1
|
Chen L, Jiang H, Licinio J, Wu H. Brain O-GlcNAcylation: Bridging physiological functions, disease mechanisms, and therapeutic applications. Mol Psychiatry 2025; 30:2754-2772. [PMID: 40033044 PMCID: PMC12092303 DOI: 10.1038/s41380-025-02943-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/13/2025] [Accepted: 02/25/2025] [Indexed: 03/05/2025]
Abstract
O-GlcNAcylation, a dynamic post-translational modification occurring on serine or threonine residues of numerous proteins, plays a pivotal role in various cellular processes, including gene regulation, metabolism, and stress response. Abundant in the brain, O-GlcNAcylation intricately governs neurodevelopment, synaptic assembly, and neuronal functions. Recent investigations have established a correlation between the dysregulation of brain O-GlcNAcylation and a broad spectrum of neurological disorders and injuries, spanning neurodevelopmental, neurodegenerative, and psychiatric conditions, as well as injuries to the central nervous system (CNS). Manipulating O-GlcNAcylation has demonstrated neuroprotective properties against these afflictions. This review delineates the roles and mechanisms of O-GlcNAcylation in the CNS under both physiological and pathological circumstances, with a focus on its neuroprotective effects in neurological disorders and injuries. We discuss the involvement of O-GlcNAcylation in key processes such as neurogenesis, synaptic plasticity, and energy metabolism, as well as its implications in conditions like Alzheimer's disease, Parkinson's disease, and ischemic stroke. Additionally, we explore prospective therapeutic approaches for CNS disorders and injuries by targeting O-GlcNAcylation, highlighting recent clinical developments and future research directions. This comprehensive overview aims to provide insights into the potential of O-GlcNAcylation as a therapeutic target and guide future investigations in this promising field.
Collapse
Affiliation(s)
- Liping Chen
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Huihui Jiang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Julio Licinio
- Department of Psychiatry, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
2
|
Kang SW, Tran HT, Lee G, Ng JT, Lim SB, Kim EY. Drosophila peptidyl-prolyl cis/trans isomerase-like 4 regulates circadian rhythm by supporting high-amplitude oscillations of PERIOD. iScience 2025; 28:112457. [PMID: 40384934 PMCID: PMC12084006 DOI: 10.1016/j.isci.2025.112457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/03/2025] [Accepted: 04/11/2025] [Indexed: 05/20/2025] Open
Abstract
Peptidyl-prolyl cis/trans isomerases (PPIases) accelerate proline peptide bond isomerization, affecting substrate protein function. In this study, through RNAi-based behavioral screening of PPIases in Drosophila melanogaster, we identified CG5808, termed Drosophila peptidyl-prolyl cis/trans isomerase-like 4 (dPPIL4), as crucial for circadian rhythm regulation. Knockdown of dppil4 in clock cells lengthened the circadian rhythm period and decreased rhythmicity, accompanied by a significant reduction of core clock protein PERIOD (PER). d ppil4 knockdown downregulated per transcription and reduced phosphorylation at Ser5 in the RNA polymerase II C-terminal domain, critical for transcription elongation. In addition, dPPIL4 stabilized Cullin1 of the Skp1-Cullin1-F-box protein complex, a key regulator of PER degradation. Our findings suggest that dPPIL4 supports high-amplitude PER oscillation by enhancing both synthesis and degradation processes in a timely manner. In conclusion, our study underscores the importance of high-amplitude PER oscillations in PER for robust circadian rhythms and highlights the critical role of dPPIL4 in this process.
Collapse
Affiliation(s)
- So Who Kang
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, 164 Worldcup-ro, Suwon, Kyunggi-do 16499, Republic of Korea
- Department of Brain Science, Ajou University School of Medicine, 164 Worldcup-ro, Suwon, Kyunggi-do 16499, Republic of Korea
| | - Hong Thuan Tran
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, 164 Worldcup-ro, Suwon, Kyunggi-do 16499, Republic of Korea
- Department of Brain Science, Ajou University School of Medicine, 164 Worldcup-ro, Suwon, Kyunggi-do 16499, Republic of Korea
| | - Gaeun Lee
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, 164 Worldcup-ro, Suwon, Kyunggi-do 16499, Republic of Korea
- Department of Brain Science, Ajou University School of Medicine, 164 Worldcup-ro, Suwon, Kyunggi-do 16499, Republic of Korea
| | - Jestlin Tianthing Ng
- Department of Biochemistry, Ajou University School of Medicine, 164 Worldcup-ro, Suwon, Kyunggi-do 16499, Republic of Korea
| | - Su Bin Lim
- Department of Biochemistry, Ajou University School of Medicine, 164 Worldcup-ro, Suwon, Kyunggi-do 16499, Republic of Korea
| | - Eun Young Kim
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, 164 Worldcup-ro, Suwon, Kyunggi-do 16499, Republic of Korea
- Department of Brain Science, Ajou University School of Medicine, 164 Worldcup-ro, Suwon, Kyunggi-do 16499, Republic of Korea
| |
Collapse
|
3
|
Knier AS, Olivier-Van Stichelen S. O-GlcNAcylation in Endocrinology: The Sweet Link. Endocrinology 2025; 166:bqaf072. [PMID: 40209111 PMCID: PMC12013285 DOI: 10.1210/endocr/bqaf072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/21/2025] [Accepted: 04/09/2025] [Indexed: 04/12/2025]
Abstract
O-GlcNAcylation is a dynamic posttranslational modification that involves the addition of N-acetylglucosamine (GlcNAc) to the serine and threonine residues of proteins. Over the past 4 decades, this modification has become increasingly recognized as having a critical influence in the field of endocrinology. The carefully controlled hormonal input for regulating sleep, mood, response to stress, growth, development, and metabolism are often associated with O-GlcNAc-dependent signaling. As protein O-GlcNAcylation patterns are heavily dependent on environmental glucose concentrations, hormone-secreting cells sense the changes in local environmental glucose concentrations and adjust hormone secretion accordingly. This ability of cells to sense nutritional cues and fine-tune hormonal production is particularly relevant toward maintaining a functional and responsive endocrine system, therefore emphasizing the importance of O-GlcNAc in the scope and application of endocrinology. This review examines how O-GlcNAcylation participates in hormonal homeostasis in different endocrine tissues and systems, from the pineal gland to the placenta, and underscores the significance of O-GlcNAc in the field of endocrinology.
Collapse
Affiliation(s)
- Adam Salm Knier
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Stephanie Olivier-Van Stichelen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
4
|
Kang SW, Park JE, Ok S, Um M, Son H, Byun S, Park N, Lee SJ, Trần TXT, Kim G, Yeom J, Kim K, Kim EY, Kang MJ. Drosophila ubiquitin-specific peptidase 14 stabilizes the PERIOD protein by regulating a ubiquitin ligase SLIMB. Commun Biol 2025; 8:191. [PMID: 39920223 PMCID: PMC11805992 DOI: 10.1038/s42003-025-07632-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 01/29/2025] [Indexed: 02/09/2025] Open
Abstract
The circadian clock orchestrates behavior and physiology through the oscillation of key clock proteins like PERIOD (PER). Here, we investigate the role of ubiquitin-specific peptidase 14 (USP14) in modulating PER stability and circadian rhythms in Drosophila. We find that overexpression of USP14 in clock cells reduces PER protein levels without altering its mRNA levels whereas USP14 knockdown increases PER protein levels, suggesting that USP14 regulates PER post-translationally. Interestingly, despite these alterations in PER levels, neither USP14 overexpression nor knockdown significantly impacts circadian behavioral rhythms, likely because of slight effects on PER levels in small ventral lateral neurons (sLNvs). Further analysis shows that USP14 physically interacts with Supernumerary Limbs (SLIMB), a protein involved in PER degradation. Moreover, reducing slimb expression mitigates the effects of USP14 on PER protein stability. Mass spectrometry identifies two ubiquitination sites on PER (Lys1117 and Lys1118) critical for its degradation. Expression of PER1117A, 1118A mutant in per01 background impairs circadian rhythm strength. In conclusion, this study demonstrates that Drosophila USP14 indirectly modulates PER protein stability by affecting SLIMB and highlights the critical role of specific ubiquitination sites on PER in maintaining circadian rhythms.
Collapse
Affiliation(s)
- So Who Kang
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, 164 Worldcup-ro, Suwon, Gyeonggi-do, Republic of Korea
- Department of Brain Science, Ajou University School of Medicine, 164 Worldcup-ro, Suwon, Gyeonggi-do, Republic of Korea
| | - Jung-Eun Park
- Department of Pharmacology, Brain Korea 21 Project, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Soonhyuck Ok
- Department of Pharmacology, Brain Korea 21 Project, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
- Department of Biomedical Sciences, Brain Korea 21 Project, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Minhui Um
- Department of Pharmacology, Brain Korea 21 Project, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
- Department of Biomedical Sciences, Brain Korea 21 Project, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Hyeonjeong Son
- Department of Pharmacology, Brain Korea 21 Project, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
- Department of Biomedical Sciences, Brain Korea 21 Project, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Seunghee Byun
- Department of Pharmacology, Brain Korea 21 Project, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Nayoung Park
- Department of Pharmacology, Brain Korea 21 Project, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Su Jin Lee
- Department of Pharmacology, Brain Korea 21 Project, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Thị Xuân Thùy Trần
- Department of Pharmacology, Brain Korea 21 Project, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Gyeongmin Kim
- Department of Pharmacology, Brain Korea 21 Project, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Jeonghun Yeom
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, Seoul, Republic of Korea
| | - Kyunggon Kim
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, Seoul, Republic of Korea
- Department of Convergence Medicine, University of Ulsan College of Medicine, Songpa-gu, Seoul, Republic of Korea
| | - Eun Young Kim
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, 164 Worldcup-ro, Suwon, Gyeonggi-do, Republic of Korea.
- Department of Brain Science, Ajou University School of Medicine, 164 Worldcup-ro, Suwon, Gyeonggi-do, Republic of Korea.
| | - Min-Ji Kang
- Department of Pharmacology, Brain Korea 21 Project, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88-gil, Songpa-gu, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Wang J, Jiang N, Liu F, Wang C, Zhou W. Uncovering the intricacies of O-GlcNAc modification in cognitive impairment: New insights from regulation to therapeutic targeting. Pharmacol Ther 2025; 266:108761. [PMID: 39603350 DOI: 10.1016/j.pharmthera.2024.108761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) represents a post-translational modification that occurs on serine or threonine residues on various proteins. This conserved modification interacts with vital cellular pathways. Although O-GlcNAc is widely distributed throughout the body, it is particularly enriched in the brain, where most proteins are O-GlcNAcylated. Recent studies have established a causal link between O-GlcNAc regulation in the brain and alterations in neurophysiological function. Alterations in O-GlcNAc levels in the brain are associated with the pathogenesis of several neurogenic diseases that can lead to cognitive impairment. Remarkably, manipulation of O-GlcNAc levels demonstrated a protective effect on cognitive function. Although the precise molecular mechanism of O-GlcNAc modification in the nervous system remains elusive, its regulation is fundamental to multiple neural and cognitive functions, fluctuating levels during normal and pathological cognitive processes. In this review, we highlight the significant functional importance of O-GlcNAc modification in pathological cognitive impairments and the potential application of O-GlcNAc as a promising target for the intervention or amelioration of cognitive impairments.
Collapse
Affiliation(s)
- Jianhui Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Ning Jiang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Feng Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Chenran Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Wenxia Zhou
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China.
| |
Collapse
|
6
|
Zhang H, Zhou Z, Guo J. The Function, Regulation, and Mechanism of Protein Turnover in Circadian Systems in Neurospora and Other Species. Int J Mol Sci 2024; 25:2574. [PMID: 38473819 DOI: 10.3390/ijms25052574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Circadian clocks drive a large array of physiological and behavioral activities. At the molecular level, circadian clocks are composed of positive and negative elements that form core oscillators generating the basic circadian rhythms. Over the course of the circadian period, circadian negative proteins undergo progressive hyperphosphorylation and eventually degrade, and their stability is finely controlled by complex post-translational pathways, including protein modifications, genetic codon preference, protein-protein interactions, chaperon-dependent conformation maintenance, degradation, etc. The effects of phosphorylation on the stability of circadian clock proteins are crucial for precisely determining protein function and turnover, and it has been proposed that the phosphorylation of core circadian clock proteins is tightly correlated with the circadian period. Nonetheless, recent studies have challenged this view. In this review, we summarize the research progress regarding the function, regulation, and mechanism of protein stability in the circadian clock systems of multiple model organisms, with an emphasis on Neurospora crassa, in which circadian mechanisms have been extensively investigated. Elucidation of the highly complex and dynamic regulation of protein stability in circadian clock networks would greatly benefit the integrated understanding of the function, regulation, and mechanism of protein stability in a wide spectrum of other biological processes.
Collapse
Affiliation(s)
- Haoran Zhang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zengxuan Zhou
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jinhu Guo
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
7
|
Liu X, Cai YD, Chiu JC. Regulation of protein O-GlcNAcylation by circadian, metabolic, and cellular signals. J Biol Chem 2024; 300:105616. [PMID: 38159854 PMCID: PMC10810748 DOI: 10.1016/j.jbc.2023.105616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024] Open
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAcylation) is a dynamic post-translational modification that regulates thousands of proteins and almost all cellular processes. Aberrant O-GlcNAcylation has been associated with numerous diseases, including cancer, neurodegenerative diseases, cardiovascular diseases, and type 2 diabetes. O-GlcNAcylation is highly nutrient-sensitive since it is dependent on UDP-GlcNAc, the end product of the hexosamine biosynthetic pathway (HBP). We previously observed daily rhythmicity of protein O-GlcNAcylation in a Drosophila model that is sensitive to the timing of food consumption. We showed that the circadian clock is pivotal in regulating daily O-GlcNAcylation rhythms given its control of the feeding-fasting cycle and hence nutrient availability. Interestingly, we reported that the circadian clock also modulates daily O-GlcNAcylation rhythm by regulating molecular mechanisms beyond the regulation of food consumption time. A large body of work now indicates that O-GlcNAcylation is likely a generalized cellular status effector as it responds to various cellular signals and conditions, such as ER stress, apoptosis, and infection. In this review, we summarize the metabolic regulation of protein O-GlcNAcylation through nutrient availability, HBP enzymes, and O-GlcNAc processing enzymes. We discuss the emerging roles of circadian clocks in regulating daily O-GlcNAcylation rhythm. Finally, we provide an overview of other cellular signals or conditions that impact O-GlcNAcylation. Many of these cellular pathways are themselves regulated by the clock and/or metabolism. Our review highlights the importance of maintaining optimal O-GlcNAc rhythm by restricting eating activity to the active period under physiological conditions and provides insights into potential therapeutic targets of O-GlcNAc homeostasis under pathological conditions.
Collapse
Affiliation(s)
- Xianhui Liu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, California, USA
| | - Yao D Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, California, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, California, USA.
| |
Collapse
|
8
|
Tanaka A, Sanada K, Miyaho K, Tachibana T, Kurokawa S, Ishii C, Noda Y, Nakajima S, Fukuda S, Mimura M, Kishimoto T, Iwanami A. The relationship between sleep, gut microbiota, and metabolome in patients with depression and anxiety: A secondary analysis of the observational study. PLoS One 2023; 18:e0296047. [PMID: 38117827 PMCID: PMC10732403 DOI: 10.1371/journal.pone.0296047] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/05/2023] [Indexed: 12/22/2023] Open
Abstract
BACKGROUND Growing attention is paid to the association between alterations in the gut microbiota and their metabolites in patients with psychiatric disorders. Our study aimed to determine how gut microbiota and metabolomes are related to the sleep quality among patients with depression and anxiety disorders by analyzing the datasets of our previous study. METHODS Samples were collected from 40 patients (depression: 32 patients [80.0%]); anxiety disorders: 8 patients [20.0%]) in this study. Gut microbiomes were analyzed using 16S rRNA gene sequencing and gut metabolomes were analyzed by a mass spectrometry approach. Based on the Pittsburgh Sleep Quality Index (PSQI), patients were categorized into two groups: the insomnia group (PSQI score ≥ 9, n = 20) and the non-insomnia group (PSQI score < 9, n = 20). RESULTS The insomnia group showed a lower alpha diversity in the Chao1 and Shannon indices than the non-insomnia group after the false discovery rate (FDR) correction. The relative abundance of genus Bacteroides showed a positive correlation with PSQI scores in the non-insomnia group. The concentrations of glucosamine and N-methylglutamate were significantly higher in the insomnia group than in the non-insomnia group. CONCLUSIONS Our findings suggest that specific taxa could affect the sleep quality among patients with depression and anxiety disorders. Further studies are needed to elucidate the impact of sleep on specific gut microbiota and metabolomes in depression and anxiety disorders.
Collapse
Affiliation(s)
- Arisa Tanaka
- Department of Psychiatry, Showa University Karasuyama Hospital, Tokyo, Japan
| | - Kenji Sanada
- Department of Psychiatry, Showa University Karasuyama Hospital, Tokyo, Japan
| | - Katsuma Miyaho
- Department of Psychiatry, Showa University Karasuyama Hospital, Tokyo, Japan
| | - Tomoyuki Tachibana
- Department of Psychiatry, Showa University Karasuyama Hospital, Tokyo, Japan
| | - Shunya Kurokawa
- Department of Neuropsychiatry, Keio University Hospital, Tokyo, Japan
| | - Chiharu Ishii
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University Hospital, Tokyo, Japan
| | | | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
- Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Kanagawa, Japan
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University Hospital, Tokyo, Japan
| | | | - Akira Iwanami
- Department of Psychiatry, Showa University Karasuyama Hospital, Tokyo, Japan
| |
Collapse
|
9
|
Kim DY, Park J, Han IO. Hexosamine biosynthetic pathway and O-GlcNAc cycling of glucose metabolism in brain function and disease. Am J Physiol Cell Physiol 2023; 325:C981-C998. [PMID: 37602414 DOI: 10.1152/ajpcell.00191.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023]
Abstract
Impaired brain glucose metabolism is considered a hallmark of brain dysfunction and neurodegeneration. Disruption of the hexosamine biosynthetic pathway (HBP) and subsequent O-linked N-acetylglucosamine (O-GlcNAc) cycling has been identified as an emerging link between altered glucose metabolism and defects in the brain. Myriads of cytosolic and nuclear proteins in the nervous system are modified at serine or threonine residues with a single N-acetylglucosamine (O-GlcNAc) molecule by O-GlcNAc transferase (OGT), which can be removed by β-N-acetylglucosaminidase (O-GlcNAcase, OGA). Homeostatic regulation of O-GlcNAc cycling is important for the maintenance of normal brain activity. Although significant evidence linking dysregulated HBP metabolism and aberrant O-GlcNAc cycling to induction or progression of neuronal diseases has been obtained, the issue of whether altered O-GlcNAcylation is causal in brain pathogenesis remains uncertain. Elucidation of the specific functions and regulatory mechanisms of individual O-GlcNAcylated neuronal proteins in both normal and diseased states may facilitate the identification of novel therapeutic targets for various neuronal disorders. The information presented in this review highlights the importance of HBP/O-GlcNAcylation in the neuronal system and summarizes the roles and potential mechanisms of O-GlcNAcylated neuronal proteins in maintaining normal brain function and initiation and progression of neurological diseases.
Collapse
Affiliation(s)
- Dong Yeol Kim
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| | - Jiwon Park
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| | - Inn-Oc Han
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| |
Collapse
|
10
|
Suh GSB, Yu K, Kim YJ, Oh Y, Park JJ. History of Drosophila neurogenetic research in South Korea. J Neurogenet 2022:1-7. [PMID: 36165786 DOI: 10.1080/01677063.2022.2115040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Neurogenetic research using the Drosophila model has immensely expanded around the world. Likewise, scientists in South Korea have leveraged the advantages of Drosophila genetic tools to understand various neurobiological processes. In this special issue, we will overview the history of Drosophila neurogenetic research in South Korea that led to significant discoveries and notably implications. We will describe how Drosophila system was first introduced to elevate neural developmental studies in 1990s. Establishing Drosophila-related resources has been a key venture, which led to the generation of over 100,000 mutant lines and the launch of the K-Gut initiative with Korea Drosophila Research Center (KDRC). These resources have supported the pioneer studies in modeling human disease and understanding genes and neural circuits that regulate animal behavior and physiology.
Collapse
Affiliation(s)
- Greg S B Suh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Kweon Yu
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Metabolism and Neurophysiology Research Group, Daejeon, Republic of Korea
| | - Young-Joon Kim
- Department of Biological Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Yangkyun Oh
- Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Joong-Jean Park
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
11
|
Liu X, Chiu JC. Nutrient-sensitive protein O-GlcNAcylation shapes daily biological rhythms. Open Biol 2022; 12:220215. [PMID: 36099933 PMCID: PMC9470261 DOI: 10.1098/rsob.220215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/17/2022] [Indexed: 11/12/2022] Open
Abstract
O-linked-N-acetylglucosaminylation (O-GlcNAcylation) is a nutrient-sensitive protein modification that alters the structure and function of a wide range of proteins involved in diverse cellular processes. Similar to phosphorylation, another protein modification that targets serine and threonine residues, O-GlcNAcylation occupancy on cellular proteins exhibits daily rhythmicity and has been shown to play critical roles in regulating daily rhythms in biology by modifying circadian clock proteins and downstream effectors. We recently reported that daily rhythm in global O-GlcNAcylation observed in Drosophila tissues is regulated via the integration of circadian and metabolic signals. Significantly, mistimed feeding, which disrupts coordination of these signals, is sufficient to dampen daily O-GlcNAcylation rhythm and is predicted to negatively impact animal biological rhythms and health span. In this review, we provide an overview of published and potential mechanisms by which metabolic and circadian signals regulate hexosamine biosynthetic pathway metabolites and enzymes, as well as O-GlcNAc processing enzymes to shape daily O-GlcNAcylation rhythms. We also discuss the significance of functional interactions between O-GlcNAcylation and other post-translational modifications in regulating biological rhythms. Finally, we highlight organ/tissue-specific cellular processes and molecular pathways that could be modulated by rhythmic O-GlcNAcylation to regulate time-of-day-specific biology.
Collapse
Affiliation(s)
- Xianhui Liu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA, USA
- Department of Pharmacology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Joanna C. Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA, USA
| |
Collapse
|
12
|
Sato T, Sassone-Corsi P. Nutrition, metabolism, and epigenetics: pathways of circadian reprogramming. EMBO Rep 2022; 23:e52412. [PMID: 35412705 PMCID: PMC9066069 DOI: 10.15252/embr.202152412] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 10/28/2021] [Accepted: 03/30/2022] [Indexed: 01/07/2023] Open
Abstract
Food intake profoundly affects systemic physiology. A large body of evidence has indicated a link between food intake and circadian rhythms, and ~24-h cycles are deemed essential for adapting internal homeostasis to the external environment. Circadian rhythms are controlled by the biological clock, a molecular system remarkably conserved throughout evolution. The circadian clock controls the cyclic expression of numerous genes, a regulatory program common to all mammalian cells, which may lead to various metabolic and physiological disturbances if hindered. Although the circadian clock regulates multiple metabolic pathways, metabolic states also provide feedback on the molecular clock. Therefore, a remarkable feature is reprogramming by nutritional challenges, such as a high-fat diet, fasting, ketogenic diet, and caloric restriction. In addition, various factors such as energy balance, histone modifications, and nuclear receptor activity are involved in the remodeling of the clock. Herein, we review the interaction of dietary components with the circadian system and illustrate the relationships linking the molecular clock to metabolism and critical roles in the remodeling process.
Collapse
Affiliation(s)
- Tomoki Sato
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, School of Medicine, INSERM U1233, University of California, Irvine, CA, USA
| | - Paolo Sassone-Corsi
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, School of Medicine, INSERM U1233, University of California, Irvine, CA, USA
| |
Collapse
|
13
|
Fenckova M, Muha V, Mariappa D, Catinozzi M, Czajewski I, Blok LER, Ferenbach AT, Storkebaum E, Schenck A, van Aalten DMF. Intellectual disability-associated disruption of O-GlcNAc cycling impairs habituation learning in Drosophila. PLoS Genet 2022; 18:e1010159. [PMID: 35500025 PMCID: PMC9140282 DOI: 10.1371/journal.pgen.1010159] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 05/27/2022] [Accepted: 03/21/2022] [Indexed: 11/19/2022] Open
Abstract
O-GlcNAcylation is a reversible co-/post-translational modification involved in a multitude of cellular processes. The addition and removal of the O-GlcNAc modification is controlled by two conserved enzymes, O-GlcNAc transferase (OGT) and O-GlcNAc hydrolase (OGA). Mutations in OGT have recently been discovered to cause a novel Congenital Disorder of Glycosylation (OGT-CDG) that is characterized by intellectual disability. The mechanisms by which OGT-CDG mutations affect cognition remain unclear. We manipulated O-GlcNAc transferase and O-GlcNAc hydrolase activity in Drosophila and demonstrate an important role of O-GlcNAcylation in habituation learning and synaptic development at the larval neuromuscular junction. Introduction of patient-specific missense mutations into Drosophila O-GlcNAc transferase using CRISPR/Cas9 gene editing leads to deficits in locomotor function and habituation learning. The habituation deficit can be corrected by blocking O-GlcNAc hydrolysis, indicating that OGT-CDG mutations affect cognition-relevant habituation via reduced protein O-GlcNAcylation. This study establishes a critical role for O-GlcNAc cycling and disrupted O-GlcNAc transferase activity in cognitive dysfunction, and suggests that blocking O-GlcNAc hydrolysis is a potential strategy to treat OGT-CDG.
Collapse
Affiliation(s)
- Michaela Fenckova
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Villo Muha
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Daniel Mariappa
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Marica Catinozzi
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Ignacy Czajewski
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Laura E. R. Blok
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Andrew T. Ferenbach
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Erik Storkebaum
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Daan M. F. van Aalten
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
14
|
Abstract
Post-translational modification with O-linked β-N-acetylglucosamine (O-GlcNAc), a process referred to as O-GlcNAcylation, occurs on a vast variety of proteins. Mounting evidence in the past several decades has clearly demonstrated that O-GlcNAcylation is a unique and ubiquitous modification. Reminiscent of a code, protein O-GlcNAcylation functions as a crucial regulator of nearly all cellular processes studied. The primary aim of this review is to summarize the developments in our understanding of myriad protein substrates modified by O-GlcNAcylation from a systems perspective. Specifically, we provide a comprehensive survey of O-GlcNAcylation in multiple species studied, including eukaryotes (e.g., protists, fungi, plants, Caenorhabditis elegans, Drosophila melanogaster, murine, and human), prokaryotes, and some viruses. We evaluate features (e.g., structural properties and sequence motifs) of O-GlcNAc modification on proteins across species. Given that O-GlcNAcylation functions in a species-, tissue-/cell-, protein-, and site-specific manner, we discuss the functional roles of O-GlcNAcylation on human proteins. We focus particularly on several classes of relatively well-characterized human proteins (including transcription factors, protein kinases, protein phosphatases, and E3 ubiquitin-ligases), with representative O-GlcNAc site-specific functions presented. We hope the systems view of the great endeavor in the past 35 years will help demystify the O-GlcNAc code and lead to more fascinating studies in the years to come.
Collapse
Affiliation(s)
- Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| | - Chunyan Hou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| |
Collapse
|
15
|
Liu J, Hao Y, Wang C, Jin Y, Yang Y, Gu J, Chen X. An Optimized Isotopic Photocleavable Tagging Strategy for Site-Specific and Quantitative Profiling of Protein O-GlcNAcylation in Colorectal Cancer Metastasis. ACS Chem Biol 2022; 17:513-520. [PMID: 35254053 DOI: 10.1021/acschembio.1c00981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
O-linked-β-N-acetylglucosamine (O-GlcNAc) glycosylation is a ubiquitous protein post-translational modification of the emerging importance in metazoans. Of the thousands of O-GlcNAcylated proteins identified, many carry multiple modification sites with varied stoichiometry. To better match the scale of O-GlcNAc sites and their dynamic nature, we herein report an optimized strategy, termed isotopic photocleavable tagging for O-GlcNAc profiling (isoPTOP), which enables quantitative and site-specific profiling of O-GlcNAcylation with excellent specificity and sensitivity. In HeLa cells, ∼1500 O-GlcNAcylation sites were identified with the optimized procedures, which led to quantification of ∼1000 O-GlcNAcylation sites with isoPTOP. Furthermore, we apply isoPTOP to probe the O-GlcNAcylation dynamics in a pair of colorectal cancer (CRC) cell lines, SW480 and SW620 cells, which represent primary carcinoma and metastatic cells, representatively. The stoichiometric differences of 625 O-GlcNAcylation sites are quantified. Of these quantified sites, many occur on important regulators involved in tumor progression and metastasis. Our results provide a valuable database for understanding the functional role of O-GlcNAc in CRC. IsoPTOP should be applicable for investigating O-GlcNAcylation dynamics in various pathophysiological processes.
Collapse
Affiliation(s)
- Jialin Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Yi Hao
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Chunting Wang
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Yangya’nan Jin
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Yong Yang
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing, 100144, China
- Gastrointestinal Cancer Center, Peking University Cancer Hospital, Beijing, 100142, China
| | - Jin Gu
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing, 100144, China
- Gastrointestinal Cancer Center, Peking University Cancer Hospital, Beijing, 100142, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- Synthetic and Functional Biomolecules Center, Peking University, Beijing, 100871, China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| |
Collapse
|
16
|
Systematic modeling-driven experiments identify distinct molecular clockworks underlying hierarchically organized pacemaker neurons. Proc Natl Acad Sci U S A 2022; 119:2113403119. [PMID: 35193959 PMCID: PMC8872709 DOI: 10.1073/pnas.2113403119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 12/11/2022] Open
Abstract
In metazoan organisms, circadian (∼24 h) rhythms are regulated by pacemaker neurons organized in a master-slave hierarchy. Although it is widely accepted that master pacemakers and slave oscillators generate rhythms via an identical negative feedback loop of transcription factor CLOCK (CLK) and repressor PERIOD (PER), their different roles imply heterogeneity in their molecular clockworks. Indeed, in Drosophila, defective binding between CLK and PER disrupts molecular rhythms in the master pacemakers, small ventral lateral neurons (sLNvs), but not in the slave oscillator, posterior dorsal neuron 1s (DN1ps). Here, we develop a systematic and expandable approach that unbiasedly searches the source of the heterogeneity in molecular clockworks from time-series data. In combination with in vivo experiments, we find that sLNvs exhibit higher synthesis and turnover of PER and lower CLK levels than DN1ps. Importantly, light shift analysis reveals that due to such a distinct molecular clockwork, sLNvs can obtain paradoxical characteristics as the master pacemaker, generating strong rhythms that are also flexibly adjustable to environmental changes. Our results identify the different characteristics of molecular clockworks of pacemaker neurons that underlie hierarchical multi-oscillator structure to ensure the rhythmic fitness of the organism.
Collapse
|
17
|
Tools, tactics and objectives to interrogate cellular roles of O-GlcNAc in disease. Nat Chem Biol 2022; 18:8-17. [PMID: 34934185 PMCID: PMC8712397 DOI: 10.1038/s41589-021-00903-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/21/2021] [Indexed: 12/15/2022]
Abstract
The vast array of cell types of multicellular organisms must individually fine-tune their internal metabolism. One important metabolic and stress regulatory mechanism is the dynamic attachment/removal of glucose-derived sugar N-acetylglucosamine on proteins (O-GlcNAcylation). The number of proteins modified by O-GlcNAc is bewildering, with at least 7,000 sites in human cells. The outstanding challenge is determining how key O-GlcNAc sites regulate a target pathway amidst thousands of potential global sites. Innovative solutions are required to address this challenge in cell models and disease therapy. This Perspective shares critical suggestions for the O-GlcNAc field gleaned from the international O-GlcNAc community. Further, we summarize critical tools and tactics to enable newcomers to O-GlcNAc biology to drive innovation at the interface of metabolism and disease. The growing pace of O-GlcNAc research makes this a timely juncture to involve a wide array of scientists and new toolmakers to selectively approach the regulatory roles of O-GlcNAc in disease.
Collapse
|
18
|
Cai YD, Chiu JC. Timeless in animal circadian clocks and beyond. FEBS J 2021; 289:6559-6575. [PMID: 34699674 PMCID: PMC9038958 DOI: 10.1111/febs.16253] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/09/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022]
Abstract
TIMELESS (TIM) was first identified as a molecular cog in the Drosophila circadian clock. Almost three decades of investigations have resulted in an insightful model describing the critical role of Drosophila TIM (dTIM) in circadian timekeeping in insects, including its function in mediating light entrainment and temperature compensation of the molecular clock. Furthermore, exciting discoveries on its sequence polymorphism and thermosensitive alternative RNA splicing have also established its role in regulating seasonal biology. Although mammalian TIM (mTIM), its mammalian paralog, was first identified as a potential circadian clock component in 1990s due to sequence similarity to dTIM, its role in clock regulation has been more controversial. Mammalian TIM has now been characterized as a DNA replication fork component and has been shown to promote fork progression and participate in cell cycle checkpoint signaling in response to DNA damage. Despite defective circadian rhythms displayed by mtim mutants, it remains controversial whether the regulation of circadian clocks by mTIM is direct, especially given the interconnection between the cell cycle and circadian clocks. In this review, we provide a historical perspective on the identification of animal tim genes, summarize the roles of TIM proteins in biological timing and genomic stability, and draw parallels between dTIM and mTIM despite apparent functional divergence.
Collapse
Affiliation(s)
- Yao D Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, CA, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, CA, USA
| |
Collapse
|
19
|
Li MD, Xin H, Yuan Y, Yang X, Li H, Tian D, Zhang H, Zhang Z, Han TL, Chen Q, Duan G, Ju D, Chen K, Deng F, He W. Circadian Clock-Controlled Checkpoints in the Pathogenesis of Complex Disease. Front Genet 2021; 12:721231. [PMID: 34557221 PMCID: PMC8452875 DOI: 10.3389/fgene.2021.721231] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/16/2021] [Indexed: 12/26/2022] Open
Abstract
The circadian clock coordinates physiology, metabolism, and behavior with the 24-h cycles of environmental light. Fundamental mechanisms of how the circadian clock regulates organ physiology and metabolism have been elucidated at a rapid speed in the past two decades. Here we review circadian networks in more than six organ systems associated with complex disease, which cluster around metabolic disorders, and seek to propose critical regulatory molecules controlled by the circadian clock (named clock-controlled checkpoints) in the pathogenesis of complex disease. These include clock-controlled checkpoints such as circadian nuclear receptors in liver and muscle tissues, chemokines and adhesion molecules in the vasculature. Although the progress is encouraging, many gaps in the mechanisms remain unaddressed. Future studies should focus on devising time-dependent strategies for drug delivery and engagement in well-characterized organs such as the liver, and elucidating fundamental circadian biology in so far less characterized organ systems, including the heart, blood, peripheral neurons, and reproductive systems.
Collapse
Affiliation(s)
- Min-Dian Li
- Department of Cardiology and the Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Haoran Xin
- Department of Cardiology and the Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yinglin Yuan
- Medical Center of Hematology, The Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Xinqing Yang
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hongli Li
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dingyuan Tian
- Department of Cardiology and the Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hua Zhang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhihui Zhang
- Department of Cardiology and the Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ting-Li Han
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Chen
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Guangyou Duan
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Dapeng Ju
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ka Chen
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Fang Deng
- Key Laboratory of Extreme Environmental Medicine, Department of Pathophysiology, College of High Altitude Military Medicine, Ministry of Education of China, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of High Altitude Medicine, PLA, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wenyan He
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | |
Collapse
|
20
|
Liu X, Blaženović I, Contreras AJ, Pham TM, Tabuloc CA, Li YH, Ji J, Fiehn O, Chiu JC. Hexosamine biosynthetic pathway and O-GlcNAc-processing enzymes regulate daily rhythms in protein O-GlcNAcylation. Nat Commun 2021; 12:4173. [PMID: 34234137 PMCID: PMC8263742 DOI: 10.1038/s41467-021-24301-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
The integration of circadian and metabolic signals is essential for maintaining robust circadian rhythms and ensuring efficient metabolism and energy use. Using Drosophila as an animal model, we show that cellular protein O-GlcNAcylation exhibits robust 24-hour rhythm and represents a key post-translational mechanism that regulates circadian physiology. We observe strong correlation between protein O-GlcNAcylation rhythms and clock-controlled feeding-fasting cycles, suggesting that O-GlcNAcylation rhythms are primarily driven by nutrient input. Interestingly, daily O-GlcNAcylation rhythms are severely dampened when we subject flies to time-restricted feeding at unnatural feeding time. This suggests the presence of clock-regulated buffering mechanisms that prevent excessive O-GlcNAcylation at non-optimal times of the day-night cycle. We show that this buffering mechanism is mediated by the expression and activity of GFAT, OGT, and OGA, which are regulated through integration of circadian and metabolic signals. Finally, we generate a mathematical model to describe the key factors that regulate daily O-GlcNAcylation rhythm.
Collapse
Affiliation(s)
- Xianhui Liu
- grid.27860.3b0000 0004 1936 9684Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, CA USA
| | - Ivana Blaženović
- grid.27860.3b0000 0004 1936 9684West Coast Metabolomics Center, University of California, Davis, CA USA
| | - Adam J. Contreras
- grid.27860.3b0000 0004 1936 9684Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, CA USA
| | - Thu M. Pham
- grid.27860.3b0000 0004 1936 9684Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, CA USA
| | - Christine A. Tabuloc
- grid.27860.3b0000 0004 1936 9684Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, CA USA
| | - Ying H. Li
- grid.27860.3b0000 0004 1936 9684Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, CA USA
| | - Jian Ji
- grid.509509.00000 0004 7699 6596School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu China
| | - Oliver Fiehn
- grid.27860.3b0000 0004 1936 9684West Coast Metabolomics Center, University of California, Davis, CA USA
| | - Joanna C. Chiu
- grid.27860.3b0000 0004 1936 9684Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, CA USA
| |
Collapse
|
21
|
The neuropeptide allatostatin C from clock-associated DN1p neurons generates the circadian rhythm for oogenesis. Proc Natl Acad Sci U S A 2021; 118:2016878118. [PMID: 33479181 PMCID: PMC7848730 DOI: 10.1073/pnas.2016878118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Metazoan species optimize the timing of reproduction to maximize fitness. To understand how biological clocks direct reproduction, we investigated the neural substrates that produce oogenesis rhythms in the genetically amenable model organism Drosophila melanogaster. The neuropeptide allatostatin C (AstC) is an insect counterpart of the vertebrate neuropeptide somatostatin, which suppresses gonadotropin production. A subset of the brain circadian pacemaker neurons produces AstC. We have uncovered that these clock-associated AstC neurons generate the circadian oogenesis rhythm via brain insulin-producing cells and the insect gonadotropin juvenile hormone. Identification of a conserved neuropeptide pathway that links female reproduction and the biological clock offers insight into the molecular mechanisms that direct reproductive timing. The link between the biological clock and reproduction is evident in most metazoans. The fruit fly Drosophila melanogaster, a key model organism in the field of chronobiology because of its well-defined networks of molecular clock genes and pacemaker neurons in the brain, shows a pronounced diurnal rhythmicity in oogenesis. Still, it is unclear how the circadian clock generates this reproductive rhythm. A subset of the group of neurons designated “posterior dorsal neuron 1” (DN1p), which are among the ∼150 pacemaker neurons in the fly brain, produces the neuropeptide allatostatin C (AstC-DN1p). Here, we report that six pairs of AstC-DN1p send inhibitory inputs to the brain insulin-producing cells, which express two AstC receptors, star1 and AICR2. Consistent with the roles of insulin/insulin-like signaling in oogenesis, activation of AstC-DN1p suppresses oogenesis through the insulin-producing cells. We show evidence that AstC-DN1p activity plays a role in generating an oogenesis rhythm by regulating juvenile hormone and vitellogenesis indirectly via insulin/insulin-like signaling. AstC is orthologous to the vertebrate neuropeptide somatostatin (SST). Like AstC, SST inhibits gonadotrophin secretion indirectly through gonadotropin-releasing hormone neurons in the hypothalamus. The functional and structural conservation linking the AstC and SST systems suggest an ancient origin for the neural substrates that generate reproductive rhythms.
Collapse
|
22
|
Metabolic control of daily locomotor activity mediated by tachykinin in Drosophila. Commun Biol 2021; 4:693. [PMID: 34099879 PMCID: PMC8184744 DOI: 10.1038/s42003-021-02219-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 05/14/2021] [Indexed: 12/20/2022] Open
Abstract
Metabolism influences locomotor behaviors, but the understanding of neural curcuit control for that is limited. Under standard light-dark cycles, Drosophila exhibits bimodal morning (M) and evening (E) locomotor activities that are controlled by clock neurons. Here, we showed that a high-nutrient diet progressively extended M activity but not E activity. Drosophila tachykinin (DTk) and Tachykinin-like receptor at 86C (TkR86C)-mediated signaling was required for the extension of M activity. DTk neurons were anatomically and functionally connected to the posterior dorsal neuron 1s (DN1ps) in the clock neuronal network. The activation of DTk neurons reduced intracellular Ca2+ levels in DN1ps suggesting an inhibitory connection. The contacts between DN1ps and DTk neurons increased gradually over time in flies fed a high-sucrose diet, consistent with the locomotor behavior. DN1ps have been implicated in integrating environmental sensory inputs (e.g., light and temperature) to control daily locomotor behavior. This study revealed that DN1ps also coordinated nutrient information through DTk signaling to shape daily locomotor behavior. Lee and colleagues report the effect of a high-sucrose diet on Drosophila locomotor activity via DTk-TkR86C neuropeptide signalling. This signalling pattern appears to involve a circadian element, with pacemaker neuron involvement having a possible time-of-day effect on locomotor behaviour.
Collapse
|
23
|
Zhang X, Zhang Z, Guo J, Ma J, Xie S, Zhao Y, Wang C. Combination of multiple computational methods revealing specific sub-sectional recognition and hydrogen-bond dependent transportation of CKII peptide fragment in O-GlcNAc transferase. Comput Struct Biotechnol J 2021; 19:2045-2056. [PMID: 33995901 PMCID: PMC8085782 DOI: 10.1016/j.csbj.2021.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 11/17/2022] Open
Abstract
Mechanism of CKII peptide recognition, transportation and binding in OGT is obtained. Peptide delivery is strong exothermic, highly dependent on hydrogen bond network. Typical ‘spread’ & ‘V’ conformation change noticed for peptide accompanies stable OGT. Specific subsection of peptide has diverse performance in its recognition and delivery. Multiple methods combination may be used in other bio-system with flexible substrate.
O-linked β-N-acetyl-D-glucosamine (O-GlcNAc) transferase (OGT) is an essential enzyme in many cellular physiological catalytic reactions that regulates protein O-GlcNAcylation. Aberrant O-GlcNAcylation is related to insulin resistance, diabetic complications, cancer and neurodegenerative diseases. Understanding the peptide delivery in OGT is significant in comprehending enzymatic catalytic process, target-protein recognition and pathogenic mechanism. Herein extensive molecular dynamics (MD) simulations combined with various techniques are utilized to study the recognizing and binding mechanism of peptide fragment extracted from casein kinase II by OGT from atomic level. The residues of His496, His558, Thr633, Lys634, and Pro897 are demonstrated to play a dominant role in the peptide stabilization via hydrogen bonds and σ-π interaction, whose van der Waals and non-polar solvent effects provide the main driving force. In addition, two channels are identified. The delivery mode, mechanism together with thermodynamic and dynamic characterizations for the most favorable channel are determined. The peptide is more inclined to be recognized by OGT through the cavity comprised of residues 799–812, 893–899, and 865–871, and Tyr13-terminal is prior recognized to Met26-terminal. The transportation process is accompanied with conformation changes between the “spread” and “V” shapes. The whole process is strong exothermic that is highly dependent on the variation of hydrogen bond interactions between peptide and OGT as well as the performance of different subsections of peptide. Besides that, multiple computational methods combinations may contribute meaningfully to calculation of similar bio-systems with long and flexible substrate.
Collapse
Affiliation(s)
- Xiao Zhang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Zhiyang Zhang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Jia Guo
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Jing Ma
- School of Pharmacy, Henan University, Kaifeng 475004, People's Republic of China
| | - Songqiang Xie
- School of Pharmacy, Henan University, Kaifeng 475004, People's Republic of China
| | - Yuan Zhao
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Chaojie Wang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, People's Republic of China
| |
Collapse
|
24
|
Martinez M, Renuse S, Kreimer S, O'Meally R, Natov P, Madugundu AK, Nirujogi RS, Tahir R, Cole R, Pandey A, Zachara NE. Quantitative Proteomics Reveals that the OGT Interactome Is Remodeled in Response to Oxidative Stress. Mol Cell Proteomics 2021; 20:100069. [PMID: 33716169 PMCID: PMC8079276 DOI: 10.1016/j.mcpro.2021.100069] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/26/2021] [Accepted: 03/04/2021] [Indexed: 12/17/2022] Open
Abstract
The dynamic modification of specific serine and threonine residues of intracellular proteins by O-linked N-acetyl-β-D-glucosamine (O-GlcNAc) mitigates injury and promotes cytoprotection in a variety of stress models. The O-GlcNAc transferase (OGT) and the O-GlcNAcase are the sole enzymes that add and remove O-GlcNAc, respectively, from thousands of substrates. It remains unclear how just two enzymes can be specifically controlled to affect glycosylation of target proteins and signaling pathways both basally and in response to stress. Several lines of evidence suggest that protein interactors regulate these responses by affecting OGT and O-GlcNAcase activity, localization, and substrate specificity. To provide insight into the mechanisms by which OGT function is controlled, we have used quantitative proteomics to define OGT's basal and stress-induced interactomes. OGT and its interaction partners were immunoprecipitated from OGT WT, null, and hydrogen peroxide-treated cell lysates that had been isotopically labeled with light, medium, and heavy lysine and arginine (stable isotopic labeling of amino acids in cell culture). In total, more than 130 proteins were found to interact with OGT, many of which change their association upon hydrogen peroxide stress. These proteins include the major OGT cleavage and glycosylation substrate, host cell factor 1, which demonstrated a time-dependent dissociation after stress. To validate less well-characterized interactors, such as glyceraldehyde 3-phosphate dehydrogenase and histone deacetylase 1, we turned to parallel reaction monitoring, which recapitulated our discovery-based stable isotopic labeling of amino acids in cell culture approach. Although the majority of proteins identified are novel OGT interactors, 64% of them are previously characterized glycosylation targets that contain varied domain architecture and function. Together these data demonstrate that OGT interacts with unique and specific interactors in a stress-responsive manner.
Collapse
Affiliation(s)
- Marissa Martinez
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; Currently at Foghorn Therapeutics, Cambridge, Massachusetts, United States
| | - Santosh Renuse
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; Currently at the Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States; Currently at the Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Simion Kreimer
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; The Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Currently at the Advanced Clinical Biosystems Institute, Smidt Heart institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Robert O'Meally
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; The Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peter Natov
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; Currently at the Department of Internal Medicine, Yale New Haven Hospital, Yale School of Medicine, New Haven, Connecticut, USA
| | - Anil K Madugundu
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; Currently at the Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States
| | - Raja Sekhar Nirujogi
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; Currently at the Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Raiha Tahir
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; Currently at Ginkgo Bioworks, Massachusetts, United States
| | - Robert Cole
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; The Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Akhilesh Pandey
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; Currently at the Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States; Currently at the Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States; Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Natasha E Zachara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.
| |
Collapse
|
25
|
Yan J, Kim YJ, Somers DE. Post-Translational Mechanisms of Plant Circadian Regulation. Genes (Basel) 2021; 12:325. [PMID: 33668215 PMCID: PMC7995963 DOI: 10.3390/genes12030325] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
The molecular components of the circadian system possess the interesting feature of acting together to create a self-sustaining oscillator, while at the same time acting individually, and in complexes, to confer phase-specific circadian control over a wide range of physiological and developmental outputs. This means that many circadian oscillator proteins are simultaneously also part of the circadian output pathway. Most studies have focused on transcriptional control of circadian rhythms, but work in plants and metazoans has shown the importance of post-transcriptional and post-translational processes within the circadian system. Here we highlight recent work describing post-translational mechanisms that impact both the function of the oscillator and the clock-controlled outputs.
Collapse
Affiliation(s)
| | | | - David E. Somers
- Department of Molecular Genetics, The Ohio State University; Columbus, OH 43210, USA; (J.Y.); (Y.J.K.)
| |
Collapse
|
26
|
Cai YD, Xue Y, Truong CC, Del Carmen-Li J, Ochoa C, Vanselow JT, Murphy KA, Li YH, Liu X, Kunimoto BL, Zheng H, Zhao C, Zhang Y, Schlosser A, Chiu JC. CK2 Inhibits TIMELESS Nuclear Export and Modulates CLOCK Transcriptional Activity to Regulate Circadian Rhythms. Curr Biol 2021; 31:502-514.e7. [PMID: 33217322 PMCID: PMC7878342 DOI: 10.1016/j.cub.2020.10.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/25/2020] [Accepted: 10/20/2020] [Indexed: 11/06/2022]
Abstract
Circadian clocks orchestrate daily rhythms in organismal physiology and behavior to promote optimal performance and fitness. In Drosophila, key pacemaker proteins PERIOD (PER) and TIMELESS (TIM) are progressively phosphorylated to perform phase-specific functions. Whereas PER phosphorylation has been extensively studied, systematic analysis of site-specific TIM phosphorylation is lacking. Here, we identified phosphorylation sites of PER-bound TIM by mass spectrometry, given the importance of TIM as a modulator of PER function in the pacemaker. Among the 12 TIM phosphorylation sites we identified, at least two of them are critical for circadian timekeeping as mutants expressing non-phosphorylatable mutations exhibit altered behavioral rhythms. In particular, we observed that CK2-dependent phosphorylation of TIM(S1404) promotes nuclear accumulation of PER-TIM heterodimers by inhibiting the interaction of TIM and nuclear export component, Exportin 1 (XPO1). We propose that proper level of nuclear PER-TIM accumulation is necessary to facilitate kinase recruitment for the regulation of daily phosphorylation rhythm and phase-specific transcriptional activity of CLOCK (CLK). Our results highlight the contribution of phosphorylation-dependent nuclear export of PER-TIM heterodimers to the maintenance of circadian periodicity and identify a new mechanism by which the negative elements of the circadian clock (PER-TIM) regulate the positive elements (CLK-CYC). Finally, because the molecular phenotype of tim(S1404A) non-phosphorylatable mutant exhibits remarkable similarity to that of a mutation in human timeless that underlies familial advanced sleep phase syndrome (FASPS), our results revealed an unexpected parallel between the functions of Drosophila and human TIM and may provide new insights into the molecular mechanisms underlying human FASPS. Organisms in all domains of life exhibit circadian rhythms. Cai et al. reveal that phosphorylation of TIMELESS modulates kinase accessibility to CLOCK in the nucleus. This mechanism is important in controlling daily phosphorylation rhythm of CLOCK, which is critical for its function as a key regulator of circadian rhythms.
Collapse
Affiliation(s)
- Yao D Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Yongbo Xue
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Cindy C Truong
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Jose Del Carmen-Li
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Christopher Ochoa
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Jens T Vanselow
- Rudolf Virchow Center for Experimental Biomedicine, University of Wurzburg, Wurzburg, Germany
| | - Katherine A Murphy
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Ying H Li
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Xianhui Liu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Ben L Kunimoto
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Haiyan Zheng
- Biological Mass Spectrometry Facility, Robert Wood Johnson Medical School and Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Caifeng Zhao
- Biological Mass Spectrometry Facility, Robert Wood Johnson Medical School and Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yong Zhang
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Andreas Schlosser
- Rudolf Virchow Center for Experimental Biomedicine, University of Wurzburg, Wurzburg, Germany
| | - Joanna C Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
27
|
Sun TP. Novel nucleocytoplasmic protein O-fucosylation by SPINDLY regulates diverse developmental processes in plants. Curr Opin Struct Biol 2021; 68:113-121. [PMID: 33476897 DOI: 10.1016/j.sbi.2020.12.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/17/2022]
Abstract
In metazoans, protein O-fucosylation of Ser/Thr residues was only found in secreted or cell surface proteins, and this post-translational modification is catalyzed by ER-localized protein O-fucosyltransferases (POFUTs) in the GT65 family. Recently, a novel nucleocytoplasmic POFUT, SPINDLY (SPY), was identified in the reference plant Arabidopsis thaliana to modify nuclear transcription regulators DELLAs, revealing a new regulatory mechanism for gene expression. The paralog of AtSPY, SECRET AGENT (SEC), is an O-link-N-acetylglucosamine (GlcNAc) transferase (OGT), which O-GlcNAcylates Ser/Thr residues of target proteins. Both AtSPY and AtSEC are tetratricopeptide repeat-domain-containing glycosyltransferases in the GT41 family. The discovery that AtSPY is a POFUT clarified decades of miss-classification of AtSPY as an OGT. SPY and SEC play pleiotropic roles in plant development, and the interactions between SPY and SEC are complex. SPY-like genes are conserved in diverse organisms, except in fungi and metazoans, suggesting that O-fucosylation is a common mechanism in modulating intracellular protein functions.
Collapse
Affiliation(s)
- Tai-Ping Sun
- Department of Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
28
|
Ma J, Wu C, Hart GW. Analytical and Biochemical Perspectives of Protein O-GlcNAcylation. Chem Rev 2021; 121:1513-1581. [DOI: 10.1021/acs.chemrev.0c00884] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Gerald W. Hart
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
29
|
Seo HG, Kim HB, Yoon JY, Kweon TH, Park YS, Kang J, Jung J, Son S, Yi EC, Lee TH, Yang WH, Cho JW. Mutual regulation between OGT and XIAP to control colon cancer cell growth and invasion. Cell Death Dis 2020; 11:815. [PMID: 32994395 PMCID: PMC7525441 DOI: 10.1038/s41419-020-02999-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 12/31/2022]
Abstract
O-GlcNAc transferase (OGT) is an enzyme that catalyzes the O-GlcNAc modification of nucleocytoplasmic proteins and is highly expressed in many types of cancer. However, the mechanism regulating its expression in cancer cells is not well understood. This study shows that OGT is a substrate of the E3 ubiquitin ligase X-linked inhibitor of apoptosis (XIAP) which plays an important role in cancer pathogenesis. Although LSD2 histone demethylase has already been reported as an E3 ubiquitin ligase in lung cancer cells, we identified XIAP as the main E3 ubiquitin ligase in colon cancer cells. Interestingly, OGT catalyzes the O-GlcNAc modification of XIAP at serine 406 and this modification is required for the E3 ubiquitin ligase activity of XIAP toward specifically OGT. Moreover, O-GlcNAcylation of XIAP suppresses colon cancer cell growth and invasion by promoting the proteasomal degradation of OGT. Therefore, our findings regarding the reciprocal regulation of OGT and XIAP provide a novel molecular mechanism for controlling cancer growth and invasion regulated by OGT and O-GlcNAc modification.
Collapse
Affiliation(s)
- Hyeon Gyu Seo
- Glycosylation Network Research Center, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Han Byeol Kim
- Glycosylation Network Research Center, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ji Young Yoon
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Tae Hyun Kweon
- Glycosylation Network Research Center, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yun Soo Park
- Glycosylation Network Research Center, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jingu Kang
- Glycosylation Network Research Center, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jinwoo Jung
- Department of Molecular Medicine and Biopharmaceutical Sciences, School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, 28 Yeongeon-dong, Jongno-gu, Seoul, 03080, Republic of Korea
| | - SeongJin Son
- Glycosylation Network Research Center, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Eugene C Yi
- Department of Molecular Medicine and Biopharmaceutical Sciences, School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, 28 Yeongeon-dong, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Tae Ho Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Won Ho Yang
- Glycosylation Network Research Center, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea. .,Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Jin Won Cho
- Glycosylation Network Research Center, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea. .,Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea. .,Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
30
|
Zhu Y, Willems LI, Salas D, Cecioni S, Wu WB, Foster LJ, Vocadlo DJ. Tandem Bioorthogonal Labeling Uncovers Endogenous Cotranslationally O-GlcNAc Modified Nascent Proteins. J Am Chem Soc 2020; 142:15729-15739. [PMID: 32870666 DOI: 10.1021/jacs.0c04121] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hundreds of nuclear, cytoplasmic, and mitochondrial proteins within multicellular eukaryotes have hydroxyl groups of specific serine and threonine residues modified by the monosaccharide N-acetylglucosamine (GlcNAc). This modification, known as O-GlcNAc, has emerged as a central regulator of both cell physiology and human health. A key emerging function of O-GlcNAc appears to be to regulate cellular protein homeostasis. We previously showed, using overexpressed model proteins, that O-GlcNAc modification can occur cotranslationally and that this process prevents premature degradation of such nascent polypeptide chains. Here, we use tandem metabolic engineering strategies to label endogenously occurring nascent polypeptide chains within cells using O-propargyl-puromycin (OPP) and target the specific subset of nascent chains that are cotranslationally glycosylated with O-GlcNAc by metabolic saccharide engineering using tetra-O-acetyl-2-N-azidoacetyl-2-deoxy-d-galactopyranose (Ac4GalNAz). Using various combinations of sequential chemoselective ligation strategies, we go on to tag these analytes with a series of labels, allowing us to define conditions that enable their robust labeling. Two-step enrichment of these glycosylated nascent chains, combined with shotgun proteomics, allows us to identify a set of endogenous cotranslationally O-GlcNAc modified proteins. Using alternative targeted methods, we examine three of these identified proteins and further validate their cotranslational O-GlcNAcylation. These findings detail strategies to enable isolation and identification of extremely low abundance endogenous analytes present within complex protein mixtures. Moreover, this work opens the way to studies directed at understanding the roles of O-GlcNAc and other cotranslational protein modifications and should stimulate an improved understanding of the role of O-GlcNAc in cytoplasmic protein quality control and proteostasis.
Collapse
Affiliation(s)
- Yanping Zhu
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Lianne I Willems
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Daniela Salas
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia Canada
| | - Samy Cecioni
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Weifeng B Wu
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Leonard J Foster
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia Canada
| | - David J Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
31
|
Chatham JC, Zhang J, Wende AR. Role of O-Linked N-Acetylglucosamine Protein Modification in Cellular (Patho)Physiology. Physiol Rev 2020; 101:427-493. [PMID: 32730113 DOI: 10.1152/physrev.00043.2019] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the mid-1980s, the identification of serine and threonine residues on nuclear and cytoplasmic proteins modified by a N-acetylglucosamine moiety (O-GlcNAc) via an O-linkage overturned the widely held assumption that glycosylation only occurred in the endoplasmic reticulum, Golgi apparatus, and secretory pathways. In contrast to traditional glycosylation, the O-GlcNAc modification does not lead to complex, branched glycan structures and is rapidly cycled on and off proteins by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. Since its discovery, O-GlcNAcylation has been shown to contribute to numerous cellular functions, including signaling, protein localization and stability, transcription, chromatin remodeling, mitochondrial function, and cell survival. Dysregulation in O-GlcNAc cycling has been implicated in the progression of a wide range of diseases, such as diabetes, diabetic complications, cancer, cardiovascular, and neurodegenerative diseases. This review will outline our current understanding of the processes involved in regulating O-GlcNAc turnover, the role of O-GlcNAcylation in regulating cellular physiology, and how dysregulation in O-GlcNAc cycling contributes to pathophysiological processes.
Collapse
Affiliation(s)
- John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Jianhua Zhang
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
32
|
Wang Y, He Y, Su C, Zentella R, Sun TP, Wang L. Nuclear Localized O-Fucosyltransferase SPY Facilitates PRR5 Proteolysis to Fine-Tune the Pace of Arabidopsis Circadian Clock. MOLECULAR PLANT 2020; 13:446-458. [PMID: 31899321 PMCID: PMC7058189 DOI: 10.1016/j.molp.2019.12.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/25/2019] [Accepted: 12/28/2019] [Indexed: 05/07/2023]
Abstract
Post-translational modifications play essential roles in finely modulating eukaryotic circadian clock systems. In plants, the effects of O-glycosylation on the circadian clock and the underlying mechanisms remain largely unknown. The O-fucosyltransferase SPINDLY (SPY) and the O-GlcNAc transferase SECRET AGENT (SEC) are two prominent O-glycosylation enzymes in higher plants, with both overlapped and unique functions in plant growth and development. Unlike the critical role of O-GlcNAc in regulating the animal circadian clock, here we report that nuclear-localized SPY, but not SEC, specifically modulates the pace of the Arabidopsis circadian clock. By identifying the interactome of SPY, we identified PSEUDO-RESPONSE REGULATOR 5 (PRR5), one of the core circadian clock components, as a new SPY-interacting protein. PRR5 can be O-fucosylated by SPY in planta, while point mutation in the catalytic domain of SPY abolishes the O-fucosylation of PRR5. The protein abundance of PRR5 is strongly increased in spy mutants, while the degradation rate of PRR5 is much reduced, suggesting that PRR5 proteolysis is promoted by SPY-mediated O-fucosylation. Moreover, multiple lines of genetic evidence indicate that PRR5 is a major downstream target of SPY to specifically mediate its modulation of the circadian clock. Collectively, our findings provide novel insights into the specific role of the O-fucosyltransferase activity of SPY in modulating the circadian clock and implicate that O-glycosylation might play an evolutionarily conserved role in modulating the circadian clock system, via O-GlcNAcylation in mammals, but via O-fucosylation in higher plants.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuqing He
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Su
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Tai-Ping Sun
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
33
|
Functional analysis of glycosylation using Drosophila melanogaster. Glycoconj J 2019; 37:1-14. [DOI: 10.1007/s10719-019-09892-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/13/2019] [Accepted: 09/25/2019] [Indexed: 12/15/2022]
|
34
|
Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol 2019; 21:67-84. [PMID: 31768006 DOI: 10.1038/s41580-019-0179-2] [Citation(s) in RCA: 746] [Impact Index Per Article: 124.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2019] [Indexed: 12/12/2022]
Abstract
To accommodate daily recurring environmental changes, animals show cyclic variations in behaviour and physiology, which include prominent behavioural states such as sleep-wake cycles but also a host of less conspicuous oscillations in neurological, metabolic, endocrine, cardiovascular and immune functions. Circadian rhythmicity is created endogenously by genetically encoded molecular clocks, whose components cooperate to generate cyclic changes in their own abundance and activity, with a periodicity of about a day. Throughout the body, such molecular clocks convey temporal control to the function of organs and tissues by regulating pertinent downstream programmes. Synchrony between the different circadian oscillators and resonance with the solar day is largely enabled by a neural pacemaker, which is directly responsive to certain environmental cues and able to transmit internal time-of-day representations to the entire body. In this Review, we discuss aspects of the circadian clock in Drosophila melanogaster and mammals, including the components of these molecular oscillators, the function and mechanisms of action of central and peripheral clocks, their synchronization and their relevance to human health.
Collapse
|
35
|
SUR-8 interacts with PP1-87B to stabilize PERIOD and regulate circadian rhythms in Drosophila. PLoS Genet 2019; 15:e1008475. [PMID: 31710605 PMCID: PMC6874087 DOI: 10.1371/journal.pgen.1008475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/21/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023] Open
Abstract
Circadian rhythms are generated by endogenous pacemakers that rely on transcriptional-translational feedback mechanisms conserved among species. In Drosophila, the stability of a key pacemaker protein PERIOD (PER) is tightly controlled by changes in phosphorylation status. A number of molecular players have been implicated in PER destabilization by promoting PER progressive phosphorylation. On the other hand, there have been few reports describing mechanisms that stabilize PER by delaying PER hyperphosphorylation. Here we report that the protein Suppressor of Ras (SUR-8) regulates circadian locomotor rhythms by stabilizing PER. Depletion of SUR-8 from circadian neurons lengthened the circadian period by about 2 hours and decreased PER abundance, whereas its overexpression led to arrhythmia and an increase in PER. Specifically SUR-8 promotes the stability of PER through phosphorylation regulation. Interestingly, downregulation of the protein phosphatase 1 catalytic subunit PP1-87B recapitulated the phenotypes of SUR-8 depletion. We found that SUR-8 facilitates interactions between PP1-87B and PER. Depletion of SUR-8 decreased the interaction of PER and PP1-87B, which supports the role of SUR-8 as a scaffold protein. Interestingly, the interaction between SUR-8 and PER is temporally regulated: SUR-8 has more binding to PER at night than morning. Thus, our results indicate that SUR-8 interacts with PP1-87B to control PER stability to regulate circadian rhythms. Circadian clocks govern daily rhythms in physiology and behavior. Conserved molecular machinery drives circadian clocks among animals. PERIOD is a key pacemaker protein in fruit flies that undergoes a series of post-translational modifications. Several kinases have been identified in destabilizing PER. Here we identify the role of SUR-8 in circadian locomotor rhythms. Depletion of SUR-8 in pacemaker neurons slows down circadian rhythms and reduces PER abundance. Indeed, SUR-8 promotes the stability of PER. Finally we characterize SUR-8 as a scaffold protein to bridge PER and a phosphatase (PP1-87B) together to regulate PER phosphorylation and abundance.
Collapse
|
36
|
Zhang J, Chatham JC, Young ME. Circadian Regulation of Cardiac Physiology: Rhythms That Keep the Heart Beating. Annu Rev Physiol 2019; 82:79-101. [PMID: 31589825 DOI: 10.1146/annurev-physiol-020518-114349] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
On Earth, all life is exposed to dramatic changes in the environment over the course of the day; consequently, organisms have evolved strategies to both adapt to and anticipate these 24-h oscillations. As a result, time of day is a major regulator of mammalian physiology and processes, including transcription, signaling, metabolism, and muscle contraction, all of which oscillate over the course of the day. In particular, the heart is subject to wide fluctuations in energetic demand throughout the day as a result of waking, physical activity, and food intake patterns. Daily rhythms in cardiovascular function ensure that increased delivery of oxygen, nutrients, and endocrine factors to organs during the active period and the removal of metabolic by-products are in balance. Failure to maintain these physiologic rhythms invariably has pathologic consequences. This review highlights rhythms that underpin cardiac physiology. More specifically, we summarize the key aspects of cardiac physiology that oscillate over the course of the day and discuss potential mechanisms that regulate these 24-h rhythms.
Collapse
Affiliation(s)
- Jianhua Zhang
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Martin E Young
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA;
| |
Collapse
|
37
|
Chen Y, Zhao X, Wu H. Metabolic Stress and Cardiovascular Disease in Diabetes Mellitus: The Role of Protein O-GlcNAc Modification. Arterioscler Thromb Vasc Biol 2019; 39:1911-1924. [PMID: 31462094 DOI: 10.1161/atvbaha.119.312192] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mammalian cells metabolize glucose primarily for energy production, biomass synthesis, and posttranslational glycosylation; and maintaining glucose metabolic homeostasis is essential for normal physiology of cells. Impaired glucose homeostasis leads to hyperglycemia, a hallmark of diabetes mellitus. Chronically increased glucose in diabetes mellitus promotes pathological changes accompanied by impaired cellular function and tissue damage, which facilitates the development of cardiovascular complications, the major cause of morbidity and mortality of patients with diabetes mellitus. Emerging roles of glucose metabolism via the hexosamine biosynthesis pathway (HBP) and increased protein modification via O-linked β-N-acetylglucosamine (O-GlcNAcylation) have been demonstrated in diabetes mellitus and implicated in the development of diabetic cardiovascular complications. This review will discuss the biological outcomes of the glucose metabolism via the hexosamine biogenesis pathway and protein O-GlcNAcylation in regulating cellular homeostasis, and highlight the regulations and contributions of elevated O-GlcNAcylation to the pathogenesis of diabetic cardiovascular disease.
Collapse
Affiliation(s)
- Yabing Chen
- From the Department of Pathology (Y.C.), University of Alabama at Birmingham.,Birmingham Veterans Affairs Medical Center, Research Division (Y.C.), Birmingham, Alabama
| | - Xinyang Zhao
- Biochemistry (X.Z.), University of Alabama at Birmingham
| | - Hui Wu
- Pediatric Dentistry (H.W.), University of Alabama at Birmingham
| |
Collapse
|
38
|
Nian X, Chen W, Bai W, Zhao Z, Zhang Y. miR-263b Controls Circadian Behavior and the Structural Plasticity of Pacemaker Neurons by Regulating the LIM-Only Protein Beadex. Cells 2019; 8:cells8080923. [PMID: 31426557 PMCID: PMC6721658 DOI: 10.3390/cells8080923] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 12/16/2022] Open
Abstract
: Circadian clocks drive rhythmic physiology and behavior to allow adaption to daily environmental changes. In Drosophila, the small ventral lateral neurons (sLNvs) are primary pacemakers that control circadian rhythms. Circadian changes are observed in the dorsal axonal projections of the sLNvs, but their physiological importance and the underlying mechanism are unclear. Here, we identified miR-263b as an important regulator of circadian rhythms and structural plasticity of sLNvs in Drosophila. Depletion of miR-263b (miR-263bKO) in flies dramatically impaired locomotor rhythms under constant darkness. Indeed, miR-263b is required for the structural plasticity of sLNvs. miR-263b regulates circadian rhythms through inhibition of expression of the LIM-only protein Beadex (Bx). Consistently, overexpression of Bx or loss-of-function mutation (BxhdpR26) phenocopied miR-263bKO and miR-263b overexpression in behavior and molecular characteristics. In addition, mutating the miR-263b binding sites in the Bx 3' UTR using CRISPR/Cas9 recapitulated the circadian phenotypes of miR-263bKO flies. Together, these results establish miR-263b as an important regulator of circadian locomotor behavior and structural plasticity.
Collapse
Affiliation(s)
- Xiaoge Nian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Department of Biology, University of Nevada Reno, Reno, NV 89557, USA
| | - Wenfeng Chen
- Department of Biology, University of Nevada Reno, Reno, NV 89557, USA
- Institute of Life Sciences, Fuzhou University, Fuzhou 350108, China
| | - Weiwei Bai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhangwu Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Yong Zhang
- Department of Biology, University of Nevada Reno, Reno, NV 89557, USA.
| |
Collapse
|
39
|
Pravata VM, Muha V, Gundogdu M, Ferenbach AT, Kakade PS, Vandadi V, Wilmes AC, Borodkin VS, Joss S, Stavridis MP, van Aalten DMF. Catalytic deficiency of O-GlcNAc transferase leads to X-linked intellectual disability. Proc Natl Acad Sci U S A 2019; 116:14961-14970. [PMID: 31296563 PMCID: PMC6660750 DOI: 10.1073/pnas.1900065116] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
O-GlcNAc transferase (OGT) is an X-linked gene product that is essential for normal development of the vertebrate embryo. It catalyses the O-GlcNAc posttranslational modification of nucleocytoplasmic proteins and proteolytic maturation of the transcriptional coregulator Host cell factor 1 (HCF1). Recent studies have suggested that conservative missense mutations distal to the OGT catalytic domain lead to X-linked intellectual disability in boys, but it is not clear if this is through changes in the O-GlcNAc proteome, loss of protein-protein interactions, or misprocessing of HCF1. Here, we report an OGT catalytic domain missense mutation in monozygotic female twins (c. X:70779215 T > A, p. N567K) with intellectual disability that allows dissection of these effects. The patients show limited IQ with developmental delay and skewed X-inactivation. Molecular analyses revealed decreased OGT stability and disruption of the substrate binding site, resulting in loss of catalytic activity. Editing this mutation into the Drosophila genome results in global changes in the O-GlcNAc proteome, while in mouse embryonic stem cells it leads to loss of O-GlcNAcase and delayed differentiation down the neuronal lineage. These data imply that catalytic deficiency of OGT could contribute to X-linked intellectual disability.
Collapse
Affiliation(s)
- Veronica M Pravata
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Villo Muha
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Mehmet Gundogdu
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Andrew T Ferenbach
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Poonam S Kakade
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Vasudha Vandadi
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Ariane C Wilmes
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Vladimir S Borodkin
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Shelagh Joss
- West of Scotland Genetic Service, Queen Elizabeth University Hospital, G51 4TF Glasgow, United Kingdom
| | - Marios P Stavridis
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Daan M F van Aalten
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom;
| |
Collapse
|
40
|
Niu Y, Liu Z, Nian X, Xu X, Zhang Y. miR-210 controls the evening phase of circadian locomotor rhythms through repression of Fasciclin 2. PLoS Genet 2019; 15:e1007655. [PMID: 31356596 PMCID: PMC6687186 DOI: 10.1371/journal.pgen.1007655] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 08/08/2019] [Accepted: 07/08/2019] [Indexed: 11/19/2022] Open
Abstract
Circadian clocks control the timing of animal behavioral and physiological rhythms. Fruit flies anticipate daily environmental changes and exhibit two peaks of locomotor activity around dawn and dusk. microRNAs are small non-coding RNAs that play important roles in post-transcriptional regulation. Here we identify Drosophila miR-210 as a critical regulator of circadian rhythms. Under light-dark conditions, flies lacking miR-210 (miR-210KO) exhibit a dramatic 2 hrs phase advance of evening anticipatory behavior. However, circadian rhythms and molecular pacemaker function are intact in miR-210KO flies under constant darkness. Furthermore, we identify that miR-210 determines the evening phase of activity through repression of the cell adhesion molecule Fasciclin 2 (Fas2). Ablation of the miR-210 binding site within the 3' UTR of Fas2 (Fas2ΔmiR-210) by CRISPR-Cas9 advances the evening phase as in miR-210KO. Indeed, miR-210 genetically interacts with Fas2. Moreover, Fas2 abundance is significantly increased in the optic lobe of miR-210KO. In addition, overexpression of Fas2 in the miR-210 expressing cells recapitulates the phase advance behavior phenotype of miR-210KO. Together, these results reveal a novel mechanism by which miR-210 regulates circadian locomotor behavior.
Collapse
Affiliation(s)
- Ye Niu
- Department of Biology, University of Nevada Reno, Reno, NV, United States of America
| | - Zhenxing Liu
- Department of Biology, University of Nevada Reno, Reno, NV, United States of America
| | - Xiaoge Nian
- Department of Biology, University of Nevada Reno, Reno, NV, United States of America
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xuehan Xu
- Department of Biology, University of Nevada Reno, Reno, NV, United States of America
| | - Yong Zhang
- Department of Biology, University of Nevada Reno, Reno, NV, United States of America
| |
Collapse
|
41
|
Li W, De Schutter K, Van Damme EJM, Smagghe G. Synthesis and biological roles of O-glycans in insects. Glycoconj J 2019; 37:47-56. [DOI: 10.1007/s10719-019-09867-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 03/15/2019] [Indexed: 11/24/2022]
|
42
|
AMP-Activated Protein Kinase Regulates Circadian Rhythm by Affecting CLOCK in Drosophila. J Neurosci 2019; 39:3537-3550. [PMID: 30819799 DOI: 10.1523/jneurosci.2344-18.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 01/10/2023] Open
Abstract
The circadian clock organizes the physiology and behavior of organisms to their daily environmental rhythms. The central circadian timekeeping mechanism in eukaryotic cells is the transcriptional-translational feedback loop (TTFL). In the Drosophila TTFL, the transcription factors CLOCK (CLK) and CYCLE (CYC) play crucial roles in activating expression of core clock genes and clock-controlled genes. Many signaling pathways converge on the CLK/CYC complex and regulate its activity to fine-tune the cellular oscillator to environmental time cues. We aimed to identify factors that regulate CLK by performing tandem affinity purification combined with mass spectrometry using Drosophila S2 cells that stably express HA/FLAG-tagged CLK and V5-tagged CYC. We identified SNF4Aγ, a homolog of mammalian AMP-activated protein kinase γ (AMPKγ), as a factor that copurified with HA/FLAG-tagged CLK. The AMPK holoenzyme composed of a catalytic subunit AMPKα and two regulatory subunits, AMPKβ and AMPKγ, directly phosphorylated purified CLK in vitro Locomotor behavior analysis in Drosophila revealed that knockdown of each AMPK subunit in pacemaker neurons induced arrhythmicity and long periods. Knockdown of AMPKβ reduced CLK levels in pacemaker neurons, and thereby reduced pre-mRNA and protein levels of CLK downstream core clock genes, such as period and vrille Finally, overexpression of CLK reversed the long-period phenotype that resulted from AMPKβ knockdown. Thus, we conclude that AMPK, a central regulator of cellular energy metabolism, regulates the Drosophila circadian clock by stabilizing CLK and activating CLK/CYC-dependent transcription.SIGNIFICANCE STATEMENT Regulation of the circadian transcription factors CLK and CYC is fundamental to synchronize the core clock with environmental changes. Here, we show that the AMPKγ subunit of AMPK, a central regulator of cellular metabolism, copurifies with the CLK/CYC complex in Drosophila S2 cells. Furthermore, the AMPK holoenzyme directly phosphorylates CLK in vitro This study demonstrates that AMPK activity regulates the core clock in Drosophila by activating CLK, which enhances circadian transcription. In mammals, AMPK affects the core clock by downregulating circadian repressor proteins. It is intriguing to note that AMPK activity is required for core clock regulation through circadian transcription enhancement, whereas the target of AMPK action is different in Drosophila and mammals (positive vs negative element, respectively).
Collapse
|
43
|
Abstract
In the early 1980s, while using purified glycosyltransferases to probe glycan structures on surfaces of living cells in the murine immune system, we discovered a novel form of serine/threonine protein glycosylation (O-linked β-GlcNAc; O-GlcNAc) that occurs on thousands of proteins within the nucleus, cytoplasm, and mitochondria. Prior to this discovery, it was dogma that protein glycosylation was restricted to the luminal compartments of the secretory pathway and on extracellular domains of membrane and secretory proteins. Work in the last 3 decades from several laboratories has shown that O-GlcNAc cycling serves as a nutrient sensor to regulate signaling, transcription, mitochondrial activity, and cytoskeletal functions. O-GlcNAc also has extensive cross-talk with phosphorylation, not only at the same or proximal sites on polypeptides, but also by regulating each other's enzymes that catalyze cycling of the modifications. O-GlcNAc is generally not elongated or modified. It cycles on and off polypeptides in a time scale similar to phosphorylation, and both the enzyme that adds O-GlcNAc, the O-GlcNAc transferase (OGT), and the enzyme that removes O-GlcNAc, O-GlcNAcase (OGA), are highly conserved from C. elegans to humans. Both O-GlcNAc cycling enzymes are essential in mammals and plants. Due to O-GlcNAc's fundamental roles as a nutrient and stress sensor, it plays an important role in the etiologies of chronic diseases of aging, including diabetes, cancer, and neurodegenerative disease. This review will present an overview of our current understanding of O-GlcNAc's regulation, functions, and roles in chronic diseases of aging.
Collapse
Affiliation(s)
- Gerald W Hart
- From the Complex Carbohydrate Research Center and Biochemistry and Molecular Biology Department, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
44
|
Li YH, Liu X, Vanselow JT, Zheng H, Schlosser A, Chiu JC. O-GlcNAcylation of PERIOD regulates its interaction with CLOCK and timing of circadian transcriptional repression. PLoS Genet 2019; 15:e1007953. [PMID: 30703153 PMCID: PMC6372208 DOI: 10.1371/journal.pgen.1007953] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/12/2019] [Accepted: 01/10/2019] [Indexed: 11/18/2022] Open
Abstract
Circadian clocks coordinate time-of-day-specific metabolic and physiological processes to maximize organismal performance and fitness. In addition to light and temperature, which are regarded as strong zeitgebers for circadian clock entrainment, metabolic input has now emerged as an important signal for clock entrainment and modulation. Circadian clock proteins have been identified to be substrates of O-GlcNAcylation, a nutrient sensitive post-translational modification (PTM), and the interplay between clock protein O-GlcNAcylation and other PTMs is now recognized as an important mechanism by which metabolic input regulates circadian physiology. To better understand the role of O-GlcNAcylation in modulating clock protein function within the molecular oscillator, we used mass spectrometry proteomics to identify O-GlcNAcylation sites of PERIOD (PER), a repressor of the circadian transcriptome and a critical biochemical timer of the Drosophila clock. In vivo functional characterization of PER O-GlcNAcylation sites indicates that O-GlcNAcylation at PER(S942) reduces interactions between PER and CLOCK (CLK), the key transcriptional activator of clock-controlled genes. Since we observe a correlation between clock-controlled daytime feeding activity and higher level of PER O-GlcNAcylation, we propose that PER(S942) O-GlcNAcylation during the day functions to prevent premature initiation of circadian repression phase. This is consistent with the period-shortening behavioral phenotype of per(S942A) flies. Taken together, our results support that clock-controlled feeding activity provides metabolic signals to reinforce light entrainment to regulate circadian physiology at the post-translational level. The interplay between O-GlcNAcylation and other PTMs to regulate circadian physiology is expected to be complex and extensive, and reach far beyond the molecular oscillator.
Collapse
Affiliation(s)
- Ying H. Li
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States of America
| | - Xianhui Liu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States of America
| | - Jens T. Vanselow
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Haiyan Zheng
- Biological Mass Spectrometry Facility, Robert Wood Johnson Medical School and Rutgers, the State University of New Jersey, Piscataway, NJ, United States of America
| | - Andreas Schlosser
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Joanna C. Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States of America
- * E-mail:
| |
Collapse
|
45
|
Du J, Zhang Y, Xue Y, Zhao X, Zhao X, Wei Y, Li Z, Zhang Y, Zhao Z. Diurnal protein oscillation profiles in Drosophila head. FEBS Lett 2018; 592:3736-3749. [PMID: 30311939 DOI: 10.1002/1873-3468.13267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/23/2018] [Accepted: 10/02/2018] [Indexed: 11/08/2022]
Abstract
Circadian clocks control daily rhythms in physiology, metabolism and behaviour in most organisms. Proteome-wide analysis of protein oscillations is still lacking in Drosophila. In this study, the total protein and phosphorylated protein in Drosophila heads in a 24-h daily time-course were assayed by using the isobaric tags for relative and absolute quantitation (iTRAQ) method, and 10 and 7 oscillating proteins as well as 19 and 22 oscillating phosphoproteins in the w1118 control and ClkJrk mutant strains were separately identified. Lastly, we performed a mini screen to investigate the functions of some oscillating proteins in circadian locomotion rhythms. This study provides the first proteomic profiling of diurnally oscillating proteins in fly heads, thereby providing a basis for further mechanistic studies of these proteins in circadian rhythm.
Collapse
Affiliation(s)
- Juan Du
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yifan Zhang
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yongbo Xue
- Department of Biology, University of Nevada, Reno, NV, USA
| | - Xiaoyun Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xianguo Zhao
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yu Wei
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yong Zhang
- Department of Biology, University of Nevada, Reno, NV, USA
| | - Zhangwu Zhao
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
46
|
Wong DCS, O’Neill JS. Non-transcriptional processes in circadian rhythm generation. CURRENT OPINION IN PHYSIOLOGY 2018; 5:117-132. [PMID: 30596188 PMCID: PMC6302373 DOI: 10.1016/j.cophys.2018.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
'Biological clocks' orchestrate mammalian biology to a daily rhythm. Whilst 'clock gene' transcriptional circuits impart rhythmic regulation to myriad cellular systems, our picture of the biochemical mechanisms that determine their circadian (∼24 hour) period is incomplete. Here we consider the evidence supporting different models for circadian rhythm generation in mammalian cells in light of evolutionary factors. We find it plausible that the circadian timekeeping mechanism in mammalian cells is primarily protein-based, signalling biological timing information to the nucleus by the post-translational regulation of transcription factor activity, with transcriptional feedback imparting robustness to the oscillation via hysteresis. We conclude by suggesting experiments that might distinguish this model from competing paradigms.
Collapse
|
47
|
Regulation of Carbohydrate Energy Metabolism in Drosophila melanogaster. Genetics 2018; 207:1231-1253. [PMID: 29203701 DOI: 10.1534/genetics.117.199885] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/02/2017] [Indexed: 02/08/2023] Open
Abstract
Carbohydrate metabolism is essential for cellular energy balance as well as for the biosynthesis of new cellular building blocks. As animal nutrient intake displays temporal fluctuations and each cell type within the animal possesses specific metabolic needs, elaborate regulatory systems are needed to coordinate carbohydrate metabolism in time and space. Carbohydrate metabolism is regulated locally through gene regulatory networks and signaling pathways, which receive inputs from nutrient sensors as well as other pathways, such as developmental signals. Superimposed on cell-intrinsic control, hormonal signaling mediates intertissue information to maintain organismal homeostasis. Misregulation of carbohydrate metabolism is causative for many human diseases, such as diabetes and cancer. Recent work in Drosophila melanogaster has uncovered new regulators of carbohydrate metabolism and introduced novel physiological roles for previously known pathways. Moreover, genetically tractable Drosophila models to study carbohydrate metabolism-related human diseases have provided new insight into the mechanisms of pathogenesis. Due to the high degree of conservation of relevant regulatory pathways, as well as vast possibilities for the analysis of gene-nutrient interactions and tissue-specific gene function, Drosophila is emerging as an important model system for research on carbohydrate metabolism.
Collapse
|
48
|
Top D, O'Neil JL, Merz GE, Dusad K, Crane BR, Young MW. CK1/Doubletime activity delays transcription activation in the circadian clock. eLife 2018; 7:32679. [PMID: 29611807 PMCID: PMC5882363 DOI: 10.7554/elife.32679] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/02/2018] [Indexed: 01/08/2023] Open
Abstract
In the Drosophila circadian clock, Period (PER) and Timeless (TIM) proteins inhibit Clock-mediated transcription of per and tim genes until PER is degraded by Doubletime/CK1 (DBT)-mediated phosphorylation, establishing a negative feedback loop. Multiple regulatory delays within this feedback loop ensure ~24 hr periodicity. Of these delays, the mechanisms that regulate delayed PER degradation (and Clock reactivation) remain unclear. Here we show that phosphorylation of certain DBT target sites within a central region of PER affect PER inhibition of Clock and the stability of the PER/TIM complex. Our results indicate that phosphorylation of PER residue S589 stabilizes and activates PER inhibitory function in the presence of TIM, but promotes PER degradation in its absence. The role of DBT in regulating PER activity, stabilization and degradation ensures that these events are chronologically and biochemically linked, and contributes to the timing of an essential delay that influences the period of the circadian clock. Many behaviors, such as when we fall asleep or wake up, follow the rhythm of day and night. This is regulated in part by our ‘circadian clock’, which controls biological processes through the timed activation of hundreds of genes over the 24-hour day. In fruit flies, the proteins that form the core of the circadian clock activate and repress each other in such a way that their expression oscillates over a 24-hour cycle. During the late afternoon and early evening, the Clock protein initiates the production of proteins Period and Timeless: these two molecules then accumulate in the cell, and after binding to each other, they are transported into the nucleus. During the late night and early morning, this Period/Timeless complex inhibits the activity of Clock. After a delay, Period and Timeless are degraded. This allows Clock to be reactivated, restarting the cycle for the next day. Period is critical to help maintain the 24-hour oscillation shown by these proteins. A protein called Doubletime is responsible for making a number of chemical modifications on Period. It is unclear how these changes interact with each other, and how they influence the stability and function of Period when it is associated with Timeless. Here, Top et al. generate mutations in the fruit fly gene period to study these processes, and develop a new biomolecular technique to monitor the stability and activity of Period protein in insect cells grown in the laboratory. The experiments reveal new roles for the chemical changes made by Doubletime to Period. First, after Period associates with Timeless, Doubletime triggers certain modifications that lead to Period being able to inactivate Clock. Second, Doubletime makes another change in a nearby region of Period that results in the Period/Timeless complex being stabilized. Both sets of modifications help the complex to stay active and keep inhibiting Clock for long enough such that a 24-hour rhythm can be maintained. Finally, when Timeless is degraded, Period is released from the complex. At this time, the modifications made by Doubletime promote the degradation of Period, resetting the clock. Fruit flies with mutations that block this mechanism perceive the day as shorter. This shows that the smallest change to clock genes can disorganize behavior. Indeed in humans, health problems such as sleep or mental health disorders are associated with irregular circadian clocks. Understanding the biochemical mechanisms that keep the body clocks ticking could help to find new therapeutic targets for these conditions.
Collapse
Affiliation(s)
- Deniz Top
- Laboratory of Genetics, The Rockefeller University, New York, United States
| | - Jenna L O'Neil
- Laboratory of Genetics, The Rockefeller University, New York, United States
| | - Gregory E Merz
- Department of Chemistry and Chemical Biology, Cornell University, New York, United States
| | - Kritika Dusad
- Department of Chemistry and Chemical Biology, Cornell University, New York, United States
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, New York, United States
| | - Michael W Young
- Laboratory of Genetics, The Rockefeller University, New York, United States
| |
Collapse
|
49
|
Akan I, Olivier-Van Stichelen S, Bond MR, Hanover JA. Nutrient-driven O-GlcNAc in proteostasis and neurodegeneration. J Neurochem 2017; 144:7-34. [PMID: 29049853 DOI: 10.1111/jnc.14242] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/28/2017] [Accepted: 10/11/2017] [Indexed: 12/14/2022]
Abstract
Proteostasis is essential in the mammalian brain where post-mitotic cells must function for decades to maintain synaptic contacts and memory. The brain is dependent on glucose and other metabolites for proper function and is spared from metabolic deficits even during starvation. In this review, we outline how the nutrient-sensitive nucleocytoplasmic post-translational modification O-linked N-acetylglucosamine (O-GlcNAc) regulates protein homeostasis. The O-GlcNAc modification is highly abundant in the mammalian brain and has been linked to proteopathies, including neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's. C. elegans, Drosophila, and mouse models harboring O-GlcNAc transferase- and O-GlcNAcase-knockout alleles have helped define the role O-GlcNAc plays in development as well as age-associated neurodegenerative disease. These enzymes add and remove the single monosaccharide from protein serine and threonine residues, respectively. Blocking O-GlcNAc cycling is detrimental to mammalian brain development and interferes with neurogenesis, neural migration, and proteostasis. Findings in C. elegans and Drosophila model systems indicate that the dynamic turnover of O-GlcNAc is critical for maintaining levels of key transcriptional regulators responsible for neurodevelopment cell fate decisions. In addition, pathways of autophagy and proteasomal degradation depend on a transcriptional network that is also reliant on O-GlcNAc cycling. Like the quality control system in the endoplasmic reticulum which uses a 'mannose timer' to monitor protein folding, we propose that cytoplasmic proteostasis relies on an 'O-GlcNAc timer' to help regulate the lifetime and fate of nuclear and cytoplasmic proteins. O-GlcNAc-dependent developmental alterations impact metabolism and growth of the developing mouse embryo and persist into adulthood. Brain-selective knockout mouse models will be an important tool for understanding the role of O-GlcNAc in the physiology of the brain and its susceptibility to neurodegenerative injury.
Collapse
Affiliation(s)
- Ilhan Akan
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Michelle R Bond
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | - John A Hanover
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
50
|
Lee J, Yoo E, Lee H, Park K, Hur JH, Lim C. LSM12 and ME31B/DDX6 Define Distinct Modes of Posttranscriptional Regulation by ATAXIN-2 Protein Complex in Drosophila Circadian Pacemaker Neurons. Mol Cell 2017; 66:129-140.e7. [PMID: 28388438 DOI: 10.1016/j.molcel.2017.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 01/04/2017] [Accepted: 03/03/2017] [Indexed: 01/12/2023]
Abstract
ATAXIN-2 (ATX2) has been implicated in human neurodegenerative diseases, yet it remains elusive how ATX2 assembles specific protein complexes to execute its physiological roles. Here we employ the posttranscriptional co-activator function of Drosophila ATX2 to demonstrate that LSM12 and ME31B/DDX6 are two ATX2-associating factors crucial for sustaining circadian rhythms. LSM12 acts as a molecular adaptor for the recruitment of TWENTY-FOUR (TYF) to ATX2. The ATX2-LSM12-TYF complex thereby stimulates TYF-dependent translation of the rate-limiting clock gene period (per) to maintain 24 hr periodicity in circadian behaviors. In contrast, ATX2 contributes to NOT1-mediated gene silencing and associates with NOT1 in a ME31B/DDX6-dependent manner. The ME31B/DDX6-NOT1 complex does not affect PER translation but supports high-amplitude behavioral rhythms along with ATX2, indicating a PER-independent clock function of ATX2. Taken together, these data suggest that the ATX2 complex may switch distinct modes of posttranscriptional regulation through its associating factors to control circadian clocks and ATX2-related physiology.
Collapse
Affiliation(s)
- Jongbo Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Eunseok Yoo
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hoyeon Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Keunhee Park
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jin-Hoe Hur
- UNIST-Olympus Biomed Imaging Center, UNIST, Ulsan 44919, Republic of Korea
| | - Chunghun Lim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|