Fourier Grenoble, Institut Albert Bonniot, Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|