1
|
Jaiswal LK, Singh RK, Nayak T, Kakkar A, Kandwal G, Singh VS, Gupta A. A comparative analysis of mycobacterial ribonucleases: Towards a therapeutic novel drug target. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105645. [PMID: 39067582 DOI: 10.1016/j.meegid.2024.105645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/18/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
Bacterial responses to continuously changing environments are addressed through modulation of gene expression at the level of transcription initiation, RNA processing and/or decay. Ribonucleases (RNases) are hydrolytic or phosphorolytic enzymes involved in a majority of RNA metabolism reactions. RNases play a crucial role in RNA degradation, either independently or in collaboration with various trans-acting regulatory factors. The genus Mycobacterium consists of five subgenera: Mycobacteroides, Mycolicibacterium, Mycobacterium, Mycolicibacter and Mycolicibacillus, which include 63 fully sequenced species (pathogenic/non-pathogenic) to date. These include 13 different RNases, among which 5 are exonucleases (RNase PH, PNPase, RNase D, nano-RNases and RNase AS) and 8 are endonucleases (RNase J, RNase H, RNase P, RNase III, RNase BN, RNase Z, RNase G and RNase E), although RNase J and RNase BN were later identified to have exoribonuclease functions also. Here, we provide a detailed comparative insight into the Escherichia coli and mycobacterial RNases with respect to their types, phylogeny, structure, function, regulation and mechanism of action, with the main emphasis on RNase E. Among these 13 different mycobacterial RNases, 10 are essential for cell survival and have diverse structures hence, they are promising drug targets. RNase E is also an essential endonuclease that is abundant in many bacteria, forms an RNA degradosome complex that controls central RNA processing/degradation and has a conserved 5' sensor domain/DNase-I like region in its RNase domain. The essential mycobacterial RNases especially RNase E provide a potential repertoire of drug targets that can be exploited for inhibitor/modulator screening against many deadly mycobacterial diseases.
Collapse
Affiliation(s)
- Lav Kumar Jaiswal
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi U.P.-221005, India
| | - Rakesh Kumar Singh
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi U.P.-221005, India
| | - Tanmayee Nayak
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi U.P.-221005, India
| | - Anuja Kakkar
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi U.P.-221005, India
| | - Garima Kandwal
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi U.P.-221005, India
| | - Vijay Shankar Singh
- Department of Microbiology, School of life Sciences, Sikkim University, Gangtok 737102, Sikkim, India
| | - Ankush Gupta
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi U.P.-221005, India.
| |
Collapse
|
2
|
Lenk R, Kleindienst W, Szabó GT, Baiersdörfer M, Boros G, Keller JM, Mahiny AJ, Vlatkovic I. Understanding the impact of in vitro transcription byproducts and contaminants. Front Mol Biosci 2024; 11:1426129. [PMID: 39050733 PMCID: PMC11266732 DOI: 10.3389/fmolb.2024.1426129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
The success of messenger (m)RNA-based vaccines against SARS-CoV-2 during the COVID-19 pandemic has led to rapid growth and innovation in the field of mRNA-based therapeutics. However, mRNA production, whether in small amounts for research or large-scale GMP-grade for biopharmaceutics, is still based on the In Vitro Transcription (IVT) reaction developed in the early 1980s. The IVT reaction exploits phage RNA polymerase to catalyze the formation of an engineered mRNA that depends on a linearized DNA template, nucleotide building blocks, as well as pH, temperature, and reaction time. But depending on the IVT conditions and subsequent purification steps, diverse byproducts such as dsRNA, abortive RNAs and RNA:DNA hybrids might form. Unwanted byproducts, if not removed, could be formulated together with the full-length mRNA and cause an immune response in cells by activating host pattern recognition receptors. In this review, we summarize the potential types of IVT byproducts, their known biological activity, and how they can impact the efficacy and safety of mRNA therapeutics. In addition, we briefly overview non-nucleotide-based contaminants such as RNases, endotoxin and metal ions that, when present in the IVT reaction, can also influence the activity of mRNA-based drugs. We further discuss current approaches aimed at adjusting the IVT reaction conditions or improving mRNA purification to achieve optimal performance for medical applications.
Collapse
|
3
|
Marmont LS, Orta AK, Corey RA, Sychantha D, Galliano AF, Li YE, Baileeves BW, Greene NG, Stansfeld PJ, Clemons WM, Bernhardt TG. A feedback control mechanism governs the synthesis of lipid-linked precursors of the bacterial cell wall. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.01.551478. [PMID: 37577621 PMCID: PMC10418202 DOI: 10.1101/2023.08.01.551478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Many bacterial surface glycans such as the peptidoglycan (PG) cell wall, O-antigens, and capsules are built from monomeric units linked to a polyprenyl lipid carrier. How this limiting lipid carrier is effectively distributed among competing pathways has remained unclear for some time. Here, we describe the isolation and characterization of hyperactive variants of Pseudomonas aeruginosa MraY, the essential and conserved enzyme catalyzing the formation of the first lipid-linked PG precursor called lipid I. These variants result in the elevated production of the final PG precursor lipid II in cells and are hyperactive in a purified system. Amino acid substitutions within the activated MraY variants unexpectedly map to a cavity on the extracellular side of the dimer interface, far from the active site. Our structural evidence and molecular dynamics simulations suggest that the cavity is a binding site for lipid II molecules that have been transported to the outer leaflet of the membrane. Overall, our results support a model in which excess externalized lipid II allosterically inhibits MraY, providing a feedback mechanism to prevent the sequestration of lipid carrier in the PG biogenesis pathway. MraY belongs to the broadly distributed polyprenyl-phosphate N-acetylhexosamine 1-phosphate transferase (PNPT) superfamily of enzymes. We therefore propose that similar feedback mechanisms may be widely employed to coordinate precursor supply with demand by polymerases, thereby optimizing the partitioning of lipid carriers between competing glycan biogenesis pathways.
Collapse
Affiliation(s)
- Lindsey S. Marmont
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Anna K. Orta
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Robin A. Corey
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| | - David Sychantha
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Ana Fernández Galliano
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Yancheng E. Li
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Becca W.A. Baileeves
- School of Life Sciences and Department of Chemistry, University of Warwick, Warwick, UK
| | - Neil G. Greene
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Phillip J. Stansfeld
- School of Life Sciences and Department of Chemistry, University of Warwick, Warwick, UK
| | - William M. Clemons
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Thomas G. Bernhardt
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
- Howard Hughes Medical Institute, Boston, United States
| |
Collapse
|
4
|
Lee VT, Sondermann H, Winkler WC. Nano-RNases: oligo- or dinucleases? FEMS Microbiol Rev 2022; 46:6677394. [PMID: 36026528 PMCID: PMC9779919 DOI: 10.1093/femsre/fuac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 07/28/2022] [Accepted: 08/24/2022] [Indexed: 01/07/2023] Open
Abstract
Diribonucleotides arise from two sources: turnover of RNA transcripts (rRNA, tRNA, mRNA, and others) and linearization of cyclic-di-nucleotide signaling molecules. In both cases, there appears to be a requirement for a dedicated set of enzymes that will cleave these diribonucleotides into mononucleotides. The first enzyme discovered to mediate this activity is oligoribonuclease (Orn) from Escherichia coli. In addition to being the enzyme that cleaves dinucleotides and potentially other short oligoribonucleotides, Orn is also the only known exoribonuclease enzyme that is essential for E. coli, suggesting that removal of the shortest RNAs is an essential cellular function. Organisms naturally lacking the orn gene encode other nanoRNases (nrn) that can complement the conditional E. coli orn mutant. This review covers the history and recent advances in our understanding of these enzymes and their substrates. In particular, we focus on (i) the sources of diribonucleotides; (ii) the discovery of exoribonucleases; (iii) the structural features of Orn, NrnA/NrnB, and NrnC; (iv) the enzymatic activity of these enzymes against diribonucleotides versus other substrates; (v) the known physiological consequences of accumulation of linear dinucleotides; and (vi) outstanding biological questions for diribonucleotides and diribonucleases.
Collapse
|
5
|
Plaskon D, Evensen C, Henderson K, Palatnik B, Ishikuri T, Wang HC, Doughty S, Thomas Record M. Step-by-Step Regulation of Productive and Abortive Transcription Initiation by Pyrophosphorolysis. J Mol Biol 2022; 434:167621. [DOI: 10.1016/j.jmb.2022.167621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
|
6
|
Lormand JD, Kim SK, Walters-Marrah GA, Brownfield BA, Fromme JC, Winkler WC, Goodson JR, Lee VT, Sondermann H. Structural characterization of NrnC identifies unifying features of dinucleotidases. eLife 2021; 10:70146. [PMID: 34533457 PMCID: PMC8492067 DOI: 10.7554/elife.70146] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
RNA degradation is fundamental for cellular homeostasis. The process is carried out by various classes of endolytic and exolytic enzymes that together degrade an RNA polymer to mono-ribonucleotides. Within the exoribonucleases, nano-RNases play a unique role as they act on the smallest breakdown products and hence catalyze the final steps in the process. We recently showed that oligoribonuclease (Orn) acts as a dedicated diribonuclease, defining the ultimate step in RNA degradation that is crucial for cellular fitness (Kim et al., 2019). Whether such a specific activity exists in organisms that lack Orn-type exoribonucleases remained unclear. Through quantitative structure-function analyses, we show here that NrnC-type RNases share this narrow substrate length preference with Orn. Although NrnC and Orn employ similar structural features that distinguish these two classes of dinucleases from other exonucleases, the key determinants for dinuclease activity are realized through distinct structural scaffolds. The structures, together with comparative genomic analyses of the phylogeny of DEDD-type exoribonucleases, indicate convergent evolution as the mechanism of how dinuclease activity emerged repeatedly in various organisms. The evolutionary pressure to maintain dinuclease activity further underlines the important role these analogous proteins play for cell growth.
Collapse
Affiliation(s)
- Justin D Lormand
- Department of Molecular Medicine, Cornell University, Ithaca, United States
| | - Soo-Kyoung Kim
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | | | - Bryce A Brownfield
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - J Christopher Fromme
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Wade C Winkler
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - Jonathan R Goodson
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - Vincent T Lee
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - Holger Sondermann
- Department of Molecular Medicine, Cornell University, Ithaca, United States.,CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.,Christian-Albrechts-Universität, Kiel, Germany
| |
Collapse
|
7
|
RNA polymerase spoiled for choice as transcription begins. Proc Natl Acad Sci U S A 2021; 118:2110640118. [PMID: 34301880 DOI: 10.1073/pnas.2110640118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
8
|
Skalenko KS, Li L, Zhang Y, Vvedenskaya IO, Winkelman JT, Cope AL, Taylor DM, Shah P, Ebright RH, Kinney JB, Zhang Y, Nickels BE. Promoter-sequence determinants and structural basis of primer-dependent transcription initiation in Escherichia coli. Proc Natl Acad Sci U S A 2021; 118:e2106388118. [PMID: 34187896 PMCID: PMC8271711 DOI: 10.1073/pnas.2106388118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chemical modifications of RNA 5'-ends enable "epitranscriptomic" regulation, influencing multiple aspects of RNA fate. In transcription initiation, a large inventory of substrates compete with nucleoside triphosphates for use as initiating entities, providing an ab initio mechanism for altering the RNA 5'-end. In Escherichia coli cells, RNAs with a 5'-end hydroxyl are generated by use of dinucleotide RNAs as primers for transcription initiation, "primer-dependent initiation." Here, we use massively systematic transcript end readout (MASTER) to detect and quantify RNA 5'-ends generated by primer-dependent initiation for ∼410 (∼1,000,000) promoter sequences in E. coli The results show primer-dependent initiation in E. coli involves any of the 16 possible dinucleotide primers and depends on promoter sequences in, upstream, and downstream of the primer binding site. The results yield a consensus sequence for primer-dependent initiation, YTSS-2NTSS-1NTSSWTSS+1, where TSS is the transcription start site, NTSS-1NTSS is the primer binding site, Y is pyrimidine, and W is A or T. Biochemical and structure-determination studies show that the base pair (nontemplate-strand base:template-strand base) immediately upstream of the primer binding site (Y:RTSS-2, where R is purine) exerts its effect through the base on the DNA template strand (RTSS-2) through interchain base stacking with the RNA primer. Results from analysis of a large set of natural, chromosomally encoded Ecoli promoters support the conclusions from MASTER. Our findings provide a mechanistic and structural description of how TSS-region sequence hard-codes not only the TSS position but also the potential for epitranscriptomic regulation through primer-dependent transcription initiation.
Collapse
Affiliation(s)
- Kyle S Skalenko
- Department of Genetics, Rutgers University, Piscataway, NJ 08854
- Waksman Institute, Rutgers University, Piscataway, NJ 08854
| | - Lingting Li
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuanchao Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA 19041
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Irina O Vvedenskaya
- Department of Genetics, Rutgers University, Piscataway, NJ 08854
- Waksman Institute, Rutgers University, Piscataway, NJ 08854
| | - Jared T Winkelman
- Department of Genetics, Rutgers University, Piscataway, NJ 08854
- Waksman Institute, Rutgers University, Piscataway, NJ 08854
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854
| | - Alexander L Cope
- Department of Genetics, Rutgers University, Piscataway, NJ 08854
| | - Deanne M Taylor
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA 19041
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Premal Shah
- Department of Genetics, Rutgers University, Piscataway, NJ 08854
| | - Richard H Ebright
- Waksman Institute, Rutgers University, Piscataway, NJ 08854
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854
| | - Justin B Kinney
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Bryce E Nickels
- Department of Genetics, Rutgers University, Piscataway, NJ 08854;
- Waksman Institute, Rutgers University, Piscataway, NJ 08854
| |
Collapse
|
9
|
Schauerte M, Pozhydaieva N, Höfer K. Shaping the Bacterial Epitranscriptome-5'-Terminal and Internal RNA Modifications. Adv Biol (Weinh) 2021; 5:e2100834. [PMID: 34121369 DOI: 10.1002/adbi.202100834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/07/2021] [Indexed: 11/11/2022]
Abstract
All domains of life utilize a diverse set of modified ribonucleotides that can impact the sequence, structure, function, stability, and the fate of RNAs, as well as their interactions with other molecules. Today, more than 160 different RNA modifications are known that decorate the RNA at the 5'-terminus or internal RNA positions. The boost of next-generation sequencing technologies sets the foundation to identify and study the functional role of RNA modifications. The recent advances in the field of RNA modifications reveal a novel regulatory layer between RNA modifications and proteins, which is central to developing a novel concept called "epitranscriptomics." The majority of RNA modifications studies focus on the eukaryotic epitranscriptome. In contrast, RNA modifications in prokaryotes are poorly characterized. This review outlines the current knowledge of the prokaryotic epitranscriptome focusing on mRNA modifications. Here, it is described that several internal and 5'-terminal RNA modifications either present or likely present in prokaryotic mRNA. Thereby, the individual techniques to identify these epitranscriptomic modifications, their writers, readers and erasers, and their proposed functions are explored. Besides that, still unanswered questions in the field of prokaryotic epitranscriptomics are pointed out, and its future perspectives in the dawn of next-generation sequencing technologies are outlined.
Collapse
Affiliation(s)
- Maik Schauerte
- Max-Planck-Institute for terrestrial Microbiology, Marburg, Hessen, 35043, Germany
| | - Nadiia Pozhydaieva
- Max-Planck-Institute for terrestrial Microbiology, Marburg, Hessen, 35043, Germany
| | - Katharina Höfer
- Max-Planck-Institute for terrestrial Microbiology, Marburg, Hessen, 35043, Germany
| |
Collapse
|
10
|
Use of NAD tagSeq II to identify growth phase-dependent alterations in E. coli RNA NAD + capping. Proc Natl Acad Sci U S A 2021; 118:2026183118. [PMID: 33782135 PMCID: PMC8040648 DOI: 10.1073/pnas.2026183118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Some RNAs in both prokaryotes and eukaryotes were recently found to contain the NAD+ cap, indicating a novel mechanism in gene regulation through noncanonical RNA capping. Copper-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry has been used to label NAD+-capped RNAs (NAD-RNAs) for their identification. However, copper-caused RNA fragmentation/degradation interferes with the analysis. We developed the NAD tagSeq II method for transcriptome-wide NAD-RNA analysis based on copper-free, strain-promoted azide-alkyne cycloaddition (SPAAC) click chemistry. This method was used to compare NAD-RNA and total transcriptome profiles in Escherichia coli. Our study reveals genome-wide alterations in E. coli RNA NAD+ capping in different growth phases and indicates that NAD-RNAs could be the primary form of transcripts from some genes under certain environments. Recent findings regarding nicotinamide adenine dinucleotide (NAD+)-capped RNAs (NAD-RNAs) indicate that prokaryotes and eukaryotes employ noncanonical RNA capping to regulate gene expression. Two methods for transcriptome-wide analysis of NAD-RNAs, NAD captureSeq and NAD tagSeq, are based on copper-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry to label NAD-RNAs. However, copper ions can fragment/degrade RNA, interfering with the analyses. Here we report development of NAD tagSeq II, which uses copper-free, strain-promoted azide-alkyne cycloaddition (SPAAC) for labeling NAD-RNAs, followed by identification of tagged RNA by single-molecule direct RNA sequencing. We used this method to compare NAD-RNA and total transcript profiles of Escherichia coli cells in the exponential and stationary phases. We identified hundreds of NAD-RNA species in E. coli and revealed genome-wide alterations of NAD-RNA profiles in the different growth phases. Although no or few NAD-RNAs were detected from some of the most highly expressed genes, the transcripts of some genes were found to be primarily NAD-RNAs. Our study suggests that NAD-RNAs play roles in linking nutrient cues with gene regulation in E. coli.
Collapse
|
11
|
Vargas-Blanco DA, Shell SS. Regulation of mRNA Stability During Bacterial Stress Responses. Front Microbiol 2020; 11:2111. [PMID: 33013770 PMCID: PMC7509114 DOI: 10.3389/fmicb.2020.02111] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Bacteria have a remarkable ability to sense environmental changes, swiftly regulating their transcriptional and posttranscriptional machinery as a response. Under conditions that cause growth to slow or stop, bacteria typically stabilize their transcriptomes in what has been shown to be a conserved stress response. In recent years, diverse studies have elucidated many of the mechanisms underlying mRNA degradation, yet an understanding of the regulation of mRNA degradation under stress conditions remains elusive. In this review we discuss the diverse mechanisms that have been shown to affect mRNA stability in bacteria. While many of these mechanisms are transcript-specific, they provide insight into possible mechanisms of global mRNA stabilization. To that end, we have compiled information on how mRNA fate is affected by RNA secondary structures; interaction with ribosomes, RNA binding proteins, and small RNAs; RNA base modifications; the chemical nature of 5' ends; activity and concentration of RNases and other degradation proteins; mRNA and RNase localization; and the stringent response. We also provide an analysis of reported relationships between mRNA abundance and mRNA stability, and discuss the importance of stress-associated mRNA stabilization as a potential target for therapeutic development.
Collapse
Affiliation(s)
- Diego A Vargas-Blanco
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Scarlet S Shell
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States.,Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
12
|
RNA extension drives a stepwise displacement of an initiation-factor structural module in initial transcription. Proc Natl Acad Sci U S A 2020; 117:5801-5809. [PMID: 32127479 DOI: 10.1073/pnas.1920747117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
All organisms-bacteria, archaea, and eukaryotes-have a transcription initiation factor that contains a structural module that binds within the RNA polymerase (RNAP) active-center cleft and interacts with template-strand single-stranded DNA (ssDNA) in the immediate vicinity of the RNAP active center. This transcription initiation-factor structural module preorganizes template-strand ssDNA to engage the RNAP active center, thereby facilitating binding of initiating nucleotides and enabling transcription initiation from initiating mononucleotides. However, this transcription initiation-factor structural module occupies the path of nascent RNA and thus presumably must be displaced before or during initial transcription. Here, we report four sets of crystal structures of bacterial initially transcribing complexes that demonstrate and define details of stepwise, RNA-extension-driven displacement of the "σ-finger" of the bacterial transcription initiation factor σ. The structures reveal that-for both the primary σ-factor and extracytoplasmic (ECF) σ-factors, and for both 5'-triphosphate RNA and 5'-hydroxy RNA-the "σ-finger" is displaced in stepwise fashion, progressively folding back upon itself, driven by collision with the RNA 5'-end, upon extension of nascent RNA from ∼5 nt to ∼10 nt.
Collapse
|
13
|
Nicholls TJ, Spåhr H, Jiang S, Siira SJ, Koolmeister C, Sharma S, Kauppila JHK, Jiang M, Kaever V, Rackham O, Chabes A, Falkenberg M, Filipovska A, Larsson NG, Gustafsson CM. Dinucleotide Degradation by REXO2 Maintains Promoter Specificity in Mammalian Mitochondria. Mol Cell 2019; 76:784-796.e6. [PMID: 31588022 PMCID: PMC6900737 DOI: 10.1016/j.molcel.2019.09.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/12/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022]
Abstract
Oligoribonucleases are conserved enzymes that degrade short RNA molecules of up to 5 nt in length and are assumed to constitute the final stage of RNA turnover. Here we demonstrate that REXO2 is a specialized dinucleotide-degrading enzyme that shows no preference between RNA and DNA dinucleotide substrates. A heart- and skeletal-muscle-specific knockout mouse displays elevated dinucleotide levels and alterations in gene expression patterns indicative of aberrant dinucleotide-primed transcription initiation. We find that dinucleotides act as potent stimulators of mitochondrial transcription initiation in vitro. Our data demonstrate that increased levels of dinucleotides can be used to initiate transcription, leading to an increase in transcription levels from both mitochondrial promoters and other, nonspecific sequence elements in mitochondrial DNA. Efficient RNA turnover by REXO2 is thus required to maintain promoter specificity and proper regulation of transcription in mammalian mitochondria.
Collapse
Affiliation(s)
- Thomas J Nicholls
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, Gothenburg 405 30, Sweden
| | - Henrik Spåhr
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden; Max Planck Institute for Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm 17177, Sweden
| | - Shan Jiang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden; Max Planck Institute for Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm 17177, Sweden
| | - Stefan J Siira
- Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia; Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Camilla Koolmeister
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden; Max Planck Institute for Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm 17177, Sweden
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå 901 87, Sweden
| | - Johanna H K Kauppila
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Min Jiang
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Volkhard Kaever
- Research Core Unit Metabolomics, Hannover Medical School, 30625 Hannover, Germany
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia; School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA 6102, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå 901 87, Sweden
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, Gothenburg 405 30, Sweden
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia; School of Molecular Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Nils-Göran Larsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden; Max Planck Institute for Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm 17177, Sweden.
| | - Claes M Gustafsson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, Gothenburg 405 30, Sweden.
| |
Collapse
|
14
|
Pupov D, Petushkov I, Esyunina D, Murakami KS, Kulbachinskiy A. Region 3.2 of the σ factor controls the stability of rRNA promoter complexes and potentiates their repression by DksA. Nucleic Acids Res 2019; 46:11477-11487. [PMID: 30321408 PMCID: PMC6265461 DOI: 10.1093/nar/gky919] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/10/2018] [Indexed: 01/25/2023] Open
Abstract
The σ factor drives promoter recognition by bacterial RNA polymerase (RNAP) and is also essential for later steps of transcription initiation, including RNA priming and promoter escape. Conserved region 3.2 of the primary σ factor (‘σ finger’) directly contacts the template DNA strand in the open promoter complex and facilitates initiating NTP binding in the active center of RNAP. Ribosomal RNA promoters are responsible for most RNA synthesis during exponential growth but should be silenced during the stationary phase to save cell resources. In Escherichia coli, the silencing mainly results from the action of the secondary channel factor DksA, which together with ppGpp binds RNAP and dramatically decreases the stability of intrinsically unstable rRNA promoter complexes. We demonstrate that this switch depends on the σ finger that destabilizes RNAP–promoter interactions. Mutations in the σ finger moderately decrease initiating NTP binding but significantly increase promoter complex stability and reduce DksA affinity to the RNAP–rRNA promoter complex, thus making rRNA transcription less sensitive to DksA/ppGpp both in vitro and in vivo. Thus, destabilization of rRNA promoter complexes by the σ finger makes them a target for robust regulation by the stringent response factors under stress conditions.
Collapse
Affiliation(s)
- Danil Pupov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Ivan Petushkov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Daria Esyunina
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Katsuhiko S Murakami
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| |
Collapse
|
15
|
Kim SK, Lormand JD, Weiss CA, Eger KA, Turdiev H, Turdiev A, Winkler WC, Sondermann H, Lee VT. A dedicated diribonucleotidase resolves a key bottleneck for the terminal step of RNA degradation. eLife 2019; 8:46313. [PMID: 31225796 PMCID: PMC6613908 DOI: 10.7554/elife.46313] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/14/2019] [Indexed: 12/28/2022] Open
Abstract
Degradation of RNA polymers, an ubiquitous process in all cells, is catalyzed by specific subsets of endo- and exoribonucleases that together recycle RNA fragments into nucleotide monophosphate. In γ-proteobacteria, 3-'5' exoribonucleases comprise up to eight distinct enzymes. Among them, Oligoribonuclease (Orn) is unique as its activity is required for clearing short RNA fragments, which is important for cellular fitness. However, the molecular basis of Orn's unique cellular function remained unclear. Here, we show that Orn exhibits exquisite substrate preference for diribonucleotides. Crystal structures of substrate-bound Orn reveal an active site optimized for diribonucleotides. While other cellular RNases process oligoribonucleotides down to diribonucleotide entities, Orn is the one and only diribonucleotidase that completes the terminal step of RNA degradation. Together, our studies indicate RNA degradation as a step-wise process with a dedicated enzyme for the clearance of a specific intermediate pool, diribonucleotides, that affects cellular physiology and viability.
Collapse
Affiliation(s)
- Soo-Kyoung Kim
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - Justin D Lormand
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, United States
| | - Cordelia A Weiss
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - Karin A Eger
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, United States
| | - Husan Turdiev
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - Asan Turdiev
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - Wade C Winkler
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - Holger Sondermann
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, United States
| | - Vincent T Lee
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| |
Collapse
|
16
|
Role of DHH superfamily proteins in nucleic acids metabolism and stress tolerance in prokaryotes and eukaryotes. Int J Biol Macromol 2018; 127:66-75. [PMID: 30578903 DOI: 10.1016/j.ijbiomac.2018.12.123] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/14/2018] [Indexed: 01/05/2023]
Abstract
DHH superfamily proteins play pivotal roles in various cellular processes like replication, recombination, repair and nucleic acids metabolism. These proteins are important for homeostasis maintenance and stress tolerance in prokaryotes and eukaryotes. The prominent members of DHH superfamily include single-strand specific exonuclease RecJ, nanoRNases, polyphosphatase PPX1, pyrophosphatase, prune phosphodiesterase and cell cycle protein Cdc45. The mutations of genes coding for DHH superfamily proteins lead to severe growth defects and in some cases, may be lethal. The members of superfamily have a wide substrate spectrum. The spectrum of substrate for DHH superfamily members ranges from smaller molecules like pyrophosphate and cyclic nucleotides to longer single-stranded DNA molecule. Several genetic, structural and biochemical studies have provided interesting insights about roles of DHH superfamily members. However, there are still various unexplored members in both prokaryotes and eukaryotes. Many aspects of this superfamily associated with homeostasis maintenance and stress tolerance are still not clearly understood. A comprehensive understanding is pre-requisite to decipher the physiological significance of members of DHH superfamily. This article provides the current understanding of DHH superfamily members and their significance in nucleic acids metabolism and stress tolerance across diverse forms of life.
Collapse
|
17
|
Vvedenskaya IO, Goldman SR, Nickels BE. Analysis of Bacterial Transcription by "Massively Systematic Transcript End Readout," MASTER. Methods Enzymol 2018; 612:269-302. [PMID: 30502946 DOI: 10.1016/bs.mie.2018.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
A systems-level view of cellular gene expression requires understanding the mechanistic principles governing each step of transcription. In this chapter, we describe a massively multiplexed method for the analysis of the relationship between nucleic acid sequence and transcription termed "MASTER," for massively systematic transcript end readout. MASTER enables parallel measurements of transcription output from at least 410 (~1,000,000) individual template sequences in vitro and in vivo. MASTER involves constructing a DNA template library of barcoded sequences, generating RNA transcripts from the library during transcription in vitro or in vivo, and analyzing the relative abundance and 5'-end sequences of the RNA transcripts by high-throughput sequencing. MASTER provides a powerful, rapid, and versatile method to identify sequence determinants of each step of transcription and to define the mechanistic basis by which these sequence determinants dictate transcription output.
Collapse
Affiliation(s)
- Irina O Vvedenskaya
- Waksman Institute and Department of Genetics, Rutgers University, Piscataway, NJ, United States
| | - Seth R Goldman
- Waksman Institute and Department of Genetics, Rutgers University, Piscataway, NJ, United States
| | - Bryce E Nickels
- Waksman Institute and Department of Genetics, Rutgers University, Piscataway, NJ, United States.
| |
Collapse
|
18
|
Höfer K, Jäschke A. Epitranscriptomics: RNA Modifications in Bacteria and Archaea. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0015-2017. [PMID: 29916347 PMCID: PMC11633594 DOI: 10.1128/microbiolspec.rwr-0015-2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Indexed: 02/07/2023] Open
Abstract
The increasingly complex functionality of RNA is contrasted by its simple chemical composition. RNA is generally built from only four different nucleotides (adenine, guanine, cytosine, and uracil). To date, >160 chemical modifications are known to decorate RNA molecules and thereby alter their function or stability. Many RNA modifications are conserved throughout bacteria, archaea, and eukaryotes, while some are unique to each branch of life. Most known modifications occur at internal positions, while there is limited diversity at the termini. The dynamic nature of RNA modifications and newly discovered regulatory functions of some of these RNA modifications gave birth to a new field, now often referred to as "epitranscriptomics." This review highlights the major developments in this field and summarizes detection principles for internal as well as 5'-terminal mRNA modifications in prokaryotes and archaea to investigate their biological significance.
Collapse
MESH Headings
- Archaea/genetics
- Archaea/metabolism
- Bacteria/genetics
- Bacteria/metabolism
- Epigenesis, Genetic
- RNA Processing, Post-Transcriptional
- RNA Stability
- RNA, Archaeal/chemistry
- RNA, Archaeal/genetics
- RNA, Archaeal/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Transcriptome
Collapse
Affiliation(s)
- Katharina Höfer
- Institute of Pharmacy and Molecular Biotechnology, Im Neuenheimer Feld 364, Heidelberg University, 69120 Heidelberg, Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology, Im Neuenheimer Feld 364, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
19
|
The special existences: nanoRNA and nanoRNase. Microbiol Res 2017; 207:134-139. [PMID: 29458847 DOI: 10.1016/j.micres.2017.11.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/23/2017] [Accepted: 11/25/2017] [Indexed: 12/21/2022]
Abstract
To adapt to a wide range of nutritional and environmental changes, cells must adjust their gene expression profiles. This process is completed by the frequent transcription and rapid degradation of mRNA. mRNA decay is initiated by a series of endo- and exoribonucleases. These enzymes leave behind 2- to 5-nt-long oligoribonucleotides termed "nanoRNAs" that are degraded by specific nanoRNases; the degradation of nanoRNA is essential because nanoRNA can mediate the priming of transcription initiation that is harmful for the cell via an unknown mechanism. Identified nanoRNases include Orn in E. coli, NrnA and NrnB in B. subtilis, and NrnC in Bartonella. Even though these nanoRNases can degrade nanoRNA specifically into mononucleotides, the biochemical features, structural features and functional mechanisms of these enzymes are different. Sequence analysis has identified homologs of these nanoRNases in different bacteria, including Gammaproteobacteria, Betaproteobacteria, Alphaproteobacteria, Firmicutes and Cyanobacteria. However, there are several bacteria, such as those belonging to the class Thermolithobacteria, that do not have homologs of these nanoRNases. In this paper, the source of nanoRNA, the features of different kinds of nanoRNases and the distribution of these enzymes in prokaryotes are described in detail.
Collapse
|
20
|
Barvík I, Rejman D, Panova N, Šanderová H, Krásný L. Non-canonical transcription initiation: the expanding universe of transcription initiating substrates. FEMS Microbiol Rev 2017; 41:131-138. [PMID: 27799279 DOI: 10.1093/femsre/fuw041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2016] [Indexed: 11/13/2022] Open
Abstract
RNA polymerase (RNAP) is the central enzyme of transcription of the genetic information from DNA into RNA. RNAP recognizes four main substrates: ATP, CTP, GTP and UTP. Experimental evidence from the past several years suggests that, besides these four NTPs, other molecules can be used to initiate transcription: (i) ribooligonucleotides (nanoRNAs) and (ii) coenzymes such as NAD+, NADH, dephospho-CoA and FAD. The presence of these molecules at the 5΄ ends of RNAs affects the properties of the RNA. Here, we discuss the expanding portfolio of molecules that can initiate transcription, their mechanism of incorporation, effects on RNA and cellular processes, and we present an outlook toward other possible initiation substrates.
Collapse
Affiliation(s)
- Ivan Barvík
- Division of Biomolecular Physics, Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
| | - Dominik Rejman
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences v. v. i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Natalya Panova
- Institute of Microbiology, Czech Academy of Sciences v. v. i., Vídenská 1083, 142 20 Prague 4, Czech Republic
| | - Hana Šanderová
- Institute of Microbiology, Czech Academy of Sciences v. v. i., Vídenská 1083, 142 20 Prague 4, Czech Republic
| | - Libor Krásný
- Institute of Microbiology, Czech Academy of Sciences v. v. i., Vídenská 1083, 142 20 Prague 4, Czech Republic
| |
Collapse
|
21
|
Structural Basis for the Bidirectional Activity of Bacillus nanoRNase NrnA. Sci Rep 2017; 7:11085. [PMID: 28894100 PMCID: PMC5593865 DOI: 10.1038/s41598-017-09403-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/24/2017] [Indexed: 12/21/2022] Open
Abstract
NanoRNAs are RNA fragments 2 to 5 nucleotides in length that are generated as byproducts of RNA degradation and abortive transcription initiation. Cells have specialized enzymes to degrade nanoRNAs, such as the DHH phosphoesterase family member NanoRNase A (NrnA). This enzyme was originally identified as a 3′ → 5′ exonuclease, but we show here that NrnA is bidirectional, degrading 2–5 nucleotide long RNA oligomers from the 3′ end, and longer RNA substrates from the 5′ end. The crystal structure of Bacillus subtilis NrnA reveals a dynamic bi-lobal architecture, with the catalytic N-terminal DHH domain linked to the substrate binding C-terminal DHHA1 domain via an extended linker. Whereas this arrangement is similar to the structure of RecJ, a 5′ → 3′ DHH family DNase and other DHH family nanoRNases, Bacillus NrnA has gained an extended substrate-binding patch that we posit is responsible for its 3′ → 5′ activity.
Collapse
|
22
|
Winkelman JT, Gourse RL. Open complex DNA scrunching: A key to transcription start site selection and promoter escape. Bioessays 2017; 39:10.1002/bies.201600193. [PMID: 28052345 PMCID: PMC5313389 DOI: 10.1002/bies.201600193] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bacterial RNA polymerase-promoter open complexes can exist in a range of states in which the leading edge of the enzyme moves but the trailing edge does not, a phenomenon we refer to as "open complex scrunching." Here we describe how open complex scrunching can determine the position of the transcription start site for some promoters, modulate the level of expression, and potentially could be targeted by factors to regulate transcription. We suggest that open complex scrunching at the extraordinarily active ribosomal RNA promoters might have evolved to initiate transcription at an unusual position relative to the core promoter elements in order to maximize the rate of promoter escape.
Collapse
Affiliation(s)
- Jared T. Winkelman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Genetics and Waksman Institute, Rutgers University, NJ, USA
| | - Richard L. Gourse
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
23
|
Interactions between RNA polymerase and the core recognition element are a determinant of transcription start site selection. Proc Natl Acad Sci U S A 2016; 113:E2899-905. [PMID: 27162333 DOI: 10.1073/pnas.1603271113] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
During transcription initiation, RNA polymerase (RNAP) holoenzyme unwinds ∼13 bp of promoter DNA, forming an RNAP-promoter open complex (RPo) containing a single-stranded transcription bubble, and selects a template-strand nucleotide to serve as the transcription start site (TSS). In RPo, RNAP core enzyme makes sequence-specific protein-DNA interactions with the downstream part of the nontemplate strand of the transcription bubble ("core recognition element," CRE). Here, we investigated whether sequence-specific RNAP-CRE interactions affect TSS selection. To do this, we used two next-generation sequencing-based approaches to compare the TSS profile of WT RNAP to that of an RNAP derivative defective in sequence-specific RNAP-CRE interactions. First, using massively systematic transcript end readout, MASTER, we assessed effects of RNAP-CRE interactions on TSS selection in vitro and in vivo for a library of 4(7) (∼16,000) consensus promoters containing different TSS region sequences, and we observed that the TSS profile of the RNAP derivative defective in RNAP-CRE interactions differed from that of WT RNAP, in a manner that correlated with the presence of consensus CRE sequences in the TSS region. Second, using 5' merodiploid native-elongating-transcript sequencing, 5' mNET-seq, we assessed effects of RNAP-CRE interactions at natural promoters in Escherichia coli, and we identified 39 promoters at which RNAP-CRE interactions determine TSS selection. Our findings establish RNAP-CRE interactions are a functional determinant of TSS selection. We propose that RNAP-CRE interactions modulate the position of the downstream end of the transcription bubble in RPo, and thereby modulate TSS selection, which involves transcription bubble expansion or transcription bubble contraction (scrunching or antiscrunching).
Collapse
|
24
|
Abstract
Most bacterial toxins derived from chromosomally encoded toxin-antitoxin (TA) systems that have been studied to date appear to protect cells from relatively short pulses of stress by triggering a reversible state of growth arrest. In contrast to many bacterial toxins that are produced as defense mechanisms and secreted from their hosts, TA toxins exert their protective effect from within the cell that produces them. TA toxin-mediated growth arrest is most frequently achieved through their ability to selectively cleave RNA species that participate in protein synthesis. Until very recently, it was thought that the primary conduit for toxin-mediated translation inhibition was cleavage of a single class of RNA, mRNA, thus depleting transcripts and precluding production of essential proteins. This minireview focuses on how the development and implementation of a specialized RNA-seq method to study Mycobacterium tuberculosis TA systems enabled the identification of unexpected RNA targets for toxins, i.e. a handful of tRNAs that are cleaved into tRNA halves. Our result brings to light a new perspective on how these toxins may act in this pathogen and uncovers a striking parallel to signature features of the eukaryotic stress response.
Collapse
Affiliation(s)
- Jonathan W Cruz
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Nancy A Woychik
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| |
Collapse
|
25
|
σ Factor and Anti-σ Factor That Control Swarming Motility and Biofilm Formation in Pseudomonas aeruginosa. J Bacteriol 2015. [PMID: 26620262 DOI: 10.1128/jb.00784-15.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Pseudomonas aeruginosa is capable of causing a variety of acute and chronic infections. Here, we provide evidence that sbrR (PA2895), a gene previously identified as required during chronic P. aeruginosa respiratory infection, encodes an anti-σ factor that inhibits the activity of its cognate extracytoplasmic-function σ factor, SbrI (PA2896). Bacterial two-hybrid analysis identified an N-terminal region of SbrR that interacts directly with SbrI and that was sufficient for inhibition of SbrI-dependent gene expression. We show that SbrI associates with RNA polymerase in vivo and identify the SbrIR regulon. In cells lacking SbrR, the SbrI-dependent expression of muiA was found to inhibit swarming motility and promote biofilm formation. Our findings reveal SbrR and SbrI as a novel set of regulators of swarming motility and biofilm formation in P. aeruginosa that mediate their effects through muiA, a gene not previously known to influence surface-associated behaviors in this organism. IMPORTANCE This study characterizes a σ factor/anti-σ factor system that reciprocally regulates the surface-associated behaviors of swarming motility and biofilm formation in the opportunistic pathogen Pseudomonas aeruginosa. We present evidence that SbrR is an anti-σ factor specific for its cognate σ factor, SbrI, and identify the SbrIR regulon in P. aeruginosa. We find that cells lacking SbrR are severely defective in swarming motility and exhibit enhanced biofilm formation. Moreover, we identify muiA (PA1494) as the SbrI-dependent gene responsible for mediating these effects. SbrIR have been implicated in virulence and in responding to antimicrobial and cell envelope stress. SbrIR may therefore represent a stress response system that influences the surface behaviors of P. aeruginosa during infection.
Collapse
|
26
|
σ Factor and Anti-σ Factor That Control Swarming Motility and Biofilm Formation in Pseudomonas aeruginosa. J Bacteriol 2015; 198:755-65. [PMID: 26620262 DOI: 10.1128/jb.00784-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/20/2015] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Pseudomonas aeruginosa is capable of causing a variety of acute and chronic infections. Here, we provide evidence that sbrR (PA2895), a gene previously identified as required during chronic P. aeruginosa respiratory infection, encodes an anti-σ factor that inhibits the activity of its cognate extracytoplasmic-function σ factor, SbrI (PA2896). Bacterial two-hybrid analysis identified an N-terminal region of SbrR that interacts directly with SbrI and that was sufficient for inhibition of SbrI-dependent gene expression. We show that SbrI associates with RNA polymerase in vivo and identify the SbrIR regulon. In cells lacking SbrR, the SbrI-dependent expression of muiA was found to inhibit swarming motility and promote biofilm formation. Our findings reveal SbrR and SbrI as a novel set of regulators of swarming motility and biofilm formation in P. aeruginosa that mediate their effects through muiA, a gene not previously known to influence surface-associated behaviors in this organism. IMPORTANCE This study characterizes a σ factor/anti-σ factor system that reciprocally regulates the surface-associated behaviors of swarming motility and biofilm formation in the opportunistic pathogen Pseudomonas aeruginosa. We present evidence that SbrR is an anti-σ factor specific for its cognate σ factor, SbrI, and identify the SbrIR regulon in P. aeruginosa. We find that cells lacking SbrR are severely defective in swarming motility and exhibit enhanced biofilm formation. Moreover, we identify muiA (PA1494) as the SbrI-dependent gene responsible for mediating these effects. SbrIR have been implicated in virulence and in responding to antimicrobial and cell envelope stress. SbrIR may therefore represent a stress response system that influences the surface behaviors of P. aeruginosa during infection.
Collapse
|
27
|
Druzhinin SY, Tran NT, Skalenko KS, Goldman SR, Knoblauch JG, Dove SL, Nickels BE. A Conserved Pattern of Primer-Dependent Transcription Initiation in Escherichia coli and Vibrio cholerae Revealed by 5' RNA-seq. PLoS Genet 2015; 11:e1005348. [PMID: 26131907 PMCID: PMC4488433 DOI: 10.1371/journal.pgen.1005348] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/09/2015] [Indexed: 12/20/2022] Open
Abstract
Transcription initiation that involves the use of a 2- to ~4-nt oligoribonucleotide primer, “primer-dependent initiation,” (PDI) has been shown to be widely prevalent at promoters of genes expressed during the stationary phase of growth in Escherichia coli. However, the extent to which PDI impacts E. coli physiology, and the extent to which PDI occurs in other bacteria is not known. Here we establish a physiological role for PDI in E. coli as a regulatory mechanism that modulates biofilm formation. We further demonstrate using high-throughput sequencing of RNA 5′ ends (5′ RNA-seq) that PDI occurs in the pathogenic bacterium Vibrio cholerae. A comparative global analysis of PDI in V. cholerae and E. coli reveals that the pattern of PDI is strikingly similar in the two organisms. In particular, PDI is detected in stationary phase, is not detected in exponential phase, and is preferentially apparent at promoters carrying the sequence T−1A+1 or G−1G+1 (where position +1 corresponds to the position of de novo initiation). Our findings demonstrate a physiological role for PDI and suggest PDI may be widespread among Gammaproteobacteria. We propose that PDI in both E. coli and V. cholerae occurs though a growth phase-dependent process that leads to the preferential generation of the linear dinucleotides 5´-UA-3´ and 5´-GG-3´. Primer-dependent transcription initiation, PDI, refers to an alternative mechanism of transcription initiation whereby the first phosphodiester bond within the nascent RNA is formed between a 2- to ~4-nt RNA primer and an incoming nucleoside triphosphate. Although PDI has been shown to occur in E. coli, the impact of PDI on E. coli physiology, and the extent to which PDI occurs in other bacteria is unknown. Here we establish that PDI modulates the ability of E. coli to form biofilms, a surface attached community of bacteria encased in a polymeric matrix. We further describe a significantly improved RNA-seq based method for the detection of PDI in cells. Using this method we document the occurrence of PDI in the pathogenic bacterium Vibrio cholerae. We further show that the pattern of PDI in V. cholerae is identical to that observed in E. coli, suggesting that PDI in these two organisms may occur through a conserved process that produces identical populations of 2- to ~4-nt RNA primers. Our findings suggest PDI may be widespread in Gammaproteobacteria.
Collapse
Affiliation(s)
- Sergey Y. Druzhinin
- Department of Genetics and Waksman Institute, Rutgers University, Piscataway, New Jersey, United States of America
| | - Ngat T. Tran
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kyle S. Skalenko
- Department of Genetics and Waksman Institute, Rutgers University, Piscataway, New Jersey, United States of America
| | - Seth R. Goldman
- Department of Genetics and Waksman Institute, Rutgers University, Piscataway, New Jersey, United States of America
| | - Jared G. Knoblauch
- Department of Genetics and Waksman Institute, Rutgers University, Piscataway, New Jersey, United States of America
| | - Simon L. Dove
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (SLD); (BEN)
| | - Bryce E. Nickels
- Department of Genetics and Waksman Institute, Rutgers University, Piscataway, New Jersey, United States of America
- * E-mail: (SLD); (BEN)
| |
Collapse
|
28
|
Intracellular Concentrations of Borrelia burgdorferi Cyclic Di-AMP Are Not Changed by Altered Expression of the CdaA Synthase. PLoS One 2015; 10:e0125440. [PMID: 25906393 PMCID: PMC4408052 DOI: 10.1371/journal.pone.0125440] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/12/2015] [Indexed: 01/10/2023] Open
Abstract
The second messenger nucleotide cyclic diadenylate monophosphate (c-di-AMP) has been identified in several species of Gram positive bacteria and Chlamydia trachomatis. This molecule has been associated with bacterial cell division, cell wall biosynthesis and phosphate metabolism, and with induction of type I interferon responses by host cells. We demonstrate that B. burgdorferi produces a c-di-AMP synthase, which we designated CdaA. Both CdaA and c-di-AMP levels are very low in cultured B. burgdorferi, and no conditions were identified under which cdaA mRNA was differentially expressed. A mutant B. burgdorferi was produced that expresses high levels of CdaA, yet steady state borrelial c-di-AMP levels did not change, apparently due to degradation by the native DhhP phosphodiesterase. The function(s) of c-di-AMP in the Lyme disease spirochete remains enigmatic.
Collapse
|
29
|
Ramsey KM, Osborne ML, Vvedenskaya IO, Su C, Nickels BE, Dove SL. Ubiquitous promoter-localization of essential virulence regulators in Francisella tularensis. PLoS Pathog 2015; 11:e1004793. [PMID: 25830507 PMCID: PMC4382096 DOI: 10.1371/journal.ppat.1004793] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/08/2015] [Indexed: 01/06/2023] Open
Abstract
Francisella tularensis is a Gram-negative bacterium whose ability to replicate within macrophages and cause disease is strictly dependent upon the coordinate activities of three transcription regulators called MglA, SspA, and PigR. MglA and SspA form a complex that associates with RNA polymerase (RNAP), whereas PigR is a putative DNA-binding protein that functions by contacting the MglA-SspA complex. Most transcription activators that bind the DNA are thought to occupy only those promoters whose activities they regulate. Here we show using chromatin immunoprecipitation coupled with high-throughput DNA sequencing (ChIP-Seq) that PigR, MglA, and SspA are found at virtually all promoters in F. tularensis and not just those of regulated genes. Furthermore, we find that the ability of PigR to associate with promoters is dependent upon the presence of MglA, suggesting that interaction with the RNAP-associated MglA-SspA complex is what directs PigR to promoters in F. tularensis. Finally, we present evidence that the ability of PigR (and thus MglA and SspA) to positively control the expression of genes is dictated by a specific 7 base pair sequence element that is present in the promoters of regulated genes. The three principal regulators of virulence gene expression in F. tularensis therefore function in a non-classical manner with PigR interacting with the RNAP-associated MglA-SspA complex at the majority of promoters but only activating transcription from those that contain a specific sequence element. Our findings reveal how transcription factors can exert regulatory effects at a restricted set of promoters despite being associated with most or all. This distinction between occupancy and regulatory effect uncovered by our data may be relevant to the study of RNAP-associated transcription regulators in other pathogenic bacteria.
Collapse
Affiliation(s)
- Kathryn M. Ramsey
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Melisa L. Osborne
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Irina O. Vvedenskaya
- Department of Genetics and Waksman Institute, Rutgers University, Piscataway, New Jersey, United States of America
| | - Cathy Su
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bryce E. Nickels
- Department of Genetics and Waksman Institute, Rutgers University, Piscataway, New Jersey, United States of America
| | - Simon L. Dove
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
30
|
Vvedenskaya IO, Goldman SR, Nickels BE. Preparation of cDNA libraries for high-throughput RNA sequencing analysis of RNA 5' ends. Methods Mol Biol 2015; 1276:211-28. [PMID: 25665566 DOI: 10.1007/978-1-4939-2392-2_12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We provide a detailed protocol for preparing cDNA libraries suitable for high-throughput sequencing that are derived specifically from the 5' ends of RNA (5' specific RNA-seq). The protocol describes how cDNA libraries for 5' specific RNA-seq can be tailored to analyze specific classes of RNAs based upon the phosphorylation status of the 5' end. Thus, the analysis of cDNA libraries generated by these methods provides information regarding both the sequence and phosphorylation status of the 5' ends of RNAs. 5' specific RNA-seq can be used to analyze transcription initiation and posttranscriptional processing of RNAs with single base pair resolution on a genome-wide level.
Collapse
Affiliation(s)
- Irina O Vvedenskaya
- Department of Genetics and Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
| | | | | |
Collapse
|
31
|
Romero DA, Hasan AH, Lin YF, Kime L, Ruiz-Larrabeiti O, Urem M, Bucca G, Mamanova L, Laing EE, van Wezel GP, Smith CP, Kaberdin VR, McDowall KJ. A comparison of key aspects of gene regulation in Streptomyces coelicolor and Escherichia coli using nucleotide-resolution transcription maps produced in parallel by global and differential RNA sequencing. Mol Microbiol 2014; 94:963-987. [PMID: 25266672 PMCID: PMC4681348 DOI: 10.1111/mmi.12810] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2014] [Indexed: 12/12/2022]
Abstract
Streptomyces coelicolor is a model for studying bacteria renowned as the foremost source of natural products used clinically. Post-genomic studies have revealed complex patterns of gene expression and links to growth, morphological development and individual genes. However, the underlying regulation remains largely obscure, but undoubtedly involves steps after transcription initiation. Here we identify sites involved in RNA processing and degradation as well as transcription within a nucleotide-resolution map of the transcriptional landscape. This was achieved by combining RNA-sequencing approaches suited to the analysis of GC-rich organisms. Escherichia coli was analysed in parallel to validate the methodology and allow comparison. Previously, sites of RNA processing and degradation had not been mapped on a transcriptome-wide scale for E. coli. Through examples, we show the value of our approach and data sets. This includes the identification of new layers of transcriptional complexity associated with several key regulators of secondary metabolism and morphological development in S. coelicolor and the identification of host-encoded leaderless mRNA and rRNA processing associated with the generation of specialized ribosomes in E. coli. New regulatory small RNAs were identified for both organisms. Overall the results illustrate the diversity in mechanisms used by different bacterial groups to facilitate and regulate gene expression.
Collapse
Affiliation(s)
- David A Romero
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of LeedsLeeds, LS2 9JT, UK
| | - Ayad H Hasan
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of LeedsLeeds, LS2 9JT, UK
| | - Yu-fei Lin
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of LeedsLeeds, LS2 9JT, UK
| | - Louise Kime
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of LeedsLeeds, LS2 9JT, UK
| | - Olatz Ruiz-Larrabeiti
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHULeioa, Spain
| | - Mia Urem
- Institute of Biology, Sylvius Laboratories, Leiden UniversityLeiden, NL-2300 RA, The Netherlands
| | - Giselda Bucca
- Department of Microbial & Cellular Sciences, Faculty of Health & Medical Sciences, University of SurreyGuildford, GU2 7XH, UK
| | - Lira Mamanova
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome CampusHinxton, Cambridge, CB10 1SA, UK
| | - Emma E Laing
- Department of Microbial & Cellular Sciences, Faculty of Health & Medical Sciences, University of SurreyGuildford, GU2 7XH, UK
| | - Gilles P van Wezel
- Institute of Biology, Sylvius Laboratories, Leiden UniversityLeiden, NL-2300 RA, The Netherlands
| | - Colin P Smith
- Department of Microbial & Cellular Sciences, Faculty of Health & Medical Sciences, University of SurreyGuildford, GU2 7XH, UK
| | - Vladimir R Kaberdin
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHULeioa, Spain
- IKERBASQUE, Basque Foundation for Science48011, Bilbao, Spain
| | - Kenneth J McDowall
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of LeedsLeeds, LS2 9JT, UK
| |
Collapse
|
32
|
Srivastav R, Kumar D, Grover A, Singh A, Manjasetty BA, Sharma R, Taneja B. Unique subunit packing in mycobacterial nanoRNase leads to alternate substrate recognitions in DHH phosphodiesterases. Nucleic Acids Res 2014; 42:7894-910. [PMID: 24878921 PMCID: PMC4081065 DOI: 10.1093/nar/gku425] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
DHH superfamily includes RecJ, nanoRNases (NrnA), cyclic nucleotide phosphodiesterases and pyrophosphatases. In this study, we have carried out in vitro and in vivo investigations on the bifunctional NrnA-homolog from Mycobacterium smegmatis, MSMEG_2630. The crystal structure of MSMEG_2630 was determined to 2.2-Å resolution and reveals a dimer consisting of two identical subunits with each subunit folding into an N-terminal DHH domain and a C-terminal DHHA1 domain. The overall structure and fold of the individual domains is similar to other members of DHH superfamily. However, MSMEG_2630 exhibits a distinct quaternary structure in contrast to other DHH phosphodiesterases. This novel mode of subunit packing and variations in the linker region that enlarge the domain interface are responsible for alternate recognitions of substrates in the bifunctional nanoRNases. MSMEG_2630 exhibits bifunctional 3′-5′ exonuclease [on both deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) substrates] as well as CysQ-like phosphatase activity (on pAp) in vitro with a preference for nanoRNA substrates over single-stranded DNA of equivalent lengths. A transposon disruption of MSMEG_2630 in M. smegmatis causes growth impairment in the presence of various DNA-damaging agents. Further phylogenetic analysis and genome organization reveals clustering of bacterial nanoRNases into two distinct subfamilies with possible role in transcriptional and translational events during stress.
Collapse
Affiliation(s)
- Rajpal Srivastav
- CSIR-IGIB, Institute of Genomics and Integrative Biology, South Campus Mathura Road, New Delhi 110020, India
| | - Dilip Kumar
- CSIR-IGIB, Institute of Genomics and Integrative Biology, South Campus Mathura Road, New Delhi 110020, India
| | - Amit Grover
- CSIR-IGIB, Institute of Genomics and Integrative Biology, South Campus Mathura Road, New Delhi 110020, India
| | - Ajit Singh
- CSIR-IGIB, Institute of Genomics and Integrative Biology, South Campus Mathura Road, New Delhi 110020, India
| | - Babu A Manjasetty
- European Molecular Biology Laboratory, Grenoble Outstation, 6 rue Jules Horowitz, Grenoble 38042, France Unit for Virus Host-Cell Interactions, University Grenoble Alpes-EMBL-CNRS, 6 rue Jules Horowitz, Grenoble 38042, France
| | - Rakesh Sharma
- CSIR-IGIB, Institute of Genomics and Integrative Biology, South Campus Mathura Road, New Delhi 110020, India
| | - Bhupesh Taneja
- CSIR-IGIB, Institute of Genomics and Integrative Biology, South Campus Mathura Road, New Delhi 110020, India
| |
Collapse
|
33
|
Novak EA, Sultan SZ, Motaleb MA. The cyclic-di-GMP signaling pathway in the Lyme disease spirochete, Borrelia burgdorferi. Front Cell Infect Microbiol 2014; 4:56. [PMID: 24822172 PMCID: PMC4013479 DOI: 10.3389/fcimb.2014.00056] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 04/13/2014] [Indexed: 11/13/2022] Open
Abstract
In nature, the Lyme disease spirochete Borrelia burgdorferi cycles between the unrelated environments of the Ixodes tick vector and mammalian host. In order to survive transmission between hosts, B. burgdorferi must be able to not only detect changes in its environment, but also rapidly and appropriately respond to these changes. One manner in which this obligate parasite regulates and adapts to its changing environment is through cyclic-di-GMP (c-di-GMP) signaling. c-di-GMP has been shown to be instrumental in orchestrating the adaptation of B. burgdorferi to the tick environment. B. burgdorferi possesses only one set of c-di-GMP-metabolizing genes (one diguanylate cyclase and two distinct phosphodiesterases) and one c-di-GMP-binding PilZ-domain protein designated as PlzA. While studies in the realm of c-di-GMP signaling in B. burgdorferi have exploded in the last few years, there are still many more questions than answers. Elucidation of the importance of c-di-GMP signaling to B. burgdorferi may lead to the identification of mechanisms that are critical for the survival of B. burgdorferi in the tick phase of the enzootic cycle as well as potentially delineate a role (if any) c-di-GMP may play in the transmission and virulence of B. burgdorferi during the enzootic cycle, thereby enabling the development of effective drugs for the prevention and/or treatment of Lyme disease.
Collapse
Affiliation(s)
| | | | - Md. A. Motaleb
- Department of Microbiology and Immunology, East Carolina University Brody School of MedicineGreenville, NC, USA
| |
Collapse
|
34
|
An RNA-seq method for defining endoribonuclease cleavage specificity identifies dual rRNA substrates for toxin MazF-mt3. Nat Commun 2014; 5:3538. [PMID: 24709835 PMCID: PMC4090939 DOI: 10.1038/ncomms4538] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 03/03/2014] [Indexed: 11/10/2022] Open
Abstract
Toxin-antitoxin (TA) systems are widespread in prokaryotes. Among these, the mazEF TA system encodes an endoribonucleolytic toxin, MazF, that inhibits growth by sequence-specific cleavage of single-stranded RNA. Defining the physiological targets of a MazF toxin first requires the identification of its cleavage specificity, yet the current toolkit is antiquated and limited. We describe a rapid genome-scale approach, MORE (Mapping by Overexpression of an RNase in Escherichia coli) RNA-seq, for defining the cleavage specificity of endoribonucleolytic toxins. Application of MORE RNA-seq to MazF-mt3 from Mycobacterium tuberculosis reveals two critical ribosomal targets — the essential, evolutionarily conserved helix/loop 70 of 23S rRNA and the anti-Shine-Dalgarno (aSD) sequence of 16S rRNA. Our findings support an emerging model where both rRNA and mRNA are principal targets of MazF toxins and suggest that, as in E. coli, removal of the aSD sequence by a MazF toxin modifies ribosomes to selectively translate leaderless mRNAs in M. tuberculosis.
Collapse
|
35
|
Two-step synthesis and hydrolysis of cyclic di-AMP in Mycobacterium tuberculosis. PLoS One 2014; 9:e86096. [PMID: 24465894 PMCID: PMC3900455 DOI: 10.1371/journal.pone.0086096] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 12/10/2013] [Indexed: 12/04/2022] Open
Abstract
Cyclic di-AMP is a recently discovered signaling molecule which regulates various aspects of bacterial physiology and virulence. Here we report the characterization of c-di-AMP synthesizing and hydrolyzing proteins from Mycobacterium tuberculosis. Recombinant Rv3586 (MtbDisA) can synthesize c-di-AMP from ATP through the diadenylate cyclase activity. Detailed biochemical characterization of the protein revealed that the diadenylate cyclase (DAC) activity is allosterically regulated by ATP. We have identified the intermediates of the DAC reaction and propose a two-step synthesis of c-di-AMP from ATP/ADP. MtbDisA also possesses ATPase activity which is suppressed in the presence of the DAC activity. Investigations by liquid chromatography -electrospray ionization mass spectrometry have detected multimeric forms of c-di-AMP which have implications for the regulation of c-di-AMP cellular concentration and various pathways regulated by the dinucleotide. We have identified Rv2837c (MtbPDE) to have c-di-AMP specific phosphodiesterase activity. It hydrolyzes c-di-AMP to 5′-AMP in two steps. First, it linearizes c-di-AMP into pApA which is further hydrolyzed to 5′-AMP. MtbPDE is novel compared to c-di-AMP specific phosphodiesterase, YybT (or GdpP) in being a soluble protein and hydrolyzing c-di-AMP to 5′-AMP. Our results suggest that the cellular concentration of c-di-AMP can be regulated by ATP concentration as well as the hydrolysis by MtbPDE.
Collapse
|
36
|
Osmundson J, Dewell S, Darst SA. RNA-Seq reveals differential gene expression in Staphylococcus aureus with single-nucleotide resolution. PLoS One 2013; 8:e76572. [PMID: 24116120 PMCID: PMC3792026 DOI: 10.1371/journal.pone.0076572] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 08/27/2013] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is a gram-positive cocci and an important human commensal bacteria and pathogen. S. aureus infections are increasingly difficult to treat because of the emergence of highly resistant MRSA (methicillin-resistant S. aureus) strains. Here we present a method to study differential gene expression in S. aureus using high-throughput RNA-sequencing (RNA-seq). We used RNA-seq to examine gene expression in S. aureus RN4220 cells containing an exogenously expressed transcription factor and between two S. aureus strains (RN4220 and NCTC8325-4). We investigated the sequence and gene expression differences between RN4220 and NCTC8325-4 and used the RNA-seq data to identify S. aureus promoters suitable for in vitro analysis. We used RNA-seq to describe, on a genome wide scale, genes positively and negatively regulated by the phage encoded transcription factor gp67. RNA-seq offers the ability to study differential gene expression with single-nucleotide resolution, and is a considerable improvement over the predominant genome-wide transcriptome technologies used in S. aureus.
Collapse
Affiliation(s)
- Joseph Osmundson
- Laboratory of Molecular Biophysics, the Rockefeller University, New York, New York, United States of America
- * E-mail:
| | - Scott Dewell
- Genomics Resource Center, the Rockefeller University, New York, New York, United States of America
| | - Seth A. Darst
- Laboratory of Molecular Biophysics, the Rockefeller University, New York, New York, United States of America
| |
Collapse
|
37
|
Uemura Y, Nakagawa N, Wakamatsu T, Kim K, Montelione GT, Hunt JF, Kuramitsu S, Masui R. Crystal structure of the ligand-binding form of nanoRNase from Bacteroides fragilis, a member of the DHH/DHHA1 phosphoesterase family of proteins. FEBS Lett 2013; 587:2669-74. [PMID: 23851074 PMCID: PMC4113422 DOI: 10.1016/j.febslet.2013.06.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/25/2013] [Accepted: 07/01/2013] [Indexed: 01/07/2023]
Abstract
NanoRNase (Nrn) specifically degrades nucleoside 3',5'-bisphosphate and the very short RNA, nanoRNA, during the final step of mRNA degradation. The crystal structure of Nrn in complex with a reaction product GMP was determined. The overall structure consists of two domains that are interconnected by a flexible loop and form a cleft. Two Mn²⁺ ions are coordinated by conserved residues in the DHH motif of the N-terminal domain. GMP binds near the DHHA1 motif region in the C-terminal domain. Our structure enables us to predict the substrate-bound form of Nrn as well as other DHH/DHHA1 phosphoesterase family proteins.
Collapse
Affiliation(s)
- Yuri Uemura
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Noriko Nakagawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan,RIKEN SPring-8 Center, Japan
| | - Taisuke Wakamatsu
- Microbial Genetic Division, Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Kwang Kim
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Gaetano T. Montelione
- Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, New York 10027, United States
| | - John F. Hunt
- Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, New York 10027, United States
| | - Seiki Kuramitsu
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan,Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan,RIKEN SPring-8 Center, Japan
| | - Ryoji Masui
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan,RIKEN SPring-8 Center, Japan,Corresponding author: Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1, Machikaneyama-cho, Toyonaka, Osaka 56-0043, Japan. Telephone: +81-6-6850-5434. Fax: +81-6-6850-5442. (R. Masui)
| |
Collapse
|
38
|
Wiesler SC, Weinzierl ROJ, Buck M. An aromatic residue switch in enhancer-dependent bacterial RNA polymerase controls transcription intermediate complex activity. Nucleic Acids Res 2013; 41:5874-86. [PMID: 23609536 PMCID: PMC3675486 DOI: 10.1093/nar/gkt271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The formation of the open promoter complex (RPo) in which the melted DNA containing the transcription start site is located at the RNA polymerase (RNAP) catalytic centre is an obligatory step in the transcription of DNA into RNA catalyzed by RNAP. In the RPo, an extensive network of interactions is established between DNA, RNAP and the σ-factor and the formation of functional RPo occurs via a series of transcriptional intermediates (collectively 'RPi'). A single tryptophan is ideally positioned to directly engage with the flipped out base of the non-template strand at the +1 site. Evidence suggests that this tryptophan (i) is involved in either forward translocation or DNA scrunching and (ii) in σ(54)-regulated promoters limits the transcription activity of at least one intermediate complex (RPi) before the formation of a fully functional RPo. Limiting RPi activity may be important in preventing the premature synthesis of abortive transcripts, suggesting its involvement in a general mechanism driving the RPi to RPo transition for transcription initiation.
Collapse
Affiliation(s)
- Simone C Wiesler
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| | | | | |
Collapse
|
39
|
Nickels BE. A new way to start: nanoRNA-mediated priming of transcription initiation. Transcription 2012; 3:300-4. [PMID: 23117822 DOI: 10.4161/trns.21903] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A recent study provides evidence that RNA polymerase uses 2- to ~4-nt RNAs, species termed "nanoRNAs," to prime transcription initiation in Escherichia coli. Priming of transcription initiation with nanoRNAs represents a previously undocumented component of transcription start site selection and gene expression.
Collapse
Affiliation(s)
- Bryce E Nickels
- Waksman Institute and Department of Genetics, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|