1
|
Ryczek N, Łyś A, Wanowska E, Kozłowska-Masłoń J, Makałowska I. Mechanism of expression regulation of head-to-head overlapping protein-coding genes INO80E and HIRIP3. Commun Biol 2025; 8:391. [PMID: 40057624 PMCID: PMC11890862 DOI: 10.1038/s42003-025-07815-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 02/25/2025] [Indexed: 05/13/2025] Open
Abstract
Although the existence of overlapping protein-coding genes in eukaryotic genomes is known for decades, their role in regulating expression remains far from fully understood. Here, the mechanism regulating the expression of head-to-head overlapping genes, a pair of INO80E and HIRIP3 genes is presented. Based on a series of experiments, we show that the expression of these genes is strongly dependent on sense/antisense interactions. The overlapping transcripts form an RNA:RNA duplex that has a stabilizing effect on the mRNAs involved, and this stabilization may be mediated by the ELAVL1 protein. We also show that the transcription factor RARG is important for the transcription of both genes studied. In addition, we demonstrate that the overlapping isoform of INO80E forms an R-loop that may positively regulate HIRIP3 isoforms. We propose that both structures, dsRNA and R-loops, help to keep the DNA loop open to allow the transcription of the remaining variants of both genes. However, experiments suggest that RNA:RNA duplex formation plays a major role, while R-loops play only a complementary one. The absence of this dsRNA structure leads to the loss of a stable DNA opening and consequently to transcriptional interference.
Collapse
Affiliation(s)
- Natalia Ryczek
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Aneta Łyś
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Elżbieta Wanowska
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Joanna Kozłowska-Masłoń
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, ul. Garbary 15, 61-866, Poznań, Poland
| | - Izabela Makałowska
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| |
Collapse
|
2
|
Paul P, Kumar A, Parida AS, De AK, Bhadke G, Khatua S, Tiwari B. p53-mediated regulation of LINE1 retrotransposon-derived R-loops. J Biol Chem 2025; 301:108200. [PMID: 39828096 PMCID: PMC11903798 DOI: 10.1016/j.jbc.2025.108200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/30/2024] [Accepted: 01/11/2025] [Indexed: 01/22/2025] Open
Abstract
Long interspersed nuclear element 1 (LINE1/L1) retrotransposons, which comprise 17% of the human genome, typically remain inactive in healthy somatic cells but are reactivated in several cancers. We previously demonstrated that p53 silences L1 transposons in human somatic cells, potentially acting as a tumor-suppressive mechanism. However, the precise molecular mechanisms underlying p53-mediated repression of L1 and its life cycle intermediates remain unclear. In this study, we used DNA-RNA immunoprecipitation-sequencing experiments to investigate RNA-DNA hybrids, which are key intermediates formed during L1 retrotransposition. Our findings reveal that L1 mRNA-genomic DNA (cis L1 R-loops) and L1 mRNA-complementary DNA (trans L1 R-loops) hybrids are upregulated in p53-/- cells. This increase is synergistic with L1 activation by histone deacetylase (HDAC) inhibitors (HDACi). However, treatment with a reverse transcriptase inhibitor reduces this accumulation, indicating that retrotransposition activity plays a significant role in R-loop accumulation. Interestingly, in WT cells, hyperactivated L1 transposons are suppressed upon HDACi withdrawal. L1 suppression in WT cells coincided with the recruitment of repressive marks, specifically H3K9me3 and H3K27me3, simultaneously preventing the addition of activating marks like H3K4me3, and H3K9ac at the L1 5'UTR. Mechanistically, we demonstrate that p53 cooperates with histone methyltransferases SETDB1 and G9A to deposit H3K9me3 marks at the L1 promoter, thereby silencing transposons. This study is the first to reveal novel roles of p53 in preventing the formation of L1-derived RNA-DNA hybrids (R-loops) and suppression of hyperactivated L1 elements by cooperating with histone methyltransferases, underscoring its critical role in maintaining genomic stability.
Collapse
Affiliation(s)
- Pratyashaa Paul
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, Odisha, India
| | - Arun Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, Odisha, India
| | - Ankita Subhadarsani Parida
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, Odisha, India
| | - Astik Kumar De
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, Odisha, India
| | - Gauri Bhadke
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, Odisha, India
| | - Satyajeet Khatua
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, Odisha, India
| | - Bhavana Tiwari
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, Odisha, India.
| |
Collapse
|
3
|
Lopez Martinez D, Svejstrup JQ. Mechanisms of RNA Polymerase II Termination at the 3'-End of Genes. J Mol Biol 2025; 437:168735. [PMID: 39098594 DOI: 10.1016/j.jmb.2024.168735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
RNA polymerase II (RNAPII) is responsible for the synthesis of a diverse set of RNA molecules, including protein-coding messenger RNAs (mRNAs) and many short non-coding RNAs (ncRNAs). For this purpose, RNAPII relies on a multitude of factors that regulate the transcription cycle, from initiation and promoter-proximal pausing, through elongation and finally termination. RNAPII transcription termination at the end of genes ensures the release of RNAPII from the DNA template and its efficient recycling for further rounds of transcription. Termination of RNAPII is tightly coupled to 3'-end mRNA processing, which constitutes an important trigger for the subsequent transcription termination event. In this review, we discuss the current understanding of RNAPII termination mechanisms, focusing on 'canonical' termination at the 3'-end of genes. We also integrate the allosteric and 'torpedo' models into a unified model of termination, and describe the different termination factors that have been identified to date, paying special attention to the human factors and their mechanism of action at the molecular level. Indeed, in recent years the development of novel approaches in structural biology, biochemistry and cell biology have together led to a more detailed comprehension of the different mechanisms of RNAPII termination, and a better understanding of their importance in regulating gene expression, especially under cellular stress and pathological situations.
Collapse
Affiliation(s)
- David Lopez Martinez
- Centre for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Jesper Q Svejstrup
- Centre for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Yang H, Lan L. Transcription-coupled DNA repair protects genome stability upon oxidative stress-derived DNA strand breaks. FEBS Lett 2025; 599:168-176. [PMID: 38813713 PMCID: PMC11607181 DOI: 10.1002/1873-3468.14938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/27/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024]
Abstract
Elevated oxidative stress, which threatens genome stability, has been detected in almost all types of cancers. Cells employ various DNA repair pathways to cope with DNA damage induced by oxidative stress. Recently, a lot of studies have provided insights into DNA damage response upon oxidative stress, specifically in the context of transcriptionally active genomes. Here, we summarize recent studies to help understand how the transcription is regulated upon DNA double strand breaks (DSB) and how DNA repair pathways are selectively activated at the damage sites coupling with transcription. The role of RNA molecules, especially R-loops and RNA modifications during the DNA repair process, is critical for protecting genome stability. This review provides an update on how cells protect transcribed genome loci via transcription-coupled repair pathways.
Collapse
Affiliation(s)
- Haibo Yang
- Department of Urology, Brigham and Women’s Hospital & Harvard Medical School, Boston, MA, USA
| | - Li Lan
- Departments of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
| |
Collapse
|
5
|
Choi H, Zhou L, Zhao Y, Dean J. RNA helicase D1PAS1 resolves R-loops and forms a complex for mouse pachytene piRNA biogenesis required for male fertility. Nucleic Acids Res 2024; 52:11973-11994. [PMID: 39162228 PMCID: PMC11514495 DOI: 10.1093/nar/gkae712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/06/2024] [Indexed: 08/21/2024] Open
Abstract
During meiosis, RNA polymerase II transcribes pachytene piRNA precursors with unusually long and unspliced transcripts from discrete autosomal loci in the mouse genome. Despite the importance of piRNA for male fertility and a well-defined maturation process, the transcriptional machinery remains poorly understood. Here, we document that D1PAS1, an ATP-dependent RNA helicase, is critical for pachytene piRNA expression from multiple genomic loci and subsequent translocation into the cytoplasm to ensure mature piRNA biogenesis. Depletion of D1PAS1 in gene-edited mice results in the accumulation of R-loops in pachytene spermatocytes, leading to DNA-damage-induced apoptosis, disruption of piRNA biogenesis, spermatogenic arrest, and male infertility. Transcriptome, genome-wide R-loop profiling, and proteomic analyses document that D1PAS1 regulates pachytene piRNA transcript elongation and termination. D1PAS1 subsequently forms a complex with nuclear export components to ensure pachytene piRNA precursor translocation from the nucleus to the cytoplasm for processing into small non-coding RNAs. Thus, our study defines D1PAS1 as a specific transcription activator that promotes R-loop unwinding and is a critical factor in pachytene piRNA biogenesis.
Collapse
Affiliation(s)
- Heejin Choi
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lecong Zhou
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yangu Zhao
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jurrien Dean
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Liu L, Manley JL. Modulation of diverse biological processes by CPSF, the master regulator of mRNA 3' ends. RNA (NEW YORK, N.Y.) 2024; 30:1122-1140. [PMID: 38986572 PMCID: PMC11331416 DOI: 10.1261/rna.080108.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
The cleavage and polyadenylation specificity factor (CPSF) complex plays a central role in the formation of mRNA 3' ends, being responsible for the recognition of the poly(A) signal sequence, the endonucleolytic cleavage step, and recruitment of poly(A) polymerase. CPSF has been extensively studied for over three decades, and its functions and those of its individual subunits are becoming increasingly well-defined, with much current research focusing on the impact of these proteins on the normal functioning or disease/stress states of cells. In this review, we provide an overview of the general functions of CPSF and its subunits, followed by a discussion of how they exert their functions in a surprisingly diverse variety of biological processes and cellular conditions. These include transcription termination, small RNA processing, and R-loop prevention/resolution, as well as more generally cancer, differentiation/development, and infection/immunity.
Collapse
Affiliation(s)
- Lizhi Liu
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
7
|
Luna R, Gómez-González B, Aguilera A. RNA biogenesis and RNA metabolism factors as R-loop suppressors: a hidden role in genome integrity. Genes Dev 2024; 38:504-527. [PMID: 38986581 PMCID: PMC11293400 DOI: 10.1101/gad.351853.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Genome integrity relies on the accuracy of DNA metabolism, but as appreciated for more than four decades, transcription enhances mutation and recombination frequencies. More recent research provided evidence for a previously unforeseen link between RNA and DNA metabolism, which is often related to the accumulation of DNA-RNA hybrids and R-loops. In addition to physiological roles, R-loops interfere with DNA replication and repair, providing a molecular scenario for the origin of genome instability. Here, we review current knowledge on the multiple RNA factors that prevent or resolve R-loops and consequent transcription-replication conflicts and thus act as modulators of genome dynamics.
Collapse
Affiliation(s)
- Rosa Luna
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Universidad de Sevilla-Spanish National Research Council (CSIC), 41092 Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Belén Gómez-González
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Universidad de Sevilla-Spanish National Research Council (CSIC), 41092 Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Andrés Aguilera
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Universidad de Sevilla-Spanish National Research Council (CSIC), 41092 Seville, Spain;
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| |
Collapse
|
8
|
Yang BZ, Liu MY, Chiu KL, Chien YL, Cheng CA, Chen YL, Tsui LY, Lin KR, Chu HPC, Wu CSP. DHX9 SUMOylation is required for the suppression of R-loop-associated genome instability. Nat Commun 2024; 15:6009. [PMID: 39019926 PMCID: PMC11255299 DOI: 10.1038/s41467-024-50428-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
RNA helicase DHX9 is essential for genome stability by resolving aberrant R-loops. However, its regulatory mechanisms remain unclear. Here we show that SUMOylation at lysine 120 (K120) is crucial for DHX9 function. Preventing SUMOylation at K120 leads to R-loop dysregulation, increased DNA damage, and cell death. Cells expressing DHX9 K120R mutant which cannot be SUMOylated are more sensitive to genotoxic agents and this sensitivity is mitigated by RNase H overexpression. Unlike the mutant, wild-type DHX9 interacts with R-loop-associated proteins such as PARP1 and DDX21 via SUMO-interacting motifs. Fusion of SUMO2 to the DHX9 K120R mutant enhances its association with these proteins, reduces R-loop accumulation, and alleviates survival defects of DHX9 K120R. Our findings highlight the critical role of DHX9 SUMOylation in maintaining genome stability by regulating protein interactions necessary for R-loop balance.
Collapse
Affiliation(s)
- Bing-Ze Yang
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Mei-Yin Liu
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Kuan-Lin Chiu
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106319, Taiwan
| | - Yuh-Ling Chien
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Ching-An Cheng
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Yu-Lin Chen
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Li-Yu Tsui
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Keng-Ru Lin
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | | | - Ching-Shyi Peter Wu
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan.
| |
Collapse
|
9
|
Kannan A, Gangadharan Leela S, Branzei D, Gangwani L. Role of senataxin in R-loop-mediated neurodegeneration. Brain Commun 2024; 6:fcae239. [PMID: 39070547 PMCID: PMC11277865 DOI: 10.1093/braincomms/fcae239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/14/2024] [Accepted: 07/13/2024] [Indexed: 07/30/2024] Open
Abstract
Senataxin is an RNA:DNA helicase that plays an important role in the resolution of RNA:DNA hybrids (R-loops) formed during transcription. R-loops are involved in the regulation of biological processes such as immunoglobulin class switching, gene expression and DNA repair. Excessive accumulation of R-loops results in DNA damage and loss of genomic integrity. Senataxin is critical for maintaining optimal levels of R-loops to prevent DNA damage and acts as a genome guardian. Within the nucleus, senataxin interacts with various RNA processing factors and DNA damage response and repair proteins. Senataxin interactors include survival motor neuron and zinc finger protein 1, with whom it co-localizes in sub-nuclear bodies. Despite its ubiquitous expression, mutations in senataxin specifically affect neurons and result in distinct neurodegenerative diseases such as amyotrophic lateral sclerosis type 4 and ataxia with oculomotor apraxia type 2, which are attributed to the gain-of-function and the loss-of-function mutations in senataxin, respectively. In addition, low levels of senataxin (loss-of-function) in spinal muscular atrophy result in the accumulation of R-loops causing DNA damage and motor neuron degeneration. Senataxin may play multiple functions in diverse cellular processes; however, its emerging role in R-loop resolution and maintenance of genomic integrity is gaining attention in the field of neurodegenerative diseases. In this review, we highlight the role of senataxin in R-loop resolution and its potential as a therapeutic target to treat neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Shyni Gangadharan Leela
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Dana Branzei
- The AIRC Institute of Molecular Oncology Foundation, IFOM ETS, Milan 20139, Italy
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Pavia 27100, Italy
| | - Laxman Gangwani
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
10
|
Székvölgyi L. Chromosomal R-loops: who R they? Biol Futur 2024; 75:177-182. [PMID: 38457033 DOI: 10.1007/s42977-024-00213-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/14/2024] [Indexed: 03/09/2024]
Abstract
R-loops, composed of DNA-RNA hybrids and displaced single-stranded DNA, are known to pose a severe threat to genome integrity. Therefore, extensive research has focused on identifying regulatory proteins involved in controlling R-loop levels. These proteins play critical roles in preventing R-loop accumulation and associated genome instability. Herein I summarize recent knowledge on R-loop regulators affecting R-loop homeostasis, involving a wide array of R-loop screening methods that have enabled their characterization, from forward genetic and siRNA-based screens to proximity labeling and machine learning. These approaches not only deepen our understanding on R-loop formation processes, but also hold promise to find new targets in R-loop dysregulation associated with human pathologies.
Collapse
Affiliation(s)
- Lóránt Székvölgyi
- MTA-DE Momentum, Genome Architecture and Recombination Research Group, Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, Debrecen, 4032, Hungary.
| |
Collapse
|
11
|
Zhang J, Chen F, Tang M, Xu W, Tian Y, Liu Z, Shu Y, Yang H, Zhu Q, Lu X, Peng B, Liu X, Xu X, Gullerova M, Zhu WG. The ARID1A-METTL3-m6A axis ensures effective RNase H1-mediated resolution of R-loops and genome stability. Cell Rep 2024; 43:113779. [PMID: 38358891 DOI: 10.1016/j.celrep.2024.113779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/02/2023] [Accepted: 01/26/2024] [Indexed: 02/17/2024] Open
Abstract
R-loops are three-stranded structures that can pose threats to genome stability. RNase H1 precisely recognizes R-loops to drive their resolution within the genome, but the underlying mechanism is unclear. Here, we report that ARID1A recognizes R-loops with high affinity in an ATM-dependent manner. ARID1A recruits METTL3 and METTL14 to the R-loop, leading to the m6A methylation of R-loop RNA. This m6A modification facilitates the recruitment of RNase H1 to the R-loop, driving its resolution and promoting DNA end resection at DSBs, thereby ensuring genome stability. Depletion of ARID1A, METTL3, or METTL14 leads to R-loop accumulation and reduced cell survival upon exposure to cytotoxic agents. Therefore, ARID1A, METTL3, and METTL14 function in a coordinated, temporal order at DSB sites to recruit RNase H1 and to ensure efficient R-loop resolution. Given the association of high ARID1A levels with resistance to genotoxic therapies in patients, these findings open avenues for exploring potential therapeutic strategies for cancers with ARID1A abnormalities.
Collapse
Affiliation(s)
- Jun Zhang
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518055, China
| | - Feng Chen
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518055, China
| | - Ming Tang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Wenchao Xu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518055, China
| | - Yuan Tian
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518055, China
| | - Zhichao Liu
- Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | - Yuxin Shu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518055, China
| | - Hui Yang
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518055, China
| | - Qian Zhu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518055, China
| | - Xiaopeng Lu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518055, China
| | - Bin Peng
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Cell Biology and Medical Genetics, Shenzhen University Medical School, Shenzhen 518055, China
| | - Xiangyu Liu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518055, China
| | - Xingzhi Xu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Cell Biology and Medical Genetics, Shenzhen University Medical School, Shenzhen 518055, China
| | - Monika Gullerova
- Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | - Wei-Guo Zhu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518055, China; Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518055, China; School of Basic Medical Sciences, Wannan Medical College, Wuhu, Anhui 241002, China; Department of Biochemistry and Molecular Biology, Peking University Health Science Centre, Beijing 100191, China.
| |
Collapse
|
12
|
Alahmari AA, Chaubey AH, Jonnakuti VS, Tisdale AA, Schwarz CD, Cornwell AC, Maraszek KE, Paterson EJ, Kim M, Venkat S, Gomez EC, Wang J, Gurova KV, Yalamanchili HK, Feigin ME. CPSF3 inhibition blocks pancreatic cancer cell proliferation through disruption of core histone mRNA processing. RNA (NEW YORK, N.Y.) 2024; 30:281-297. [PMID: 38191171 PMCID: PMC10870380 DOI: 10.1261/rna.079931.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with limited effective treatment options, potentiating the importance of uncovering novel drug targets. Here, we target cleavage and polyadenylation specificity factor 3 (CPSF3), the 3' endonuclease that catalyzes mRNA cleavage during polyadenylation and histone mRNA processing. We find that CPSF3 is highly expressed in PDAC and is associated with poor prognosis. CPSF3 knockdown blocks PDAC cell proliferation and colony formation in vitro and tumor growth in vivo. Chemical inhibition of CPSF3 by the small molecule JTE-607 also attenuates PDAC cell proliferation and colony formation, while it has no effect on cell proliferation of nontransformed immortalized control pancreatic cells. Mechanistically, JTE-607 induces transcriptional readthrough in replication-dependent histones, reduces core histone expression, destabilizes chromatin structure, and arrests cells in the S-phase of the cell cycle. Therefore, CPSF3 represents a potential therapeutic target for the treatment of PDAC.
Collapse
Affiliation(s)
- Abdulrahman A Alahmari
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, USA
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Aditi H Chaubey
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, USA
| | - Venkata S Jonnakuti
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
- Program in Quantitative and Computational Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Arwen A Tisdale
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, USA
| | - Carla D Schwarz
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, USA
| | - Abigail C Cornwell
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, USA
| | - Kathryn E Maraszek
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, USA
| | - Emily J Paterson
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, USA
| | - Minsuh Kim
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, USA
| | - Swati Venkat
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, USA
| | - Eduardo Cortes Gomez
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, USA
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, USA
| | - Katerina V Gurova
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, USA
| | - Hari Krishna Yalamanchili
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030, USA
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Michael E Feigin
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, USA
| |
Collapse
|
13
|
Randolph ME, Afifi M, Gorthi A, Weil R, Wilky BA, Weinreb J, Ciero P, Hoeve NT, van Diest PJ, Raman V, Bishop AJ, Loeb DM. RNA helicase DDX3 regulates RAD51 localization and DNA damage repair in Ewing sarcoma. iScience 2024; 27:108925. [PMID: 38323009 PMCID: PMC10844834 DOI: 10.1016/j.isci.2024.108925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/09/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024] Open
Abstract
We previously demonstrated that RNA helicase DDX3X (DDX3) can be a therapeutic target in Ewing sarcoma (EWS), but its role in EWS biology remains unclear. The present work demonstrates that DDX3 plays a unique role in DNA damage repair (DDR). We show that DDX3 interacts with several proteins involved in homologous recombination, including RAD51, RECQL1, RPA32, and XRCC2. In particular, DDX3 colocalizes with RAD51 and RNA:DNA hybrid structures in the cytoplasm of EWS cells. Inhibition of DDX3 RNA helicase activity increases cytoplasmic RNA:DNA hybrids, sequestering RAD51 in the cytoplasm, which impairs nuclear translocation of RAD51 to sites of double-stranded DNA breaks, thus increasing sensitivity of EWS to radiation treatment, both in vitro and in vivo. This discovery lays the foundation for exploring new therapeutic approaches directed at manipulating DDR protein localization in solid tumors.
Collapse
Affiliation(s)
- Matthew E. Randolph
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Marwa Afifi
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Aparna Gorthi
- Greehey Children’s Cancer Research Institute and Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Rachel Weil
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Breelyn A. Wilky
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Joshua Weinreb
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Paul Ciero
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Natalie ter Hoeve
- Department of Pathology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Paul J. van Diest
- Department of Pathology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Venu Raman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
- Department of Pharmacology, Johns Hopkins University, Baltimore, MD, USA
| | - Alexander J.R. Bishop
- Greehey Children’s Cancer Research Institute and Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - David M. Loeb
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
14
|
Liu MY, Lin KR, Chien YL, Yang BZ, Tsui LY, Chu HP, Wu CSP. ATR phosphorylates DHX9 at serine 321 to suppress R-loop accumulation upon genotoxic stress. Nucleic Acids Res 2024; 52:204-222. [PMID: 37930853 PMCID: PMC10783509 DOI: 10.1093/nar/gkad973] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/19/2023] [Accepted: 10/16/2023] [Indexed: 11/08/2023] Open
Abstract
Aberrant DNA/RNA hybrids (R-loops) formed during transcription and replication disturbances pose threats to genome stability. DHX9 is an RNA helicase involved in R-loop resolution, but how DHX9 is regulated in response to genotoxic stress remains unclear. Here we report that DHX9 is phosphorylated at S321 and S688, with S321 phosphorylation primarily induced by ATR after DNA damage. Phosphorylation of DHX9 at S321 promotes its interaction with γH2AX, BRCA1 and RPA, and is required for its association with R-loops under genotoxic stress. Inhibition of ATR or expression of the non-phosphorylatable DHX9S321A prevents DHX9 from interacting with RPA and R-loops, leading to the accumulation of stress-induced R-loops. Furthermore, depletion of RPA reduces the association between DHX9 and γH2AX, and in vitro binding analysis confirms a direct interaction between DHX9 and RPA. Notably, cells with the non-phosphorylatable DHX9S321A variant exhibit hypersensitivity to genotoxic stress, while those expressing the phosphomimetic DHX9S321D variant prevent R-loop accumulation and display resistance to DNA damage agents. In summary, we uncover a new mechanism by which ATR directly regulates DHX9 through phosphorylation to eliminate stress-induced R-loops.
Collapse
Affiliation(s)
- Mei-Yin Liu
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| | - Keng-Ru Lin
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| | - Yuh-Ling Chien
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| | - Bing-Ze Yang
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| | - Li-Yu Tsui
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| | | | - Ching-Shyi Peter Wu
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| |
Collapse
|
15
|
Gómez-González B, Aguilera A. Break-induced RNA-DNA hybrids (BIRDHs) in homologous recombination: friend or foe? EMBO Rep 2023; 24:e57801. [PMID: 37818834 DOI: 10.15252/embr.202357801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/29/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
Double-strand breaks (DSBs) are the most harmful DNA lesions, with a strong impact on cell proliferation and genome integrity. Depending on cell cycle stage, DSBs are preferentially repaired by non-homologous end joining or homologous recombination (HR). In recent years, numerous reports have revealed that DSBs enhance DNA-RNA hybrid formation around the break site. We call these hybrids "break-induced RNA-DNA hybrids" (BIRDHs) to differentiate them from sporadic R-loops consisting of DNA-RNA hybrids and a displaced single-strand DNA occurring co-transcriptionally in intact DNA. Here, we review and discuss the most relevant data about BIRDHs, with a focus on two main questions raised: (i) whether BIRDHs form by de novo transcription after a DSB or by a pre-existing nascent RNA in DNA regions undergoing transcription and (ii) whether they have a positive role in HR or are just obstacles to HR accidentally generated as an intrinsic risk of transcription. We aim to provide a comprehensive view of the exciting and yet unresolved questions about the source and impact of BIRDHs in the cell.
Collapse
Affiliation(s)
- Belén Gómez-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC, Seville, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC, Seville, Spain
| |
Collapse
|
16
|
Nickoloff JA, Jaiswal AS, Sharma N, Williamson EA, Tran MT, Arris D, Yang M, Hromas R. Cellular Responses to Widespread DNA Replication Stress. Int J Mol Sci 2023; 24:16903. [PMID: 38069223 PMCID: PMC10707325 DOI: 10.3390/ijms242316903] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Replicative DNA polymerases are blocked by nearly all types of DNA damage. The resulting DNA replication stress threatens genome stability. DNA replication stress is also caused by depletion of nucleotide pools, DNA polymerase inhibitors, and DNA sequences or structures that are difficult to replicate. Replication stress triggers complex cellular responses that include cell cycle arrest, replication fork collapse to one-ended DNA double-strand breaks, induction of DNA repair, and programmed cell death after excessive damage. Replication stress caused by specific structures (e.g., G-rich sequences that form G-quadruplexes) is localized but occurs during the S phase of every cell division. This review focuses on cellular responses to widespread stress such as that caused by random DNA damage, DNA polymerase inhibition/nucleotide pool depletion, and R-loops. Another form of global replication stress is seen in cancer cells and is termed oncogenic stress, reflecting dysregulated replication origin firing and/or replication fork progression. Replication stress responses are often dysregulated in cancer cells, and this too contributes to ongoing genome instability that can drive cancer progression. Nucleases play critical roles in replication stress responses, including MUS81, EEPD1, Metnase, CtIP, MRE11, EXO1, DNA2-BLM, SLX1-SLX4, XPF-ERCC1-SLX4, Artemis, XPG, FEN1, and TATDN2. Several of these nucleases cleave branched DNA structures at stressed replication forks to promote repair and restart of these forks. We recently defined roles for EEPD1 in restarting stressed replication forks after oxidative DNA damage, and for TATDN2 in mitigating replication stress caused by R-loop accumulation in BRCA1-defective cells. We also discuss how insights into biological responses to genome-wide replication stress can inform novel cancer treatment strategies that exploit synthetic lethal relationships among replication stress response factors.
Collapse
Affiliation(s)
- Jac A. Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Aruna S. Jaiswal
- Department of Medicine and the Mays Cancer Center, The University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.S.J.); (M.T.T.); (R.H.)
| | - Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Elizabeth A. Williamson
- Department of Medicine and the Mays Cancer Center, The University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.S.J.); (M.T.T.); (R.H.)
| | - Manh T. Tran
- Department of Medicine and the Mays Cancer Center, The University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.S.J.); (M.T.T.); (R.H.)
| | - Dominic Arris
- Department of Medicine and the Mays Cancer Center, The University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.S.J.); (M.T.T.); (R.H.)
| | - Ming Yang
- Department of Medicine and the Mays Cancer Center, The University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.S.J.); (M.T.T.); (R.H.)
| | - Robert Hromas
- Department of Medicine and the Mays Cancer Center, The University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.S.J.); (M.T.T.); (R.H.)
| |
Collapse
|
17
|
Shen P, Ye K, Xiang H, Zhang Z, He Q, Zhang X, Cai MC, Chen J, Sun Y, Lin L, Qi C, Zhang M, Cheung LWT, Shi T, Yin X, Li Y, Di W, Zang R, Tan L, Zhuang G. Therapeutic targeting of CPSF3-dependent transcriptional termination in ovarian cancer. SCIENCE ADVANCES 2023; 9:eadj0123. [PMID: 37992178 PMCID: PMC10664987 DOI: 10.1126/sciadv.adj0123] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/19/2023] [Indexed: 11/24/2023]
Abstract
Transcriptional dysregulation is a recurring pathogenic hallmark and an emerging therapeutic vulnerability in ovarian cancer. Here, we demonstrated that ovarian cancer exhibited a unique dependency on the regulatory machinery of transcriptional termination, particularly, cleavage and polyadenylation specificity factor (CPSF) complex. Genetic abrogation of multiple CPSF subunits substantially hampered neoplastic cell viability, and we presented evidence that their indispensable roles converged on the endonuclease CPSF3. Mechanistically, CPSF perturbation resulted in lengthened 3'-untranslated regions, diminished intronic polyadenylation and widespread transcriptional readthrough, and consequently suppressed oncogenic pathways. Furthermore, we reported the development of specific CPSF3 inhibitors building upon the benzoxaborole scaffold, which exerted potent antitumor activity. Notably, CPSF3 blockade effectively exacerbated genomic instability by down-regulating DNA damage repair genes and thus acted in synergy with poly(adenosine 5'-diphosphate-ribose) polymerase inhibition. These findings establish CPSF3-dependent transcriptional termination as an exploitable driving mechanism of ovarian cancer and provide a promising class of boron-containing compounds for targeting transcription-addicted human malignancies.
Collapse
Affiliation(s)
- Peiye Shen
- State Key Laboratory of Systems Medicine for Cancer, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaiyan Ye
- State Key Laboratory of Systems Medicine for Cancer, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huaijiang Xiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenfeng Zhang
- State Key Laboratory of Systems Medicine for Cancer, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinyang He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Mei-Chun Cai
- State Key Laboratory of Systems Medicine for Cancer, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junfei Chen
- State Key Laboratory of Systems Medicine for Cancer, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunheng Sun
- State Key Laboratory of Systems Medicine for Cancer, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lifeng Lin
- Ovarian Cancer Program, Department of Gynecologic Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunting Qi
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Meiying Zhang
- State Key Laboratory of Systems Medicine for Cancer, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lydia W. T. Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tingyan Shi
- Ovarian Cancer Program, Department of Gynecologic Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xia Yin
- State Key Laboratory of Systems Medicine for Cancer, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Wen Di
- State Key Laboratory of Systems Medicine for Cancer, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rongyu Zang
- Ovarian Cancer Program, Department of Gynecologic Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li Tan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Guanglei Zhuang
- State Key Laboratory of Systems Medicine for Cancer, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Duardo RC, Guerra F, Pepe S, Capranico G. Non-B DNA structures as a booster of genome instability. Biochimie 2023; 214:176-192. [PMID: 37429410 DOI: 10.1016/j.biochi.2023.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
Non-canonical secondary structures (NCSs) are alternative nucleic acid structures that differ from the canonical B-DNA conformation. NCSs often occur in repetitive DNA sequences and can adopt different conformations depending on the sequence. The majority of these structures form in the context of physiological processes, such as transcription-associated R-loops, G4s, as well as hairpins and slipped-strand DNA, whose formation can be dependent on DNA replication. It is therefore not surprising that NCSs play important roles in the regulation of key biological processes. In the last years, increasing published data have supported their biological role thanks to genome-wide studies and the development of bioinformatic prediction tools. Data have also highlighted the pathological role of these secondary structures. Indeed, the alteration or stabilization of NCSs can cause the impairment of transcription and DNA replication, modification in chromatin structure and DNA damage. These events lead to a wide range of recombination events, deletions, mutations and chromosomal aberrations, well-known hallmarks of genome instability which are strongly associated with human diseases. In this review, we summarize molecular processes through which NCSs trigger genome instability, with a focus on G-quadruplex, i-motif, R-loop, Z-DNA, hairpin, cruciform and multi-stranded structures known as triplexes.
Collapse
Affiliation(s)
- Renée C Duardo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Federico Guerra
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Simona Pepe
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, via Selmi 3, 40126, Bologna, Italy.
| |
Collapse
|
19
|
Randolph ME, Afifi M, Gorthi A, Weil R, Wilky BA, Weinreb J, Ciero P, ter Hoeve N, van Diest PJ, Raman V, Bishop AJR, Loeb DM. RNA Helicase DDX3 Regulates RAD51 Localization and DNA Damage Repair in Ewing Sarcoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.10.544474. [PMID: 37333164 PMCID: PMC10274875 DOI: 10.1101/2023.06.10.544474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
We previously demonstrated that RNA helicase DDX3X (DDX3) can be a therapeutic target in Ewing sarcoma (EWS), but its role in EWS biology remains unclear. The present work demonstrates that DDX3 plays a unique role in DNA damage repair (DDR). We show that DDX3 interacts with several proteins involved in homologous recombination, including RAD51, RECQL1, RPA32, and XRCC2. In particular, DDX3 colocalizes with RAD51 and RNA:DNA hybrid structures in the cytoplasm of EWS cells. Inhibition of DDX3 RNA helicase activity increases cytoplasmic RNA:DNA hybrids, sequestering RAD51 in the cytoplasm, which impairs nuclear translocation of RAD51 to sites of double-stranded DNA breaks thus increasing sensitivity of EWS to radiation treatment, both in vitro and in vivo. This discovery lays the foundation for exploring new therapeutic approaches directed at manipulating DDR protein localization in solid tumors.
Collapse
Affiliation(s)
- Matthew E. Randolph
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY
| | - Marwa Afifi
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Aparna Gorthi
- Greehey Children’s Cancer Research Institute and Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, TX
| | - Rachel Weil
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Breelyn A. Wilky
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD
| | - Joshua Weinreb
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Paul Ciero
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY
| | - Natalie ter Hoeve
- Department of Pathology, University Medical Centre Utrecht, The Netherlands
| | - Paul J. van Diest
- Department of Pathology, University Medical Centre Utrecht, The Netherlands
| | - Venu Raman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD
- Department of Radiology, Johns Hopkins University, Baltimore, MD
- Department of Pharmacology, Johns Hopkins University, Baltimore, MD
| | - Alexander J. R. Bishop
- Greehey Children’s Cancer Research Institute and Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, TX
| | - David M. Loeb
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
20
|
Liu C, Xu W, Wang L, Yang Z, Li K, Hu J, Chen Y, Zhang R, Xiao S, Liu W, Wei H, Chen JY, Sun Q, Li W. Dual roles of R-loops in the formation and processing of programmed DNA double-strand breaks during meiosis. Cell Biosci 2023; 13:82. [PMID: 37170281 PMCID: PMC10173651 DOI: 10.1186/s13578-023-01026-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/06/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Meiotic recombination is initiated by Spo11-dependent programmed DNA double-strand breaks (DSBs) that are preferentially concentrated within genomic regions called hotspots; however, the factor(s) that specify the positions of meiotic DSB hotspots remain unclear. RESULTS Here, we examined the frequency and distribution of R-loops, a type of functional chromatin structure comprising single-stranded DNA and a DNA:RNA hybrid, during budding yeast meiosis and found that the R-loops were changed dramatically throughout meiosis. We detected the formation of multiple de novo R-loops in the pachytene stage and found that these R-loops were associated with meiotic recombination during yeast meiosis. We show that transcription-replication head-on collisions could promote R-loop formation during meiotic DNA replication, and these R-loops are associated with Spo11. Furthermore, meiotic recombination hotspots can be eliminated by reversing the direction of transcription or replication, and reversing both of these directions can reconstitute the hotspots. CONCLUSIONS Our study reveals that R-loops may play dual roles in meiotic recombination. In addition to participation in meiotic DSB processing, some meiotic DSB hotspots may be originated from the transcription-replication head-on collisions during meiotic DNA replication.
Collapse
Affiliation(s)
- Chao Liu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Xu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Liying Wang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Zhuo Yang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Kuan Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Jun Hu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Yinghong Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruidan Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sai Xiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenwen Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huafang Wei
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Jia-Yu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Qianwen Sun
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| | - Wei Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
21
|
Marchena-Cruz E, Camino LP, Bhandari J, Silva S, Marqueta-Gracia JJ, Amdeen SA, Guillén-Mendoza C, García-Rubio ML, Calderón-Montaño JM, Xue X, Luna R, Aguilera A. DDX47, MeCP2, and other functionally heterogeneous factors protect cells from harmful R loops. Cell Rep 2023; 42:112148. [PMID: 36827184 PMCID: PMC10066596 DOI: 10.1016/j.celrep.2023.112148] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/20/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Unscheduled R loops can be a source of genome instability, a hallmark of cancer cells. Although targeted proteomic approaches and cellular analysis of specific mutants have uncovered factors potentially involved in R-loop homeostasis, we report a more open screening of factors whose depletion causes R loops based on the ability of activation-induced cytidine deaminase (AID) to target R loops. Immunofluorescence analysis of γH2AX caused by small interfering RNAs (siRNAs) covering 3,205 protein-coding genes identifies 59 potential candidates, from which 13 are analyzed further and show a significant increase of R loops. Such candidates are enriched in factors involved in chromatin, transcription, and RNA biogenesis and other processes. A more focused study shows that the DDX47 helicase is an R-loop resolvase, whereas the MeCP2 methyl-CpG-binding protein uncovers a link between DNA methylation and R loops. Thus, our results suggest that a plethora of gene dysfunctions can alter cell physiology via affecting R-loop homeostasis by different mechanisms.
Collapse
Affiliation(s)
- Esther Marchena-Cruz
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092 Seville, Spain
| | - Lola P Camino
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092 Seville, Spain
| | - Jay Bhandari
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Sónia Silva
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092 Seville, Spain
| | - José Javier Marqueta-Gracia
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092 Seville, Spain; Departmento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Shahad A Amdeen
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Cristina Guillén-Mendoza
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092 Seville, Spain; Departmento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - María L García-Rubio
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092 Seville, Spain; Departmento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - José M Calderón-Montaño
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092 Seville, Spain
| | - Xiaoyu Xue
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Rosa Luna
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092 Seville, Spain; Departmento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain.
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092 Seville, Spain; Departmento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain.
| |
Collapse
|
22
|
Lee SY, Miller KM, Kim JJ. Clinical and Mechanistic Implications of R-Loops in Human Leukemias. Int J Mol Sci 2023; 24:ijms24065966. [PMID: 36983041 PMCID: PMC10052022 DOI: 10.3390/ijms24065966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Genetic mutations or environmental agents are major contributors to leukemia and are associated with genomic instability. R-loops are three-stranded nucleic acid structures consisting of an RNA-DNA hybrid and a non-template single-stranded DNA. These structures regulate various cellular processes, including transcription, replication, and DSB repair. However, unregulated R-loop formation can cause DNA damage and genomic instability, which are potential drivers of cancer including leukemia. In this review, we discuss the current understanding of aberrant R-loop formation and how it influences genomic instability and leukemia development. We also consider the possibility of R-loops as therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Seo-Yun Lee
- Department of Life Science and Multidisciplinary, Genome Institute, Hallym University, Chuncheon 24252, Republic of Korea
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jae-Jin Kim
- Department of Life Science and Multidisciplinary, Genome Institute, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
23
|
Saha S, Pommier Y. R-loops, type I topoisomerases and cancer. NAR Cancer 2023; 5:zcad013. [PMID: 37600974 PMCID: PMC9984992 DOI: 10.1093/narcan/zcad013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/18/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
R-loops are abundant and dynamic structures ubiquitously present in human cells both in the nuclear and mitochondrial genomes. They form in cis in the wake of transcription complexes and in trans apart from transcription complexes. In this review, we focus on the relationship between R-loops and topoisomerases, and cancer genomics and therapies. We summarize the topological parameters associated with the formation and resolution of R-loops, which absorb and release high levels of genomic negative supercoiling (Sc-). We review the deleterious consequences of excessive R-loops and rationalize how human type IA (TOP3B) and type IB (TOP1) topoisomerases regulate and resolve R-loops in coordination with helicase and RNase H enzymes. We also review the drugs (topoisomerase inhibitors, splicing inhibitors, G4 stabilizing ligands) and cancer predisposing genes (BRCA1/2, transcription, and splicing genes) known to induce R-loops, and whether stabilizing R-loops and thereby inducing genomic damage can be viewed as a strategy for cancer treatment.
Collapse
Affiliation(s)
- Sourav Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
24
|
Khan ES, Danckwardt S. Pathophysiological Role and Diagnostic Potential of R-Loops in Cancer and Beyond. Genes (Basel) 2022; 13:genes13122181. [PMID: 36553448 PMCID: PMC9777984 DOI: 10.3390/genes13122181] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
R-loops are DNA-RNA hybrids that play multifunctional roles in gene regulation, including replication, transcription, transcription-replication collision, epigenetics, and preserving the integrity of the genome. The aberrant formation and accumulation of unscheduled R-loops can disrupt gene expression and damage DNA, thereby causing genome instability. Recent links between unscheduled R-loop accumulation and the abundance of proteins that modulate R-loop biogenesis have been associated with numerous human diseases, including various cancers. Although R-loops are not necessarily causative for all disease entities described to date, they can perpetuate and even exacerbate the initially disease-eliciting pathophysiology, making them structures of interest for molecular diagnostics. In this review, we discuss the (patho) physiological role of R-loops in health and disease, their surprising diagnostic potential, and state-of-the-art techniques for their detection.
Collapse
Affiliation(s)
- Essak S. Khan
- Posttranscriptional Gene Regulation, Cancer Research and Experimental Hemostasis, University Medical Center Mainz, 55131 Mainz, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
- German Consortium for Translational Cancer Research (DKTK), DKFZ Frankfurt-Mainz, 60590 Frankfurt am Main, Germany
| | - Sven Danckwardt
- Posttranscriptional Gene Regulation, Cancer Research and Experimental Hemostasis, University Medical Center Mainz, 55131 Mainz, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Rhine-Main, 55131 Mainz, Germany
- Correspondence:
| |
Collapse
|
25
|
Kumar A, Fournier LA, Stirling PC. Integrative analysis and prediction of human R-loop binding proteins. G3 (BETHESDA, MD.) 2022; 12:jkac142. [PMID: 35666183 PMCID: PMC9339281 DOI: 10.1093/g3journal/jkac142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
In the past decade, there has been a growing appreciation for R-loop structures as important regulators of the epigenome, telomere maintenance, DNA repair, and replication. Given these numerous functions, dozens, or potentially hundreds, of proteins could serve as direct or indirect regulators of R-loop writing, reading, and erasing. In order to understand common properties shared amongst potential R-loop binding proteins, we mined published proteomic studies and distilled 10 features that were enriched in R-loop binding proteins compared with the rest of the proteome. Applying an easy-ensemble machine learning approach, we used these R-loop binding protein-specific features along with their amino acid composition to create random forest classifiers that predict the likelihood of a protein to bind to R-loops. Known R-loop regulating pathways such as splicing, DNA damage repair and chromatin remodeling are highly enriched in our datasets, and we validate 2 new R-loop binding proteins LIG1 and FXR1 in human cells. Together these datasets provide a reference to pursue analyses of novel R-loop regulatory proteins.
Collapse
Affiliation(s)
| | | | - Peter C Stirling
- Corresponding author: Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z1L3, Canada.
| |
Collapse
|
26
|
Saha S, Yang X, Huang SYN, Agama K, Baechler SA, Sun Y, Zhang H, Saha LK, Su S, Jenkins LM, Wang W, Pommier Y. Resolution of R-loops by topoisomerase III-β (TOP3B) in coordination with the DEAD-box helicase DDX5. Cell Rep 2022; 40:111067. [PMID: 35830799 PMCID: PMC10575568 DOI: 10.1016/j.celrep.2022.111067] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/20/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
The present study demonstrates how TOP3B is involved in resolving R-loops. We observed elevated R-loops in TOP3B knockout cells (TOP3BKO), which are suppressed by TOP3B transfection. R-loop-inducing agents, the topoisomerase I inhibitor camptothecin, and the splicing inhibitor pladienolide-B also induce higher R-loops in TOP3BKO cells. Camptothecin- and pladienolide-B-induced R-loops are concurrent with the induction of TOP3B cleavage complexes (TOP3Bccs). RNA/DNA hybrid IP-western blotting show that TOP3B is physically associated with R-loops. Biochemical assays using recombinant TOP3B and oligonucleotides mimicking R-loops show that TOP3B cleaves the single-stranded DNA displaced by the R-loop RNA-DNA duplex. IP-mass spectrometry and IP-western experiments reveal that TOP3B interacts with the R-loop helicase DDX5 independently of TDRD3. Finally, we demonstrate that DDX5 and TOP3B are epistatic in resolving R-loops in a pathway parallel with senataxin. We propose a decatenation model for R-loop resolution by TOP3B-DDX5 protecting cells from R-loop-induced damage.
Collapse
Affiliation(s)
- Sourav Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Xi Yang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Shar-Yin Naomi Huang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Keli Agama
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Simone Andrea Baechler
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yilun Sun
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Hongliang Zhang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Liton Kumar Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Shuaikun Su
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Lisa M Jenkins
- Collaborative Protein Technology Resource, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Weidong Wang
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
27
|
Saxena S, Zou L. Hallmarks of DNA replication stress. Mol Cell 2022; 82:2298-2314. [PMID: 35714587 DOI: 10.1016/j.molcel.2022.05.004] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/15/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022]
Abstract
Faithful DNA replication is critical for the maintenance of genomic integrity. Although DNA replication machinery is highly accurate, the process of DNA replication is constantly challenged by DNA damage and other intrinsic and extrinsic stresses throughout the genome. A variety of cellular stresses interfering with DNA replication, which are collectively termed replication stress, pose a threat to genomic stability in both normal and cancer cells. To cope with replication stress and maintain genomic stability, cells have evolved a complex network of cellular responses to alleviate and tolerate replication problems. This review will focus on the major sources of replication stress, the impacts of replication stress in cells, and the assays to detect replication stress, offering an overview of the hallmarks of DNA replication stress.
Collapse
Affiliation(s)
- Sneha Saxena
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
28
|
Nikolakaki E, Sigala I, Giannakouros T. Good Cop, Bad Cop: The Different Roles of SRPKs. Front Genet 2022; 13:902718. [PMID: 35719374 PMCID: PMC9202992 DOI: 10.3389/fgene.2022.902718] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/05/2022] [Indexed: 12/21/2022] Open
Abstract
SR Protein Kinases (SRPKs), discovered approximately 30 years ago, are widely known as splice factor kinases due to their decisive involvement in the regulation of various steps of mRNA splicing. However, they were also shown to regulate diverse cellular activities by phosphorylation of serine residues residing in serine-arginine/arginine-serine dipeptide motifs. Over the last decade, SRPK1 has been reported as both tumor suppressor and promoter, depending on the cellular context and has been implicated in both chemotherapy sensitivity and resistance. Moreover, SRPK2 has been reported to exhibit contradictory functions in different cell contexts promoting either apoptosis or tumor growth. The aim of the current review is to broaden and deepen our understanding of the SRPK function focusing on the subcellular localization of the kinases. There is ample evidence that the balance between cytoplasmic and nuclear SRPK levels is tightly regulated and determines cell response to external signals. Specific cell states coupled to kinase levels, spatial specific interactions with substrates but also changes in the extent of phosphorylation that allow SRPKs to exhibit a rheostat-like control on their substrates, could decide the proliferative or antiproliferative role of SRPKs.
Collapse
|
29
|
Saayman X, Esashi F. Breaking the paradigm: early insights from mammalian DNA breakomes. FEBS J 2022; 289:2409-2428. [PMID: 33792193 PMCID: PMC9451923 DOI: 10.1111/febs.15849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/04/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022]
Abstract
DNA double-strand breaks (DSBs) can result from both exogenous and endogenous sources and are potentially toxic lesions to the human genome. If improperly repaired, DSBs can threaten genome integrity and contribute to premature ageing, neurodegenerative disorders and carcinogenesis. Through decades of work on genome stability, it has become evident that certain regions of the genome are inherently more prone to breakage than others, known as genome instability hotspots. Recent advancements in sequencing-based technologies now enable the profiling of genome-wide distributions of DSBs, also known as breakomes, to systematically map these instability hotspots. Here, we review the application of these technologies and their implications for our current understanding of the genomic regions most likely to drive genome instability. These breakomes ultimately highlight both new and established breakage hotspots including actively transcribed regions, loop boundaries and early-replicating regions of the genome. Further, these breakomes challenge the paradigm that DNA breakage primarily occurs in hard-to-replicate regions. With these advancements, we begin to gain insights into the biological mechanisms both invoking and protecting against genome instability.
Collapse
Affiliation(s)
- Xanita Saayman
- Sir William Dunn School of Pathology, University of Oxford, UK
| | - Fumiko Esashi
- Sir William Dunn School of Pathology, University of Oxford, UK
| |
Collapse
|
30
|
Spada S, Luke B, Danckwardt S. The Bidirectional Link Between RNA Cleavage and Polyadenylation and Genome Stability: Recent Insights From a Systematic Screen. Front Genet 2022; 13:854907. [PMID: 35571036 PMCID: PMC9095915 DOI: 10.3389/fgene.2022.854907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
The integrity of the genome is governed by multiple processes to ensure optimal survival and to prevent the inheritance of deleterious traits. While significant progress has been made to characterize components involved in the DNA Damage Response (DDR), little is known about the interplay between RNA processing and the maintenance of genome stability. Here, we describe the emerging picture of an intricate bidirectional coupling between RNA processing and genome integrity in an integrative manner. By employing insights from a recent large-scale RNAi screening involving the depletion of more than 170 components that direct (alternative) polyadenylation, we provide evidence of bidirectional crosstalk between co-transcriptional RNA 3′end processing and the DDR in a manner that optimizes genomic integrity. We provide instructive examples illustrating the wiring between the two processes and show how perturbations at one end are either compensated by buffering mechanisms at the other end, or even propel the initial insult and thereby become disease-eliciting as evidenced by various disorders.
Collapse
Affiliation(s)
- Stefano Spada
- Posttranscriptional Gene Regulation, University Medical Centre Mainz, Mainz, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Mainz, Mainz, Germany
- Centre for Thrombosis and Hemostasis (CTH), University Medical Centre Mainz, Mainz, Germany
| | - Brian Luke
- Institute of Molecular Biology (IMB), Mainz, Germany
- Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg University, Mainz, Germany
| | - Sven Danckwardt
- Posttranscriptional Gene Regulation, University Medical Centre Mainz, Mainz, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Mainz, Mainz, Germany
- Centre for Thrombosis and Hemostasis (CTH), University Medical Centre Mainz, Mainz, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
- Centre for Healthy Aging (CHA) Mainz, Mainz, Germany
- *Correspondence: Sven Danckwardt,
| |
Collapse
|
31
|
Tsirkas I, Dovrat D, Thangaraj M, Brouwer I, Cohen A, Paleiov Z, Meijler MM, Lenstra T, Aharoni A. Transcription-replication coordination revealed in single live cells. Nucleic Acids Res 2022; 50:2143-2156. [PMID: 35137218 PMCID: PMC8887460 DOI: 10.1093/nar/gkac069] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/04/2022] [Accepted: 01/25/2022] [Indexed: 11/23/2022] Open
Abstract
The coexistence of DNA replication and transcription during S-phase requires their tight coordination to prevent harmful conflicts. While extensive research revealed important mechanisms for minimizing these conflicts and their consequences, little is known regarding how the replication and transcription machinery are coordinated in real-time. Here, we developed a live-cell imaging approach for the real-time monitoring of replisome progression and transcription dynamics during a transcription-replication encounter. We found a wave of partial transcriptional repression ahead of the moving replication fork, which may contribute to efficient fork progression through the transcribed gene. Real-time detection of conflicts revealed their negative impact on both processes, leading to fork stalling or slowdown as well as lower transcription levels during gene replication, with different trade-offs observed in defined subpopulations of cells. Our real-time measurements of transcription-replication encounters demonstrate how these processes can proceed simultaneously while maintaining genomic stability, and how conflicts can arise when coordination is impaired.
Collapse
Affiliation(s)
- Ioannis Tsirkas
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Daniel Dovrat
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Manikandan Thangaraj
- The Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Ineke Brouwer
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute,1066CX Amsterdam, The Netherlands
| | - Amit Cohen
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Zohar Paleiov
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Michael M Meijler
- The Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Tineke Lenstra
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute,1066CX Amsterdam, The Netherlands
| | - Amir Aharoni
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| |
Collapse
|
32
|
AU-Rich Element RNA Binding Proteins: At the Crossroads of Post-Transcriptional Regulation and Genome Integrity. Int J Mol Sci 2021; 23:ijms23010096. [PMID: 35008519 PMCID: PMC8744917 DOI: 10.3390/ijms23010096] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 12/14/2022] Open
Abstract
Genome integrity must be tightly preserved to ensure cellular survival and to deter the genesis of disease. Endogenous and exogenous stressors that impose threats to genomic stability through DNA damage are counteracted by a tightly regulated DNA damage response (DDR). RNA binding proteins (RBPs) are emerging as regulators and mediators of diverse biological processes. Specifically, RBPs that bind to adenine uridine (AU)-rich elements (AREs) in the 3' untranslated region (UTR) of mRNAs (AU-RBPs) have emerged as key players in regulating the DDR and preserving genome integrity. Here we review eight established AU-RBPs (AUF1, HuR, KHSRP, TIA-1, TIAR, ZFP36, ZFP36L1, ZFP36L2) and their ability to maintain genome integrity through various interactions. We have reviewed canonical roles of AU-RBPs in regulating the fate of mRNA transcripts encoding DDR genes at multiple post-transcriptional levels. We have also attempted to shed light on non-canonical roles of AU-RBPs exploring their post-translational modifications (PTMs) and sub-cellular localization in response to genotoxic stresses by various factors involved in DDR and genome maintenance. Dysfunctional AU-RBPs have been increasingly found to be associated with many human cancers. Further understanding of the roles of AU-RBPS in maintaining genomic integrity may uncover novel therapeutic strategies for cancer.
Collapse
|
33
|
The role of chromatin at transcription-replication conflicts as a genome safeguard. Biochem Soc Trans 2021; 49:2727-2736. [PMID: 34821364 DOI: 10.1042/bst20210691] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022]
Abstract
DNA replication ensures the correct copying of the genome and the faithful transfer of the genetic information to the offspring. However, obstacles to replication fork (RF) progression cause RF stalling and compromise efficient genome duplication. Since replication uses the same DNA template as transcription, both transcription and replication must be coordinated to prevent Transcription-Replication Conflicts (TRCs) that could stall RF progression. Several factors contribute to limit the occurrence of such conflicts and their harmful impact on genome integrity. Increasing evidence indicates that chromatin homeostasis plays a key role in the cellular response to TRCs as well as in the preservation of genome integrity. Indeed, chromatin regulating enzymes are frequently mutated in cancer cells, a common characteristic of which is genome instability. Therefore, understanding the role of chromatin in TRC occurrence and resolution may help identify the molecular mechanism by which chromatin protects genome integrity, and the causes and physiological relevance of the high mutation rates of chromatin regulating factors in cancer. Here we review the current knowledge in the field, as well as the perspectives and future applications.
Collapse
|
34
|
Kemiha S, Poli J, Lin YL, Lengronne A, Pasero P. Toxic R-loops: Cause or consequence of replication stress? DNA Repair (Amst) 2021; 107:103199. [PMID: 34399314 DOI: 10.1016/j.dnarep.2021.103199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 01/08/2023]
Abstract
Transcription-replication conflicts (TRCs) represent a potential source of endogenous replication stress (RS) and genomic instability in eukaryotic cells but the mechanisms that underlie this instability remain poorly understood. Part of the problem could come from non-B DNA structures called R-loops, which are formed of a RNA:DNA hybrid and a displaced ssDNA loop. In this review, we discuss different scenarios in which R-loops directly or indirectly interfere with DNA replication. We also present other types of TRCs that may not depend on R-loops to impede fork progression. Finally, we discuss alternative models in which toxic RNA:DNA hybrids form at stalled forks as a consequence - but not a cause - of replication stress and interfere with replication resumption.
Collapse
Affiliation(s)
- Samira Kemiha
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France
| | - Jérôme Poli
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France
| | - Yea-Lih Lin
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France
| | - Armelle Lengronne
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France
| | - Philippe Pasero
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France.
| |
Collapse
|
35
|
Castillo-Guzman D, Chédin F. Defining R-loop classes and their contributions to genome instability. DNA Repair (Amst) 2021; 106:103182. [PMID: 34303066 PMCID: PMC8691176 DOI: 10.1016/j.dnarep.2021.103182] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 01/20/2023]
Abstract
R-loops are non-B DNA structures that form during transcription when the nascent RNA anneals to the template DNA strand forming a RNA:DNA hybrid. Understanding the genomic distribution and function of R-loops is an important goal, since R-loops have been implicated in a number of adaptive and maladaptive processes under physiological and pathological conditions. Based on R-loop mapping datasets, we propose the existence of two main classes of R-loops, each associated with unique characteristics. Promoter-paused R-loops (Class I) are short R-loops that form at high frequency during promoter-proximal pausing by RNA polymerase II. Elongation-associated R-loops (Class II) are long structures that occur throughout gene bodies at modest frequencies. We further discuss the relationships between each R-loop class with instances of genome instability and suggest that increased class I R-loops, resulting from enhanced promoter-proximal pausing, represent the main culprits for R-loop mediated genome instability under pathological conditions.
Collapse
Affiliation(s)
- Daisy Castillo-Guzman
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, Davis, CA, 95616, United States
| | - Frédéric Chédin
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, Davis, CA, 95616, United States.
| |
Collapse
|
36
|
Ortega P, Mérida-Cerro JA, Rondón AG, Gómez-González B, Aguilera A. DNA-RNA hybrids at DSBs interfere with repair by homologous recombination. eLife 2021; 10:e69881. [PMID: 34236317 PMCID: PMC8289408 DOI: 10.7554/elife.69881] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/07/2021] [Indexed: 12/19/2022] Open
Abstract
DNA double-strand breaks (DSBs) are the most harmful DNA lesions and their repair is crucial for cell viability and genome integrity. The readout of DSB repair may depend on whether DSBs occur at transcribed versus non-transcribed regions. Some studies have postulated that DNA-RNA hybrids form at DSBs to promote recombinational repair, but others have challenged this notion. To directly assess whether hybrids formed at DSBs promote or interfere with the recombinational repair, we have used plasmid and chromosomal-based systems for the analysis of DSB-induced recombination in Saccharomyces cerevisiae. We show that, as expected, DNA-RNA hybrid formation is stimulated at DSBs. In addition, mutations that promote DNA-RNA hybrid accumulation, such as hpr1∆ and rnh1∆ rnh201∆, cause high levels of plasmid loss when DNA breaks are induced at sites that are transcribed. Importantly, we show that high levels or unresolved DNA-RNA hybrids at the breaks interfere with their repair by homologous recombination. This interference is observed for both plasmid and chromosomal recombination and is independent of whether the DSB is generated by endonucleolytic cleavage or by DNA replication. These data support a model in which DNA-RNA hybrids form fortuitously at DNA breaks during transcription and need to be removed to allow recombinational repair, rather than playing a positive role.
Collapse
Affiliation(s)
- Pedro Ortega
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-CSIC-Universidad Pablo de OlavideSevilleSpain
| | - José Antonio Mérida-Cerro
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-CSIC-Universidad Pablo de OlavideSevilleSpain
| | - Ana G Rondón
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-CSIC-Universidad Pablo de OlavideSevilleSpain
| | - Belén Gómez-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-CSIC-Universidad Pablo de OlavideSevilleSpain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-CSIC-Universidad Pablo de OlavideSevilleSpain
| |
Collapse
|
37
|
Palancade B, Rothstein R. The Ultimate (Mis)match: When DNA Meets RNA. Cells 2021; 10:cells10061433. [PMID: 34201169 PMCID: PMC8227541 DOI: 10.3390/cells10061433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 12/20/2022] Open
Abstract
RNA-containing structures, including ribonucleotide insertions, DNA:RNA hybrids and R-loops, have recently emerged as critical players in the maintenance of genome integrity. Strikingly, different enzymatic activities classically involved in genome maintenance contribute to their generation, their processing into genotoxic or repair intermediates, or their removal. Here we review how this substrate promiscuity can account for the detrimental and beneficial impacts of RNA insertions during genome metabolism. We summarize how in vivo and in vitro experiments support the contribution of DNA polymerases and homologous recombination proteins in the formation of RNA-containing structures, and we discuss the role of DNA repair enzymes in their removal. The diversity of pathways that are thus affected by RNA insertions likely reflects the ancestral function of RNA molecules in genome maintenance and transmission.
Collapse
Affiliation(s)
- Benoit Palancade
- Institut Jacques Monod, Université de Paris, CNRS, F-75006 Paris, France
- Correspondence: (B.P.); (R.R.)
| | - Rodney Rothstein
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- Correspondence: (B.P.); (R.R.)
| |
Collapse
|
38
|
San Martin Alonso M, Noordermeer S. Untangling the crosstalk between BRCA1 and R-loops during DNA repair. Nucleic Acids Res 2021; 49:4848-4863. [PMID: 33755171 PMCID: PMC8136775 DOI: 10.1093/nar/gkab178] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 01/13/2023] Open
Abstract
R-loops are RNA:DNA hybrids assembled during biological processes but are also linked to genetic instability when formed out of their natural context. Emerging evidence suggests that the repair of DNA double-strand breaks requires the formation of a transient R-loop, which eventually must be removed to guarantee a correct repair process. The multifaceted BRCA1 protein has been shown to be recruited at this specific break-induced R-loop, and it facilitates mechanisms in order to regulate R-loop removal. In this review, we discuss the different potential roles of BRCA1 in R-loop homeostasis during DNA repair and how these processes ensure faithful DSB repair.
Collapse
Affiliation(s)
- Marta San Martin Alonso
- Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Sylvie M Noordermeer
- Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| |
Collapse
|
39
|
Murashko MM, Stasevich EM, Schwartz AM, Kuprash DV, Uvarova AN, Demin DE. The Role of RNA in DNA Breaks, Repair and Chromosomal Rearrangements. Biomolecules 2021; 11:biom11040550. [PMID: 33918762 PMCID: PMC8069526 DOI: 10.3390/biom11040550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 12/28/2022] Open
Abstract
Incorrect reparation of DNA double-strand breaks (DSB) leading to chromosomal rearrangements is one of oncogenesis's primary causes. Recently published data elucidate the key role of various types of RNA in DSB formation, recognition and repair. With growing interest in RNA biology, increasing RNAs are classified as crucial at the different stages of the main pathways of DSB repair in eukaryotic cells: nonhomologous end joining (NHEJ) and homology-directed repair (HDR). Gene mutations or variation in expression levels of such RNAs can lead to local DNA repair defects, increasing the chromosome aberration frequency. Moreover, it was demonstrated that some RNAs could stimulate long-range chromosomal rearrangements. In this review, we discuss recent evidence demonstrating the role of various RNAs in DSB formation and repair. We also consider how RNA may mediate certain chromosomal rearrangements in a sequence-specific manner.
Collapse
Affiliation(s)
- Matvey Mikhailovich Murashko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.M.M.); (E.M.S.); (A.M.S.); (D.V.K.); (A.N.U.)
| | - Ekaterina Mikhailovna Stasevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.M.M.); (E.M.S.); (A.M.S.); (D.V.K.); (A.N.U.)
| | - Anton Markovich Schwartz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.M.M.); (E.M.S.); (A.M.S.); (D.V.K.); (A.N.U.)
- Moscow Institute of Physics and Technology, Department of Molecular and Biological Physics, 141701 Moscow, Russia
| | - Dmitriy Vladimirovich Kuprash
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.M.M.); (E.M.S.); (A.M.S.); (D.V.K.); (A.N.U.)
| | - Aksinya Nicolaevna Uvarova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.M.M.); (E.M.S.); (A.M.S.); (D.V.K.); (A.N.U.)
| | - Denis Eriksonovich Demin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.M.M.); (E.M.S.); (A.M.S.); (D.V.K.); (A.N.U.)
- Correspondence:
| |
Collapse
|
40
|
Smolka JA, Sanz LA, Hartono SR, Chédin F. Recognition of RNA by the S9.6 antibody creates pervasive artifacts when imaging RNA:DNA hybrids. J Cell Biol 2021; 220:211957. [PMID: 33830170 PMCID: PMC8040515 DOI: 10.1083/jcb.202004079] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 02/01/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
The S9.6 antibody is broadly used to detect RNA:DNA hybrids but has significant affinity for double-stranded RNA. The impact of this off-target RNA binding activity has not been thoroughly investigated, especially in the context of immunofluorescence microscopy. We report that S9.6 immunofluorescence signal observed in fixed human cells arises predominantly from ribosomal RNA, not RNA:DNA hybrids. S9.6 staining was unchanged by pretreatment with the RNA:DNA hybrid–specific nuclease RNase H1, despite verification in situ that S9.6 recognized RNA:DNA hybrids and that RNase H1 was active. S9.6 staining was, however, significantly sensitive to RNase T1, which specifically degrades RNA. Additional imaging and biochemical data indicate that the prominent cytoplasmic and nucleolar S9.6 signal primarily derives from ribosomal RNA. Importantly, genome-wide maps obtained by DNA sequencing after S9.6-mediated DNA:RNA immunoprecipitation (DRIP) are RNase H1 sensitive and RNase T1 insensitive. Altogether, these data demonstrate that imaging using S9.6 is subject to pervasive artifacts without pretreatments and controls that mitigate its promiscuous recognition of cellular RNAs.
Collapse
Affiliation(s)
- John A Smolka
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, Davis, CA
| | - Lionel A Sanz
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, Davis, CA
| | - Stella R Hartono
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, Davis, CA
| | - Frédéric Chédin
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, Davis, CA
| |
Collapse
|
41
|
Dutertre M, Sfaxi R, Vagner S. Reciprocal Links between Pre-messenger RNA 3'-End Processing and Genome Stability. Trends Biochem Sci 2021; 46:579-594. [PMID: 33653631 DOI: 10.1016/j.tibs.2021.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/11/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023]
Abstract
The 3'-end processing of most pre-messenger RNAs (pre-mRNAs) involves RNA cleavage and polyadenylation and is coupled to transcription termination. In both yeast and human cells, pre-mRNA 3'-end cleavage is globally inhibited by DNA damage. Recently, further links between pre-mRNA 3'-end processing and the control of genome stability have been uncovered, as reviewed here. Upon DNA damage, various genes related to the DNA damage response (DDR) escape 3'-end processing inhibition or are regulated through alternative polyadenylation (APA). Conversely, various pre-mRNA 3'-end processing factors prevent genome instability and are found at sites of DNA damage. Finally, the reciprocal link between pre-mRNA 3'-end processing and genome stability control seems important because it is conserved in evolution and involved in disease development.
Collapse
Affiliation(s)
- Martin Dutertre
- Institut Curie, Université PSL, CNRS UMR3348, INSERM U1278, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3348, INSERM U1278, 91400 Orsay, France; Equipe Labellisée Ligue Nationale Contre le Cancer.
| | - Rym Sfaxi
- Institut Curie, Université PSL, CNRS UMR3348, INSERM U1278, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3348, INSERM U1278, 91400 Orsay, France; Equipe Labellisée Ligue Nationale Contre le Cancer
| | - Stéphan Vagner
- Institut Curie, Université PSL, CNRS UMR3348, INSERM U1278, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3348, INSERM U1278, 91400 Orsay, France; Equipe Labellisée Ligue Nationale Contre le Cancer.
| |
Collapse
|
42
|
Chédin F, Hartono SR, Sanz LA, Vanoosthuyse V. Best practices for the visualization, mapping, and manipulation of R-loops. EMBO J 2021; 40:e106394. [PMID: 33411340 PMCID: PMC7883053 DOI: 10.15252/embj.2020106394] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/25/2020] [Accepted: 11/10/2020] [Indexed: 01/12/2023] Open
Abstract
R-loops represent an abundant class of large non-B DNA structures in genomes. Even though they form transiently and at modest frequencies, interfering with R-loop formation or dissolution has significant impacts on genome stability. Addressing the mechanism(s) of R-loop-mediated genome destabilization requires a precise characterization of their distribution in genomes. A number of independent methods have been developed to visualize and map R-loops, but their results are at times discordant, leading to confusion. Here, we review the main existing methodologies for R-loop mapping and assess their limitations as well as the robustness of existing datasets. We offer a set of best practices to improve the reproducibility of maps, hoping that such guidelines could be useful for authors and referees alike. Finally, we propose a possible resolution for the apparent contradictions in R-loop mapping outcomes between antibody-based and RNase H1-based mapping approaches.
Collapse
Affiliation(s)
- Frédéric Chédin
- Department of Molecular and Cellular Biology and Genome CenterUniversity of California, DavisDavisCAUSA
| | - Stella R Hartono
- Department of Molecular and Cellular Biology and Genome CenterUniversity of California, DavisDavisCAUSA
| | - Lionel A Sanz
- Department of Molecular and Cellular Biology and Genome CenterUniversity of California, DavisDavisCAUSA
| | - Vincent Vanoosthuyse
- Laboratoire de Biologie et Modélisation de la CelluleCNRSUMR 5239Univ LyonÉcole Normale Supérieure de LyonLyonFrance
| |
Collapse
|
43
|
Current understanding of CREPT and p15RS, carboxy-terminal domain (CTD)-interacting proteins, in human cancers. Oncogene 2020; 40:705-716. [PMID: 33239754 DOI: 10.1038/s41388-020-01544-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 12/27/2022]
Abstract
CREPT and p15RS, also named RPRD1B and RPRD1A, are RPRD (regulation of nuclear pre-mRNA-domain-containing) proteins containing C-terminal domain (CTD)-interacting domain (CID), which mediates the binding to the CTD of Rpb1, the largest subunit of RNA polymerase II (RNAPII). CREPT and p15RS are highly conserved, with a common yeast orthologue Rtt103. Intriguingly, human CREPT and p15RS possess opposite functions in the regulation of cell proliferation and tumorigenesis. While p15RS inhibits cell proliferation, CREPT promotes cell cycle and tumor growth. Aberrant expression of both CREPT and p15RS was found in numerous types of cancers. At the molecular level, both CREPT and p15RS were reported to regulate gene transcription by interacting with RNAPII. However, CREPT also exerts a key function in the processes linked to DNA damage repairs. In this review, we summarized the recent studies regarding the biological roles of CREPT and p15RS, as well as the molecular mechanisms underlying their activities. Fully revealing the mechanisms of CREPT and p15RS functions will not only provide new insights into understanding gene transcription and maintenance of DNA stability in tumors, but also promote new approach development for tumor diagnosis and therapy.
Collapse
|
44
|
Mishra PK, Chakraborty A, Yeh E, Feng W, Bloom KS, Basrai MA. R-loops at centromeric chromatin contribute to defects in kinetochore integrity and chromosomal instability in budding yeast. Mol Biol Cell 2020; 32:74-89. [PMID: 33147102 PMCID: PMC8098821 DOI: 10.1091/mbc.e20-06-0379] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
R-loops, the byproduct of DNA–RNA hybridization and the displaced single-stranded DNA (ssDNA), have been identified in bacteria, yeasts, and other eukaryotic organisms. The persistent presence of R-loops contributes to defects in DNA replication and repair, gene expression, and genomic integrity. R-loops have not been detected at centromeric (CEN) chromatin in wild-type budding yeast. Here we used an hpr1∆ strain that accumulates R-loops to investigate the consequences of R-loops at CEN chromatin and chromosome segregation. We show that Hpr1 interacts with the CEN-histone H3 variant, Cse4, and prevents the accumulation of R-loops at CEN chromatin for chromosomal stability. DNA–RNA immunoprecipitation (DRIP) analysis showed an accumulation of R-loops at CEN chromatin that was reduced by overexpression of RNH1 in hpr1∆ strains. Increased levels of ssDNA, reduced levels of Cse4 and its assembly factor Scm3, and mislocalization of histone H3 at CEN chromatin were observed in hpr1∆ strains. We determined that accumulation of R-loops at CEN chromatin contributes to defects in kinetochore biorientation and chromosomal instability (CIN) and these phenotypes are suppressed by RNH1 overexpression in hpr1∆ strains. In summary, our studies provide mechanistic insights into how accumulation of R-loops at CEN contributes to defects in kinetochore integrity and CIN.
Collapse
Affiliation(s)
- Prashant K Mishra
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | - Elaine Yeh
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Wenyi Feng
- SUNY Upstate Medical University, Syracuse, NY 13210
| | - Kerry S Bloom
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Munira A Basrai
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
45
|
Abstract
Physiological and pathological roles for R-loop structures continue to be discovered, and studies suggest that R-loops could contribute to human disease. R-loops are nucleic acid structures characterized by a DNA:RNA hybrid and displaced single-stranded DNA that occur in connection with transcription. R-loops form naturally and have been shown to be important for a number of physiological processes such as mitochondrial replication initiation, class switch recombination, DNA repair, modulating DNA topology, and regulation of gene expression. However, subsets of R-loops or persistent R-loops lead to DNA breaks, chromosome rearrangement, and genome instability. In addition, R-loops have been linked to human diseases, specifically neurological disorders and cancer. Of the large amount of research produced recently on R-loops, this review covers evidence for R-loop involvement in normal cellular physiology and pathophysiology, as well as describing factors that contribute to R-loop regulation.
Collapse
Affiliation(s)
- Ryan Patrick Mackay
- Department of Molecular and Cellular Physiology and Louisiana State University Health Sciences Center - Shreveport, Shreveport, Louisiana, USA
| | - Qinqin Xu
- Department of Otolaryngology - Head & Neck Surgery, Louisiana State University Health Sciences Center - Shreveport, Shreveport, Louisiana, USA
| | - Paul M Weinberger
- Department of Molecular and Cellular Physiology and Louisiana State University Health Sciences Center - Shreveport, Shreveport, Louisiana, USA.,Department of Otolaryngology - Head & Neck Surgery, Louisiana State University Health Sciences Center - Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
46
|
Krishnan S, Chatterji D. Pleiotropic Effects of Bacterial Small Alarmone Synthetases: Underscoring the Dual-Domain Small Alarmone Synthetases in Mycobacterium smegmatis. Front Microbiol 2020; 11:594024. [PMID: 33154743 PMCID: PMC7591505 DOI: 10.3389/fmicb.2020.594024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/17/2020] [Indexed: 11/13/2022] Open
Abstract
The nucleotide alarmone (p)ppGpp, signaling the stringent response, is known for more than 5 decades. The cellular turnover of the alarmone is regulated by RelA/SpoT homolog (RSH) superfamily of enzymes. There are long RSHs (RelA, SpoT, and Rel) and short RSHs [small alarmone synthetases (SAS) and small alarmone hydrolases (SAH)]. Long RSHs are multidomain proteins with (p)ppGpp synthesis, hydrolysis, and regulatory functions. Short RSHs are single-domain proteins with a single (p)ppGpp synthesis/hydrolysis function with few exceptions having two domains. Mycobacterial RelZ is a dual-domain SAS with RNase HII and the (p)ppGpp synthetase activity. SAS is known to impact multiple cellular functions independently and in accordance with the long RSH. Few SAS in bacteria including RelZ synthesize pGpp, the third small alarmone, along with the conventional (p)ppGpp. SAS can act as an RNA-binding protein for the negative allosteric inhibition of (p)ppGpp synthesis. Here, we initially recap the important features and molecular functions of different SAS that are previously characterized to understand the obligation for the “alarmone pool” produced by the long and short RSHs. Then, we focus on the RelZ, especially the combined functions of RNase HII and (p)ppGpp synthesis from a single polypeptide to connect with the recent findings of SAS as an RNA-binding protein. Finally, we conclude with the possibilities of using single-stranded RNA (ssRNA) as an additional therapeutic strategy to combat the persistent infections by inhibiting the redundant (p)ppGpp synthetases.
Collapse
|
47
|
Li M, Klungland A. Modifications and interactions at the R-loop. DNA Repair (Amst) 2020; 96:102958. [PMID: 32961406 DOI: 10.1016/j.dnarep.2020.102958] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
R-loops are tripartite structures consisting of an RNA:DNA hybrid and a displaced single-stranded DNA [1]. They are widespread and occupy up to 5 % of the mammalian genomes [2]. R-loops have a key role in genome stability, and known functions associated with gene regulation, DNA replication, chromatin patterning, immunoglobuline gene recombination and DNA Double-strand break repair [3-7]. Novel methodology, including the application of the S9.6 antibody, have more recently led to detailed knowledge on the genome-wide distribution of the R-loops as well as the identification of the R-loop interactome [8-10]. The regulation of R-loops was recently shown to also depend on dynamic RNA-methylation, including METTL3/14 dependent 6-methylAdenines (m6As) and METTL8 dependent 3-methylCytosines (m3Cs) [11-13].
Collapse
Affiliation(s)
- Miaomiao Li
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, NO-0027, Oslo, Norway; Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, NO-0317, Oslo, Norway
| | - Arne Klungland
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, NO-0027, Oslo, Norway; Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, NO-0317, Oslo, Norway.
| |
Collapse
|
48
|
Depletion of the MFAP1/SPP381 Splicing Factor Causes R-Loop-Independent Genome Instability. Cell Rep 2020; 28:1551-1563.e7. [PMID: 31390568 PMCID: PMC6693559 DOI: 10.1016/j.celrep.2019.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 03/18/2019] [Accepted: 07/01/2019] [Indexed: 01/19/2023] Open
Abstract
THO/TREX is a conserved complex with a role in messenger ribonucleoprotein biogenesis that links gene expression and genome instability. Here, we show that human THO interacts with MFAP1 (microfibrillar-associated protein 1), a spliceosome-associated factor. Interestingly, MFAP1 depletion impairs cell proliferation and genome integrity, increasing γH2AX foci and DNA breaks. This phenotype is not dependent on either transcription or RNA-DNA hybrids. Mutations in the yeast orthologous gene SPP381 cause similar transcription-independent genome instability, supporting a conserved role. MFAP1 depletion has a wide effect on splicing and gene expression in human cells, determined by transcriptome analyses. MFAP1 depletion affects a number of DNA damage response (DDR) genes, which supports an indirect role of MFAP1 on genome integrity. Our work defines a functional interaction between THO and RNA processing and argues that splicing factors may contribute to genome integrity indirectly by regulating the expression of DDR genes rather than by a direct role.
Collapse
|
49
|
Lam FC, Kong YW, Huang Q, Vu Han TL, Maffa AD, Kasper EM, Yaffe MB. BRD4 prevents the accumulation of R-loops and protects against transcription-replication collision events and DNA damage. Nat Commun 2020; 11:4083. [PMID: 32796829 PMCID: PMC7428008 DOI: 10.1038/s41467-020-17503-y] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/17/2020] [Indexed: 12/20/2022] Open
Abstract
Proper chromatin function and maintenance of genomic stability depends on spatiotemporal coordination between the transcription and replication machinery. Loss of this coordination can lead to DNA damage from increased transcription-replication collision events. We report that deregulated transcription following BRD4 loss in cancer cells leads to the accumulation of RNA:DNA hybrids (R-loops) and collisions with the replication machinery causing replication stress and DNA damage. Whole genome BRD4 and γH2AX ChIP-Seq with R-loop IP qPCR reveals that BRD4 inhibition leads to accumulation of R-loops and DNA damage at a subset of known BDR4, JMJD6, and CHD4 co-regulated genes. Interference with BRD4 function causes transcriptional downregulation of the DNA damage response protein TopBP1, resulting in failure to activate the ATR-Chk1 pathway despite increased replication stress, leading to apoptotic cell death in S-phase and mitotic catastrophe. These findings demonstrate that inhibition of BRD4 induces transcription-replication conflicts, DNA damage, and cell death in oncogenic cells.
Collapse
Affiliation(s)
- Fred C Lam
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA.
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA.
- Faculty of Health Sciences, Division of Neurosurgery, Hamilton General Hospital, McMaster University, 237 Barton St E, Hamilton, ON, L8L 2X2, Canada.
| | - Yi Wen Kong
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
| | - Qiuying Huang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
| | - Tu-Lan Vu Han
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
| | - Amanda D Maffa
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
| | - Ekkehard M Kasper
- Faculty of Health Sciences, Division of Neurosurgery, Hamilton General Hospital, McMaster University, 237 Barton St E, Hamilton, ON, L8L 2X2, Canada
| | - Michael B Yaffe
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA.
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA.
- Departments of Biology and Bioengineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Beth Israel Deaconess Medical Center, Department of Surgery, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
50
|
Rogan PK, Mucaki EJ, Shirley BC. A proposed molecular mechanism for pathogenesis of severe RNA-viral pulmonary infections. F1000Res 2020; 9:943. [PMID: 33299552 PMCID: PMC7676395 DOI: 10.12688/f1000research.25390.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/23/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Certain riboviruses can cause severe pulmonary complications leading to death in some infected patients. We propose that DNA damage induced-apoptosis accelerates viral release, triggered by depletion of host RNA binding proteins (RBPs) from nuclear RNA bound to replicating viral sequences. Methods: Information theory-based analysis of interactions between RBPs and individual sequences in the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2), Influenza A (H3N1), HIV-1, and Dengue genomes identifies strong RBP binding sites in these viral genomes. Replication and expression of viral sequences is expected to increasingly sequester RBPs - SRSF1 and RNPS1. Ordinarily, RBPs bound to nascent host transcripts prevents their annealing to complementary DNA. Their depletion induces destabilizing R-loops. Chromosomal breakage occurs when an excess of unresolved R-loops collide with incoming replication forks, overwhelming the DNA repair machinery. We estimated stoichiometry of inhibition of RBPs in host nuclear RNA by counting competing binding sites in replicating viral genomes and host RNA. Results: Host RBP binding sites are frequent and conserved among different strains of RNA viral genomes. Similar binding motifs of SRSF1 and RNPS1 explain why DNA damage resulting from SRSF1 depletion is complemented by expression of RNPS1. Clustering of strong RBP binding sites coincides with the distribution of RNA-DNA hybridization sites across the genome. SARS-CoV-2 replication is estimated to require 32.5-41.8 hours to effectively compete for binding of an equal proportion of SRSF1 binding sites in host encoded nuclear RNAs. Significant changes in expression of transcripts encoding DNA repair and apoptotic proteins were found in an analysis of influenza A and Dengue-infected cells in some individuals. Conclusions: R-loop-induced apoptosis indirectly resulting from viral replication could release significant quantities of membrane-associated virions into neighboring alveoli. These could infect adjacent pneumocytes and other tissues, rapidly compromising lung function, causing multiorgan system failure and other described symptoms.
Collapse
Affiliation(s)
- Peter K. Rogan
- Biochemistry, University of Western Ontario, London, Ontario, N6A 2C8, Canada
- CytoGnomix Inc, London, Ontario, N5X 3X5, Canada
| | - Eliseos J. Mucaki
- Biochemistry, University of Western Ontario, London, Ontario, N6A 2C8, Canada
| | | |
Collapse
|