1
|
Berney M, Ferguson S, McGouran JF. Function and inhibition of the DNA repair enzyme SNM1A. Bioorg Chem 2025; 156:108225. [PMID: 39914034 DOI: 10.1016/j.bioorg.2025.108225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/09/2025] [Accepted: 01/28/2025] [Indexed: 03/28/2025]
Abstract
SNM1A is an enzyme involved in several important biological pathways. To date, most investigations have focused on its role in repairing interstrand crosslinks, a highly cytotoxic form of DNA damage. SNM1A acts as a 5'-3' exonuclease, displaying an unusual capability to digest DNA past the site of a crosslink lesion. Recently, additional functions of this enzyme in the repair of DNA double-strand breaks and critically shortened telomeres have been uncovered. Furthermore, SNM1A is involved in two cell cycle checkpoints that arrest cell division in response to DNA damage. Inhibition of both DNA repair enzymes and cell cycle checkpoint proteins are effective strategies for cancer treatment, and SNM1A is therefore of significant interest as a potential therapeutic target. As a member of the metallo-β-lactamase superfamily, SNM1A is postulated to contain two metal ions in the active site that catalyse hydrolysis of the phosphodiester backbone of DNA. Substrate-mimic probes based on a nucleoside or oligonucleotide scaffold appended with a metal-binding group have proven effective in vitro. High-throughput screening campaigns have identified potent inhibitors, some of which were successful in sensitising cells to DNA-damaging cancer drugs. This review discusses the biological role, structure, and mechanism of action of SNM1A, and the development of SNM1A inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Mark Berney
- National Institute for Bioprocess Research and Training, Foster Avenue, Mount Merrion, Dublin, Ireland; School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Steven Ferguson
- National Institute for Bioprocess Research and Training, Foster Avenue, Mount Merrion, Dublin, Ireland; School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland; SSPC, The SFI Research Centre for Pharmaceuticals, Ireland
| | - Joanna F McGouran
- School of Chemistry, and Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland; SSPC, The SFI Research Centre for Pharmaceuticals, Ireland.
| |
Collapse
|
2
|
Berney M, Fay EM, Doherty W, Deering JJ, Dürr EM, Ferguson S, McGouran JF. Zinc-Binding Oligonucleotide Backbone Modifications for Targeting a DNA-Processing Metalloenzyme. Chembiochem 2024; 25:e202400528. [PMID: 39023512 DOI: 10.1002/cbic.202400528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024]
Abstract
A series of chemically-modified oligonucleotides for targeting the DNA repair nuclease SNM1A have been designed and synthesised. Each oligonucleotide contains a modified internucleotide linkage designed to both mimic the native phosphodiester backbone and chelate to the catalytic zinc ion(s) in the SNM1A active site. Dinucleoside phosphoramidites containing urea, squaramide, sulfanylacetamide, and sulfinylacetamide linkages were prepared and employed successfully in solid-phase oligonucleotide synthesis. All the modified oligonucleotides were found to interact with SNM1A in a gel electrophoresis-based assay, demonstrating the first examples of inhibition of DNA damage repair enzymes for many of these groups in oligonucleotides. One strand containing a sulfinylacetamide-linkage was found to have the strongest interaction with SNM1A and was further tested in a real-time fluorescence assay. This allowed an IC50 value of 231 nM to be determined, significantly lower than previously reported substrate-mimics targeting this enzyme. It is expected that these modified oligonucleotides will serve as a scaffold for the future development of fluorescent or biotin-labelled probes for the in vivo study of DNA repair processes.
Collapse
Affiliation(s)
- Mark Berney
- National Institute for Bioprocess Research and Training, Foster Avenue, Mount Merrion, Dublin, Ireland
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ellen M Fay
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - William Doherty
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - John J Deering
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - Eva-Maria Dürr
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - Steven Ferguson
- National Institute for Bioprocess Research and Training, Foster Avenue, Mount Merrion, Dublin, Ireland
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
- SSPC, The SFI Research Centre for Pharmaceuticals, Ireland
| | - Joanna F McGouran
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
- SSPC, The SFI Research Centre for Pharmaceuticals, Ireland
| |
Collapse
|
3
|
Bellani MA, Shaik A, Majumdar I, Ling C, Seidman MM. Repair of genomic interstrand crosslinks. DNA Repair (Amst) 2024; 141:103739. [PMID: 39106540 PMCID: PMC11423799 DOI: 10.1016/j.dnarep.2024.103739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/11/2024] [Accepted: 07/25/2024] [Indexed: 08/09/2024]
Abstract
Genomic interstrand crosslinks (ICLs) are formed by reactive species generated during normal cellular metabolism, produced by the microbiome, and employed in cancer chemotherapy. While there are multiple options for replication dependent and independent ICL repair, the crucial step for each is unhooking one DNA strand from the other. Much of our insight into mechanisms of unhooking comes from powerful model systems based on plasmids with defined ICLs introduced into cells or cell free extracts. Here we describe the properties of exogenous and endogenous ICL forming compounds and provide an historical perspective on early work on ICL repair. We discuss the modes of unhooking elucidated in the model systems, the concordance or lack thereof in drug resistant tumors, and the evolving view of DNA adducts, including ICLs, formed by metabolic aldehydes.
Collapse
Affiliation(s)
- Marina A Bellani
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Althaf Shaik
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ishani Majumdar
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Chen Ling
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michael M Seidman
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
4
|
Abbouche L, Bythell-Douglas R, Deans AJ. FANCM branchpoint translocase: Master of traverse, reverse and adverse DNA repair. DNA Repair (Amst) 2024; 140:103701. [PMID: 38878565 DOI: 10.1016/j.dnarep.2024.103701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 07/13/2024]
Abstract
FANCM is a multifunctional DNA repair enzyme that acts as a sensor and coordinator of replication stress responses, especially interstrand crosslink (ICL) repair mediated by the Fanconi anaemia (FA) pathway. Its specialised ability to bind and remodel branched DNA structures enables diverse genome maintenance activities. Through ATP-powered "branchpoint translocation", FANCM can promote fork reversal, facilitate replication traverse of ICLs, resolve deleterious R-loop structures, and restrain recombination. These remodelling functions also support a role as sensor of perturbed replication, eliciting checkpoint signalling and recruitment of downstream repair factors like the Fanconi anaemia FANCI:FANCD2 complex. Accordingly, FANCM deficiency causes chromosome fragility and cancer susceptibility. Other recent advances link FANCM to roles in gene editing efficiency and meiotic recombination, along with emerging synthetic lethal relationships, and targeting opportunities in ALT-positive cancers. Here we review key properties of FANCM's biochemical activities, with a particular focus on branchpoint translocation as a distinguishing characteristic.
Collapse
Affiliation(s)
- Lara Abbouche
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia; Department of Medicine (St Vincent's), University of Melbourne, Fitzroy, VIC, Australia
| | - Rohan Bythell-Douglas
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Andrew J Deans
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia; Department of Medicine (St Vincent's), University of Melbourne, Fitzroy, VIC, Australia.
| |
Collapse
|
5
|
Ahmed A, Kato N, Gautier J. Replication-Independent ICL Repair: From Chemotherapy to Cell Homeostasis. J Mol Biol 2024; 436:168618. [PMID: 38763228 PMCID: PMC11227339 DOI: 10.1016/j.jmb.2024.168618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/03/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Interstrand crosslinks (ICLs) are a type of covalent lesion that can prevent transcription and replication by inhibiting DNA strand separation and instead trigger cell death. ICL inducing compounds are commonly used as chemotherapies due to their effectiveness in inhibiting cell proliferation. Naturally occurring crosslinking agents formed from metabolic processes can also pose a challenge to genome stability especially in slowly or non-dividing cells. Cells maintain a variety of ICL repair mechanisms to cope with this stressor within and outside the S phase of the cell cycle. Here, we discuss the mechanisms of various replication-independent ICL repair pathways and how crosslink repair efficiency is tied to aging and disease.
Collapse
Affiliation(s)
- Arooba Ahmed
- Institute for Cancer Genetics, Columbia University Vagelos, College of Physicians and Surgeons, New York, NY, USA
| | - Niyo Kato
- Institute for Cancer Genetics, Columbia University Vagelos, College of Physicians and Surgeons, New York, NY, USA
| | - Jean Gautier
- Institute for Cancer Genetics, Columbia University Vagelos, College of Physicians and Surgeons, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos, College of Physicians and Surgeons, New York, NY, USA; Department of Genetics and Development, Columbia University Vagelos, College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
6
|
Swift LP, Lagerholm BC, Henderson LR, Ratnaweera M, Baddock HT, Sengerova B, Lee S, Cruz-Migoni A, Waithe D, Renz C, Ulrich HD, Newman JA, Schofield CJ, McHugh PJ. SNM1A is crucial for efficient repair of complex DNA breaks in human cells. Nat Commun 2024; 15:5392. [PMID: 38918391 PMCID: PMC11199599 DOI: 10.1038/s41467-024-49583-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
DNA double-strand breaks (DSBs), such as those produced by radiation and radiomimetics, are amongst the most toxic forms of cellular damage, in part because they involve extensive oxidative modifications at the break termini. Prior to completion of DSB repair, the chemically modified termini must be removed. Various DNA processing enzymes have been implicated in the processing of these dirty ends, but molecular knowledge of this process is limited. Here, we demonstrate a role for the metallo-β-lactamase fold 5'-3' exonuclease SNM1A in this vital process. Cells disrupted for SNM1A manifest increased sensitivity to radiation and radiomimetic agents and show defects in DSB damage repair. SNM1A is recruited and is retained at the sites of DSB damage via the concerted action of its three highly conserved PBZ, PIP box and UBZ interaction domains, which mediate interactions with poly-ADP-ribose chains, PCNA and the ubiquitinated form of PCNA, respectively. SNM1A can resect DNA containing oxidative lesions induced by radiation damage at break termini. The combined results reveal a crucial role for SNM1A to digest chemically modified DNA during the repair of DSBs and imply that the catalytic domain of SNM1A is an attractive target for potentiation of radiotherapy.
Collapse
Affiliation(s)
- Lonnie P Swift
- Department of Oncology, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - B Christoffer Lagerholm
- Wolfson Imaging Centre, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Cell Imaging and Cytometry Core, Turku Bioscience Centre, University of Turku and Åbo Akademi, ku, Finland
| | - Lucy R Henderson
- Department of Oncology, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Malitha Ratnaweera
- Department of Oncology, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Hannah T Baddock
- Department of Oncology, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Calico Life Sciences, South San Francisco, CA, USA
| | - Blanka Sengerova
- Department of Oncology, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Sook Lee
- Department of Oncology, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Abimael Cruz-Migoni
- Department of Oncology, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Dominic Waithe
- Wolfson Imaging Centre, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Christian Renz
- Institute of Molecular Biology gGmbH (IMB), Mainz, Germany
| | - Helle D Ulrich
- Institute of Molecular Biology gGmbH (IMB), Mainz, Germany
| | - Joseph A Newman
- Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom
| | - Peter J McHugh
- Department of Oncology, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
| |
Collapse
|
7
|
Bielinski M, Henderson LR, Yosaatmadja Y, Swift LP, Baddock HT, Bowen MJ, Brem J, Jones PS, McElroy SP, Morrison A, Speake M, van Boeckel S, van Doornmalen E, van Groningen J, van den Hurk H, Gileadi O, Newman JA, McHugh PJ, Schofield CJ. Cell-active small molecule inhibitors validate the SNM1A DNA repair nuclease as a cancer target. Chem Sci 2024; 15:8227-8241. [PMID: 38817593 PMCID: PMC11134331 DOI: 10.1039/d4sc00367e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/30/2024] [Indexed: 06/01/2024] Open
Abstract
The three human SNM1 metallo-β-lactamase fold nucleases (SNM1A-C) play key roles in DNA damage repair and in maintaining telomere integrity. Genetic studies indicate that they are attractive targets for cancer treatment and to potentiate chemo- and radiation-therapy. A high-throughput screen for SNM1A inhibitors identified diverse pharmacophores, some of which were shown by crystallography to coordinate to the di-metal ion centre at the SNM1A active site. Structure and turnover assay-guided optimization enabled the identification of potent quinazoline-hydroxamic acid containing inhibitors, which bind in a manner where the hydroxamic acid displaces the hydrolytic water and the quinazoline ring occupies a substrate nucleobase binding site. Cellular assays reveal that SNM1A inhibitors cause sensitisation to, and defects in the resolution of, cisplatin-induced DNA damage, validating the tractability of MBL fold nucleases as cancer drug targets.
Collapse
Affiliation(s)
- Marcin Bielinski
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Lucy R Henderson
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital Oxford OX3 9DS UK
| | - Yuliana Yosaatmadja
- Centre for Medicines Discovery, NDM Research Building, University of Oxford Old Road Campus Research Building, Roosevelt Drive Oxford OX3 7DQ UK
| | - Lonnie P Swift
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital Oxford OX3 9DS UK
| | - Hannah T Baddock
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital Oxford OX3 9DS UK
| | - Matthew J Bowen
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Jürgen Brem
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Philip S Jones
- University of Dundee, European Screening Centre Newhouse ML1 5UH UK
| | - Stuart P McElroy
- University of Dundee, European Screening Centre Newhouse ML1 5UH UK
| | - Angus Morrison
- University of Dundee, European Screening Centre Newhouse ML1 5UH UK
| | - Michael Speake
- University of Dundee, European Screening Centre Newhouse ML1 5UH UK
| | | | | | | | | | - Opher Gileadi
- Centre for Medicines Discovery, NDM Research Building, University of Oxford Old Road Campus Research Building, Roosevelt Drive Oxford OX3 7DQ UK
| | - Joseph A Newman
- Centre for Medicines Discovery, NDM Research Building, University of Oxford Old Road Campus Research Building, Roosevelt Drive Oxford OX3 7DQ UK
| | - Peter J McHugh
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital Oxford OX3 9DS UK
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
8
|
Liebau RC, Waters C, Ahmed A, Soni RK, Gautier J. Transcription-Coupled Repair of DNA Interstrand Crosslinks by UVSSA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.10.538304. [PMID: 37214867 PMCID: PMC10197625 DOI: 10.1101/2023.05.10.538304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
DNA interstrand crosslinks (ICLs) are covalent bonds between bases on opposing strands of the DNA helix which prevent DNA melting and subsequent DNA replication or RNA transcription. Here, we show that Ultraviolet Stimulated Scaffold Protein A (UVSSA) participates in transcription-coupled repair of ICLs in human cells. Inactivation of UVSSA sensitizes human cells to ICL-inducing drugs, and delays ICL repair. UVSSA is required for transcription-coupled repair of a single ICL in a fluorescence-based reporter assay. UVSSA localizes to chromatin following ICL damage, and interacts with transcribing Pol II, CSA, CSB, and TFIIH. Specifically, UVSSA interaction with TFIIH is required for ICL repair. Finally, UVSSA expression positively correlates with ICL chemotherapy resistance in human cancer cell lines. Our data strongly suggest that transcription-coupled ICL repair (TC-ICR) is a bona fide ICL repair mechanism that contributes to crosslinker drug resistance independently of replication-coupled ICL repair.
Collapse
Affiliation(s)
- Rowyn C Liebau
- Institute for Cancer Genetics, Graduate School of Arts and Sciences, Columbia University, New York, NY, 10027, United States of America
| | - Crystal Waters
- Institute of Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, United States of America
- Agilent Technologies, La Jolla CA, 92037, United States of America
| | - Arooba Ahmed
- Institute of Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, United States of America
| | - Rajesh K Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, United States of America
| | - Jean Gautier
- Institute of Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, United States of America
| |
Collapse
|
9
|
Traband EL, Hammerlund SR, Shameem M, Narayan A, Ramana S, Tella A, Sobeck A, Shima N. Mitotic DNA Synthesis in Untransformed Human Cells Preserves Common Fragile Site Stability via a FANCD2-Driven Mechanism That Requires HELQ. J Mol Biol 2023; 435:168294. [PMID: 37777152 PMCID: PMC10839910 DOI: 10.1016/j.jmb.2023.168294] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Faithful genome duplication is a challenging task for dividing mammalian cells, particularly under replication stress where timely resolution of late replication intermediates (LRIs) becomes crucial prior to cell division. In human cancer cells, mitotic DNA repair synthesis (MiDAS) is described as a final mechanism for the resolution of LRIs to avoid lethal chromosome mis-segregation. RAD52-driven MiDAS achieves this mission in part by generating gaps/breaks on metaphase chromosomes, which preferentially occur at common fragile sites (CFS). We previously demonstrated that a MiDAS mechanism also exists in untransformed and primary human cells, which is RAD52 independent but requires FANCD2. However, the properties of this form of MiDAS are not well understood. Here, we report that FANCD2-driven MiDAS in untransformed human cells: 1) requires a prerequisite step of FANCD2 mono-ubiquitination by a subset of Fanconi anemia (FA) proteins, 2) primarily acts to preserve CFS stability but not to prevent chromosome mis-segregation, and 3) depends on HELQ, which potentially functions at an early step. Hence, FANCD2-driven MiDAS in untransformed cells is built to protect CFS stability, whereas RAD52-driven MiDAS in cancer cells is likely adapted to prevent chromosome mis-segregation at the cost of CFS expression. Notably, we also identified a novel form of MiDAS, which surfaces to function when FANCD2 is absent in untransformed cells. Our findings substantiate the complex nature of MiDAS and a link between its deficiencies and the pathogenesis of FA, a human genetic disease.
Collapse
Affiliation(s)
- Emma L Traband
- Department of Genetics, Cell Biology and Development, Medical School, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology, and Biophysics, College of Biological Sciences, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Sarah R Hammerlund
- Department of Genetics, Cell Biology and Development, Medical School, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology, and Biophysics, College of Biological Sciences, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Mohammad Shameem
- Department of Biochemistry, Molecular Biology, and Biophysics, College of Biological Sciences, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Ananya Narayan
- Department of Genetics, Cell Biology and Development, Medical School, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Sanjiv Ramana
- Department of Genetics, Cell Biology and Development, Medical School, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Anika Tella
- Department of Genetics, Cell Biology and Development, Medical School, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Alexandra Sobeck
- Department of Biochemistry, Molecular Biology, and Biophysics, College of Biological Sciences, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA; Masonic Cancer Center, Minneapolis, MN 55455, USA
| | - Naoko Shima
- Department of Genetics, Cell Biology and Development, Medical School, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA; Masonic Cancer Center, Minneapolis, MN 55455, USA.
| |
Collapse
|
10
|
Somashekara SC, Dhyani KM, Thakur M, Muniyappa K. SUMOylation of yeast Pso2 enhances its translocation and accumulation in the mitochondria and suppresses methyl methanesulfonate-induced mitochondrial DNA damage. Mol Microbiol 2023; 120:587-607. [PMID: 37649278 DOI: 10.1111/mmi.15145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023]
Abstract
Saccharomyces cerevisiae Pso2/SNM1 is essential for DNA interstrand crosslink (ICL) repair; however, its mechanism of action remains incompletely understood. While recent work has revealed that Pso2/Snm1 is dual-localized in the nucleus and mitochondria, it remains unclear whether cell-intrinsic and -extrinsic factors regulate its subcellular localization and function. Herein, we show that Pso2 undergoes ubiquitination and phosphorylation, but not SUMOylation, in unstressed cells. Unexpectedly, we found that methyl methanesulfonate (MMS), rather than ICL-forming agents, induced robust SUMOylation of Pso2 on two conserved residues, K97 and K575, and that SUMOylation markedly increased its abundance in the mitochondria. Reciprocally, SUMOylation had no discernible impact on Pso2 translocation to the nucleus, despite the presence of steady-state levels of SUMOylated Pso2 across the cell cycle. Furthermore, substitution of the invariant residues K97 and K575 by arginine in the Pso2 SUMO consensus motifs severely impaired SUMOylation and abolished its translocation to the mitochondria of MMS-treated wild type cells, but not in unstressed cells. We demonstrate that whilst Siz1 and Siz2 SUMO E3 ligases catalyze Pso2 SUMOylation, the former plays a dominant role. Notably, we found that the phenotypic characteristics of the SUMOylation-defective mutant Pso2K97R/K575R closely mirrored those observed in the Pso2Δ petite mutant. Additionally, leveraging next-generation sequencing analysis, we demonstrate that Pso2 mitigates MMS-induced damage to mitochondrial DNA (mtDNA). Viewed together, our work offers previously unknown insights into the link between genotoxic stress-induced SUMOylation of Pso2 and its preferential targeting to the mitochondria, as well as its role in attenuating MMS-induced mtDNA damage.
Collapse
Affiliation(s)
| | - Kshitiza M Dhyani
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Manoj Thakur
- Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Kalappa Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
11
|
Arbour CA, Fay EM, McGouran JF, Imperiali B. Deploying solid-phase synthesis to access thymine-containing nucleoside analogs that inhibit DNA repair nuclease SNM1A. Org Biomol Chem 2023; 21:5873-5879. [PMID: 37417819 PMCID: PMC10529636 DOI: 10.1039/d3ob00836c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Nucleoside analogs show useful bioactive properties. A versatile solid-phase synthesis that readily enables the diversification of thymine-containing nucleoside analogs is presented. The utility of the approach is demonstrated with the preparation of a library of compounds for analysis with SNM1A, a DNA damage repair enzyme that contributes to cytotoxicity. This exploration provided the most promising nucleoside-derived inhibitor of SNM1A to date with an IC50 of 12.3 μM.
Collapse
Affiliation(s)
- Christine A Arbour
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Ellen M Fay
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St., Dublin 2, Ireland
| | - Joanna F McGouran
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St., Dublin 2, Ireland
| | - Barbara Imperiali
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
12
|
Zhang T, Rawal Y, Jiang H, Kwon Y, Sung P, Greenberg RA. Break-induced replication orchestrates resection-dependent template switching. Nature 2023; 619:201-208. [PMID: 37316655 PMCID: PMC10937050 DOI: 10.1038/s41586-023-06177-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 05/05/2023] [Indexed: 06/16/2023]
Abstract
Break-induced telomere synthesis (BITS) is a RAD51-independent form of break-induced replication that contributes to alternative lengthening of telomeres1,2. This homology-directed repair mechanism utilizes a minimal replisome comprising proliferating cell nuclear antigen (PCNA) and DNA polymerase-δ to execute conservative DNA repair synthesis over many kilobases. How this long-tract homologous recombination repair synthesis responds to complex secondary DNA structures that elicit replication stress remains unclear3-5. Moreover, whether the break-induced replisome orchestrates additional DNA repair events to ensure processivity is also unclear. Here we combine synchronous double-strand break induction with proteomics of isolated chromatin segments (PICh) to capture the telomeric DNA damage response proteome during BITS1,6. This approach revealed a replication stress-dominated response, highlighted by repair synthesis-driven DNA damage tolerance signalling through RAD18-dependent PCNA ubiquitination. Furthermore, the SNM1A nuclease was identified as the major effector of ubiquitinated PCNA-dependent DNA damage tolerance. SNM1A recognizes the ubiquitin-modified break-induced replisome at damaged telomeres, and this directs its nuclease activity to promote resection. These findings show that break-induced replication orchestrates resection-dependent lesion bypass, with SNM1A nuclease activity serving as a critical effector of ubiquitinated PCNA-directed recombination in mammalian cells.
Collapse
Affiliation(s)
- Tianpeng Zhang
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yashpal Rawal
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Haoyang Jiang
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Roger A Greenberg
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Aliyaskarova U, Baiken Y, Renaud F, Couve S, Kisselev AF, Saparbaev M, Groisman R. NEIL3-mediated proteasomal degradation facilitates the repair of cisplatin-induced DNA damage in human cells. Sci Rep 2023; 13:5174. [PMID: 36997601 PMCID: PMC10063580 DOI: 10.1038/s41598-023-32186-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 03/23/2023] [Indexed: 04/01/2023] Open
Abstract
Anti-neoplastic effect of DNA cross-linking agents such as cisplatin, mitomycin C, and psoralen is attributed to their ability to induce DNA interstrand cross-links (ICLs), which block replication, transcription, and linear repair pathways by preventing DNA strand separation and trigger apoptosis. It is generally agreed that the Fanconi anemia (FA) pathway orchestrates the removal of ICLs by the combined actions of various DNA repair pathways. Recently, attention has been focused on the ability of the NEIL3-initiated base excision repair pathway to resolve psoralen- and abasic site-induced ICLs in an FA-independent manner. Intriguingly, overexpression of NEIL3 is associated with chemo-resistance and poor prognosis in many solid tumors. Here, using loss- and gain-of-function approaches, we demonstrate that NEIL3 confers resistance to cisplatin and participates in the removal of cisplatin-DNA adducts. Proteomic studies reveal that the NEIL3 protein interacts with the 26S proteasome in a cisplatin-dependent manner. NEIL3 mediates proteasomal degradation of WRNIP1, a protein involved in the early step of ICL repair. We propose that NEIL3 participates in the repair of ICL-stalled replication fork by recruitment of the proteasome to ensure a timely transition from lesion recognition to repair via the degradation of early-step vanguard proteins.
Collapse
Affiliation(s)
- Umit Aliyaskarova
- Team «Mechanisms of DNA Repair and Carcinogenesis», CNRS UMR 9019, Université Paris-Saclay, Gustave Roussy Cancer Campus, 94805, Villejuif Cedex, France
| | - Yeldar Baiken
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
- School of Engineering and Digital Sciences, Nazarbayev University, Astana, Kazakhstan
| | - Flore Renaud
- Team «Mechanisms of DNA Repair and Carcinogenesis», CNRS UMR 9019, Université Paris-Saclay, Gustave Roussy Cancer Campus, 94805, Villejuif Cedex, France
- EPHE, PSL University, Paris, France
| | - Sophie Couve
- Team «Mechanisms of DNA Repair and Carcinogenesis», CNRS UMR 9019, Université Paris-Saclay, Gustave Roussy Cancer Campus, 94805, Villejuif Cedex, France
- EPHE, PSL University, Paris, France
| | - Alexei F Kisselev
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, PRB, 720 S. Donahue Dr., Auburn, AL, 36849, USA.
| | - Murat Saparbaev
- Team «Mechanisms of DNA Repair and Carcinogenesis», CNRS UMR 9019, Université Paris-Saclay, Gustave Roussy Cancer Campus, 94805, Villejuif Cedex, France.
| | - Regina Groisman
- Team «Mechanisms of DNA Repair and Carcinogenesis», CNRS UMR 9019, Université Paris-Saclay, Gustave Roussy Cancer Campus, 94805, Villejuif Cedex, France.
| |
Collapse
|
14
|
Martinez MZ, Olmo F, Taylor MC, Caudron F, Wilkinson SR. Dissecting the interstrand crosslink DNA repair system of Trypanosoma cruzi. DNA Repair (Amst) 2023; 125:103485. [PMID: 36989950 DOI: 10.1016/j.dnarep.2023.103485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
DNA interstrand crosslinks (ICLs) are toxic lesions that can block essential biological processes. Here we show Trypanosoma cruzi, the causative agent of Chagas disease, is susceptible to ICL-inducing compounds including mechlorethamine and novel nitroreductase-activated prodrugs that have potential in treating this infection. To resolve such lesions, cells co-opt enzymes from "classical" DNA repair pathways that alongside dedicated factors operate in replication-dependent and -independent mechanisms. To assess ICL repair in T. cruzi, orthologues of SNM1, MRE11 and CSB were identified and their function assessed. The T. cruzi enzymes could complement the mechlorethamine susceptibility phenotype displayed by corresponding yeast and/or T. brucei null confirming their role as ICL repair factors while GFP-tagged TcSNM1, TcMRE11 and TcCSB were shown to localise to the nuclei of insect and/or intracellular form parasites. Gene disruption demonstrated that while each activity was non-essential for T. cruzi viability, nulls displayed a growth defect in at least one life cycle stage with TcMRE11-deficient trypomastigotes also compromised in mammalian cell infectivity. Phenotyping revealed all nulls were more susceptible to mechlorethamine than controls, a trait complemented by re-expression of the deleted gene. To assess interplay, the gene disruption approach was extended to generate T. cruzi deficient in TcSNM1/TcMRE11 or in TcSNM1/TcCSB. Analysis demonstrated these activities functioned across two ICL repair pathways with TcSNM1 and TcMRE11 postulated to operate in a replication-dependent system while TcCSB helps resolve transcription-blocking lesions. By unravelling how T. cruzi repairs ICL damage, specific inhibitors targeting repair components could be developed and used to increase the potency of trypanocidal ICL-inducing compounds.
Collapse
Affiliation(s)
- Monica Zavala Martinez
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Francisco Olmo
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Martin C Taylor
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Fabrice Caudron
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Shane R Wilkinson
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
15
|
Genome-scale CRISPR-Cas9 knockout screening in nasopharyngeal carcinoma for radiosensitive and radioresistant genes. Transl Oncol 2023; 30:101625. [PMID: 36739730 PMCID: PMC9932185 DOI: 10.1016/j.tranon.2023.101625] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/19/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Genome-scale CRISPR-Cas9 knockout screening may provide new insights into the mechanism underlying clinical radioresistance in nasopharyngeal carcinoma (NPC), which is remain largely unknown. Our objective was to screen the functional genes associated with radiosensitivity and radioresistance in NPC, laying a foundation for further research on its functional mechanismand. METHODS CRISPR-Cas9 library lentivirus screening in radiation-treated NPC cells was combined with second-generation sequence technology to identify functional genes, which were further validated in radioresistant NPC cells and patient tissues. RESULTS Eleven radiosensitive and radioresistant genes were screened. Among these genes, the expression of FBLN5, FAM3C, MUS81, and DNAJC17 were significantly lower and TOMM20, CDKN2AIP, SNX22, and SP1 were higher in the radioresistant NPC cells (C666-1R, 5-8FR) (p < 0.05). CALD1 was highly expressed in C666-1R. Furthermore, we found knockout of FBLN5, FAM3C, MUS81 and DNAJC17 promoted the proliferation of NPC cells, while CDKN2AIP and SP1 had the opposed results (p < 0.05). This result was verified in NPC patient tissues. Meanwhile, KEGG analysis showed that the Fanconi anemia pathway and the TGF-β signaling pathway possibly contributed to radiosensitivity or radioresistance in NPC. CONCLUSIONS Nine genes involved in the radiosensitivity or radioresistance of NPC: four genes for radiosensitivity (FBLN5, FAM3C, MUS81, and DNAJC17), two genes for radioresistance (CDKN2AIP, SP1), two potential radioresistant genes (TOMM20, SNX22), and a potential radiosensitive gene (CALD1). Genome-scale CRISPR-Cas9 knockout screening for radiosensitive and radioresistant genes in NPC may provide new insights into the mechanisms underlying clinical radioresistance to improve the efficacy of radiotherapy for NPC.
Collapse
|
16
|
CHK2 activation contributes to the development of oxaliplatin resistance in colorectal cancer. Br J Cancer 2022; 127:1615-1628. [PMID: 35999268 PMCID: PMC9596403 DOI: 10.1038/s41416-022-01946-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC), the most common cancer type, causes high morbidity and mortality. Patients who develop drug resistance to oxaliplatin-based regimens have short overall survival. Thus, identifying molecules involved in the development of oxaliplatin resistance is critical for designing therapeutic strategies. METHODS A proteomic screen was performed to reveal altered protein kinase phosphorylation in oxaliplatin-resistant (OR) CRC tumour spheroids. The function of CHK2 was characterised using several biochemical techniques and evident using in vitro cell and in vivo tumour models. RESULTS We revealed that the level of phospho-CHK2(Thr68) was elevated in OR CRC cells and in ~30% of tumour samples from patients with OR CRC. We demonstrated that oxaliplatin activated several phosphatidylinositol 3-kinase-related kinases (PIKKs) and CHK2 downstream effectors and enhanced CHK2/PARP1 interaction to facilitate DNA repair. A phosphorylation mimicking CHK2 mutant, CHK2T68D, but not a kinase-dead CHK2 mutant, CHK2D347A, promoted DNA repair, the CHK2/PARP1 interaction, and cell growth in the presence of oxaliplatin. Finally, we showed that a CHK2 inhibitor, BML-277, reduced protein poly(ADP-ribosyl)ation (PARylation), FANCD2 monoubiquitination, homologous recombination and OR CRC cell growth in vitro and in vivo. CONCLUSION Our findings suggest that CHK2 activity is critical for modulating oxaliplatin response and that CHK2 is a potential therapeutic target for OR CRC.
Collapse
|
17
|
Walker JR, Zhu XD. Role of Cockayne Syndrome Group B Protein in Replication Stress: Implications for Cancer Therapy. Int J Mol Sci 2022; 23:10212. [PMID: 36142121 PMCID: PMC9499456 DOI: 10.3390/ijms231810212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 12/01/2022] Open
Abstract
A variety of endogenous and exogenous insults are capable of impeding replication fork progression, leading to replication stress. Several SNF2 fork remodelers have been shown to play critical roles in resolving this replication stress, utilizing different pathways dependent upon the nature of the DNA lesion, location on the DNA, and the stage of the cell cycle, to complete DNA replication in a manner preserving genetic integrity. Under certain conditions, however, the attempted repair may lead to additional genetic instability. Cockayne syndrome group B (CSB) protein, a SNF2 chromatin remodeler best known for its role in transcription-coupled nucleotide excision repair, has recently been shown to catalyze fork reversal, a pathway that can provide stability of stalled forks and allow resumption of DNA synthesis without chromosome breakage. Prolonged stalling of replication forks may collapse to give rise to DNA double-strand breaks, which are preferentially repaired by homology-directed recombination. CSB plays a role in repairing collapsed forks by promoting break-induced replication in S phase and early mitosis. In this review, we discuss roles of CSB in regulating the sources of replication stress, replication stress response, as well as the implications of CSB for cancer therapy.
Collapse
Affiliation(s)
| | - Xu-Dong Zhu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
18
|
Peake JD, Noguchi E. Fanconi anemia: current insights regarding epidemiology, cancer, and DNA repair. Hum Genet 2022; 141:1811-1836. [PMID: 35596788 DOI: 10.1007/s00439-022-02462-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
Abstract
Fanconi anemia is a genetic disorder that is characterized by bone marrow failure, as well as a predisposition to malignancies including leukemia and squamous cell carcinoma (SCC). At least 22 genes are associated with Fanconi anemia, constituting the Fanconi anemia DNA repair pathway. This pathway coordinates multiple processes and proteins to facilitate the repair of DNA adducts including interstrand crosslinks (ICLs) that are generated by environmental carcinogens, chemotherapeutic crosslinkers, and metabolic products of alcohol. ICLs can interfere with DNA transactions, including replication and transcription. If not properly removed and repaired, ICLs cause DNA breaks and lead to genomic instability, a hallmark of cancer. In this review, we will discuss the genetic and phenotypic characteristics of Fanconi anemia, the epidemiology of the disease, and associated cancer risk. The sources of ICLs and the role of ICL-inducing chemotherapeutic agents will also be discussed. Finally, we will review the detailed mechanisms of ICL repair via the Fanconi anemia DNA repair pathway, highlighting critical regulatory processes. Together, the information in this review will underscore important contributions to Fanconi anemia research in the past two decades.
Collapse
Affiliation(s)
- Jasmine D Peake
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Eishi Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|
19
|
Wu HY, Zheng Y, Laciak AR, Huang NN, Koszelak-Rosenblum M, Flint AJ, Carr G, Zhu G. Structure and Function of SNM1 Family Nucleases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1414:1-26. [PMID: 35708844 DOI: 10.1007/5584_2022_724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Three human nucleases, SNM1A, SNM1B/Apollo, and SNM1C/Artemis, belong to the SNM1 gene family. These nucleases are involved in various cellular functions, including homologous recombination, nonhomologous end-joining, cell cycle regulation, and telomere maintenance. These three proteins share a similar catalytic domain, which is characterized as a fused metallo-β-lactamase and a CPSF-Artemis-SNM1-PSO2 domain. SNM1A and SNM1B/Apollo are exonucleases, whereas SNM1C/Artemis is an endonuclease. This review contains a summary of recent research on SNM1's cellular and biochemical functions, as well as structural biology studies. In addition, protein structure prediction by the artificial intelligence program AlphaFold provides a different view of the proteins' non-catalytic domain features, which may be used in combination with current results from X-ray crystallography and cryo-EM to understand their mechanism more clearly.
Collapse
|
20
|
Berney M, T Manoj M, Fay EM, McGouran JF. 5'-Phosphorylation Increases the Efficacy of Nucleoside Inhibitors of the DNA Repair Enzyme SNM1A. ChemMedChem 2021; 17:e202100603. [PMID: 34905656 DOI: 10.1002/cmdc.202100603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/07/2021] [Indexed: 11/11/2022]
Abstract
Certain cancers exhibit upregulation of DNA interstrand crosslink repair pathways, which contributes to resistance to crosslinking chemotherapy drugs and poor prognoses. Inhibition of enzymes implicated in interstrand crosslink repair is therefore a promising strategy for improving the efficacy of cancer treatment. One such target enzyme is SNM1A, a zinc co-ordinating 5'-3' exonuclease. Previous studies have demonstrated the feasibility of inhibiting SNM1A using modified nucleosides appended with zinc-binding groups. In this work, we sought to develop more effective SNM1A inhibitors by exploiting interactions with the phosphate-binding pocket adjacent to the enzyme's active site, in addition to the catalytic zinc ions. A series of nucleoside derivatives bearing phosphate moieties at the 5'-position, as well as zinc-binding groups at the 3'-position, were prepared and tested in gel-electrophoresis and real-time fluorescence assays. As well as investigating novel zinc-binding groups, we found that incorporation of a 5'-phosphate dramatically increased the potency of the inhibitors.
Collapse
Affiliation(s)
- Mark Berney
- Trinity College Dublin: The University of Dublin Trinity College, Chemistry, IRELAND
| | - Manav T Manoj
- Trinity College Dublin: The University of Dublin Trinity College, Chemistry, IRELAND
| | - Ellen Mary Fay
- Trinity College Dublin: The University of Dublin Trinity College, Chemistry, IRELAND
| | | |
Collapse
|
21
|
Yoshida K, Fujita M. DNA damage responses that enhance resilience to replication stress. Cell Mol Life Sci 2021; 78:6763-6773. [PMID: 34463774 PMCID: PMC11072782 DOI: 10.1007/s00018-021-03926-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022]
Abstract
During duplication of the genome, eukaryotic cells may experience various exogenous and endogenous replication stresses that impede progression of DNA replication along chromosomes. Chemical alterations in template DNA, imbalances of deoxynucleotide pools, repetitive sequences, tight DNA-protein complexes, and conflict with transcription can negatively affect the replication machineries. If not properly resolved, stalled replication forks can cause chromosome breaks leading to genomic instability and tumor development. Replication stress is enhanced in cancer cells due, for example, to the loss of DNA repair genes or replication-transcription conflict caused by activation of oncogenic pathways. To prevent these serious consequences, cells are equipped with diverse mechanisms that enhance the resilience of replication machineries to replication stresses. This review describes DNA damage responses activated at stressed replication forks and summarizes current knowledge on the pathways that promote faithful chromosome replication and protect chromosome integrity, including ATR-dependent replication checkpoint signaling, DNA cross-link repair, and SLX4-mediated responses to tight DNA-protein complexes that act as barriers. This review also focuses on the relevance of replication stress responses to selective cancer chemotherapies.
Collapse
Affiliation(s)
- Kazumasa Yoshida
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka, 814-0180, Japan
- Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Masatoshi Fujita
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
22
|
Yosaatmadja Y, Baddock H, Newman J, Bielinski M, Gavard A, Mukhopadhyay SMM, Dannerfjord A, Schofield C, McHugh P, Gileadi O. Structural and mechanistic insights into the Artemis endonuclease and strategies for its inhibition. Nucleic Acids Res 2021; 49:9310-9326. [PMID: 34387696 PMCID: PMC8450076 DOI: 10.1093/nar/gkab693] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 07/20/2021] [Accepted: 08/11/2021] [Indexed: 12/23/2022] Open
Abstract
Artemis (SNM1C/DCLRE1C) is an endonuclease that plays a key role in development of B- and T-lymphocytes and in dsDNA break repair by non-homologous end-joining (NHEJ). Artemis is phosphorylated by DNA-PKcs and acts to open DNA hairpin intermediates generated during V(D)J and class-switch recombination. Artemis deficiency leads to congenital radiosensitive severe acquired immune deficiency (RS-SCID). Artemis belongs to a superfamily of nucleases containing metallo-β-lactamase (MBL) and β-CASP (CPSF-Artemis-SNM1-Pso2) domains. We present crystal structures of the catalytic domain of wildtype and variant forms of Artemis, including one causing RS-SCID Omenn syndrome. The catalytic domain of the Artemis has similar endonuclease activity to the phosphorylated full-length protein. Our structures help explain the predominantly endonucleolytic activity of Artemis, which contrasts with the predominantly exonuclease activity of the closely related SNM1A and SNM1B MBL fold nucleases. The structures reveal a second metal binding site in its β-CASP domain unique to Artemis, which is amenable to inhibition by compounds including ebselen. By combining our structural data with that from a recently reported Artemis structure, we were able model the interaction of Artemis with DNA substrates. The structures, including one of Artemis with the cephalosporin ceftriaxone, will help enable the rational development of selective SNM1 nuclease inhibitors.
Collapse
Affiliation(s)
- Yuliana Yosaatmadja
- Centre for Medicines Discovery, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Hannah T Baddock
- Department of Oncology, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Joseph A Newman
- Centre for Medicines Discovery, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Marcin Bielinski
- The Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Angeline E Gavard
- Centre for Medicines Discovery, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | | | - Adam A Dannerfjord
- Centre for Medicines Discovery, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Christopher J Schofield
- The Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Peter J McHugh
- Department of Oncology, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Opher Gileadi
- Centre for Medicines Discovery, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| |
Collapse
|
23
|
Berney M, Doherty W, Jauslin WT, T Manoj M, Dürr EM, McGouran JF. Synthesis and evaluation of squaramide and thiosquaramide inhibitors of the DNA repair enzyme SNM1A. Bioorg Med Chem 2021; 46:116369. [PMID: 34482229 PMCID: PMC8607331 DOI: 10.1016/j.bmc.2021.116369] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 11/24/2022]
Abstract
SNM1A is a zinc-dependent nuclease involved in the removal of interstrand crosslink lesions from DNA. Inhibition of interstrand crosslink repair enzymes such as SNM1A is a promising strategy for improving the efficacy of crosslinking chemotherapy drugs. Initial studies have demonstrated the feasibility of developing SNM1A inhibitors, but the full potential of this enzyme as a drug target has yet to be explored. Herein, the synthesis of a family of squaramide- and thiosquaramide-bearing nucleoside derivatives and their evaluation as SNM1A inhibitors is reported. A gel electrophoresis assay was used to identify nucleoside derivatives bearing an N-hydroxysquaramide or squaric acid moiety at the 3′-position, and a thymidine derivative bearing a 5′-thiosquaramide, as candidate SNM1A inhibitors. Quantitative IC50 determination showed that a thymidine derivative bearing a 5′-thiosquaramide was the most potent inhibitor, followed by a thymidine derivative bearing a 3′-squaric acid. UV–Vis titrations were carried out to evaluate the binding of the (thio)squaramides to zinc ions, allowing the order of inhibitory potency to be rationalised. The membrane permeability of the active inhibitors was investigated, with several compounds showing promise for future in vivo applications.
Collapse
Affiliation(s)
- Mark Berney
- School of Chemistry & Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Ireland
| | - William Doherty
- School of Chemistry & Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Ireland
| | - Werner Theodor Jauslin
- School of Chemistry & Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Ireland
| | - Manav T Manoj
- School of Chemistry & Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Ireland
| | - Eva-Maria Dürr
- School of Chemistry & Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Ireland
| | - Joanna Francelle McGouran
- School of Chemistry & Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Ireland.
| |
Collapse
|
24
|
Scully R, Elango R, Panday A, Willis NA. Recombination and restart at blocked replication forks. Curr Opin Genet Dev 2021; 71:154-162. [PMID: 34464818 DOI: 10.1016/j.gde.2021.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/28/2021] [Accepted: 08/06/2021] [Indexed: 01/07/2023]
Abstract
Replication fork stalling occurs when the replisome encounters a barrier to normal fork progression. Replisome stalling events are common during scheduled DNA synthesis, but vary in their severity. At one extreme, a lesion may induce only temporary pausing of a DNA polymerase; at the other, it may present a near-absolute barrier to the replicative helicase and effectively block fork progression. Many alternative pathways have evolved to respond to these different types of replication stress. Among these, the homologous recombination (HR) pathway plays an important role, protecting the stalled fork and processing it for repair. Here, we review recent advances in our understanding of how blocked replication forks in vertebrate cells can be processed for recombination and for replication restart.
Collapse
Affiliation(s)
- Ralph Scully
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| | - Rajula Elango
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Arvind Panday
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Nicholas A Willis
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
25
|
Li Q, Dudás K, Tick G, Haracska L. Coordinated Cut and Bypass: Replication of Interstrand Crosslink-Containing DNA. Front Cell Dev Biol 2021; 9:699966. [PMID: 34262911 PMCID: PMC8275186 DOI: 10.3389/fcell.2021.699966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/07/2021] [Indexed: 12/28/2022] Open
Abstract
DNA interstrand crosslinks (ICLs) are covalently bound DNA lesions, which are commonly induced by chemotherapeutic drugs, such as cisplatin and mitomycin C or endogenous byproducts of metabolic processes. This type of DNA lesion can block ongoing RNA transcription and DNA replication and thus cause genome instability and cancer. Several cellular defense mechanism, such as the Fanconi anemia pathway have developed to ensure accurate repair and DNA replication when ICLs are present. Various structure-specific nucleases and translesion synthesis (TLS) polymerases have come into focus in relation to ICL bypass. Current models propose that a structure-specific nuclease incision is needed to unhook the ICL from the replication fork, followed by the activity of a low-fidelity TLS polymerase enabling replication through the unhooked ICL adduct. This review focuses on how, in parallel with the Fanconi anemia pathway, PCNA interactions and ICL-induced PCNA ubiquitylation regulate the recruitment, substrate specificity, activity, and coordinated action of certain nucleases and TLS polymerases in the execution of stalled replication fork rescue via ICL bypass.
Collapse
Affiliation(s)
- Qiuzhen Li
- HCEMM-BRC Mutagenesis and Carcinogenesis Research Group, Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - Kata Dudás
- HCEMM-BRC Mutagenesis and Carcinogenesis Research Group, Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - Gabriella Tick
- Mutagenesis and Carcinogenesis Research Group, Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - Lajos Haracska
- HCEMM-BRC Mutagenesis and Carcinogenesis Research Group, Institute of Genetics, Biological Research Centre, Szeged, Hungary
| |
Collapse
|
26
|
Abstract
DNA interstrand cross-links (ICLs) covalently connect the two strands of the double helix and are extremely cytotoxic. Defective ICL repair causes the bone marrow failure and cancer predisposition syndrome, Fanconi anemia, and upregulation of repair causes chemotherapy resistance in cancer. The central event in ICL repair involves resolving the cross-link (unhooking). In this review, we discuss the chemical diversity of ICLs generated by exogenous and endogenous agents. We then describe how proliferating and nonproliferating vertebrate cells unhook ICLs. We emphasize fundamentally new unhooking strategies, dramatic progress in the structural analysis of the Fanconi anemia pathway, and insights into how cells govern the choice between different ICL repair pathways. Throughout, we highlight the many gaps that remain in our knowledge of these fascinating DNA repair pathways.
Collapse
Affiliation(s)
- Daniel R Semlow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA; .,Current affiliation: Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA; .,Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
27
|
Buzon B, Grainger RA, Rzadki C, Huang SYM, Junop M. Identification of Bioactive SNM1A Inhibitors. ACS OMEGA 2021; 6:9352-9361. [PMID: 33869915 PMCID: PMC8047731 DOI: 10.1021/acsomega.0c03528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
SNM1A is a nuclease required to repair DNA interstrand cross-links (ICLs) caused by some anticancer compounds, including cisplatin. Unlike other nucleases involved in ICL repair, SNM1A is not needed to restore other forms of DNA damage. As such, SNM1A is an attractive target for selectively increasing the efficacy of ICL-based chemotherapy. Using a fluorescence-based exonuclease assay, we screened a bioactive library of compounds for inhibition of SNM1A. Of the 52 compounds initially identified as hits, 22 compounds showed dose-response inhibition of SNM1A. An orthogonal gel-based assay further confirmed nine small molecules as SNM1A nuclease activity inhibitors with IC50 values in the mid-nanomolar to low micromolar range. Finally, three compounds showed no toxicity at concentrations able to significantly potentiate the cytotoxicity of cisplatin. These compounds represent potential leads for further optimization to sensitize cells toward chemotherapeutic agents inducing ICL damage.
Collapse
Affiliation(s)
- Beverlee Buzon
- Department
of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- Department
of Biochemistry, Western University, London, Ontario N6A 5C1, Canada
| | - Ryan A. Grainger
- Department
of Biochemistry, Western University, London, Ontario N6A 5C1, Canada
| | - Cameron Rzadki
- Department
of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Simon York Ming Huang
- Department
of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Murray Junop
- Department
of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- Department
of Biochemistry, Western University, London, Ontario N6A 5C1, Canada
| |
Collapse
|
28
|
Gartner A, Engebrecht J. DNA repair, recombination, and damage signaling. Genetics 2021; 220:6522877. [PMID: 35137093 PMCID: PMC9097270 DOI: 10.1093/genetics/iyab178] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/10/2021] [Indexed: 01/09/2023] Open
Abstract
DNA must be accurately copied and propagated from one cell division to the next, and from one generation to the next. To ensure the faithful transmission of the genome, a plethora of distinct as well as overlapping DNA repair and recombination pathways have evolved. These pathways repair a large variety of lesions, including alterations to single nucleotides and DNA single and double-strand breaks, that are generated as a consequence of normal cellular function or by external DNA damaging agents. In addition to the proteins that mediate DNA repair, checkpoint pathways have also evolved to monitor the genome and coordinate the action of various repair pathways. Checkpoints facilitate repair by mediating a transient cell cycle arrest, or through initiation of cell suicide if DNA damage has overwhelmed repair capacity. In this chapter, we describe the attributes of Caenorhabditis elegans that facilitate analyses of DNA repair, recombination, and checkpoint signaling in the context of a whole animal. We review the current knowledge of C. elegans DNA repair, recombination, and DNA damage response pathways, and their role during development, growth, and in the germ line. We also discuss how the analysis of mutational signatures in C. elegans is helping to inform cancer mutational signatures in humans.
Collapse
Affiliation(s)
- Anton Gartner
- Department for Biological Sciences, IBS Center for Genomic Integrity, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea,Corresponding author: (A.G.); (J.E.)
| | - JoAnne Engebrecht
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA,Corresponding author: (A.G.); (J.E.)
| |
Collapse
|
29
|
Housh K, Jha JS, Haldar T, Amin SBM, Islam T, Wallace A, Gomina A, Guo X, Nel C, Wyatt JW, Gates KS. Formation and repair of unavoidable, endogenous interstrand cross-links in cellular DNA. DNA Repair (Amst) 2021; 98:103029. [PMID: 33385969 PMCID: PMC8882318 DOI: 10.1016/j.dnarep.2020.103029] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023]
Abstract
Genome integrity is essential for life and, as a result, DNA repair systems evolved to remove unavoidable DNA lesions from cellular DNA. Many forms of life possess the capacity to remove interstrand DNA cross-links (ICLs) from their genome but the identity of the naturally-occurring, endogenous substrates that drove the evolution and retention of these DNA repair systems across a wide range of life forms remains uncertain. In this review, we describe more than a dozen chemical processes by which endogenous ICLs plausibly can be introduced into cellular DNA. The majority involve DNA degradation processes that introduce aldehyde residues into the double helix or reactions of DNA with endogenous low molecular weight aldehyde metabolites. A smaller number of the cross-linking processes involve reactions of DNA radicals generated by oxidation.
Collapse
Affiliation(s)
- Kurt Housh
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Jay S Jha
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Tuhin Haldar
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Saosan Binth Md Amin
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Tanhaul Islam
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Amanda Wallace
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Anuoluwapo Gomina
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Xu Guo
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Christopher Nel
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Jesse W Wyatt
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Kent S Gates
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States; University of Missouri, Department of Biochemistry, Columbia, MO 65211, United States.
| |
Collapse
|
30
|
Probing the Binding Requirements of Modified Nucleosides with the DNA Nuclease SNM1A. Molecules 2021; 26:molecules26020320. [PMID: 33435514 PMCID: PMC7827217 DOI: 10.3390/molecules26020320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/22/2020] [Accepted: 12/31/2020] [Indexed: 11/16/2022] Open
Abstract
SNM1A is a nuclease that is implicated in DNA interstrand crosslink repair and, as such, its inhibition is of interest for overcoming resistance to chemotherapeutic crosslinking agents. However, the number and identity of the metal ion(s) in the active site of SNM1A are still unconfirmed, and only a limited number of inhibitors have been reported to date. Herein, we report the synthesis and evaluation of a family of malonate-based modified nucleosides to investigate the optimal positioning of metal-binding groups in nucleoside-derived inhibitors for SNM1A. These compounds include ester, carboxylate and hydroxamic acid malonate derivatives which were installed in the 5'-position or 3'-position of thymidine or as a linkage between two nucleosides. Evaluation as inhibitors of recombinant SNM1A showed that nine of the twelve compounds tested had an inhibitory effect at 1 mM concentration. The most potent compound contains a hydroxamic acid malonate group at the 5'-position. Overall, our studies advance the understanding of requirements for nucleoside-derived inhibitors for SNM1A and indicate that groups containing a negatively charged group in close proximity to a metal chelator, such as hydroxamic acid malonates, are promising structures in the design of inhibitors.
Collapse
|
31
|
Deshmukh AL, Porro A, Mohiuddin M, Lanni S, Panigrahi GB, Caron MC, Masson JY, Sartori AA, Pearson CE. FAN1, a DNA Repair Nuclease, as a Modifier of Repeat Expansion Disorders. J Huntingtons Dis 2021; 10:95-122. [PMID: 33579867 PMCID: PMC7990447 DOI: 10.3233/jhd-200448] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
FAN1 encodes a DNA repair nuclease. Genetic deficiencies, copy number variants, and single nucleotide variants of FAN1 have been linked to karyomegalic interstitial nephritis, 15q13.3 microdeletion/microduplication syndrome (autism, schizophrenia, and epilepsy), cancer, and most recently repeat expansion diseases. For seven CAG repeat expansion diseases (Huntington's disease (HD) and certain spinocerebellar ataxias), modification of age of onset is linked to variants of specific DNA repair proteins. FAN1 variants are the strongest modifiers. Non-coding disease-delaying FAN1 variants and coding disease-hastening variants (p.R507H and p.R377W) are known, where the former may lead to increased FAN1 levels and the latter have unknown effects upon FAN1 functions. Current thoughts are that ongoing repeat expansions in disease-vulnerable tissues, as individuals age, promote disease onset. Fan1 is required to suppress against high levels of ongoing somatic CAG and CGG repeat expansions in tissues of HD and FMR1 transgenic mice respectively, in addition to participating in DNA interstrand crosslink repair. FAN1 is also a modifier of autism, schizophrenia, and epilepsy. Coupled with the association of these diseases with repeat expansions, this suggests a common mechanism, by which FAN1 modifies repeat diseases. Yet how any of the FAN1 variants modify disease is unknown. Here, we review FAN1 variants, associated clinical effects, protein structure, and the enzyme's attributed functional roles. We highlight how variants may alter its activities in DNA damage response and/or repeat instability. A thorough awareness of the FAN1 gene and FAN1 protein functions will reveal if and how it may be targeted for clinical benefit.
Collapse
Affiliation(s)
- Amit L. Deshmukh
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Antonio Porro
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Mohiuddin Mohiuddin
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Stella Lanni
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Gagan B. Panigrahi
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Marie-Christine Caron
- Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, Quebec, Canada
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Québec City, Quebec, Canada
| | - Jean-Yves Masson
- Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, Quebec, Canada
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Québec City, Quebec, Canada
| | | | - Christopher E. Pearson
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
- University of Toronto, Program of Molecular Genetics, Toronto, Ontario, Canada
| |
Collapse
|
32
|
Baddock HT, Yosaatmadja Y, Newman JA, Schofield CJ, Gileadi O, McHugh PJ. The SNM1A DNA repair nuclease. DNA Repair (Amst) 2020; 95:102941. [PMID: 32866775 PMCID: PMC7607226 DOI: 10.1016/j.dnarep.2020.102941] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 07/25/2020] [Indexed: 01/17/2023]
Abstract
Unrepaired, or misrepaired, DNA damage can contribute to the pathogenesis of a number of conditions, or disease states; thus, DNA damage repair pathways, and the proteins within them, are required for the safeguarding of the genome. Human SNM1A is a 5'-to-3' exonuclease that plays a role in multiple DNA damage repair processes. To date, most data suggest a role of SNM1A in primarily ICL repair: SNM1A deficient cells exhibit hypersensitivity to ICL-inducing agents (e.g. mitomycin C and cisplatin); and both in vivo and in vitro experiments demonstrate SNM1A and XPF-ERCC1 can function together in the 'unhooking' step of ICL repair. SNM1A further interacts with a number of other proteins that contribute to genome integrity outside canonical ICL repair (e.g. PCNA and CSB), and these may play a role in regulating SNM1As function, subcellular localisation, and post-translational modification state. These data also provide further insight into other DNA repair pathways to which SNM1A may contribute. This review aims to discuss all aspects of the exonuclease, SNM1A, and its contribution to DNA damage tolerance.
Collapse
Affiliation(s)
- Hannah T Baddock
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS, UK
| | | | - Joseph A Newman
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA, UK
| | | | - Opher Gileadi
- Structural Genomics Consortium, University of Oxford, OX3 7DQ, UK
| | - Peter J McHugh
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS, UK.
| |
Collapse
|
33
|
Tan W, Deans AJ. The ubiquitination machinery of the Fanconi Anemia DNA repair pathway. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 163:5-13. [PMID: 33058944 DOI: 10.1016/j.pbiomolbio.2020.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 10/23/2022]
Abstract
The Fanconi Anemia (FA) pathway maintains genome stability by preventing DNA damage from occurring when replication is blocked. Central to the FA pathway is the monoubiquitination of FANCI-FANCD2 mediated by a ubiquitin RING-E3 ligase complex called the FA core complex. Genetic mutation in any component of the FA core complex results in defective FANCI-FANCD2 monoubiquitination and phenotypes of DNA damage sensitivity, birth defects, early-onset bone marrow failure and cancer. Here, we discuss the mechanisms of the FA core complex and FANCI-FANCD2 monoubiquitination at sites of blocked replication and review our current understanding of the biological functions of these proteins in replication fork protection.
Collapse
Affiliation(s)
- Winnie Tan
- Genome Stability Unit, St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, Victoria, 3065, Australia
| | - Andrew J Deans
- Genome Stability Unit, St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, Victoria, 3065, Australia; Department of Medicine, St. Vincent's Health, The University of Melbourne, Australia. https://twitter.com/GenomeStability
| |
Collapse
|
34
|
Bezalel-Buch R, Cheun YK, Roy U, Schärer OD, Burgers PM. Bypass of DNA interstrand crosslinks by a Rev1-DNA polymerase ζ complex. Nucleic Acids Res 2020; 48:8461-8473. [PMID: 32633759 PMCID: PMC7470978 DOI: 10.1093/nar/gkaa580] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/18/2020] [Accepted: 06/24/2020] [Indexed: 12/17/2022] Open
Abstract
DNA polymerase ζ (Pol ζ) and Rev1 are essential for the repair of DNA interstrand crosslink (ICL) damage. We have used yeast DNA polymerases η, ζ and Rev1 to study translesion synthesis (TLS) past a nitrogen mustard-based interstrand crosslink (ICL) with an 8-atom linker between the crosslinked bases. The Rev1-Pol ζ complex was most efficient in complete bypass synthesis, by 2-3 fold, compared to Pol ζ alone or Pol η. Rev1 protein, but not its catalytic activity, was required for efficient TLS. A dCMP residue was faithfully inserted across the ICL-G by Pol η, Pol ζ, and Rev1-Pol ζ. Rev1-Pol ζ, and particularly Pol ζ alone showed a tendency to stall before the ICL, whereas Pol η stalled just after insertion across the ICL. The stalling of Pol η directly past the ICL is attributed to its autoinhibitory activity, caused by elongation of the short ICL-unhooked oligonucleotide (a six-mer in our study) by Pol η providing a barrier to further elongation of the correct primer. No stalling by Rev1-Pol ζ directly past the ICL was observed, suggesting that the proposed function of Pol ζ as an extender DNA polymerase is also required for ICL repair.
Collapse
Affiliation(s)
- Rachel Bezalel-Buch
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA
| | - Young K Cheun
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Upasana Roy
- Department of Chemistry, Stony Brook University, Stony Book, NY 11794, USA.,Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Orlando D Schärer
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Peter M Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
35
|
Rogers CM, Simmons Iii RH, Fluhler Thornburg GE, Buehler NJ, Bochman ML. Fanconi anemia-independent DNA inter-strand crosslink repair in eukaryotes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 158:33-46. [PMID: 32877700 DOI: 10.1016/j.pbiomolbio.2020.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023]
Abstract
DNA inter-strand crosslinks (ICLs) are dangerous lesions that can be caused by a variety of endogenous and exogenous bifunctional compounds. Because covalently linking both strands of the double helix locally disrupts DNA replication and transcription, failure to remove even a single ICL can be fatal to the cell. Thus, multiple ICL repair pathways have evolved, with the best studied being the canonical Fanconi anemia (FA) pathway. However, recent research demonstrates that different types of ICLs (e.g., backbone distorting vs. non-distorting) can be discriminated by the cell, which then mounts a specific repair response using the FA pathway or one of a variety of FA-independent ICL repair pathways. This review focuses on the latter, covering current work on the transcription-coupled, base excision, acetaldehyde-induced, and SNM1A/RecQ4 ICL repair pathways and highlighting unanswered questions in the field. Answering these questions will provide mechanistic insight into the various pathways of ICL repair and enable ICL-inducing agents to be more effectively used as chemotherapeutics.
Collapse
Affiliation(s)
- Cody M Rogers
- Molecular and Cellular Biochemistry Department, Indiana University, 212 S. Hawthorne Dr., Simon Hall MSB1 room 405B, Bloomington, IN, 47405, USA
| | - Robert H Simmons Iii
- Molecular and Cellular Biochemistry Department, Indiana University, 212 S. Hawthorne Dr., Simon Hall MSB1 room 405B, Bloomington, IN, 47405, USA
| | - Gabriella E Fluhler Thornburg
- Molecular and Cellular Biochemistry Department, Indiana University, 212 S. Hawthorne Dr., Simon Hall MSB1 room 405B, Bloomington, IN, 47405, USA
| | - Nicholas J Buehler
- Molecular and Cellular Biochemistry Department, Indiana University, 212 S. Hawthorne Dr., Simon Hall MSB1 room 405B, Bloomington, IN, 47405, USA
| | - Matthew L Bochman
- Molecular and Cellular Biochemistry Department, Indiana University, 212 S. Hawthorne Dr., Simon Hall MSB1 room 405B, Bloomington, IN, 47405, USA.
| |
Collapse
|
36
|
Rogers CM, Lee CY, Parkins S, Buehler NJ, Wenzel S, Martínez-Márquez F, Takagi Y, Myong S, Bochman ML. The yeast Hrq1 helicase stimulates Pso2 translesion nuclease activity and thereby promotes DNA interstrand crosslink repair. J Biol Chem 2020; 295:8945-8957. [PMID: 32371399 PMCID: PMC7335788 DOI: 10.1074/jbc.ra120.013626] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
DNA interstrand crosslink (ICL) repair requires a complex network of DNA damage response pathways. Removal of the ICL lesions is vital, as they are physical barriers to essential DNA processes that require the separation of duplex DNA, such as replication and transcription. The Fanconi anemia (FA) pathway is the principal mechanism for ICL repair in metazoans and is coupled to DNA replication. In Saccharomyces cerevisiae, a vestigial FA pathway is present, but ICLs are predominantly repaired by a pathway involving the Pso2 nuclease, which is hypothesized to use its exonuclease activity to digest through the lesion to provide access for translesion polymerases. However, Pso2 lacks translesion nuclease activity in vitro, and mechanistic details of this pathway are lacking, especially relative to FA. We recently identified the Hrq1 helicase, a homolog of the disease-linked enzyme RecQ-like helicase 4 (RECQL4), as a component of Pso2-mediated ICL repair. Here, using genetic, biochemical, and biophysical approaches, including single-molecule FRET (smFRET)- and gel-based nuclease assays, we show that Hrq1 stimulates the Pso2 nuclease through a mechanism that requires Hrq1 catalytic activity. Importantly, Hrq1 also stimulated Pso2 translesion nuclease activity through a site-specific ICL in vitro We noted that stimulation of Pso2 nuclease activity is specific to eukaryotic RecQ4 subfamily helicases, and genetic and biochemical data suggest that Hrq1 likely interacts with Pso2 through their N-terminal domains. These results advance our understanding of FA-independent ICL repair and establish a role for the RecQ4 helicases in the repair of these detrimental DNA lesions.
Collapse
Affiliation(s)
- Cody M Rogers
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana, USA
| | - Chun-Ying Lee
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Samuel Parkins
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nicholas J Buehler
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana, USA
| | - Sabine Wenzel
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Francisco Martínez-Márquez
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yuichiro Takagi
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sua Myong
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Matthew L Bochman
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana, USA.
| |
Collapse
|
37
|
Sabatella M, Pines A, Slyskova J, Vermeulen W, Lans H. ERCC1-XPF targeting to psoralen-DNA crosslinks depends on XPA and FANCD2. Cell Mol Life Sci 2020; 77:2005-2016. [PMID: 31392348 PMCID: PMC7228994 DOI: 10.1007/s00018-019-03264-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/19/2019] [Accepted: 07/31/2019] [Indexed: 01/02/2023]
Abstract
The effectiveness of many DNA-damaging chemotherapeutic drugs depends on their ability to form monoadducts, intrastrand crosslinks and/or interstrand crosslinks (ICLs) that interfere with transcription and replication. The ERCC1-XPF endonuclease plays a critical role in removal of these lesions by incising DNA either as part of nucleotide excision repair (NER) or interstrand crosslink repair (ICLR). Engagement of ERCC1-XPF in NER is well characterized and is facilitated by binding to the XPA protein. However, ERCC1-XPF recruitment to ICLs is less well understood. Moreover, specific mutations in XPF have been found to disrupt its function in ICLR but not in NER, but whether this involves differences in lesion targeting is unknown. Here, we imaged GFP-tagged ERCC1, XPF and ICLR-defective XPF mutants to investigate how in human cells ERCC1-XPF is localized to different types of psoralen-induced DNA lesions, repaired by either NER or ICLR. Our results confirm its dependence on XPA in NER and furthermore show that its engagement in ICLR is dependent on FANCD2. Interestingly, we find that two ICLR-defective XPF mutants (R689S and S786F) are less well recruited to ICLs. These studies highlight the differential mechanisms that regulate ERCC1-XPF activity in DNA repair.
Collapse
Affiliation(s)
- Mariangela Sabatella
- Department of Molecular Genetics, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
- Oncode Institute, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
| | - Alex Pines
- Department of Molecular Genetics, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
- Oncode Institute, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
| | - Jana Slyskova
- Department of Molecular Genetics, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Wim Vermeulen
- Department of Molecular Genetics, Erasmus MC, 3015 GE, Rotterdam, The Netherlands.
- Oncode Institute, Erasmus MC, 3015 GE, Rotterdam, The Netherlands.
| | - Hannes Lans
- Department of Molecular Genetics, Erasmus MC, 3015 GE, Rotterdam, The Netherlands.
- Oncode Institute, Erasmus MC, 3015 GE, Rotterdam, The Netherlands.
| |
Collapse
|
38
|
Mulderrig L, Garaycoechea JI. XPF-ERCC1 protects liver, kidney and blood homeostasis outside the canonical excision repair pathways. PLoS Genet 2020; 16:e1008555. [PMID: 32271760 PMCID: PMC7144963 DOI: 10.1371/journal.pgen.1008555] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/05/2019] [Indexed: 01/02/2023] Open
Abstract
Loss of the XPF-ERCC1 endonuclease causes a dramatic phenotype that results in progeroid features associated with liver, kidney and bone marrow dysfunction. As this nuclease is involved in multiple DNA repair transactions, it is plausible that this severe phenotype results from the simultaneous inactivation of both branches of nucleotide excision repair (GG- and TC-NER) and Fanconi anaemia (FA) inter-strand crosslink (ICL) repair. Here we use genetics in human cells and mice to investigate the interaction between the canonical NER and ICL repair pathways and, subsequently, how their joint inactivation phenotypically overlaps with XPF-ERCC1 deficiency. We find that cells lacking TC-NER are sensitive to crosslinking agents and that there is a genetic interaction between NER and FA in the repair of certain endogenous crosslinking agents. However, joint inactivation of GG-NER, TC-NER and FA crosslink repair cannot account for the hypersensitivity of XPF-deficient cells to classical crosslinking agents nor is it sufficient to explain the extreme phenotype of Ercc1-/- mice. These analyses indicate that XPF-ERCC1 has important functions outside of its central role in NER and FA crosslink repair which are required to prevent endogenous DNA damage. Failure to resolve such damage leads to loss of tissue homeostasis in mice and humans.
Collapse
Affiliation(s)
- Lee Mulderrig
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, United Kingdom
| | - Juan I. Garaycoechea
- Hubrecht Institute–KNAW, University Medical Center Utrecht, Uppsalalaan, CT Utrecht, Netherlands
| |
Collapse
|
39
|
Liu W, Palovcak A, Li F, Zafar A, Yuan F, Zhang Y. Fanconi anemia pathway as a prospective target for cancer intervention. Cell Biosci 2020; 10:39. [PMID: 32190289 PMCID: PMC7075017 DOI: 10.1186/s13578-020-00401-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
Fanconi anemia (FA) is a recessive genetic disorder caused by biallelic mutations in at least one of 22 FA genes. Beyond its pathological presentation of bone marrow failure and congenital abnormalities, FA is associated with chromosomal abnormality and genomic instability, and thus represents a genetic vulnerability for cancer predisposition. The cancer relevance of the FA pathway is further established with the pervasive occurrence of FA gene alterations in somatic cancers and observations of FA pathway activation-associated chemotherapy resistance. In this article we describe the role of the FA pathway in canonical interstrand crosslink (ICL) repair and possible contributions of FA gene alterations to cancer development. We also discuss the perspectives and potential of targeting the FA pathway for cancer intervention.
Collapse
Affiliation(s)
- Wenjun Liu
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Building Room 311, 1011 NW 15th Street, Miami, FL 33136 USA
| | - Anna Palovcak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Building Room 311, 1011 NW 15th Street, Miami, FL 33136 USA
| | - Fang Li
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Building Room 311, 1011 NW 15th Street, Miami, FL 33136 USA
| | - Alyan Zafar
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Building Room 311, 1011 NW 15th Street, Miami, FL 33136 USA
| | - Fenghua Yuan
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Building Room 311, 1011 NW 15th Street, Miami, FL 33136 USA
| | - Yanbin Zhang
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Building Room 311, 1011 NW 15th Street, Miami, FL 33136 USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| |
Collapse
|
40
|
Taylor SJ, Arends MJ, Langdon SP. Inhibitors of the Fanconi anaemia pathway as potential antitumour agents for ovarian cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2020; 1:26-52. [PMID: 36046263 PMCID: PMC9400734 DOI: 10.37349/etat.2020.00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/18/2019] [Indexed: 11/30/2022] Open
Abstract
The Fanconi anaemia (FA) pathway is an important mechanism for cellular DNA damage repair, which functions to remove toxic DNA interstrand crosslinks. This is particularly relevant in the context of ovarian and other cancers which rely extensively on interstrand cross-link generating platinum chemotherapy as standard of care treatment. These cancers often respond well to initial treatment, but reoccur with resistant disease and upregulation of DNA damage repair pathways. The FA pathway is therefore of great interest as a target for therapies that aim to improve the efficacy of platinum chemotherapies, and reverse tumour resistance to these. In this review, we discuss recent advances in understanding the mechanism of interstrand cross-link repair by the FA pathway, and the potential of the component parts as targets for therapeutic agents. We then focus on the current state of play of inhibitor development, covering both the characterisation of broad spectrum inhibitors and high throughput screening approaches to identify novel small molecule inhibitors. We also consider synthetic lethality between the FA pathway and other DNA damage repair pathways as a therapeutic approach.
Collapse
Affiliation(s)
- Sarah J Taylor
- Cancer Research UK Edinburgh Centre and Edinburgh Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, EH4 2XU Edinburgh, UK
| | - Mark J Arends
- Cancer Research UK Edinburgh Centre and Edinburgh Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, EH4 2XU Edinburgh, UK
| | - Simon P Langdon
- Cancer Research UK Edinburgh Centre and Edinburgh Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, EH4 2XU Edinburgh, UK
| |
Collapse
|
41
|
Tan W, Murphy VJ, Charron A, van Twest S, Sharp M, Constantinou A, Parker MW, Crismani W, Bythell-Douglas R, Deans AJ. Preparation and purification of mono-ubiquitinated proteins using Avi-tagged ubiquitin. PLoS One 2020; 15:e0229000. [PMID: 32092106 PMCID: PMC7039436 DOI: 10.1371/journal.pone.0229000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/27/2020] [Indexed: 01/13/2023] Open
Abstract
Site-specific conjugation of ubiquitin onto a range of DNA repair proteins regulates their critical functions in the DNA damage response. Biochemical and structural characterization of these functions are limited by an absence of tools for the purification of DNA repair proteins in purely the ubiquitinated form. To overcome this barrier, we designed a ubiquitin fusion protein that is N-terminally biotinylated and can be conjugated by E3 RING ligases onto various substrates. Biotin affinity purification of modified proteins, followed by cleavage of the affinity tag leads to release of natively-mono-ubiquitinated substrates. As proof-of-principle, we applied this method to several substrates of mono-ubiquitination in the Fanconi anemia (FA)-BRCA pathway of DNA interstrand crosslink repair. These include the FANCI:FANCD2 complex, the PCNA trimer and BRCA1 modified nucleosomes. This method provides a simple approach to study the role of mono-ubiquitination in DNA repair or any other mono-ubiquitination signaling pathways.
Collapse
Affiliation(s)
- Winnie Tan
- Genome Stability Unit, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine (St. Vincent’s Health), The University of Melbourne, Victoria, Australia
| | - Vincent J. Murphy
- Genome Stability Unit, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Aude Charron
- Genome Stability Unit, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- National Graduate School of Chemistry of Montpellier (ENSCM), Montpellier, France
| | - Sylvie van Twest
- Genome Stability Unit, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Michael Sharp
- Genome Stability Unit, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Angelos Constantinou
- Institute of Human Genetics (IGH), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM), Montpellier, France
| | - Michael W. Parker
- Structural Biology Unit, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Wayne Crismani
- Genome Stability Unit, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine (St. Vincent’s Health), The University of Melbourne, Victoria, Australia
| | - Rohan Bythell-Douglas
- Genome Stability Unit, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine (St. Vincent’s Health), The University of Melbourne, Victoria, Australia
| | - Andrew J. Deans
- Genome Stability Unit, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine (St. Vincent’s Health), The University of Melbourne, Victoria, Australia
| |
Collapse
|
42
|
Acetylation of XPF by TIP60 facilitates XPF-ERCC1 complex assembly and activation. Nat Commun 2020; 11:786. [PMID: 32034146 PMCID: PMC7005904 DOI: 10.1038/s41467-020-14564-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 01/17/2020] [Indexed: 01/27/2023] Open
Abstract
The XPF-ERCC1 heterodimer is a structure-specific endonuclease that is essential for nucleotide excision repair (NER) and interstrand crosslink (ICL) repair in mammalian cells. However, whether and how XPF binding to ERCC1 is regulated has not yet been established. Here, we show that TIP60, also known as KAT5, a haplo-insufficient tumor suppressor, directly acetylates XPF at Lys911 following UV irradiation or treatment with mitomycin C and that this acetylation is required for XPF-ERCC1 complex assembly and subsequent activation. Mechanistically, acetylation of XPF at Lys911 disrupts the Glu907-Lys911 salt bridge, thereby leading to exposure of a previously unidentified second binding site for ERCC1. Accordingly, loss of XPF acetylation impairs the damage-induced XPF-ERCC1 interaction, resulting in defects in both NER and ICL repair. Our results not only reveal a mechanism that regulates XPF-ERCC1 complex assembly and activation, but also provide important insight into the role of TIP60 in the maintenance of genome stability. The XPF-ERCC1 heterodimer is an endonuclease involved in nucleotide excision (NER) and interstrand crosslink (ICL) repair in mammalian cells. Here, the authors provide insights into its regulation by revealing that TIP60 regulates XPF-ERCC1 complex assembly and activation.
Collapse
|
43
|
Al-Shaheri FN, Al-Shami KM, Gamal EH, Mahasneh AA, Ayoub NM. Association of DNA repair gene polymorphisms with colorectal cancer risk and treatment outcomes. Exp Mol Pathol 2019; 113:104364. [PMID: 31881200 DOI: 10.1016/j.yexmp.2019.104364] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/16/2019] [Accepted: 12/24/2019] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the third most common carcinoma worldwide. Despite the progress in screening and treatment, CRC remains a leading cause of cancer-related mortality. Alterations to normal nucleic acid processing may drive neoplastic transformation of colorectal epithelium. DNA repair machinery performs an essential function in the protection of genome by reducing the number of genetic polymorphisms/variations that may drive carcinogenicity. Four essential DNA repair systems are known which include nucleotide excision repair (NER), base excision repair (BER), mismatch repair (MMR), and double-strand break repair (DSBR). Polymorphisms of DNA repair genes have been shown to influence the risk of cancer development as well as outcomes of treatment. Several studies demonstrated the association between genetic polymorphism of DNA repair genes and increased risk of CRC in different populations. In this review, we have summarized the impact of DNA repair gene polymorphisms on risk of CRC development and treatment outcomes. Advancements of the current understanding for the impact of DNA repair gene polymorphisms on the risk and treatment of CRC may support diagnostic and predictive roles in patients with CRC.
Collapse
Affiliation(s)
- Fawaz N Al-Shaheri
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), ImNeuenheimer Feld 580, 69120 Heidelberg, Germany; Medical Faculty Heidelberg, University of Heidelberg, ImNeuenheimer Feld 672, 69120 Heidelberg, Germany; Faculty of Applied Medical Sciences, Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan.
| | - Kamal M Al-Shami
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 720 South Donahue Drive, Auburn, Alabama 36849, United States of America; Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Eshrak H Gamal
- Department of Oncology, Collage of Medicine, Bonn University, Germany; Faculty of Applied Medical Sciences, Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan.
| | - Amjad A Mahasneh
- Department of Applied Biological Sciences, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Nehad M Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan.
| |
Collapse
|
44
|
Biggar KK, Zhang J, Storey KB. Navigating oxygen deprivation: liver transcriptomic responses of the red eared slider turtle to environmental anoxia. PeerJ 2019; 7:e8144. [PMID: 31788367 PMCID: PMC6883951 DOI: 10.7717/peerj.8144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/01/2019] [Indexed: 01/15/2023] Open
Abstract
The best facultative anaerobes among vertebrates are members of the genera Trachemys (pond slider turtles) and Chrysemys (painted turtles), and are able to survive without oxygen for up to 12 to 18 weeks at ∼3 °C. In this study, we utilized RNAseq to profile the transcriptomic changes that take place in response to 20 hrs of anoxia at 5 °C in the liver of the red eared slide turtle (Trachemys scripta elegans). Sequencing reads were obtained from at least 18,169 different genes and represented a minimum 49x coverage of the C. picta bellii exome. A total of 3,105 genes showed statistically significant changes in gene expression between the two animal groups, of which 971 also exhibited a fold change equal to or greater than 50% of control normoxic values. This study also highlights a number of anoxia-responsive molecular pathways that are may be important to navigating anoxia survival. These pathways were enriched in mRNA found to significantly increase in response to anoxia and included molecular processes such as DNA damage repair and metabolic reprogramming. For example, our results indicate that the anoxic turtle may utilize succinate metabolism to yield a molecule of GTP in addition to the two molecules that results from lactate production, and agrees with other established models of anoxia tolerance. Collectively, our analysis provides a snapshot of the molecular landscape of the anoxic turtle and may provide hints into the how this animal is capable of surviving this extreme environmental stress.
Collapse
Affiliation(s)
- Kyle K. Biggar
- Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Jing Zhang
- The hospital for sick children, Neuroscience and Mental Health, Toronto, Ontario, Canada
| | - Kenneth B. Storey
- Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
45
|
Zhang H, Chen Z, Ye Y, Ye Z, Cao D, Xiong Y, Srivastava M, Feng X, Tang M, Wang C, Tainer JA, Chen J. SLX4IP acts with SLX4 and XPF-ERCC1 to promote interstrand crosslink repair. Nucleic Acids Res 2019; 47:10181-10201. [PMID: 31495888 PMCID: PMC6821277 DOI: 10.1093/nar/gkz769] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 08/03/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022] Open
Abstract
Interstrand crosslinks (ICLs) are highly toxic DNA lesions that are repaired via a complex process requiring the coordination of several DNA repair pathways. Defects in ICL repair result in Fanconi anemia, which is characterized by bone marrow failure, developmental abnormalities, and a high incidence of malignancies. SLX4, also known as FANCP, acts as a scaffold protein and coordinates multiple endonucleases that unhook ICLs, resolve homologous recombination intermediates, and perhaps remove unhooked ICLs. In this study, we explored the role of SLX4IP, a constitutive factor in the SLX4 complex, in ICL repair. We found that SLX4IP is a novel regulatory factor; its depletion sensitized cells to treatment with ICL-inducing agents and led to accumulation of cells in the G2/M phase. We further discovered that SLX4IP binds to SLX4 and XPF-ERCC1 simultaneously and that disruption of one interaction also disrupts the other. The binding of SLX4IP to both SLX4 and XPF-ERCC1 not only is vital for maintaining the stability of SLX4IP protein, but also promotes the interaction between SLX4 and XPF-ERCC1, especially after DNA damage. Collectively, these results demonstrate a new regulatory role for SLX4IP in maintaining an efficient SLX4-XPF-ERCC1 complex in ICL repair.
Collapse
Affiliation(s)
- Huimin Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhen Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yin Ye
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zu Ye
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Dan Cao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yun Xiong
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mrinal Srivastava
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xu Feng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mengfan Tang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chao Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
46
|
Hoogenboom WS, Boonen RACM, Knipscheer P. The role of SLX4 and its associated nucleases in DNA interstrand crosslink repair. Nucleic Acids Res 2019; 47:2377-2388. [PMID: 30576517 PMCID: PMC6411836 DOI: 10.1093/nar/gky1276] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 12/11/2022] Open
Abstract
A key step in the Fanconi anemia pathway of DNA interstrand crosslink (ICL) repair is the ICL unhooking by dual endonucleolytic incisions. SLX4/FANCP is a large scaffold protein that plays a central role in ICL unhooking. It contains multiple domains that interact with many proteins including three different endonucleases and also acts in several other DNA repair pathways. While it is known that its interaction with the endonuclease XPF-ERCC1 is required for its function in ICL repair, which other domains act in this process is unclear. Here, we used Xenopus egg extracts to determine ICL repair specific features of SLX4. We show that the SLX4-interacting endonuclease SLX1 is not required for ICL repair and demonstrate that all essential SLX4 domains are located at the N-terminal half of the protein. The MLR domain is crucial for the recruitment of XPF-ERCC1 but also has an unanticipated function in recruiting SLX4 to the site of damage. Although we find the BTB is not essential for ICL repair in our system, dimerization of SLX4 could be important. Our data provide new insights into the mechanism by which SLX4 acts in ICL repair.
Collapse
Affiliation(s)
- Wouter S Hoogenboom
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rick A C M Boonen
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Puck Knipscheer
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
47
|
Doherty W, Dürr EM, Baddock HT, Lee SY, McHugh PJ, Brown T, Senge MO, Scanlan EM, McGouran JF. A hydroxamic-acid-containing nucleoside inhibits DNA repair nuclease SNM1A. Org Biomol Chem 2019; 17:8094-8105. [PMID: 31380542 PMCID: PMC6984127 DOI: 10.1039/c9ob01133a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/12/2019] [Indexed: 12/29/2022]
Abstract
Nine modified nucleosides, incorporating zinc-binding pharmacophores, have been synthesised and evaluated as inhibitors of the DNA repair nuclease SNM1A. The series included oxyamides, hydroxamic acids, hydroxamates, a hydrazide, a squarate ester and a squaramide. A hydroxamic acid-derived nucleoside inhibited the enzyme, offering a novel approach for potential therapeutic development through the use of rationally designed nucleoside derived inhibitors.
Collapse
Affiliation(s)
- William Doherty
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Ireland.
| | - Eva-Maria Dürr
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Ireland.
| | - Hannah T Baddock
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Sook Y Lee
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK and Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Peter J McHugh
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Tom Brown
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Mathias O Senge
- Molecular Medicine, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St James's Hospital, Dublin 8, Ireland
| | - Eoin M Scanlan
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Ireland.
| | - Joanna F McGouran
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Ireland.
| |
Collapse
|
48
|
Buzon B, Grainger R, Huang S, Rzadki C, Junop MS. Structure-specific endonuclease activity of SNM1A enables processing of a DNA interstrand crosslink. Nucleic Acids Res 2019; 46:9057-9066. [PMID: 30165656 PMCID: PMC6158701 DOI: 10.1093/nar/gky759] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/20/2018] [Indexed: 01/09/2023] Open
Abstract
DNA interstrand crosslinks (ICLs) covalently join opposing strands, blocking both replication and transcription, therefore making ICL-inducing compounds highly toxic and ideal anti-cancer agents. While incisions surrounding the ICL are required to remove damaged DNA, it is currently unclear which endonucleases are needed for this key event. SNM1A has been shown to play an important function in human ICL repair, however its suggested role has been limited to exonuclease activity and not strand incision. Here we show that SNM1A has endonuclease activity, having the ability to cleave DNA structures that arise during the initiation of ICL repair. In particular, this endonuclease activity cleaves single-stranded DNA. Given that unpaired DNA regions occur 5′ to an ICL, these findings suggest SNM1A may act as either an endonuclease and/or exonuclease during ICL repair. This finding is significant as it expands the potential role of SNM1A in ICL repair.
Collapse
Affiliation(s)
- Beverlee Buzon
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster, University, Hamilton, Ontario L8N 3Z5, Canada.,Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Ryan Grainger
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Simon Huang
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster, University, Hamilton, Ontario L8N 3Z5, Canada
| | - Cameron Rzadki
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster, University, Hamilton, Ontario L8N 3Z5, Canada
| | - Murray S Junop
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster, University, Hamilton, Ontario L8N 3Z5, Canada.,Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, Ontario N6A 5C1, Canada
| |
Collapse
|
49
|
Dattani A, Wilkinson SR. Deciphering the interstrand crosslink DNA repair network expressed by Trypanosoma brucei. DNA Repair (Amst) 2019; 78:154-166. [DOI: 10.1016/j.dnarep.2019.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/29/2019] [Accepted: 04/24/2019] [Indexed: 10/26/2022]
|
50
|
Inactivation of XPF Sensitizes Cancer Cells to Gemcitabine. J Nucleic Acids 2019; 2019:6357609. [PMID: 30941207 PMCID: PMC6421022 DOI: 10.1155/2019/6357609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/26/2018] [Accepted: 02/03/2019] [Indexed: 12/22/2022] Open
Abstract
Gemcitabine (2′, 2′-difluorodeoxycytidine; dFdC) is a deoxycytidine analog and is used primarily against pancreatic cancer. The cytotoxicity of gemcitabine is due to the inhibition of DNA replication. However, a mechanism of removal of the incorporated dFdC is largely unknown. In this report, we discovered that nucleotide excision repair protein XPF-ERCC1 participates in the repair of gemcitabine-induced DNA damage and inactivation of XPF sensitizes cells to gemcitabine. Further analysis identified that XPF-ERCC1 functions together with apurinic/apyrimidinic endonuclease (APE) in the repair of gemcitabine-induced DNA damage. Our results demonstrate the importance of the evaluation of DNA repair activities in gemcitabine treatment.
Collapse
|