1
|
Ge X, Yu X, Liu Z, Yuan J, Qin A, Wang Y, Chen Y, Qin W, Liu Y, Liu X, Zhou Y, Wang P, Yang J, Liu H, Zhao Z, Hu M, Zhang Y, Sun S, Herrera-Estrella L, Tran LSP, Sun X, Li F. Spatiotemporal transcriptome and metabolome landscapes of cotton somatic embryos. Nat Commun 2025; 16:859. [PMID: 39833155 PMCID: PMC11747644 DOI: 10.1038/s41467-025-55870-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/02/2025] [Indexed: 01/22/2025] Open
Abstract
Somatic embryogenesis (SE) is a developmental process related to the regeneration of tissue-cultured plants, which serves as a useful technique for crop breeding and improvement. However, SE in cotton is difficult and elusive due to the lack of precise cellular level information on the reprogramming of gene expression patterns involved in somatic embryogenesis. Here, we investigate the spatial and single-cell expression profiles of key genes and the metabolic patterns of key metabolites by integrated single-cell RNA-sequencing (scRNA-seq), spatial transcriptomics (ST), and spatial metabolomics (SM). To evaluate the results of these analyses, we functionally characterized the potential roles of two representative marker genes, AATP1 and DOX2, in the regulation of cotton somatic embryo development. A publicly available web-based resource database ( https://cotton.cricaas.com.cn/somaticembryo/ ) in this study provides convenience for future studies of the expression patterns of marker genes at specific developmental stages during the process of SE in cotton.
Collapse
Affiliation(s)
- Xiaoyang Ge
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaole Yu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Zhixin Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Jiachen Yuan
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Aizhi Qin
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Ye Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yanli Chen
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wenqiang Qin
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yumeng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Xingxing Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yaping Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Peng Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jincheng Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Hao Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Zihao Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Mengke Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Yixin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Susu Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Luis Herrera-Estrella
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Xuwu Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China.
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China.
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
2
|
Yang B, Sun Y, Minne M, Ge Y, Yue Q, Goossens V, Mor E, Callebaut B, Bevernaege K, Winne JM, Audenaert D, De Rybel B. SPL13 controls a root apical meristem phase change by triggering oriented cell divisions. Science 2024; 386:eado4298. [PMID: 39541454 PMCID: PMC7616863 DOI: 10.1126/science.ado4298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/01/2024] [Accepted: 09/16/2024] [Indexed: 11/16/2024]
Abstract
Oriented cell divisions are crucial for determining the overall morphology and size of plants, but what controls the onset and duration of this process remains largely unknown. Here, we identified a small molecule that activates root apical meristem (RAM) expression of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE13 (SPL13) a known player in the shoot's juvenile-to-adult transition. This expression leads to oriented cell divisions in the RAM through SHORT ROOT (SHR) and cell cycle regulators. We further show that the RAM has distinct juvenile and adult phases typed by morphological and molecular characteristics and that SPL factors are crucially required for this transition in Arabidopsis and rice (Oryza sativa). In summary, we provide molecular insights into the age-dependent morphological changes occurring in the RAM during phase change.
Collapse
Affiliation(s)
- Baojun Yang
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanbiao Sun
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Max Minne
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Yanhua Ge
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qianru Yue
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Vera Goossens
- VIB Screening Core, Ghent, Belgium
- Ghent University Centre for Bioassay Development and Screening (C-BIOS), Ghent, Belgium
| | - Eliana Mor
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Brenda Callebaut
- Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
| | - Kevin Bevernaege
- Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
| | - Johan M. Winne
- Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
| | - Dominique Audenaert
- VIB Screening Core, Ghent, Belgium
- Ghent University Centre for Bioassay Development and Screening (C-BIOS), Ghent, Belgium
| | - Bert De Rybel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
3
|
Yue JR, Liu YJ, Yuan SH, Sun H, Lou HY, Li YM, Guo HY, Liu ZH, Zhang FT, Zhai N, Zhang SQ, Bai JF, Zhang LP. Uncovering seed vigor responsive miRNA in hybrid wheat and its parents by deep sequencing. BMC Genomics 2024; 25:991. [PMID: 39438825 PMCID: PMC11515737 DOI: 10.1186/s12864-024-10878-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Two-line hybrid wheat technology system is one way to harness wheat heterosis both domestically and internationally. Seed vigor is a crucial parameter for assessing seed quality, as enhanced seed vigor can lead to yield increments of over 20% to a certain extent. MicroRNAs (miRNAs) were known to participate in the development and vigor of seed in plants, but its impact on seed vigor in two-line hybrid wheat remains poorly elucidated. RESULTS The hybrid (BS1453/11GF5135) wheat exhibited superiority in seed vigor and anti-aging capacity, compared to its male parent (11GF5135, MP) and female parent (BS1453, FP). We identified four miRNAs associated with seed vigor, all of which are novel miRNAs. The majority of targets of miRNAs were related to ubiquitin ligases, kinases, sucrose synthases and hydrolases, involving in starch and sucrose metabolism, hydrolysis, catalysis, plant hormone signal transduction, and other pathways, which played crucial roles in seed development. Additionally, we also found miR531 was differentially expressed in both male parent and hybrid, and its target gene was a component of the E1 subunit of α-ketoate dehydrogenase complex, which interacted with dihydrolipoamide acetyltransferase (E2) and dihydrolipoyl dehydrogenase (E3). Finally, We established a presumptive interaction model to speculate the relationship of miR531 and seed vigor. CONCLUSIONS This study analyzed the seed vigor of two-line hybrid wheat, and screened seed vigor-related miRNAs. Meanwhile speculated the genetic relationship of hybrid and parents, in terms of miRNAs. Consequently, the present study provides new insights into the miRNA-mediated gene and protein interaction network that regulates seed vigor. These findings hold significance for enhancing the yield and quality of two-line hybrid wheat, facilitating its future applications.
Collapse
Affiliation(s)
- Jie-Ru Yue
- Institute of Hybrid Wheat, Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yong-Jie Liu
- Institute of Hybrid Wheat, Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Shao-Hua Yuan
- Institute of Hybrid Wheat, Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Hui Sun
- Institute of Hybrid Wheat, Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Hong-Yao Lou
- Institute of Hybrid Wheat, Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yan-Mei Li
- Institute of Hybrid Wheat, Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Hao-Yu Guo
- Institute of Hybrid Wheat, Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Zi-Han Liu
- Institute of Hybrid Wheat, Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Feng-Ting Zhang
- Institute of Hybrid Wheat, Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Nuo Zhai
- Institute of Hybrid Wheat, Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Sheng-Quan Zhang
- Institute of Hybrid Wheat, Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Jian-Fang Bai
- Institute of Hybrid Wheat, Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Li-Ping Zhang
- Institute of Hybrid Wheat, Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
4
|
Fu J, Tian C, Wan X, Hu R, Yu J, Zhang J, Wang S. Molecular mechanism of flower colour formation in Rhododendron simsii Planchon revealed by integration of microRNAome and RNAomics. AOB PLANTS 2024; 16:plae053. [PMID: 39430437 PMCID: PMC11489732 DOI: 10.1093/aobpla/plae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 10/13/2024] [Indexed: 10/22/2024]
Abstract
Systems-wide understanding of gene expression profile regulating flower colour formation in Rhododendron simsii Planchon is insufficient. In this research, integration analysis of ribonucleic acid (RNA)omics and microRNAome were performed to reveal the molecular mechanism of flower colour formation in three R. simsii varieties with red, pink and crimson flowers, respectively. Totally, 3129, 5755 and 5295 differentially expressed gene (DEG)s were identified through comparative transcriptome analysis between 'Red variety' and 'Pink variety' (1507 up-regulated and 1622 down-regulated), 'Red variety' and 'Crimson variety' (2148 up-regulated 3607 down-regulated), as well as 'Pink variety' and 'Crimson variety' (2089 up-regulated and 3206 down-regulated), which were involved in processes of 'catalytic activity', 'binding', 'metabolic process' and 'cellular process', as well as pathways of 'metabolic pathways', 'biosynthesis of secondary metabolites', 'plant-pathogen interaction' and 'phenylpropanoid biosynthesis'. A total of 215 miRNAs, containing 153 known miRNAs belonging to 57 families and 62 novel miRNA, were involved in flower colour formation. In particular, 55 miRNAs were significantly differently expressed. Based on miRNA-mRNA regulatory network, ath-miR5658 could affect the synthesis of pelargonidin, cyanidin and delphinidin through downregulating accumulation of anthocyanidin 3-O-glucosyltransferase; ath-miR868-3p could regulate isoflavonoid biosynthesis through downregulating expression of CYP81E1/E7; ath-miR156g regulated the expression of flavonoid 3',5'-hydroxylase; and ath-miR829-5p regulated flavonol synthasein flavonoid biosynthesis process. This research will provide important roles in breeding new varieties with rich flower colour.
Collapse
Affiliation(s)
- Jun Fu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, Hubei Province, 438000, China
| | - Chuanchuan Tian
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, Hubei Province, 438000, China
| | - Xuchun Wan
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, Hubei Province, 438000, China
| | - Ruibin Hu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, Hubei Province, 438000, China
| | - Jiaojun Yu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, Hubei Province, 438000, China
| | - Jialiang Zhang
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, Hubei Province, 438000, China
| | - Shuzhen Wang
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, Hubei Province, 438000, China
| |
Collapse
|
5
|
Zhu K, Wei L, Ma W, Zhao J, Chen M, Wei G, Liu H, Tan P, Peng F. The Integrated Analysis of miRNome and Degradome Sequencing Reveals the Regulatory Mechanisms of Seed Development and Oil Biosynthesis in Pecan ( Carya illinoinensis). Foods 2024; 13:2934. [PMID: 39335863 PMCID: PMC11430883 DOI: 10.3390/foods13182934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/08/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Pecan seed oil is a valuable source of essential fatty acids and various bioactive compounds; however, the functions of microRNAs and their targets in oil biosynthesis during seed development are still unknown. Here, we found that the oil content increased rapidly in the three early stages in three cultivars, and that oleic acid was the predominant fatty acid component in the mature pecan embryos. We identified, analyzed, and validated the expression levels of miRNAs related to seed development and oil biosynthesis, as well as their potential target genes, using small RNA sequencing data from three stages (120, 135, and 150 days after flowering). During the seed development process, 365 known and 321 novel miRNAs were discovered. In total, 91 known and 181 novel miRNAs were found to be differentially expressed, and 633 target genes were further investigated. The expression trend analysis revealed that the 91 known miRNAs were classified into eight groups, approximately two-thirds of which were up-regulated, whereas most novel miRNAs were down-regulated. The qRT-PCR and degradome sequencing data were used to identify five miRNA- target pairs. Overall, our study provides valuable insights into the molecular regulation of oil biosynthesis in pecan seeds.
Collapse
Affiliation(s)
- Kaikai Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Lu Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjuan Ma
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Juan Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Mengyun Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Guo Wei
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Hui Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Pengpeng Tan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Fangren Peng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
6
|
Nowak K, Wójcik AM, Konopka K, Jarosz A, Dombert K, Gaj MD. miR156-SPL and miR169-NF-YA Modules Regulate the Induction of Somatic Embryogenesis in Arabidopsis via LEC- and Auxin-Related Pathways. Int J Mol Sci 2024; 25:9217. [PMID: 39273166 PMCID: PMC11394981 DOI: 10.3390/ijms25179217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The embryogenic transition of plant somatic cells to produce somatic embryos requires extensive reprogramming of the cell transcriptome. The prominent role of transcription factors (TFs) and miRNAs in controlling somatic embryogenesis (SE) induction in plants was documented. The profiling of MIRNA expression in the embryogenic culture of Arabidopsis implied the contribution of the miR156 and miR169 to the embryogenic induction. In the present study, the function of miR156 and miR169 and the candidate targets, SPL and NF-YA genes, were investigated in Arabidopsis SE. The results showed that misexpression of MIRNA156 and candidate SPL target genes (SPL2, 3, 4, 5, 9, 10, 11, 13, 15) negatively affected the embryogenic potential of transgenic explants, suggesting that specific fine-tuning of the miR156 and target genes expression levels seems essential for efficient SE induction. The results revealed that SPL11 under the control of miR156 might contribute to SE induction by regulating the master regulators of SE, the LEC (LEAFY COTYLEDON) genes (LEC1, LEC2, FUS3). Moreover, the role of miR169 and its candidate NF-YA targets in SE induction was demonstrated. The results showed that several miR169 targets, including NF-YA1, 3, 5, 8, and 10, positively regulated SE. We found, that miR169 via NF-YA5 seems to modulate the expression of a master SE regulator LEC1/NF-YA and other auxin-related genes: YUCCA (YUC4, 10) and PIN1 in SE induction. The study provided new insights into miR156-SPL and miR169-NF-YA functions in the auxin-related and LEC-controlled regulatory network of SE.
Collapse
Affiliation(s)
| | | | | | | | | | - Małgorzata D. Gaj
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, 40-007 Katowice, Poland; (A.M.W.); (K.K.); (A.J.); (K.D.)
| |
Collapse
|
7
|
Gazzarrini S, Song L. LAFL Factors in Seed Development and Phase Transitions. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:459-488. [PMID: 38657282 DOI: 10.1146/annurev-arplant-070623-111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Development is a chain reaction in which one event leads to another until the completion of a life cycle. Phase transitions are milestone events in the cycle of life. LEAFY COTYLEDON1 (LEC1), ABA INSENSITIVE3 (ABI3), FUSCA3 (FUS3), and LEC2 proteins, collectively known as LAFL, are master transcription factors (TFs) regulating seed and other developmental processes. Since the initial characterization of the LAFL genes, more than three decades of active research has generated tremendous amounts of knowledge about these TFs, whose roles in seed development and germination have been comprehensively reviewed. Recent advances in cell biology with genetic and genomic tools have allowed the characterization of the LAFL regulatory networks in previously challenging tissues at a higher throughput and resolution in reference species and crops. In this review, we provide a holistic perspective by integrating advances at the epigenetic, transcriptional, posttranscriptional, and protein levels to exemplify the spatiotemporal regulation of the LAFL networks in Arabidopsis seed development and phase transitions, and we briefly discuss the evolution of these TF networks.
Collapse
Affiliation(s)
- Sonia Gazzarrini
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada;
| | - Liang Song
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada;
| |
Collapse
|
8
|
Guo S, Zhang M, Feng M, Liu G, Torregrosa L, Tao X, Ren R, Fang Y, Zhang Z, Meng J, Xu T. miR156b-targeted VvSBP8/13 functions downstream of the abscisic acid signal to regulate anthocyanins biosynthesis in grapevine fruit under drought. HORTICULTURE RESEARCH 2024; 11:uhad293. [PMID: 38371638 PMCID: PMC10873574 DOI: 10.1093/hr/uhad293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/20/2023] [Indexed: 02/20/2024]
Abstract
Anthocyanins are the primary color components of grapevine berries and wines. In cultivation practices, a moderate water deficit can promote anthocyanin accumulation in red grape skins. Our previous study showed that abscisic acid (ABA) plays a key role in this process. Herein, we identified a microRNA, vv-miR156b, that is generated in grapevine berries in response to drought stress, along with increasing anthocyanin content and biosynthetic structural gene transcripts. In contrast, vv-miR156b short tandem target mimic (STTM) function-loss callus exhibits the opposite phenotype. Results from in vivo and in vitro experiments revealed that the ABA-signaling-regulated transcription factor VvAREB2 binds directly to the ABA-responsive element (ABRE) of the MIR156b promoter and activates miR156b expression. Furthermore, two miR156b downstream targets, VvSBP8 and VvSBP13, exhibited reduced grape anthocyanin content in their overexpressors but there was a contrary result in their CRISPR-edited lines, the decrease in anthocyanin content was rescued in miR156b and SBP8/13 double overexpressors. We further demonstrated that both VvSBP8 and VvSBP13, encoding transcriptional repressors, displayed sufficient ability to interact with VvMYC1 and VvMYBA1, thereby interfering with MYB-bHLH-WD (MBW) repeat transcriptional complex formation, resulting in the repression of anthocyanin biosynthesis. Our findings demonstrate a direct functional relationship between ABA signaling and the miR156-SBP-MBW complex regulatory module in driving drought-induced anthocyanin accumulation in grape berries.
Collapse
Affiliation(s)
- Shuihuan Guo
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Meng Zhang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingxin Feng
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guipeng Liu
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Laurent Torregrosa
- UMR LEPSE, Université de Montpellier , CIRAD, INRAE, Institut Agro, 34060 Montpellier, France
| | - Xiaoqing Tao
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruihua Ren
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yulin Fang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhenwen Zhang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiangfei Meng
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tengfei Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
9
|
Ohnishi Y, Kawashima T. Evidence of a novel silencing effect on transgenes in the Arabidopsis thaliana sperm cell. THE PLANT CELL 2023; 35:3926-3936. [PMID: 37602710 PMCID: PMC10615207 DOI: 10.1093/plcell/koad219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/17/2023] [Accepted: 08/08/2023] [Indexed: 08/22/2023]
Abstract
We encountered unexpected transgene silencing in Arabidopsis thaliana sperm cells; transgenes encoding proteins with no specific intracellular localization (cytoplasmic proteins) were silenced transcriptionally or posttranscriptionally. The mRNA of cytoplasmic protein transgenes tagged with a fluorescent protein gene was significantly reduced, resulting in undetectable fluorescent protein signals in the sperm cell. Silencing of the cytoplasmic protein transgenes in the sperm cell did not affect the expression of either its endogenous homologous genes or cotransformed transgenes encoding a protein with targeted intracellular localization. This transgene silencing in the sperm cell persisted in mutants of the major gene silencing machinery including DNA methylation. The incomprehensible, yet real, transgene silencing phenotypes occurring in the sperm cell could mislead the interpretation of experimental results in plant reproduction, and this Commentary calls attention to that risk and highlights details of this novel cytoplasmic protein transgene silencing.
Collapse
Affiliation(s)
- Yukinosuke Ohnishi
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40503,USA
| | - Tomokazu Kawashima
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40503,USA
| |
Collapse
|
10
|
Zhang YC, Yuan C, Chen YQ. Noncoding RNAs and their roles in regulating the agronomic traits of crops. FUNDAMENTAL RESEARCH 2023; 3:718-726. [PMID: 38933294 PMCID: PMC11197796 DOI: 10.1016/j.fmre.2023.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/09/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Molecular breeding is one of the most effective methods for improving the performance of crops. Understanding the genome features of crops, especially the physiological functions of individual genes, is of great importance to molecular breeding. Evidence has shown that genomes of both animals and plants transcribe numerous non-coding RNAs, which are involved in almost every aspect of development. In crops, an increasing number of studies have proven that non-coding RNAs are new genetic resources for regulating crop traits. In this review, we summarize the current knowledge of non-coding RNAs, which are potential crop trait regulators, and focus on the functions of long non-coding RNAs (lncRNAs) in determining crop grain yield, phased small-interfering RNAs (phasiRNAs) in regulating fertility, small interfering RNAs (siRNAs) and microRNAs (miRNAs) in facilitating plant immune response and disease resistance, and miRNAs mediating nutrient and metal stress. Finally, we also discuss the next-generation method for ncRNA application in crop domestication and breeding.
Collapse
Affiliation(s)
- Yu-Chan Zhang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chao Yuan
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yue-Qin Chen
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
11
|
Klajn N, Kapczyńska K, Pasikowski P, Glazińska P, Kugiel H, Kęsy J, Wojciechowski W. Regulatory Effects of ABA and GA on the Expression of Conglutin Genes and LAFL Network Genes in Yellow Lupine ( Lupinus luteus L.) Seeds. Int J Mol Sci 2023; 24:12380. [PMID: 37569754 PMCID: PMC10418516 DOI: 10.3390/ijms241512380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
The maturation of seeds is a process of particular importance both for the plant itself by assuring the survival of the species and for the human population for nutritional and economic reasons. Controlling this process requires a strict coordination of many factors at different levels of the functioning of genetic and hormonal changes as well as cellular organization. One of the most important examples is the transcriptional activity of the LAFL gene regulatory network, which includes LEAFY COTYLEDON1 (LEC1) and LEC1-LIKE (L1L) and ABSCISIC ACID INSENSITIVE3 (ABI3), FUSCA3 (FUS3), and LEC2 (LEAFY COTYLEDON2), as well as hormonal homeostasis-of abscisic acid (ABA) and gibberellins (GA) in particular. From the nutritional point of view, the key to seed development is the ability of seeds to accumulate large amounts of proteins with different structures and properties. The world's food deficit is mainly related to shortages of protein, and taking into consideration the environmental changes occurring on Earth, it is becoming necessary to search for a way to obtain large amounts of plant-derived protein while maintaining the diversity of its origin. Yellow lupin, whose storage proteins are conglutins, is one of the plant species native to Europe that accumulates large amounts of this nutrient in its seeds. In this article we have shown the key changes occurring in the developing seeds of the yellow-lupin cultivar Taper by means of modern molecular biology techniques, including RNA-seq, chromatographic techniques and quantitative PCR analysis. We identified regulatory genes fundamental to the seed-filling process, as well as genes encoding conglutins. We also investigated how exogenous application of ABA and GA3 affects the expression of LlLEC2, LlABI3, LlFUS3, and genes encoding β- and δ-conglutins and whether it results in the amount of accumulated seed storage proteins. The research shows that for each species, even related plants, very specific changes can be identified. Thus the analysis and possibility of using such an approach to improve and stabilize yields requires even more detailed and extended research.
Collapse
Affiliation(s)
- Natalia Klajn
- Department of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland; (P.G.); (J.K.)
| | - Katarzyna Kapczyńska
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland;
| | - Paweł Pasikowski
- Life Sciences and Biotechnology Center, Łukasiewicz Research Network–PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wroclaw, Poland;
- Captor Therapeutics S.A., Duńska 11, 54-427 Wroclaw, Poland
| | - Paulina Glazińska
- Department of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland; (P.G.); (J.K.)
| | - Hubert Kugiel
- LABcenter Life Agro Biotechnology Ltd., Gliniana 14, 97-300 Piotrków Trybunalski, Poland; (H.K.); (W.W.)
| | - Jacek Kęsy
- Department of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland; (P.G.); (J.K.)
| | - Waldemar Wojciechowski
- LABcenter Life Agro Biotechnology Ltd., Gliniana 14, 97-300 Piotrków Trybunalski, Poland; (H.K.); (W.W.)
| |
Collapse
|
12
|
Niazi A, Iranbakhsh A, Esmaeel Zadeh M, Ebadi M, Oraghi Ardebili Z. Zinc oxide nanoparticles (ZnONPs) influenced seed development, grain quality, and remobilization by affecting the transcription of microRNA 171 (miR171), miR156, NAM, and SUT genes in wheat (Triticum aestivum): a biological advantage and risk assessment study. PROTOPLASMA 2023; 260:839-851. [PMID: 36318315 DOI: 10.1007/s00709-022-01817-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Limited studies have been conducted on the role of microRNAs (miRs) and transcription factors in regulating plant cell responses to nanoparticles. This study attempted to address whether the foliar application of zinc oxide nanoparticles (ZnONPs; 0, 10, 25, and 50 mgL-1) can affect miRs, gene expression, and wheat grain quality. The seedlings were sprayed with ZnONPs (0, 10, 25, and 50 mgL-1) or bulk counterpart (BZnO) five times at 72 h intervals. The application of ZnONPs at 10 mgL-1 increased the number of spikelets and seed weight, while the nano-supplement at 50 mgL-1 was accompanied by severe restriction on developing spikes and grains. ZnONPs, in a dose-dependent manner, transcriptionally influenced miR156 and miR171. The expression of miR171 showed a similar trend to that of miR156. The ZnONPs at optimum concentration upregulated the NAM transcription factor and sucrose transporter (SUT) at transcriptional levels. However, the transcription of both NAM and SUT genes displayed a downward trend in response to the toxic dose of ZnONPs (50 mgL-1). Utilization of ZnONPs increased proline and total soluble phenolic content. Monitoring the accumulation of carbohydrates, including fructan, glucose, fructose, and sucrose, revealed that ZnONPs at 10 mgL-1 modified the source/sink communication and nutrient remobilization. The molecular and physiological data revealed that the expression of miR156 and miR171 is tightly linked to seed grain development, remobilization of carbohydrates, and genes involved in nutrient transportation. This study establishes a novel strategy for obtaining higher yields in crops. This biological risk assessment investigation also displays the potential hazard of applying ZnONPs at the flowering developmental phase.
Collapse
Affiliation(s)
- Atefe Niazi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Iranbakhsh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mohsen Esmaeel Zadeh
- Seed and Plant Improvement Institute, Agricultural Research Education & Extension Organization, Karaj, Iran
| | - Mostafa Ebadi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | | |
Collapse
|
13
|
Lee S, Singh MB, Bhalla PL. Functional analysis of soybean miR156 and miR172 in tobacco highlights their role in plant morphology and floral transition. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:393-401. [PMID: 36753825 DOI: 10.1016/j.plaphy.2023.01.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Soybean (Glycine max), a significant oilseed and protein source for humans and livestock feed, needs short day photoperiod for floral induction. Further, soybean has a paleopolyploid genome with multiple copies of flowering genes adding to the complexity of genetic regulation of flowering, and seed set, especially in investigating the role of the noncoding genome. microRNAs, a class of noncoding RNA, play a regulatory role in plant development. miR156 and miR172 are major components of the essential regulatory hub controlling juvenile and vegetative developments and initiation of reproductive phase change leading to flowering. These microRNAs have been originally isolated and studied from model plant, Arabidopsis. However, a study on soybean microRNAs is lacking. We investigated the temporal expression patterns of gma-miR156a and gma-miR172a and found inversely related - gma-miR156a expression was higher in the vegetative stage, and gma-miR172a expression was elevated under inductive flowering conditions. The functions of gma-miR156a and gma-miR172a were evaluated via heterologous expressions in transgenic tobacco plants (Nicotiana tabacum L.). The analysis of overexpression transgenic lines highlighted that gma-miR156a plays a role in juvenile development via repression of the SPL transcription factor family. In contrast, gma-miR172a plays a pivotal role in the reproductive development phase by down-regulating its target genes, AP2. In addition, ectopic expression of gma-miR156a and gma-miR172a affected plant morphology and physiology during plant growth. Collectively, our results suggest that gma-miR156a and gma-miR172a regulate multiple morpho-physiological traits that could be used to enhance crop yield under changing climate conditions.
Collapse
Affiliation(s)
- Sangil Lee
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Mohan B Singh
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Prem L Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
14
|
Identification of Small RNAs Associated with Salt Stress in Chrysanthemums through High-Throughput Sequencing and Bioinformatics Analysis. Genes (Basel) 2023; 14:genes14030561. [PMID: 36980835 PMCID: PMC10048073 DOI: 10.3390/genes14030561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023] Open
Abstract
The Chrysanthemum variety “Niu 9717” exhibits excellent characteristics as an ornamental plant and has good salt resistance. In this study, this plant was treated with 200 mM NaCl for 12 h followed by high-throughput sequencing of miRNA and degradome. Subsequently, the regulatory patterns of potential miRNAs and their target genes were searched to elucidate how Chrysanthemum miRNAs respond to salt. From the root and leaf samples, we identified a total of 201 known miRNAs belonging to 40 families; furthermore, we identified 79 new miRNAs, of which 18 were significantly differentially expressed (p < 0.05). The expressed miRNAs, which targeted a total of 144 mRNAs in the leaf and 215 mRNAs in the root, formed 144 and 226 miRNA–target pairs in roots and leaves, respectively. Combined with the miRNA expression profile, degradome and transcriptome data were then analyzed to understand the possible effects of the miRNA target genes and their pathways on salt stress. The identified genes were mostly located in pathways related to hormone signaling during plant growth and development. Overall, these findings suggest that conserved and novel miRNAs may improve salt tolerance through the regulation of hormone signal synthesis or expression of genes involved in hormone synthesis.
Collapse
|
15
|
Ma J, Chen X, Han F, Song Y, Zhou B, Nie Y, Li Y, Niu S. The long road to bloom in conifers. FORESTRY RESEARCH 2022; 2:16. [PMID: 39525411 PMCID: PMC11524297 DOI: 10.48130/fr-2022-0016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/16/2022] [Indexed: 11/16/2024]
Abstract
More than 600 species of conifers (phylum Pinophyta) serve as the backbone of the Earth's terrestrial plant community and play key roles in global carbon and water cycles. Although coniferous forests account for a large fraction of global wood production, their productivity relies largely on the use of genetically improved seeds. However, acquisition of such seeds requires recurrent selection and testing of genetically superior parent trees, eventually followed by the establishment of a seed orchard to produce the improved seeds. The breeding cycle for obtaining the next generation of genetically improved seeds can be significantly lengthened when a target species has a long juvenile period. Therefore, development of methods for diminishing the juvenile phase is a cost-effective strategy for shortening breeding cycle in conifers. The molecular regulatory programs associated with the reproductive transition and annual reproductive cycle of conifers are modulated by environmental cues and endogenous developmental signals. Mounting evidence indicates that an increase in global average temperature seriously threatens plant productivity, but how conifers respond to the ever-changing natural environment has yet to be fully characterized. With the breakthrough of assembling and annotating the giant genome of conifers, identification of key components in the regulatory cascades that control the vegetative to reproductive transition is imminent. However, comparison of the signaling pathways that control the reproductive transition in conifers and the floral transition in Arabidopsis has revealed many differences. Therefore, a more complete understanding of the underlying regulatory mechanisms that control the conifer reproductive transition is of paramount importance. Here, we review our current understanding of the molecular basis for reproductive regulation, highlight recent discoveries, and review new approaches for molecular research on conifers.
Collapse
Affiliation(s)
- Jingjing Ma
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, Zhejiang, PR China
| | - Xi Chen
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Fangxu Han
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Yitong Song
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Biao Zhou
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Yumeng Nie
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Yue Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Shihui Niu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| |
Collapse
|
16
|
Identification of miRNAs Mediating Seed Storability of Maize during Germination Stage by High-Throughput Sequencing, Transcriptome and Degradome Sequencing. Int J Mol Sci 2022; 23:ijms232012339. [PMID: 36293196 PMCID: PMC9604548 DOI: 10.3390/ijms232012339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Seed storability is an important trait for improving grain quality and germplasm conservation, but little is known about the regulatory mechanisms and gene networks involved. MicroRNAs (miRNAs) are small non-coding RNAs regulating the translation and accumulation of their target mRNAs by means of sequence complementarity and have recently emerged as critical regulators of seed germination. Here, we used the germinating embryos of two maize inbred lines with significant differences in seed storability to identify the miRNAs and target genes involved. We identified a total of 218 previously known and 448 novel miRNAs by miRNA sequencing and degradome analysis, of which 27 known and 11 newly predicted miRNAs are differentially expressed in two maize inbred lines, as measured by Gene Ontology (GO) enrichment analysis. We then combined transcriptome sequencing and real-time quantitative polymerase chain reaction (RT-PCR) to screen and confirm six pairs of differentially expressed miRNAs associated with seed storability, along with their negative regulatory target genes. The enrichment analysis suggested that the miRNAs/target gene mediation of seed storability occurs via the ethylene activation signaling pathway, hormone synthesis and signal transduction, as well as plant organ morphogenesis. Our results should help elucidate the mechanisms through which miRNAs are involved in seed storability in maize.
Collapse
|
17
|
Zhao C, Biondic S, Vandal K, Björklund ÅK, Hagemann-Jensen M, Sommer TM, Canizo J, Clark S, Raymond P, Zenklusen DR, Rivron N, Reik W, Petropoulos S. Single-cell multi-omics of human preimplantation embryos shows susceptibility to glucocorticoids. Genome Res 2022; 32:1627-1641. [PMID: 35948369 PMCID: PMC9528977 DOI: 10.1101/gr.276665.122] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022]
Abstract
The preconceptual, intrauterine, and early life environments can have a profound and long-lasting impact on the developmental trajectories and health outcomes of the offspring. Given the relatively low success rates of assisted reproductive technologies (ART; ∼25%), additives and adjuvants, such as glucocorticoids, are used to improve the success rate. Considering the dynamic developmental events that occur during this window, these exposures may alter blastocyst formation at a molecular level, and as such, affect not only the viability of the embryo and the ability of the blastocyst to implant, but also the developmental trajectory of the first three cell lineages, ultimately influencing the physiology of the embryo. In this study, we present a comprehensive single-cell transcriptome, methylome, and small RNA atlas in the day 7 human embryo. We show that, despite no change in morphology and developmental features, preimplantation glucocorticoid exposure reprograms the molecular profile of the trophectoderm (TE) lineage, and these changes are associated with an altered metabolic and inflammatory response. Our data also suggest that glucocorticoids can precociously mature the TE sublineages, supported by the presence of extravillous trophoblast markers in the polar sublineage and presence of X Chromosome dosage compensation. Further, we have elucidated that epigenetic regulation-DNA methylation and microRNAs (miRNAs)-likely underlies the transcriptional changes observed. This study suggests that exposures to exogenous compounds during preimplantation may unintentionally reprogram the human embryo, possibly leading to suboptimal development and longer-term health outcomes.
Collapse
Affiliation(s)
- Cheng Zhao
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, 14186 Stockholm, Sweden
| | - Savana Biondic
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, H2X 0A9 Montréal, Canada
- Département de Médecine, Université de Montréal, H3T 1J4 Montréal, Canada
| | - Katherine Vandal
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, H2X 0A9 Montréal, Canada
- Département de Médecine, Université de Montréal, H3T 1J4 Montréal, Canada
| | - Åsa K Björklund
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, SE-752 37 Uppsala, Sweden
| | | | - Theresa Maria Sommer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Jesica Canizo
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, H2X 0A9 Montréal, Canada
- Département de Médecine, Université de Montréal, H3T 1J4 Montréal, Canada
| | - Stephen Clark
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Pascal Raymond
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, H3T 1J4 Montréal, Canada
| | - Daniel R Zenklusen
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, H3T 1J4 Montréal, Canada
| | - Nicolas Rivron
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Wolf Reik
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom
- Wellcome Sanger Institute, Cambridge CB10 1RQ, United Kingdom
- Center for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| | - Sophie Petropoulos
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, 14186 Stockholm, Sweden
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, H2X 0A9 Montréal, Canada
- Département de Médecine, Université de Montréal, H3T 1J4 Montréal, Canada
| |
Collapse
|
18
|
Han X, Zhang YW, Liu JY, Zuo JF, Zhang ZC, Guo L, Zhang YM. 4D genetic networks reveal the genetic basis of metabolites and seed oil-related traits in 398 soybean RILs. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:92. [PMID: 36076247 PMCID: PMC9461130 DOI: 10.1186/s13068-022-02191-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/27/2022] [Indexed: 11/10/2022]
Abstract
Background The yield and quality of soybean oil are determined by seed oil-related traits, and metabolites/lipids act as bridges between genes and traits. Although there are many studies on the mode of inheritance of metabolites or traits, studies on multi-dimensional genetic network (MDGN) are limited. Results In this study, six seed oil-related traits, 59 metabolites, and 107 lipids in 398 recombinant inbred lines, along with their candidate genes and miRNAs, were used to construct an MDGN in soybean. Around 175 quantitative trait loci (QTLs), 36 QTL-by-environment interactions, and 302 metabolic QTL clusters, 70 and 181 candidate genes, including 46 and 70 known homologs, were previously reported to be associated with the traits and metabolites, respectively. Gene regulatory networks were constructed using co-expression, protein–protein interaction, and transcription factor binding site and miRNA target predictions between candidate genes and 26 key miRNAs. Using modern statistical methods, 463 metabolite–lipid, 62 trait–metabolite, and 89 trait–lipid associations were found to be significant. Integrating these associations into the above networks, an MDGN was constructed, and 128 sub-networks were extracted. Among these sub-networks, the gene–trait or gene–metabolite relationships in 38 sub-networks were in agreement with previous studies, e.g., oleic acid (trait)–GmSEI–GmDGAT1a–triacylglycerol (16:0/18:2/18:3), gene and metabolite in each of 64 sub-networks were predicted to be in the same pathway, e.g., oleic acid (trait)–GmPHS–d-glucose, and others were new, e.g., triacylglycerol (16:0/18:1/18:2)–GmbZIP123–GmHD-ZIPIII-10–miR166s–oil content. Conclusions This study showed the advantages of MGDN in dissecting the genetic relationships between complex traits and metabolites. Using sub-networks in MGDN, 3D genetic sub-networks including pyruvate/threonine/citric acid revealed genetic relationships between carbohydrates, oil, and protein content, and 4D genetic sub-networks including PLDs revealed the relationships between oil-related traits and phospholipid metabolism likely influenced by the environment. This study will be helpful in soybean quality improvement and molecular biological research. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02191-1.
Collapse
|
19
|
Gao L, Lyu T, Lyu Y. Genome-Wide Analysis of the SPL Gene Family and Expression Analysis during Flowering Induction in Prunus × yedoensis 'Somei-yoshino'. Int J Mol Sci 2022; 23:ijms231710052. [PMID: 36077445 PMCID: PMC9456211 DOI: 10.3390/ijms231710052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022] Open
Abstract
SQUAMOSA Promoter-Binding Protein-Like (SPL) genes encode plant-specific transcription factors which bind to the SQUAMOSA promoter of the MADS-box genes to regulate its expression. It plays important regulatory roles in floral induction and development, fertility, light signals and hormonal transduction, and stress response in plants. In this study, 32 PySPL genes with complete SBP (squamosa promoter binding protein) conserved domain were identified from the genome of Prunus × yedoensis ‘Somei-yoshino’ and analyzed by bioinformatics. 32 PySPLs were distributed on 13 chromosomes, encoding 32 PySPL proteins with different physical and chemical properties. The phylogenetic tree constructed with Arabidopsis thaliana and Oryza sativa can be divided into 10 subtribes, indicating PySPLs of different clusters have different biological functions. The conserved motif prediction showed that the number and distribution of motifs on each PySPL is varied. The gene structure analysis revealed that PySPLs harbored exons ranging from 2 to 10. The predictive analysis of acting elements showed that the promoter of PySPLs contain a large number of light-responsive elements, as well as response elements related to hormone response, growth and development and stress response. The analysis of the PySPLs expressions in flower induction and flower organs based on qRT-PCR showed that PySPL06/22 may be the key genes of flower development, PySPL01/06 and PySPL22 may play a role in the development of sepal and pistil, respectively. The results provide a foundation for the study of SPL transcription factors of Prunus × yedoensis ‘Somei-yoshino’ and provide more reference information of the function of SPL gene in flowering.
Collapse
Affiliation(s)
- Lan Gao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, China National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Tong Lyu
- Beijing Flower Engineering Technology Research Center, Plant Institute, China National Botanical Garden North Park, Beijing 100093, China
| | - Yingmin Lyu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, China National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Correspondence:
| |
Collapse
|
20
|
Zhao H, Cao H, Zhang M, Deng S, Li T, Xing S. Genome-Wide Identification and Characterization of SPL Family Genes in Chenopodium quinoa. Genes (Basel) 2022; 13:genes13081455. [PMID: 36011366 PMCID: PMC9408038 DOI: 10.3390/genes13081455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 12/02/2022] Open
Abstract
SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes encode a large family of plant-specific transcription factors that play important roles in plant growth, development, and stress responses. However, there is little information available on SPL genes in Chenopodiaceae. Here, 23 SPL genes were identified and characterized in the highly nutritious crop Chenopodium quinoa. Chromosome localization analysis indicated that the 23 CqSPL genes were unevenly distributed on 12 of 18 chromosomes. Two zinc finger-like structures and a nuclear location signal were present in the SBP domains of all CqSPLs, with the exception of CqSPL21/22. Phylogenetic analysis revealed that these genes were classified into eight groups (group I–VIII). The exon–intron structure and motif composition of the genes in each group were similar. Of the 23 CqSPLs, 13 were potential targets of miR156/7. In addition, 5 putative miR156-encoding loci and 13 putative miR157-encoding loci were predicted in the quinoa genome, and they were unevenly distributed on chromosome 1–4. The expression of several Cqu-MIR156/7 loci was confirmed by reverse transcription polymerase chain reaction in seedlings. Many putative cis-elements associated with light, stress, and phytohormone responses were identified in the promoter regions of CqSPLs, suggesting that CqSPL genes are likely involved in the regulation of key developmental processes and stress responses. Expression analysis revealed highly diverse expression patterns of CqSPLs among tissues. Many CqSPLs were highly expressed in leaves, flowers, and seeds, and their expression levels were low in the roots, suggesting that CqSPLs play distinct roles in the development and growth of quinoa. The expression of 13 of 23 CqSPL genes responded to salt treatment (11 up-regulated and 2 down-regulated). A total of 22 of 23 CqSPL genes responded to drought stress (21 up-regulated and 1 down-regulated). Moreover, the expression of 14 CqSPL genes was significantly altered following cadmium treatment (3 up-regulated and 11 down-regulated). CqSPL genes are thus involved in quinoa responses to salt/drought and cadmium stresses. These findings provide new insights that will aid future studies of the biological functions of CqSPLs in C. quinoa.
Collapse
Affiliation(s)
- Hongmei Zhao
- College of Biological Sciences and Technology, Jinzhong University, Jinzhong 030600, Shanxi, China
| | - Huaqi Cao
- College of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Mian Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Sufang Deng
- College of Biological Sciences and Technology, Jinzhong University, Jinzhong 030600, Shanxi, China
- College of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Tingting Li
- College of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Shuping Xing
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, Shanxi, China
- Correspondence: ; Tel.: +86-186-0346-2517
| |
Collapse
|
21
|
Xiong C, Pei H, Zhang Y, Ren W, Ma Z, Tang Y, Huang J. Integrative analysis of transcriptome and miRNAome reveals molecular mechanisms regulating pericarp thickness in sweet corn during kernel development. FRONTIERS IN PLANT SCIENCE 2022; 13:945379. [PMID: 35958194 PMCID: PMC9361504 DOI: 10.3389/fpls.2022.945379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/27/2022] [Indexed: 06/18/2023]
Abstract
Pericarp thickness affects the edible quality of sweet corn (Zea mays L. saccharata Sturt.). Therefore, breeding varieties with a thin pericarp is important for the quality breeding of sweet corn. However, the molecular mechanisms underlying the pericarp development remain largely unclear. We performed an integrative analysis of mRNA and miRNA sequencing to elucidate the genetic mechanism regulating pericarp thickness during kernel development (at 15 days, 19 days, and 23 days after pollination) of two sweet corn inbred lines with different pericarp thicknesses (M03, with a thinner pericarp and M08, with a thicker pericarp). A total of 2,443 and 1,409 differentially expressed genes (DEGs) were identified in M03 and M08, respectively. Our results indicate that phytohormone-mediated programmed cell death (PCD) may play a critical role in determining pericarp thickness in sweet corn. Auxin (AUX), gibberellin (GA), and brassinosteroid (BR) signal transduction may indirectly mediate PCD to regulate pericarp thickness in M03 (the thin pericarp variety). In contrast, abscisic acid (ABA), cytokinin (CK), and ethylene (ETH) signaling may be the key regulators of pericarp PCD in M08 (the thick pericarp variety). Furthermore, 110 differentially expressed microRNAs (DEMIs) and 478 differentially expressed target genes were identified. miRNA164-, miRNA167-, and miRNA156-mediated miRNA-mRNA pairs may participate in regulating pericarp thickness. The expression results of DEGs were validated by quantitative real-time PCR. These findings provide insights into the molecular mechanisms regulating pericarp thickness and propose the objective of breeding sweet corn varieties with a thin pericarp.
Collapse
|
22
|
Sun J, Li GS. Identification of genes differentially expressed between prostrate shoots and erect shoots in the lycophyte Selaginella nipponica using an RNA-seq approach. AOB PLANTS 2022; 14:plac018. [PMID: 35694642 PMCID: PMC9179412 DOI: 10.1093/aobpla/plac018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Lycophytes are the earliest vascular plants and Selaginella is the most studied genus among them. Prostrate shoots are produced during early growth and erect shoots emerge later in S. nipponica, thus providing an opportunity for exploring the evolution of the mechanism underlying the transition between growth phases. Six libraries were sequenced for the prostrate and the erect shoots, and a total of 206 768 genes were identified. Some genes were differentially expressed in prostate and erect shoot, with relatively high expression in the prostate shoots being related to hormone responses and defence reactions, while higher expression in the erect shoots was related to spore formation and shoot development. Some SPL genes possessed a miR156 binding site and were highly expressed in the erect shoots, while AP2-like genes were more highly expressed in the prostrate shoots but simultaneously lacked any miR172 binding site. MiR156 was detected at a higher concentration in the prostrate shoots. Thus, the mechanism for the vegetative to reproductive transition of sporophytes probably originated in the common ancestor of vascular plants and must have experienced stepwise development during evolution.
Collapse
Affiliation(s)
- Jun Sun
- Laboratory of Plant Resource Conservation and Utilization, Jishou University, Jishou 416000, China
| | | |
Collapse
|
23
|
Joshi S, Paul P, Hartman JM, Perry SE. AGL15 Promotion of Somatic Embryogenesis: Role and Molecular Mechanism. FRONTIERS IN PLANT SCIENCE 2022; 13:861556. [PMID: 35419012 PMCID: PMC8996056 DOI: 10.3389/fpls.2022.861556] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Plants have amazing regenerative properties with single somatic cells, or groups of cells able to give rise to fully formed plants. One means of regeneration is somatic embryogenesis, by which an embryonic structure is formed that "converts" into a plantlet. Somatic embryogenesis has been used as a model for zygotic processes that are buried within layers of maternal tissues. Understanding mechanisms of somatic embryo induction and development are important as a more accessible model for seed development. We rely on seed development not only for most of our caloric intake, but also as a delivery system for engineered crops to meet agricultural challenges. Regeneration of transformed cells is needed for this applied work as well as basic research to understand gene function. Here we focus on a MADS-domain transcription factor, AGAMOUS-Like15 (AGL15) that shows a positive correlation between accumulation levels and capacity for somatic embryogenesis. We relate AGL15 function to other transcription factors, hormones, and epigenetic modifiers involved in somatic embryo development.
Collapse
Affiliation(s)
- Sanjay Joshi
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Priyanka Paul
- Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, United States
| | - Jeanne M. Hartman
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Sharyn E. Perry
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
24
|
Alves A, Confraria A, Lopes S, Costa B, Perdiguero P, Milhinhos A, Baena-González E, Correia S, Miguel CM. miR160 Interacts in vivo With Pinus pinaster AUXIN RESPONSE FACTOR 18 Target Site and Negatively Regulates Its Expression During Conifer Somatic Embryo Development. FRONTIERS IN PLANT SCIENCE 2022; 13:857611. [PMID: 35371172 PMCID: PMC8965291 DOI: 10.3389/fpls.2022.857611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
MicroRNAs (miRNAs) are key regulators of several plant developmental processes including embryogenesis. Most miRNA families are conserved across major groups of plant species, but their regulatory roles have been studied mainly in model species like Arabidopsis and other angiosperms. In gymnosperms, miRNA-dependent regulation has been less studied since functional approaches in these species are often difficult to establish. Given the fundamental roles of auxin signaling in somatic embryogenesis (SE) induction and embryo development, we investigated a previously predicted interaction between miR160 and a putative target encoding AUXIN RESPONSE FACTOR 18 in Pinus pinaster (PpARF18) embryonic tissues. Phylogenetic analysis of AUXIN RESPONSE FACTOR 18 (ARF18) from Pinus pinaster and Picea abies, used here as a model system of conifer embryogenesis, showed their close relatedness to AUXIN RESPONSE FACTOR (ARF) genes known to be targeted by miR160 in other species, including Arabidopsis ARF10 and ARF16. By using a luciferase (LUC) reporter system for miRNA activity in Arabidopsis protoplasts, we have confirmed that P. pinaster miR160 (ppi-miR160) interacts in vivo with PpARF18 target site. When the primary miR160 from P. pinaster was overexpressed in protoplasts under non-limiting levels of ARGONAUTE1, a significant increase of miR160 target cleavage activity was observed. In contrast, co-expression of the primary miRNA and the target mimic MIM160 led to a decrease of miR160 activity. Our results further support that this interaction is functional during consecutive stages of SE in the conifer model P. abies. Expression analyses conducted in five stages of development, from proembryogenic masses (PEMs) to the mature embryo, show that conifer ARF18 is negatively regulated by miR160 toward the fully developed mature embryo when miR160 reached its highest expression level. This study reports the first in vivo validation of a predicted target site of a conifer miRNA supporting the conservation of miR160 interaction with ARF targets in gymnosperms. The approach used here should be useful for future characterization of miRNA functions in conifer embryogenesis.
Collapse
Affiliation(s)
- Ana Alves
- Faculty of Sciences, BioISI—Biosystems and Integrative Sciences Institute, University of Lisbon, Lisbon, Portugal
| | - Ana Confraria
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal
| | - Susana Lopes
- Faculty of Sciences, BioISI—Biosystems and Integrative Sciences Institute, University of Lisbon, Lisbon, Portugal
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal
| | - Bruno Costa
- Faculty of Sciences, BioISI—Biosystems and Integrative Sciences Institute, University of Lisbon, Lisbon, Portugal
- INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro Perdiguero
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid (UCM), Madrid, Spain
| | - Ana Milhinhos
- Faculty of Sciences, BioISI—Biosystems and Integrative Sciences Institute, University of Lisbon, Lisbon, Portugal
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal
| | - Elena Baena-González
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal
| | - Sandra Correia
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Coimbra, Portugal
| | - Célia M. Miguel
- Faculty of Sciences, BioISI—Biosystems and Integrative Sciences Institute, University of Lisbon, Lisbon, Portugal
- Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| |
Collapse
|
25
|
Gao J, Zhang K, Cheng YJ, Yu S, Shang GD, Wang FX, Wu LY, Xu ZG, Mai YX, Zhao XY, Zhai D, Lian H, Wang JW. A robust mechanism for resetting juvenility during each generation in Arabidopsis. NATURE PLANTS 2022; 8:257-268. [PMID: 35318444 DOI: 10.1038/s41477-022-01110-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 02/10/2022] [Indexed: 05/02/2023]
Abstract
Multicellular organisms undergo several developmental transitions during their life cycles. In contrast to animals, the plant germline is derived from adult somatic cells. As such, the juvenility of a plant must be reset in each generation. Previous studies have demonstrated that the decline in the levels of miR156/7 with age drives plant maturation. Here we show that the resetting of plant juvenility during each generation is mediated by de novo activation of MIR156/7 in Arabidopsis. Blocking this process leads to a shortened juvenile phase and premature flowering in the offspring. In particular, an Arabidopsis plant devoid of miR156/7 flowers even without formation of rosette leaves in long days. Mechanistically, we find that different MIR156/7 genes are reset at different developmental stages through distinct reprogramming routes. Among these genes, MIR156A, B and C are activated de novo during sexual reproduction and embryogenesis, while MIR157A and C are reset upon seed germination. This redundancy generates a robust reset mechanism that ensures accurate restoration of the juvenile phase in each plant generation.
Collapse
Affiliation(s)
- Jian Gao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Ke Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ying-Juan Cheng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Sha Yu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Guan-Dong Shang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Fu-Xiang Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Lian-Yu Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhou-Geng Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Yan-Xia Mai
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Xin-Yan Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai, China
| | - Dong Zhai
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Heng Lian
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
26
|
Nowak K, Morończyk J, Grzyb M, Szczygieł-Sommer A, Gaj MD. miR172 Regulates WUS during Somatic Embryogenesis in Arabidopsis via AP2. Cells 2022; 11:718. [PMID: 35203367 PMCID: PMC8869827 DOI: 10.3390/cells11040718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
In plants, the embryogenic transition of somatic cells requires the reprogramming of the cell transcriptome, which is under the control of genetic and epigenetic factors. Correspondingly, the extensive modulation of genes encoding transcription factors and miRNAs has been indicated as controlling the induction of somatic embryogenesis in Arabidopsis and other plants. Among the MIRNAs that have a differential expression during somatic embryogenesis, members of the MIRNA172 gene family have been identified, which implies a role of miR172 in controlling the embryogenic transition in Arabidopsis. In the present study, we found a disturbed expression of both MIRNA172 and candidate miR172-target genes, including AP2, TOE1, TOE2, TOE3, SMZ and SNZ, that negatively affected the embryogenic response of transgenic explants. Next, we examined the role of AP2 in the miR172-mediated mechanism that controls the embryogenic response. We found some evidence that by controlling AP2, miR172 might repress the WUS that has an important function in embryogenic induction. We showed that the mechanism of the miR172-AP2-controlled repression of WUS involves histone acetylation. We observed the upregulation of the WUS transcripts in an embryogenic culture that was overexpressing AP2 and treated with trichostatin A (TSA), which is an inhibitor of HDAC histone deacetylases. The increased expression of the WUS gene in the embryogenic culture of the hdac mutants further confirmed the role of histone acetylation in WUS control during somatic embryogenesis. A chromatin-immunoprecipitation analysis provided evidence about the contribution of HDA6/19-mediated histone deacetylation to AP2-controlled WUS repression during embryogenic induction. The upstream regulatory elements of the miR172-AP2-WUS pathway might involve the miR156-controlled SPL9/SPL10, which control the level of mature miR172 in an embryogenic culture.
Collapse
Affiliation(s)
- Katarzyna Nowak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, 40-007 Katowice, Poland; (J.M.); (A.S.-S.); (M.D.G.)
| | - Joanna Morończyk
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, 40-007 Katowice, Poland; (J.M.); (A.S.-S.); (M.D.G.)
| | - Małgorzata Grzyb
- Polish Academy of Sciences Botanical Garden—Center for Biological Diversity Conservation in Powsin, Prawdziwka 2, 02-973 Warsaw, Poland;
| | - Aleksandra Szczygieł-Sommer
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, 40-007 Katowice, Poland; (J.M.); (A.S.-S.); (M.D.G.)
| | - Małgorzata D. Gaj
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, 40-007 Katowice, Poland; (J.M.); (A.S.-S.); (M.D.G.)
| |
Collapse
|
27
|
Oliver C, Annacondia ML, Wang Z, Jullien PE, Slotkin RK, Köhler C, Martinez G. The miRNome function transitions from regulating developmental genes to transposable elements during pollen maturation. THE PLANT CELL 2022; 34:784-801. [PMID: 34755870 PMCID: PMC8824631 DOI: 10.1093/plcell/koab280] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Animal and plant microRNAs (miRNAs) are essential for the spatio-temporal regulation of development. Together with this role, plant miRNAs have been proposed to target transposable elements (TEs) and stimulate the production of epigenetically active small interfering RNAs. This activity is evident in the plant male gamete containing structure, the male gametophyte or pollen grain. How the dual role of plant miRNAs, regulating both genes and TEs, is integrated during pollen development and which mRNAs are regulated by miRNAs in this cell type at a genome-wide scale are unknown. Here, we provide a detailed analysis of miRNA dynamics and activity during pollen development in Arabidopsis thaliana using small RNA and degradome parallel analysis of RNA end high-throughput sequencing. Furthermore, we uncover miRNAs loaded into the two main active Argonaute (AGO) proteins in the uninuclear and mature pollen grain, AGO1 and AGO5. Our results indicate that the developmental progression from microspore to mature pollen grain is characterized by a transition from miRNAs targeting developmental genes to miRNAs regulating TE activity.
Collapse
Affiliation(s)
- Cecilia Oliver
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
| | - Maria Luz Annacondia
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
| | - Zhenxing Wang
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
- College of Horticulture and State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs and Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing Agricultural University, Nanjing 210095, China
| | - Pauline E Jullien
- Institute of Plant Sciences, University of Bern, Bern 3013, Switzerland
| | - R Keith Slotkin
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
- Division of Biological Sciences, University of Missouri Columbia, Columbia, Missouri 65201, USA
| | - Claudia Köhler
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | | |
Collapse
|
28
|
Leichty AR, Sinha NR. A Grand Challenge in Development and Evodevo: Quantifying the Role of Development in Evolution. FRONTIERS IN PLANT SCIENCE 2022; 12:752344. [PMID: 35087543 PMCID: PMC8788915 DOI: 10.3389/fpls.2021.752344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
|
29
|
Ren Y, Li M, Wang W, Lan W, Schenke D, Cai D, Miao Y. MicroRNA840 (MIR840) accelerates leaf senescence by targeting the overlapping 3'UTRs of PPR and WHIRLY3 in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:126-143. [PMID: 34724261 DOI: 10.1111/tpj.15559] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/13/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
MicroRNAs negatively regulate gene expression by promoting target mRNA cleavage and/or impairing its translation, thereby playing a crucial role in plant development and environmental stress responses. In Arabidopsis, the MIR840 gene is located within the overlapping 3'UTR of the PPR and WHIRLY3 (WHY3) genes, both being predicted targets of miR840* and miR840, the short maturation products of MIR840. Gain- and loss-of-function of MIR840 in Arabidopsis resulted in opposite senescence phenotypes. The highest expression levels of the MIR840 precursor transcript pre-miR840 were observed at senescence initiation, and pre-miR840 expression is significantly correlated with a reduction in PPR, but not WHY3, transcript levels. Although a reduction of transcript level of PPR, but not WHY3 transcript levels were not significantly affected by MIR840 overexpression, its protein levels were strongly reduced. Mutating the cleavage sites or replacing the target sequences abolishes the miR840*/miR840-mediated degradation of PPR transcripts and accumulation of WHY3 protein. In support for this, concurrent knockdown of both PPR and WHY3 in wild-type plants resulted in a senescence phenotype resembling that of the MIR840-overexpressing plant. This indicates that both PRR and WHY3 are targets in the MIR840-mediated senescence pathway. Moreover, single knockout mutants of PPR and WHY3 show a convergent upregulated subset of senescence-associated genes, which are also found among those induced by MIR840 overexpression. Our data provide evidence for a regulatory role of MIR840 in plant senescence.
Collapse
Affiliation(s)
- Yujun Ren
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mengsi Li
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wanzhen Wang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wei Lan
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dirk Schenke
- Department of Molecular Phytopathology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Daguang Cai
- Department of Molecular Phytopathology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
30
|
Wu B, Ruan C, Shah AH, Li D, Li H, Ding J, Li J, Du W. Identification of miRNA-mRNA Regulatory Modules Involved in Lipid Metabolism and Seed Development in a Woody Oil Tree ( Camellia oleifera). Cells 2021; 11:cells11010071. [PMID: 35011633 PMCID: PMC8750442 DOI: 10.3390/cells11010071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/29/2022] Open
Abstract
Tea oil camellia (Camellia oleifera), an important woody oil tree, is a source of seed oil of high nutritional and medicinal value that is widely planted in southern China. However, there is no report on the identification of the miRNAs involved in lipid metabolism and seed development in the high- and low-oil cultivars of tea oil camellia. Thus, we explored the roles of miRNAs in the key periods of oil formation and accumulation in the seeds of tea oil camellia and identified miRNA–mRNA regulatory modules involved in lipid metabolism and seed development. Sixteen small RNA libraries for four development stages of seed oil biosynthesis in high- and low-oil cultivars were constructed. A total of 196 miRNAs, including 156 known miRNAs from 35 families, and 40 novel miRNAs were identified, and 55 significantly differentially expressed miRNAs were found, which included 34 upregulated miRNAs, and 21 downregulated miRNAs. An integrated analysis of the miRNA and mRNA transcriptome sequence data revealed that 10 miRNA–mRNA regulatory modules were related to lipid metabolism; for example, the regulatory modules of ath-miR858b–MYB82/MYB3/MYB44 repressed seed oil biosynthesis, and a regulation module of csi-miR166e-5p–S-ACP-DES6 was involved in the formation and accumulation of oleic acid. A total of 23 miRNA–mRNA regulatory modules were involved in the regulation of the seed size, such as the regulatory module of hpe-miR162a_L-2–ARF19, involved in early seed development. A total of 12 miRNA–mRNA regulatory modules regulating growth and development were identified, such as the regulatory modules of han-miR156a_L+1–SPL4/SBP2, promoting early seed development. The expression changes of six miRNAs and their target genes were validated using quantitative real-time PCR, and the targeting relationship of the cpa-miR393_R-1–AFB2 regulatory module was verified by luciferase assays. These data provide important theoretical values and a scientific basis for the genetic improvement of new cultivars of tea oil camellia in the future.
Collapse
Affiliation(s)
- Bo Wu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian 116600, China; (B.W.); (H.L.); (J.D.); (J.L.); (W.D.)
| | - Chengjiang Ruan
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian 116600, China; (B.W.); (H.L.); (J.D.); (J.L.); (W.D.)
- Correspondence: ; Tel.: +86-411-87652536
| | - Asad Hussain Shah
- Department of Biotechnology, Faculty of Sciences, University of Kotli Azad Jammu and Kashmir, Azad Jammu and Kashmir, Kotli 11100, Pakistan;
| | - Denghui Li
- Guizhou Wulingshan Youcha Technology Innovation Research Institute Co., Ltd., Tongren 554300, China;
| | - He Li
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian 116600, China; (B.W.); (H.L.); (J.D.); (J.L.); (W.D.)
| | - Jian Ding
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian 116600, China; (B.W.); (H.L.); (J.D.); (J.L.); (W.D.)
| | - Jingbin Li
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian 116600, China; (B.W.); (H.L.); (J.D.); (J.L.); (W.D.)
| | - Wei Du
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian 116600, China; (B.W.); (H.L.); (J.D.); (J.L.); (W.D.)
| |
Collapse
|
31
|
Fang H, Shao Y, Wu G. Reprogramming of Histone H3 Lysine Methylation During Plant Sexual Reproduction. FRONTIERS IN PLANT SCIENCE 2021; 12:782450. [PMID: 34917115 PMCID: PMC8669150 DOI: 10.3389/fpls.2021.782450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
Plants undergo extensive reprogramming of chromatin status during sexual reproduction, a process vital to cell specification and pluri- or totipotency establishment. As a crucial way to regulate chromatin organization and transcriptional activity, histone modification can be reprogrammed during sporogenesis, gametogenesis, and embryogenesis in flowering plants. In this review, we first introduce enzymes required for writing, recognizing, and removing methylation marks on lysine residues in histone H3 tails, and describe their differential expression patterns in reproductive tissues, then we summarize their functions in the reprogramming of H3 lysine methylation and the corresponding chromatin re-organization during sexual reproduction in Arabidopsis, and finally we discuss the molecular significance of histone reprogramming in maintaining the pluri- or totipotency of gametes and the zygote, and in establishing novel cell fates throughout the plant life cycle. Despite rapid achievements in understanding the molecular mechanism and function of the reprogramming of chromatin status in plant development, the research in this area still remains a challenge. Technological breakthroughs in cell-specific epigenomic profiling in the future will ultimately provide a solution for this challenge.
Collapse
|
32
|
Liu B, Sun G, Liu C, Liu S. LEAFY COTYLEDON 2: A Regulatory Factor of Plant Growth and Seed Development. Genes (Basel) 2021; 12:genes12121896. [PMID: 34946844 PMCID: PMC8701892 DOI: 10.3390/genes12121896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
Transcription factors are key molecules in the regulation of gene expression in all organisms. The transcription factor LEAFY COTYLEDON 2 (LEC2), which belongs to the DNA-binding protein family, contains a B3 domain. The transcription factor is involved in the regulation of important plant biological processes such as embryogenesis, somatic embryo formation, seed storage protein synthesis, fatty acid metabolism, and other important biological processes. Recent studies have shown that LEC2 regulates the formation of lateral roots and influences the embryonic resetting of the parental vernalization state. The orthologs of LEC2 and their regulatory effects have also been identified in some crops; however, their regulatory mechanism requires further investigation. Here, we summarize the most recent findings concerning the effects of LEC2 on plant growth and seed development. In addition, we discuss the potential molecular mechanisms of the action of the LEC2 gene during plant development.
Collapse
|
33
|
miRNAomic Approach to Plant Nitrogen Starvation. Int J Genomics 2021; 2021:8560323. [PMID: 34796230 PMCID: PMC8595019 DOI: 10.1155/2021/8560323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/02/2022] Open
Abstract
Nitrogen (N) is one of the indispensable nutrients required by plants for their growth, development, and survival. Being a limited nutrient, it is mostly supplied exogenously to the plants, to maintain quality and productivity. The increased use of N fertilizers is associated with high-cost inputs and negative environmental consequences, which necessitates the development of nitrogen-use-efficient plants for sustainable agriculture. Understanding the regulatory mechanisms underlying N metabolism in plants under low N is one of the prerequisites for the development of nitrogen-use-efficient plants. One of the important and recently discovered groups of regulatory molecules acting at the posttranscriptional and translational levels are microRNAs (miRNAs). miRNAs are known to play critical roles in the regulation of gene expression in plants under different stress conditions including N stress. Several classes of miRNAs associated with N metabolism have been identified so far. These nitrogen-responsive miRNAs may provide a platform for a better understanding of the regulation of N metabolism and pave a way for the development of genotypes for better N utilization. The current review presents a brief outline of miRNAs and their regulatory role in N metabolism.
Collapse
|
34
|
The Regulation of Plant Vegetative Phase Transition and Rejuvenation: miRNAs, a Key Regulator. EPIGENOMES 2021; 5:epigenomes5040024. [PMID: 34968248 PMCID: PMC8715473 DOI: 10.3390/epigenomes5040024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 01/13/2023] Open
Abstract
In contrast to animals, adult organs in plants are not formed during embryogenesis but generated from meristematic cells as plants advance through development. Plant development involves a succession of different phenotypic stages and the transition between these stages is termed phase transition. Phase transitions need to be tightly regulated and coordinated to ensure they occur under optimal seasonal, environmental conditions. Polycarpic perennials transition through vegetative stages and the mature, reproductive stage many times during their lifecycles and, in both perennial and annual species, environmental factors and culturing methods can reverse the otherwise unidirectional vector of plant development. Epigenetic factors regulating gene expression in response to internal cues and external (environmental) stimuli influencing the plant’s phenotype and development have been shown to control phase transitions. How developmental and environmental cues interact to epigenetically alter gene expression and influence these transitions is not well understood, and understanding this interaction is important considering the current climate change scenarios, since epigenetic maladaptation could have catastrophic consequences for perennial plants in natural and agricultural ecosystems. Here, we review studies focusing on the epigenetic regulators of the vegetative phase change and highlight how these mechanisms might act in exogenously induced plant rejuvenation and regrowth following stress.
Collapse
|
35
|
Bertolotti G, Scintu D, Dello Ioio R. A small cog in a large wheel: crucial role of miRNAs in root apical meristem patterning. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6755-6767. [PMID: 34350947 DOI: 10.1093/jxb/erab332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
In both animal and plants, establishment of body axes is fundamental for proper organ development. Plant roots show two main developmental axes: the proximo-distal axis, which spans from the hypocotyl-root junction to the root tip; and the radial axis, which traverses from the vascular tissue to the epidermis. Root axes are determined in the root meristem. The root meristem occupies the tip of the root and contains self-renewing stem cells, which continuously produce new root cells. An intricate network of signalling pathways regulates meristem function and patterning to ensure proper root development and growth. In the last decade, miRNAs, 20-21 nucleotide-long molecules with morphogenetic activity, emerged as central regulators of root cell patterning. Their activity intersects with master regulators of meristematic activity, including phytohormones. In this review, we discuss the latest findings about the activity of miRNAs and their interaction with other molecular networks in the formation of root meristem axes. Furthermore, we describe how these small molecules allow root growth to adapt to changes in the environment, while maintaining the correct patterning.
Collapse
Affiliation(s)
- Gaia Bertolotti
- University of Rome 'La Sapienza', Department of Biology and Biotechnology, 'Charles Darwin', Via dei Sardi 70, Rome, Italy
| | - Daria Scintu
- University of Rome 'La Sapienza', Department of Biology and Biotechnology, 'Charles Darwin', Via dei Sardi 70, Rome, Italy
| | - Raffaele Dello Ioio
- University of Rome 'La Sapienza', Department of Biology and Biotechnology, 'Charles Darwin', Via dei Sardi 70, Rome, Italy
| |
Collapse
|
36
|
Wang L, Ruan C, Bao A, Li H. Small RNA profiling for identification of microRNAs involved in regulation of seed development and lipid biosynthesis in yellowhorn. BMC PLANT BIOLOGY 2021; 21:464. [PMID: 34641783 PMCID: PMC8513341 DOI: 10.1186/s12870-021-03239-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 09/29/2021] [Indexed: 05/30/2023]
Abstract
BACKGROUND Yellowhorn (Xanthoceras sorbifolium), an endemic woody oil-bearing tree, has become economically important and is widely cultivated in northern China for bioactive oil production. However, the regulatory mechanisms of seed development and lipid biosynthesis affecting oil production in yellowhorn are still elusive. MicroRNAs (miRNAs) play crucial roles in diverse aspects of biological and metabolic processes in seeds, especially in seed development and lipid metabolism. It is still unknown how the miRNAs regulate the seed development and lipid biosynthesis in yellowhorn. RESULTS Here, based on investigations of differences in the seed growth tendency and embryo oil content between high-oil-content and low-oil-content lines, we constructed small RNA libraries from yellowhorn embryos at four seed development stages of the two lines and then profiled small RNA expression using high-throughput sequencing. A total of 249 known miRNAs from 46 families and 88 novel miRNAs were identified. Furthermore, by pairwise comparisons among the four seed development stages in each line, we found that 64 miRNAs (53 known and 11 novel miRNAs) were differentially expressed in the two lines. Across the two lines, 15, 11, 10, and 7 differentially expressed miRNAs were detected at 40, 54, 68, and 81 days after anthesis, respectively. Bioinformatic analysis was used to predict a total of 2654 target genes for 141 differentially expressed miRNAs (120 known and 21 novel miRNAs). Most of these genes were involved in the fatty acid biosynthetic process, regulation of transcription, nucleus, and response to auxin. Using quantitative real-time PCR and an integrated analysis of miRNA and mRNA expression, miRNA-target regulatory modules that may be involved in yellowhorn seed size, weight, and lipid biosynthesis were identified, such as miR172b-ARF2 (auxin response factor 2), miR7760-p3_1-AGL61 (AGAMOUS-LIKE 61), miR319p_1-FAD2-2 (omega-6 fatty acid desaturase 2-2), miR5647-p3_1-DGAT1 (diacylglycerol acyltransferase 1), and miR7760-p5_1-MED15A (Mediator subunit 15a). CONCLUSIONS This study provides new insights into the important regulatory roles of miRNAs in the seed development and lipid biosynthesis in yellowhorn. Our results will be valuable for dissecting the post-transcriptional and transcriptional regulation of seed development and lipid biosynthesis, as well as improving yellowhorn in northern China.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian, 116600, China
- Key Laboratory of Marine Genetics and Breeding (OUC), Ministry of Education, College of Marine Life Science, Ocean University of China, Qingdao, 266100, China
| | - Chengjiang Ruan
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian, 116600, China.
| | - Aomin Bao
- Institute of Economic Forest, Tongliao Academy of Forestry Science and Technology, Tongliao, 028000, China
| | - He Li
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian, 116600, China
| |
Collapse
|
37
|
Ruiz KA, Pelletier JM, Wang Y, Feng MJ, Behr JS, Ðào TQ, Li B, Kliebenstein D, Harada JJ, Jenik PD. A reevaluation of the role of the ASIL trihelix transcription factors as repressors of the seed maturation program. PLANT DIRECT 2021; 5:e345. [PMID: 34622120 PMCID: PMC8483069 DOI: 10.1002/pld3.345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/27/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Developmental transitions are typically tightly controlled at the transcriptional level. Two of these transitions involve the induction of the embryo maturation program midway through seed development and its repression during the vegetative phase of plant growth. Very little is known about the factors responsible for this regulation during early embryogenesis, and only a couple of transcription factors have been characterized as repressors during the postgerminative phase. Arabidopsis 6b-INTERACTING PROTEIN-LIKE1 (ASIL1), a trihelix transcription factor, has been proposed to repress maturation both embryonically and postembryonically. Preliminary data also suggested that its closest paralog, ASIL2, might play a role as well. We used a transcriptomic approach, coupled with phenotypical observations, to test the hypothesis that ASIL1 and ASIL2 redundantly turn off maturation during both phases of growth. Our results indicate that, contrary to what was previously published, neither of the ASIL genes plays a role in the regulation of maturation, at any point during plant development. Analyses of gene ontology (GO)-enriched terms and published transcriptomic datasets suggest that these genes might be involved in responses during the vegetative phase to certain biotic and abiotic stresses.
Collapse
Affiliation(s)
- Kevin A. Ruiz
- Department of BiologyFranklin & Marshall CollegeLancasterPAUSA
| | - Julie M. Pelletier
- Department of Plant Biology, College of Biological SciencesUniversity of CaliforniaDavisCAUSA
| | - Yuchi Wang
- Department of BiologyFranklin & Marshall CollegeLancasterPAUSA
- Present address:
Chimera (Shanghai) Biotec Ltd.Shanghai CityChina
| | - Min Jun Feng
- Department of BiologyFranklin & Marshall CollegeLancasterPAUSA
- Present address:
Medical University of South CarolinaCharlestonSCUSA
| | - Jacqueline S. Behr
- Department of BiologyFranklin & Marshall CollegeLancasterPAUSA
- Present address:
Hoboken University Medical CenterHobokenNJUSA
| | - Thái Q. Ðào
- Department of BiologyFranklin & Marshall CollegeLancasterPAUSA
- Present address:
Department of Botany and Plant Biology, College of Agricultural SciencesOregon State UniversityCorvallisORUSA
| | - Baohua Li
- Department of Plant Sciences, College of Agricultural and Environmental SciencesUniversity of CaliforniaDavisCAUSA
- Present address:
College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Daniel Kliebenstein
- Department of Plant Sciences, College of Agricultural and Environmental SciencesUniversity of CaliforniaDavisCAUSA
| | - John J. Harada
- Department of Plant Biology, College of Biological SciencesUniversity of CaliforniaDavisCAUSA
| | - Pablo D. Jenik
- Department of BiologyFranklin & Marshall CollegeLancasterPAUSA
| |
Collapse
|
38
|
Reuveni M. Sex and Regeneration. BIOLOGY 2021; 10:937. [PMID: 34571814 PMCID: PMC8471910 DOI: 10.3390/biology10090937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 01/23/2023]
Abstract
Regeneration is usually regarded as a unique plant or some animal species process. In reality, regeneration is a ubiquitous process in all multicellular organisms. It ranges from response to wounding by healing the wounded tissue to whole body neoforming (remaking of the new body). In a larger context, regeneration is one facet of two reproduction schemes that dominate the evolution of life. Multicellular organisms can propagate their genes asexually or sexually. Here I present the view that the ability to regenerate tissue or whole-body regeneration is also determined by the sexual state of the multicellular organisms (from simple animals such as hydra and planaria to plants and complex animals). The above idea is manifested here by showing evidence that many organisms, organs, or tissues show inhibited or diminished regeneration capacity when in reproductive status compared to organs or tissues in nonreproductive conditions or by exposure to sex hormones.
Collapse
Affiliation(s)
- Moshe Reuveni
- Plant Science Institute, ARO, Volcani Institute, 68 Hamakabim Rd., P.O. Box 15159, Rishon LeZion 7528808, Israel
| |
Collapse
|
39
|
Malovichko YV, Shikov AE, Nizhnikov AA, Antonets KS. Temporal Control of Seed Development in Dicots: Molecular Bases, Ecological Impact and Possible Evolutionary Ramifications. Int J Mol Sci 2021; 22:ijms22179252. [PMID: 34502157 PMCID: PMC8430901 DOI: 10.3390/ijms22179252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 12/21/2022] Open
Abstract
In flowering plants, seeds serve as organs of both propagation and dispersal. The developing seed passes through several consecutive stages, following a conserved general outline. The overall time needed for a seed to develop, however, may vary both within and between plant species, and these temporal developmental properties remain poorly understood. In the present paper, we summarize the existing data for seed development alterations in dicot plants. For genetic mutations, the reported cases were grouped in respect of the key processes distorted in the mutant specimens. Similar phenotypes arising from the environmental influence, either biotic or abiotic, were also considered. Based on these data, we suggest several general trends of timing alterations and how respective mechanisms might add to the ecological plasticity of the families considered. We also propose that the developmental timing alterations may be perceived as an evolutionary substrate for heterochronic events. Given the current lack of plausible models describing timing control in plant seeds, the presented suggestions might provide certain insights for future studies in this field.
Collapse
Affiliation(s)
- Yury V. Malovichko
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anton E. Shikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
40
|
Kutsher Y, Fisler M, Faigenboim A, Reuveni M. Florigen governs shoot regeneration. Sci Rep 2021; 11:13710. [PMID: 34211083 PMCID: PMC8249374 DOI: 10.1038/s41598-021-93180-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/22/2021] [Indexed: 12/20/2022] Open
Abstract
It is widely known that during the reproductive stage (flowering), plants do not root well. Most protocols of shoot regeneration in plants utilize juvenile tissue. Adding these two realities together encouraged us to study the role of florigen in shoot regeneration. Mature tobacco tissue that expresses the endogenous tobacco florigen mRNA regenerates poorly, while juvenile tissue that does not express the florigen regenerates shoots well. Inhibition of Nitric Oxide (NO) synthesis reduced shoot regeneration as well as promoted flowering and increased tobacco florigen level. In contrast, the addition of NO (by way of NO donor) to the tissue increased regeneration, delayed flowering, reduced tobacco florigen mRNA. Ectopic expression of florigen genes in tobacco or tomato decreased regeneration capacity significantly. Overexpression pear PcFT2 gene increased regeneration capacity. During regeneration, florigen mRNA was not changed. We conclude that florigen presence in mature tobacco leaves reduces roots and shoots regeneration and is the possible reason for the age-related decrease in regeneration capacity.
Collapse
Affiliation(s)
- Yaarit Kutsher
- Plant Science Institute, ARO, Volcani Center, PO Box 6, 50250, Bet Dagan, Israel
- Plant Science Institute, ARO, Volcani Center, 68 Hamakabim Rd, PO Box 15159, 7528809, Rishon LeZion, Israel
| | - Michal Fisler
- Plant Science Institute, ARO, Volcani Center, PO Box 6, 50250, Bet Dagan, Israel
- Plant Science Institute, ARO, Volcani Center, 68 Hamakabim Rd, PO Box 15159, 7528809, Rishon LeZion, Israel
| | - Adi Faigenboim
- Plant Science Institute, ARO, Volcani Center, PO Box 6, 50250, Bet Dagan, Israel
- Plant Science Institute, ARO, Volcani Center, 68 Hamakabim Rd, PO Box 15159, 7528809, Rishon LeZion, Israel
| | - Moshe Reuveni
- Plant Science Institute, ARO, Volcani Center, PO Box 6, 50250, Bet Dagan, Israel.
- Plant Science Institute, ARO, Volcani Center, 68 Hamakabim Rd, PO Box 15159, 7528809, Rishon LeZion, Israel.
| |
Collapse
|
41
|
Huang R, Liu M, Gong G, Wu P, Patra B, Yuan L, Qin H, Wang X, Wang G, Liao H, Gao L, Yang C, Li H, Zhang S. The Pumilio RNA-binding protein APUM24 regulates seed maturation by fine-tuning the BPM-WRI1 module in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1240-1259. [PMID: 33729679 DOI: 10.1111/jipb.13092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/15/2021] [Indexed: 05/25/2023]
Abstract
Pumilio RNA-binding proteins participate in messenger RNA (mRNA) degradation and translational repression, but their roles in plant development are largely unclear. Here, we show that Arabidopsis PUMILIO PROTEIN24 (APUM24), an atypical Pumilio-homology domain-containing protein, plays an important part in regulating seed maturation, a major stage of plant development. APUM24 is strongly expressed in maturing seeds. Reducing APUM24 expression resulted in abnormal seed maturation, wrinkled seeds, and lower seed oil contents, and APUM24 knockdown resulted in lower levels of WRINKLED 1 (WRI1), a key transcription factor controlling seed oil accumulation, and lower expression of WRI1 target genes. APUM24 reduces the mRNA stability of BTB/POZMATH (BPM) family genes, thus decreasing BPM protein levels. BPM is responsible for the 26S proteasome-mediated degradation of WRI1 and has important functions in plant growth and development. The 3' untranslated regions of BPM family genes contain putative Pumilio response elements (PREs), which are bound by APUM24. Reduced BPM or increased WRI1 expression rescued the deficient seed maturation of apum24-2 knockdown mutants, and APUM24 overexpression resulted in increased seed size and weight. Therefore, APUM24 is crucial to seed maturation through its action as a positive regulator fine-tuning the BPM-WRI1 module, making APUM24 a promising target for breeding strategies to increase crop yields.
Collapse
Affiliation(s)
- Ruihua Huang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Mengling Liu
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Guanping Gong
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Pingzhi Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Barunava Patra
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, 40546, USA
| | - Ling Yuan
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, 40546, USA
| | - Hongting Qin
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xiaoxu Wang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Guohe Wang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Huimei Liao
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Lu Gao
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Chengwei Yang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Hongqing Li
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Shengchun Zhang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
42
|
Song J, Xie X, Chen C, Shu J, Thapa RK, Nguyen V, Bian S, Kohalmi SE, Marsolais F, Zou J, Cui Y. LEAFY COTYLEDON1 expression in the endosperm enables embryo maturation in Arabidopsis. Nat Commun 2021; 12:3963. [PMID: 34172749 PMCID: PMC8233312 DOI: 10.1038/s41467-021-24234-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 06/03/2021] [Indexed: 11/09/2022] Open
Abstract
The endosperm provides nutrients and growth regulators to the embryo during seed development. LEAFY COTYLEDON1 (LEC1) has long been known to be essential for embryo maturation. LEC1 is expressed in both the embryo and the endosperm; however, the functional relevance of the endosperm-expressed LEC1 for seed development is unclear. Here, we provide genetic and transgenic evidence demonstrating that endosperm-expressed LEC1 is necessary and sufficient for embryo maturation. We show that endosperm-synthesized LEC1 is capable of orchestrating full seed maturation in the absence of embryo-expressed LEC1. Inversely, without LEC1 expression in the endosperm, embryo development arrests even in the presence of functional LEC1 alleles in the embryo. We further reveal that LEC1 expression in the endosperm begins at the zygote stage and the LEC1 protein is then trafficked to the embryo to activate processes of seed maturation. Our findings thus establish a key role for endosperm in regulating embryo development.
Collapse
Affiliation(s)
- Jingpu Song
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada. .,Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, SK, Canada. .,Department of Biology, Western University, London, ON, Canada.
| | - Xin Xie
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.,Department of Biology, Western University, London, ON, Canada
| | - Chen Chen
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.,Department of Biology, Western University, London, ON, Canada.,Molecular Analysis and Genetic Improvement Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Jie Shu
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.,Department of Biology, Western University, London, ON, Canada.,Molecular Analysis and Genetic Improvement Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Raj K Thapa
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.,Department of Biology, Western University, London, ON, Canada
| | - Vi Nguyen
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Shaomin Bian
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.,College of Plant Science, Jilin University, Changchun, China
| | | | - Frédéric Marsolais
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.,Department of Biology, Western University, London, ON, Canada
| | - Jitao Zou
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, SK, Canada.
| | - Yuhai Cui
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada. .,Department of Biology, Western University, London, ON, Canada.
| |
Collapse
|
43
|
Jia Z, Zhao B, Liu S, Lu Z, Chang B, Jiang H, Cui H, He Q, Li W, Jin B, Wang L. Embryo transcriptome and miRNA analyses reveal the regulatory network of seed dormancy in Ginkgo biloba. TREE PHYSIOLOGY 2021; 41:571-588. [PMID: 32159802 DOI: 10.1093/treephys/tpaa023] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 05/12/2023]
Abstract
Seed dormancy is crucial for plant survival and prevents seed germination out of season. However, little is known about the regulatory mechanism of morphophysiological seed dormancy. Ginkgo biloba L. is one of the most ancient gymnosperms, and the completion of seed germination in this species requires cold and moist stratification. Here, we observed that at the mature seed stage, the embryo was not fully developed in G. biloba seeds. During dormancy stages, the length and weight of the embryo significantly increased, and nutrients accumulated in cotyledons. We further found that abscisic acid (ABA), gibberellic acid (GA), cytokinin and ethylene were integrated in the seed dormancy induction, maintenance and release processes, and GA biosynthesis and signaling transduction specifically act on dormancy release. Combining mRNA and miRNA analyses, we demonstrated that miRNA156 is involved in the regulation of morphophysiological dormancy. Our analyses revealed that G. biloba seed dormancy belongs to the ancestral morphophysiological dormancy type, which is not only regulated by the balance of ABA/GA, but also by other hormones associated with embryo morphological development, as well as genes related to embryo differentiation and development. These findings helped with elucidating the comprehensive regulatory network of morphophysiological dormancy in tree seeds.
Collapse
Affiliation(s)
- Zhichao Jia
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Beibei Zhao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Sian Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Zhaogeng Lu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Bang Chang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Huiru Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Hui Cui
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Qingsong He
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Weixing Li
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Biao Jin
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Li Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
44
|
Alves A, Cordeiro D, Correia S, Miguel C. Small Non-Coding RNAs at the Crossroads of Regulatory Pathways Controlling Somatic Embryogenesis in Seed Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:504. [PMID: 33803088 PMCID: PMC8001652 DOI: 10.3390/plants10030504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 11/25/2022]
Abstract
Small non-coding RNAs (sncRNAs) are molecules with important regulatory functions during development and environmental responses across all groups of terrestrial plants. In seed plants, the development of a mature embryo from the zygote follows a synchronized cell division sequence, and growth and differentiation events regulated by highly regulated gene expression. However, given the distinct features of the initial stages of embryogenesis in gymnosperms and angiosperms, it is relevant to investigate to what extent such differences emerge from differential regulation mediated by sncRNAs. Within these, the microRNAs (miRNAs) are the best characterized class, and while many miRNAs are conserved and significantly represented across angiosperms and other seed plants during embryogenesis, some miRNA families are specific to some plant lineages. Being a model to study zygotic embryogenesis and a relevant biotechnological tool, we systematized the current knowledge on the presence and characterization of miRNAs in somatic embryogenesis (SE) of seed plants, pinpointing the miRNAs that have been reported to be associated with SE in angiosperm and gymnosperm species. We start by conducting an overview of sncRNA expression profiles in the embryonic tissues of seed plants. We then highlight the miRNAs described as being involved in the different stages of the SE process, from its induction to the full maturation of the somatic embryos, adding references to zygotic embryogenesis when relevant, as a contribution towards a better understanding of miRNA-mediated regulation of SE.
Collapse
Affiliation(s)
- Ana Alves
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal;
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Daniela Cordeiro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (D.C.); (S.C.)
| | - Sandra Correia
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (D.C.); (S.C.)
| | - Célia Miguel
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal;
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| |
Collapse
|
45
|
Dhaka N, Sharma R. MicroRNA-mediated regulation of agronomically important seed traits: a treasure trove with shades of grey! Crit Rev Biotechnol 2021; 41:594-608. [PMID: 33682533 DOI: 10.1080/07388551.2021.1873238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Seed development is an intricate process with multiple levels of regulation. MicroRNAs (miRNAs) have emerged as one of the crucial components of molecular networks underlying agronomically important seed traits in diverse plant species. In fact, loss of function of the genes regulating miRNA biogenesis also exhibits defects in seed development. A total of 21 different miRNAs have experimentally been shown to regulate seed size, nutritional content, vigor, and shattering, and have been reviewed here. The mechanism details of the associated regulatory cascades mediated through transcriptional regulators, phytohormones, basic metabolic machinery, and secondary siRNAs are elaborated. Co-localization of miRNAs and their target regions with seed-related QTLs provides new avenues for engineering these traits using conventional breeding programs or biotechnological interventions. While global analysis of miRNAs using small RNA sequencing studies are expanding the repertoire of candidate miRNAs, recent revelations on their inheritance, transport, and mechanism of action would be instrumental in designing better strategies for optimizing agronomically relevant seed traits.
Collapse
Affiliation(s)
- Namrata Dhaka
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Haryana, India.,Crop Genetics and Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rita Sharma
- Crop Genetics and Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
46
|
Khemka N, Singh Rajkumar M, Garg R, Jain M. Genome-wide profiling of miRNAs during seed development reveals their functional relevance in seed size/weight determination in chickpea. PLANT DIRECT 2021; 5:e00299. [PMID: 33738384 PMCID: PMC7954459 DOI: 10.1002/pld3.299] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
MicroRNAs (miRNAs) are non-coding small RNAs that regulate gene expression at transcriptional and post-transcriptional levels. The role of miRNAs in seed development and seed size/weight determination is poorly understood in legumes. In this study, we profiled miRNAs at seven successive stages of seed development in a small-seeded and a large-seeded chickpea cultivar via small RNA sequencing. In total, 113 known and 243 novel miRNAs were identified. Gene ontology analysis revealed the enrichment of seed/reproductive/post-embryonic development and signaling pathways processes among the miRNA target genes. A large fraction of the target genes exhibited antagonistic correlation with miRNA expression. The sets of co-expressed miRNAs showing differential expression between the two cultivars were recognized. Known transcription factor (TF) encoding genes involved in seed size/weight determination, including SPL, GRF, MYB, ARF, HAIKU1, SHB1, KLUH/CYP78A5, and E2Fb along with novel genes were found to be targeted by the predicted miRNAs. Differential expression analysis revealed higher transcript levels of members of SPL and REVOLUTA TF families and lower expression of their corresponding miRNAs in the large-seeded cultivar. At least 19 miRNAs known to be involved in seed development or differentially expressed between small-seeded and large-seeded cultivars at late-embryogenesis and/or mid-maturation stages were located within known quantitative trait loci (QTLs) associated with seed size/weight determination. Moreover, 41 target genes of these miRNAs were also located within these QTLs. Altogether, we revealed important roles of miRNAs in seed development and identified candidate miRNAs and their target genes that have functional relevance in determining seed size/weight in chickpea.
Collapse
Affiliation(s)
- Niraj Khemka
- School of Computational & Integrative SciencesJawaharlal Nehru UniversityNew DelhiIndia
| | - Mohan Singh Rajkumar
- School of Computational & Integrative SciencesJawaharlal Nehru UniversityNew DelhiIndia
| | - Rohini Garg
- Department of Life SciencesSchool of Natural SciencesShiv Nadar UniversityGautam Buddha NagarUttar PradeshIndia
| | - Mukesh Jain
- School of Computational & Integrative SciencesJawaharlal Nehru UniversityNew DelhiIndia
- National Institute of Plant Genome Research (NIPGR)New DelhiIndia
| |
Collapse
|
47
|
Pradhan S, Verma S, Chakraborty A, Bhatia S. Identification and molecular characterization of miRNAs and their target genes associated with seed development through small RNA sequencing in chickpea. Funct Integr Genomics 2021; 21:283-298. [PMID: 33630193 DOI: 10.1007/s10142-021-00777-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/12/2021] [Accepted: 02/09/2021] [Indexed: 11/30/2022]
Abstract
Multiple studies have attempted to dissect the molecular mechanism underlying seed development in chickpea (Cicer arietinum L.). These studies highlight the need to focus on the role of miRNAs in regulating storage protein accumulation in seeds. Therefore, a total of 8,856,691 short-read sequences were generated from a small RNA library of developing chickpea seeds and were analyzed using miRDeep-P to identify 74 known and 26 novel miRNA sequences. Known miRNAs were classified into 22 miRNA families with miRNA156 family being most abundant. Of the 26 putative novel miRNAs identified, only 22 could be experimentally validated using stem loop end point PCR. Differential expression analyses led to the identification of known as well as novel miRNAs that could regulate various stages of chickpea seed development. In silico target prediction revealed several important target genes and transcription factors like SPL, mediator of RNA Polymerase II transcription subunit 12, aspartic proteinase and NACs, which were further validated by real-time PCR analysis. A comparative expression analysis in chickpea genotypes with contrasting seed protein content revealed one known (Car-miR156h) and two novel miRNA (Car-novmiR7 and Car-novmiR23) candidates to be highly expressed in the LPC (low protein content) chickpea genotypes, targets of which are known to regulate seed storage protein accumulation. Therefore, this study provides a useful resource in the form of miRNA and their targets which can be further utilized to understand and manipulate various regulatory mechanisms involved in seed development with the overall aim of improving yield and nutrition attributes in chickpea.
Collapse
Affiliation(s)
- Seema Pradhan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Subodh Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Anirban Chakraborty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sabhyata Bhatia
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
48
|
Iida H, Takada S. A Quarter Century History of ATML1 Gene Research. PLANTS 2021; 10:plants10020290. [PMID: 33546382 PMCID: PMC7913478 DOI: 10.3390/plants10020290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 11/16/2022]
Abstract
The cloning of the ATML1 gene, encoding an HD-ZIP class IV transcription factor, was first reported in 1996. Because ATML1 mRNA was preferentially detected in the shoot epidermis, cis-regulatory sequences of ATML1 have been used to drive gene expression in the outermost cells of the shoot apical meristem and leaves, even before the function of ATML1 was understood. Later studies revealed that ATML1 is required for developmental processes related to shoot epidermal specification and differentiation. Consistent with its central role in epidermal development, ATML1 activity has been revealed to be restricted to the outermost cells via several regulatory mechanisms. In this review, we look back on the history of ATML1 research and provide a perspective for future studies.
Collapse
Affiliation(s)
- Hiroyuki Iida
- Institute of Biotechnology, HiLIFE, University of Helsinki, Viikinkaari 1, 00014 Helsinki, Finland;
| | - Shinobu Takada
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1–1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Correspondence:
| |
Collapse
|
49
|
Luján-Soto E, Dinkova TD. Time to Wake Up: Epigenetic and Small-RNA-Mediated Regulation during Seed Germination. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10020236. [PMID: 33530470 PMCID: PMC7911344 DOI: 10.3390/plants10020236] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 05/03/2023]
Abstract
Plants make decisions throughout their lifetime based on complex networks. Phase transitions during seed growth are not an exception. From embryo development through seedling growth, several molecular pathways control genome stability, environmental signal transduction and the transcriptional landscape. Particularly, epigenetic modifications and small non-coding RNAs (sRNAs) have been extensively studied as significant handlers of these processes in plants. Here, we review key epigenetic (histone modifications and methylation patterns) and sRNA-mediated regulatory networks involved in the progression from seed maturation to germination, their relationship with seed traits and crosstalk with environmental inputs.
Collapse
|
50
|
Xie L, Zhou Q, Chen X, Du X, Liu Z, Fei B, Hou J, Dai Y, She W. Elucidation of the Hdac2/Sp1/ miR-204-5p/ Bcl-2 axis as a modulator of cochlear apoptosis via in vivo/ in vitro models of acute hearing loss. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:1093-1109. [PMID: 33614251 PMCID: PMC7875768 DOI: 10.1016/j.omtn.2021.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 01/14/2021] [Indexed: 11/21/2022]
Abstract
We previously reported that dysregulation of histone deacetylase 2 (Hdac2) was associated with the prognosis of sudden sensorineural hearing loss. However, the underlying molecular mechanisms are poorly understood. In the present study, we developed an acute hearing loss animal model in guinea pigs by infusing lipopolysaccharides (LPS) into the cochlea and measured the expression of Hdac2 in the sensory epithelium. We observed that the level of Hdac2 was significantly decreased in the LPS-infused cochleae. The levels of apoptosis-inhibition genes Bcl-2 and Bcl-xl were also decreased in the cochlea and correlated positively with the levels of Hdac2. Caspase3 or TUNEL-positive spiral ganglion neurons, hair cells, and supporting cells were observed in the LPS-infused cochleae. These in vivo observations were recapitulated in cell culture experiments. Based on bioinformatics analysis, we found miR-204-5p was engaged in the regulation of Hdac2 on Bcl-2. Molecular mechanism experiments displayed that miR-204-5p could be regulated by Hdac2 through interacting with transcription factor Sp1. Taken together, these results indicated that the Hdac2/Sp1/miR-204-5p/Bcl-2 regulatory axis mediated apoptosis in the cochlea, providing potential insights into the progression of acute hearing loss. To our knowledge, the study describes a miRNA-related mechanism for Hdac2-mediated regulation in the cochlea for the first time.
Collapse
Affiliation(s)
- Lisheng Xie
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China
- Department of Otolaryngology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Qiongqiong Zhou
- Department of Otolaryngology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Xiaorui Chen
- Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Xiaoping Du
- Hough Ear Institute, Oklahoma City, OK 73112, USA
| | - Zhibiao Liu
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China
| | - Bing Fei
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China
| | - Jie Hou
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China
| | - Yanhong Dai
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China
- Correspondence: Yanhong Dai, Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University: 321 Zhongshan Road, Nanjing 210008, China.
| | - Wandong She
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China
- Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing 210008, China
- Corresponding author Wandong She, Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing 210008, China.
| |
Collapse
|