1
|
Wang J, Fan Y, Luo G, Xiong L, Wang L, Wu Z, Wang J, Peng Z, Rosen CJ, Lu K, Jing J, Yuan Q, Zhang Z, Zhou C. Nuclear Condensates of WW Domain-Containing Adaptor With Coiled-Coil Regulate Mitophagy via Alternative Splicing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406759. [PMID: 39840526 PMCID: PMC11904943 DOI: 10.1002/advs.202406759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/19/2024] [Indexed: 01/23/2025]
Abstract
Biomolecular condensates segregate nuclei into discrete regions, facilitating the execution of distinct biological functions. Here, it is identified that the WW domain containing adaptor with coiled-coil (WAC) is localized to nuclear speckles via its WW domain and plays a pivotal role in regulating alternative splicing through the formation of biomolecular condensates via its C-terminal coiled-coil (CC) domain. WAC acts as a scaffold protein and facilitates the integration of RNA-binding motif 12 (RBM12) into nuclear speckles, where RBM12 potentially interacts with the spliceosomal U5 small nuclear ribonucleoprotein (snRNP). Importantly, knockdown of RBM12, or deletion of the WAC CC domain led to altered splicing outcomes, resulting in an elevated level of BECN1-S, the short splice variant of BECN1 that is shown to upregulate mitophagy. Thus, the findings reveal a previously unrecognized mechanism for the nuclear regulation of mitochondrial function through liquid-liquid phase separation (LLPS) and provide insights into the pathogenesis of WAC-related disorders.
Collapse
Affiliation(s)
- Jiahe Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Yi Fan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Guowen Luo
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Liang Xiong
- State Key Laboratory of Biotherapy and Department of Rheumatology and ImmunologyWest China HospitalSichuan UniversityChengdu610041China
| | - Lijie Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Zhuoxuan Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Jiayi Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Zhengying Peng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | | | - Kefeng Lu
- Department of NeurosurgeryState Key Laboratory of BiotherapyWest China HospitalSichuan University and The Research Units of West ChinaChinese Academy of Medical SciencesChengdu610041China
| | - Junjun Jing
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Zhenwei Zhang
- State Key Laboratory of Biotherapy and Department of Rheumatology and ImmunologyWest China HospitalSichuan UniversityChengdu610041China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| |
Collapse
|
2
|
Ding Y, Liu Z, Dai X, Ruan R, Zhong H, Wu Z, Yao Y, Chen J, Deng J, Xiong J. Ubiquitin-specific peptidase 49 promotes adenocarcinoma of the esophagogastric junction malignant progression via activating SHCBP1-β-catenin-GPX4 axis. Carcinogenesis 2025; 46:bgae060. [PMID: 39234990 DOI: 10.1093/carcin/bgae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 08/09/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024] Open
Abstract
Adenocarcinoma of the esophagogastric junction (AEG) has received widespread attention because of its increasing incidence. However, the molecular mechanism underlying tumor progression remains unclear. Here, we report that the downregulation of ubiquitin-specific peptidase 49 (USP49) promotes ferroptosis in OE33 and OE19 cells, thereby inhibiting cell proliferation in vitro and in vivo, whereas the overexpression of USP49 had the opposite effect. In addition, USP49 downregulation promoted AEG cell radiotherapy sensitivity. Moreover, overexpression of Glutathione PeroXidase 4 reversed the ferroptosis and proliferation inhibition induced by USP49 knockdown. Mechanistically, USP49 deubiquitinates and stabilizes Shc SH2-domain-binding protein 1, subsequently facilitating the entry of β-catenin into the nucleus to enhance Glutathione PeroXidase 4 transcriptional expression. Finally, high USP49 expression was correlated with shorter overall survival in patients with AEG. In summary, our findings identify USP49 as a novel regulator of ferroptosis in AEG cells, indicating that USP49 may be a potential therapeutic target in AEG.
Collapse
Affiliation(s)
- Yun Ding
- Department of Oncology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi province, 330006, China
- Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, Jiangxi Province 330006, China
| | - Zhen Liu
- Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, Jiangxi Province 330006, China
| | - Xiaofeng Dai
- Department of Oncology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi province, 330006, China
- Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, Jiangxi Province 330006, China
| | - Ruiwen Ruan
- Department of Oncology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi province, 330006, China
- Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, Jiangxi Province 330006, China
| | - Hongguang Zhong
- Department of Oncology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi province, 330006, China
- Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, Jiangxi Province 330006, China
| | - Zhipeng Wu
- Department of Oncology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi province, 330006, China
- Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, Jiangxi Province 330006, China
| | - Yangyang Yao
- Department of Oncology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi province, 330006, China
- Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, Jiangxi Province 330006, China
| | - Jun Chen
- Department of Oncology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi province, 330006, China
| | - Jun Deng
- Department of Oncology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi province, 330006, China
- Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, Jiangxi Province 330006, China
| | - Jianping Xiong
- Department of Oncology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi province, 330006, China
- Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, Jiangxi Province 330006, China
| |
Collapse
|
3
|
Kim DH, Kim SL, Singh V, Ramakrishna S. Usp7 Regulates Glial Lineage Cell-Specific Transcription Factors by Modulating Histone H2B Monoubiquitination. Int J Stem Cells 2024; 17:427-436. [PMID: 38952059 PMCID: PMC11612222 DOI: 10.15283/ijsc23202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 07/03/2024] Open
Abstract
Histone H2B monoubiquitination (H2Bub1) is a dynamic posttranslational modification which are linked to DNA damage and plays a key role in a wide variety of regulatory transcriptional programs. Cancer cells exhibit a variety of epigenetic changes, particularly any aberrant H2Bub1 has frequently been associated with the development of tumors. Nevertheless, our understanding of the mechanisms governing the histone H2B deubiquitination and their associated functions during stem cell differentiation remain only partially understood. In this study, we wished to investigate the role of deubiquitinating enzymes (DUBs) on H2Bub1 regulation during stem cell differentiation. In a search for potential DUBs for H2B monoubiquitination, we identified Usp7, a ubiquitin-specific protease that acts as a negative regulator of H2B ubiquitination during the neuronal differentiation of mouse embryonic carcinoma cells. Loss of function of the Usp7 gene by a CRISPR/Cas9 system during retinoic acid-mediated cell differentiation contributes to the increase in H2Bub1. Furthermore, knockout of the Usp7 gene particularly elevated the expression of neuronal differentiation related genes including astryocyte-specific markers and oligodendrocyte-specific markers. In particular, glial lineage cell-specific transcription factors including oligodendrocyte transcription factor 2, glial fibrillary acidic protein, and SRY-box transcription factor 10 was significantly upregulated during neuronal differentiation. Thus, our findings suggest a novel role of Usp7 in gliogenesis in mouse embryonic carcinoma cells.
Collapse
Affiliation(s)
- Dong-Ho Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Sammy L. Kim
- Department of Biological Sciences, College of Sang-Huh Life Sciencse, Konkuk University, Seoul, Korea
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Mehsana, India
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| |
Collapse
|
4
|
Ai H, He Z, Deng Z, Chu GC, Shi Q, Tong Z, Li JB, Pan M, Liu L. Structural and mechanistic basis for nucleosomal H2AK119 deubiquitination by single-subunit deubiquitinase USP16. Nat Struct Mol Biol 2024; 31:1745-1755. [PMID: 38918638 DOI: 10.1038/s41594-024-01342-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/29/2024] [Indexed: 06/27/2024]
Abstract
Epigenetic regulators have a crucial effect on gene expression based on their manipulation of histone modifications. Histone H2AK119 monoubiquitination (H2AK119Ub), a well-established hallmark in transcription repression, is dynamically regulated by the opposing activities of Polycomb repressive complex 1 (PRC1) and nucleosome deubiquitinases including the primary human USP16 and Polycomb repressive deubiquitinase (PR-DUB) complex. Recently, the catalytic mechanism for the multi-subunit PR-DUB complex has been described, but how the single-subunit USP16 recognizes the H2AK119Ub nucleosome and cleaves the ubiquitin (Ub) remains unknown. Here we report the cryo-EM structure of USP16-H2AK119Ub nucleosome complex, which unveils a fundamentally distinct mode of H2AK119Ub deubiquitination compared to PR-DUB, encompassing the nucleosome recognition pattern independent of the H2A-H2B acidic patch and the conformational heterogeneity in the Ub motif and the histone H2A C-terminal tail. Our work highlights the mechanism diversity of H2AK119Ub deubiquitination and provides a structural framework for understanding the disease-causing mutations of USP16.
Collapse
Affiliation(s)
- Huasong Ai
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
- Institute of Translational Medicine, School of Pharmacy, School of Chemistry and Chemical Engineering, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai, China
| | - Zaozhen He
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Zhiheng Deng
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Guo-Chao Chu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Qiang Shi
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Zebin Tong
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Jia-Bin Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Man Pan
- Institute of Translational Medicine, School of Pharmacy, School of Chemistry and Chemical Engineering, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai, China.
| | - Lei Liu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China.
| |
Collapse
|
5
|
Sun L, Liu Z, Wu Z, Wu Z, Qiu B, Liu S, Hu J, Yin X. PSMD11 promotes the proliferation of hepatocellular carcinoma by regulating the ubiquitination degradation of CDK4. Cell Signal 2024; 121:111279. [PMID: 38944255 DOI: 10.1016/j.cellsig.2024.111279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND The 26S proteasome non-ATPase regulatory subunit 11 is a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins, and PSMD11 plays a key role in the regulation of embryonic stem cell proteasome activity. However, the role of PSMD11 in hepatocellular carcinoma has not been studied. In this study, it was found that the expression of PSMD11 in HCC tissues was significantly higher than that in para-cancerous tissues, and was associated with poor prognosis. The results of in vitro experiments showed that PSMD11 knockdown could effectively inhibit the proliferation and apoptosis of hepatoma cell lines, and flow cytometry showed that the G0/G1 phase was significantly prolonged. Through protein spectrometry, immunoprecipitation and in vitro experiments, it was found that PSMD11 can promote the proliferation of hepatocellular carcinoma through regulating the ubiquitination of CDK4 and enhancing its protein stability. This study explores the mechanism of action of PSMD11 in hepatocellular carcinoma and provides new insights for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Liang Sun
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zitao Liu
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhengyi Wu
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhipeng Wu
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Bingbing Qiu
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Shuiqiu Liu
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Junwen Hu
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Xiangbao Yin
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
6
|
Yustis JC, Devoucoux M, Côté J. The Functional Relationship Between RNA Splicing and the Chromatin Landscape. J Mol Biol 2024; 436:168614. [PMID: 38762032 DOI: 10.1016/j.jmb.2024.168614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/27/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Chromatin is a highly regulated and dynamic structure that has been shown to play an essential role in transcriptional and co-transcriptional regulation. In the context of RNA splicing, early evidence suggested a loose connection between the chromatin landscape and splicing. More recently, it has been shown that splicing occurs in a co-transcriptional manner, meaning that the splicing process occurs in the context of chromatin. Experimental and computational evidence have also shown that chromatin dynamics can influence the splicing process and vice versa. However, much of this evidence provides mainly correlative relationships between chromatin and splicing with just a few concrete examples providing defined molecular mechanisms by which these two processes are functionally related. Nevertheless, it is clear that chromatin and RNA splicing are tightly interconnected to one another. In this review, we highlight the current state of knowledge of the relationship between chromatin and splicing.
Collapse
Affiliation(s)
- Juan-Carlos Yustis
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of the CHU de Québec-Université Laval Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Maëva Devoucoux
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of the CHU de Québec-Université Laval Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of the CHU de Québec-Université Laval Research Center, Quebec City, Quebec G1R 3S3, Canada.
| |
Collapse
|
7
|
Deng Z, Ai H, Sun M, Tong Z, Du Y, Qu Q, Zhang L, Xu Z, Tao S, Shi Q, Li JB, Pan M, Liu L. Mechanistic insights into nucleosomal H2B monoubiquitylation mediated by yeast Bre1-Rad6 and its human homolog RNF20/RNF40-hRAD6A. Mol Cell 2023; 83:3080-3094.e14. [PMID: 37633270 DOI: 10.1016/j.molcel.2023.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/27/2023] [Accepted: 08/02/2023] [Indexed: 08/28/2023]
Abstract
Histone H2B monoubiquitylation plays essential roles in chromatin-based transcriptional processes. A RING-type E3 ligase (yeast Bre1 or human RNF20/RNF40) and an E2 ubiquitin-conjugating enzyme (yeast Rad6 or human hRAD6A), together, precisely deposit ubiquitin on H2B K123 in yeast or K120 in humans. Here, we developed a chemical trapping strategy and successfully captured the transient structures of Bre1- or RNF20/RNF40-mediated ubiquitin transfer from Rad6 or hRAD6A to nucleosomal H2B. Our structures show that Bre1 and RNF40 directly bind nucleosomal DNA, exhibiting a conserved E3/E2/nucleosome interaction pattern from yeast to humans for H2B monoubiquitylation. We also find an uncanonical non-hydrophobic contact in the Bre1 RING-Rad6 interface, which positions Rad6 directly above the target H2B lysine residue. Our study provides mechanistic insights into the site-specific monoubiquitylation of H2B, reveals a critical role of nucleosomal DNA in mediating E3 ligase recognition, and provides a framework for understanding the cancer-driving mutations of RNF20/RNF40.
Collapse
Affiliation(s)
- Zhiheng Deng
- Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Huasong Ai
- Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; Institute of Translational Medicine, National Center for Translational Medicine (Shanghai), School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Maoshen Sun
- Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zebin Tong
- Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yunxiang Du
- Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qian Qu
- Institute of Translational Medicine, National Center for Translational Medicine (Shanghai), School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liying Zhang
- Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ziyu Xu
- Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shixian Tao
- Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qiang Shi
- Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jia-Bin Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Man Pan
- Institute of Translational Medicine, National Center for Translational Medicine (Shanghai), School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Liu
- Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
8
|
Li Y, Ruan GX, Chen W, Huang H, Zhang R, Wang J, Ouyang Y, Zhu Z, Meng L, Wang R, Huo J, Xu S, Ou X. The histone H2B ubiquitination regulator Wac is essential for plasma cell differentiation. FEBS Lett 2023; 597:1748-1760. [PMID: 37171241 DOI: 10.1002/1873-3468.14633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/13/2023]
Abstract
Naïve B cells become activated and differentiate into antibody-secreting plasma cells (PCs) when encountering antigens. Here, we reveal that the WW domain-containing adapter protein with coiled-coil (Wac), which is important for histone H2B ubiquitination (ubH2B), is essential for PC differentiation. We demonstrate that B cell-specific Wac knockout mice have severely compromised T cell-dependent and -independent antibody responses. PC differentiation is drastically compromised despite undisturbed germinal center B cell response in the mutant mice. We also observe a significant reduction in global ubH2B in Wac-deficient B cells, which is correlated with downregulated expression of some genes critical for cell metabolism. Thus, our findings demonstrate an essential role of Wac-mediated ubH2B in PC differentiation and shed light on the epigenetic mechanisms underlying this process.
Collapse
Affiliation(s)
- Yuxing Li
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Gui-Xin Ruan
- Medical School, Taizhou University, Zhejiang, China
| | - Wenjing Chen
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Hengjun Huang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Rui Zhang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jing Wang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yu Ouyang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Zhijian Zhu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Limin Meng
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Ruisi Wang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jianxin Huo
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore City, Singapore
| | - Shengli Xu
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore City, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Xijun Ou
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
9
|
Fang YZ, Jiang L, He Q, Cao J, Yang B. Commentary: Deubiquitination complex platform: a plausible mechanism for regulating the substrate specificity of deubiquitinating enzymes. Acta Pharm Sin B 2023. [PMID: 37521861 PMCID: PMC10372820 DOI: 10.1016/j.apsb.2023.02.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Deubiquitinating enzymes (DUBs) or deubiquitinases facilitate the escape of multiple proteins from ubiquitin‒proteasome degradation and are critical for regulating protein expression levels in vivo. Therefore, dissecting the underlying mechanism of DUB recognition is needed to advance the development of drugs related to DUB signaling pathways. To data, extensive studies on the ubiquitin chain specificity of DUBs have been reported, but substrate protein recognition is still not clearly understood. As a breakthrough, the scaffolding role may be significant to substrate protein selectivity. From this perspective, we systematically characterized the scaffolding proteins and complexes contributing to DUB substrate selectivity. Furthermore, we proposed a deubiquitination complex platform (DCP) as a potentially generic mechanism for DUB substrate recognition based on known examples, which might fill the gaps in the understanding of DUB substrate specificity.
Collapse
|
10
|
Campos-Iglesias D, Fraile JM, Bretones G, Montero AA, Bonzon-Kulichenko E, Vázquez J, López-Otín C, Freije JMP. USP49 deubiquitinase regulates the mitotic spindle checkpoint and prevents aneuploidy. Cell Death Dis 2023; 14:60. [PMID: 36702832 PMCID: PMC9879932 DOI: 10.1038/s41419-023-05600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023]
Abstract
The spindle assembly checkpoint (SAC) is an essential mechanism that ensures the accurate chromosome segregation during mitosis, thus preventing genomic instability. Deubiquitinases have emerged as key regulators of the SAC, mainly by determining the fate of proteins during cell cycle progression. Here, we identify USP49 deubiquitinase as a novel regulator of the spindle checkpoint. We show that loss of USP49 in different cancer cell lines impairs proliferation and increases aneuploidy. In addition, USP49-depleted cells overcome the arrest induced by the SAC in the presence of nocodazole. Finally, we report new binding partners of USP49, including ribophorin 1, USP44, and different centrins.
Collapse
Affiliation(s)
- Diana Campos-Iglesias
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Julia M Fraile
- Elasmogen Ltd, Liberty Building, Foresterhill Road, Aberdeen, AB25 2ZP, UK
| | - Gabriel Bretones
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Alejandro A Montero
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Elena Bonzon-Kulichenko
- Biochemistry Section, Regional Center for Biomedical Research (CRIB), Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avda. Carlos III s/n, 45071, Toledo, Spain
| | - Jesús Vázquez
- Laboratorio de Proteómica Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.
| | - José M P Freije
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.
| |
Collapse
|
11
|
Lou Y, Ye M, Xu C, Tao F. Insight into the physiological and pathological roles of USP44, a potential tumor target (Review). Oncol Lett 2022; 24:455. [PMID: 36380875 PMCID: PMC9650596 DOI: 10.3892/ol.2022.13575] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 10/06/2022] [Indexed: 11/24/2022] Open
Abstract
Ubiquitin-specific peptidase 44 (USP44) is a member of the ubiquitin-specific proteases (USPs) family and its functions in various biological processes have been gradually elucidated in recent years. USP44 targets multiple downstream factors and regulates multiple mechanisms through its deubiquitination activity. Ubiquitination is, in essence, a process in which a single ubiquitin molecule or a multiubiquitin chain binds to a substrate protein to form an isopeptide bond. Deubiquitination is the catalyzing of the isopeptide bonds between ubiquitin and substrate proteins through deubiquitylating enzymes. These two processes serve an important role in the regulation of the expression, conformation, localization and function of substrate proteins by regulating their binding to ubiquitin. Based on existing research, this paper summarized the current state of knowledge about USP44. The physiological roles of USP44 in various cellular events and its pathophysiological roles in different cancer types are evaluated and the therapeutic potential of USP44 for cancer treatment is evaluated.
Collapse
Affiliation(s)
- Yuming Lou
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China,Department of Stomach and Intestine Surgery, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, P.R. China
| | - Minfeng Ye
- Department of Stomach and Intestine Surgery, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, P.R. China
| | - Chaoyang Xu
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China,Department of Stomach and Intestine Surgery, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, P.R. China,Correspondence to: Dr Chaoyang Xu, Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, 365 Renmin East Road, Jinhua, Zhejiang 321000, P.R. China, E-mail:
| | - Feng Tao
- Department of Stomach and Intestine Surgery, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, P.R. China,Professor Feng Tao, Department of Stomach and Intestine Surgery, Shaoxing Hospital, Zhejiang University School of Medicine, 568 Zhongxing North Road, Shaoxing, Zhejiang 312000, P.R. China, E-mail:
| |
Collapse
|
12
|
Characterizing and exploiting the many roles of aberrant H2B monoubiquitination in cancer pathogenesis. Semin Cancer Biol 2022; 86:782-798. [PMID: 34953650 DOI: 10.1016/j.semcancer.2021.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/08/2021] [Accepted: 12/19/2021] [Indexed: 01/27/2023]
Abstract
Monoubiquitination of histone H2B on lysine 120 (H2Bub1) is implicated in the control of multiple essential processes, including transcription, DNA damage repair and mitotic chromosome segregation. Accordingly, aberrant regulation of H2Bub1 can induce transcriptional reprogramming and genome instability that may promote oncogenesis. Remarkably, alterations of the ubiquitin ligases and deubiquitinating enzymes regulating H2Bub1 are emerging as ubiquitous features in cancer, further supporting the possibility that the misregulation of H2Bub1 is an underlying mechanism contributing to cancer pathogenesis. To date, aberrant H2Bub1 dynamics have been reported in multiple cancer types and are associated with transcriptional changes that promote oncogenesis in a cancer type-specific manner. Owing to the multi-functional nature of H2Bub1, misregulation of its writers and erasers may drive disease initiation and progression through additional synergistic processes. Accordingly, understanding the molecular determinants and pathogenic impacts associated with aberrant H2Bub1 regulation may reveal novel drug targets and therapeutic vulnerabilities that can be exploited to develop innovative precision medicine strategies that better combat cancer. In this review, we present the normal functions of H2Bub1 in the control of DNA-associated processes and describe the pathogenic implications associated with its misregulation in cancer. We further discuss the challenges coupled with the development of therapeutic strategies targeting H2Bub1 misregulation and expose the potential benefits of designing treatments that synergistically exploit the multiple functionalities of H2Bub1 to improve treatment selectivity and efficacy.
Collapse
|
13
|
Alexander GM, Heiman-Patterson TD, Bearoff F, Sher RB, Hennessy L, Terek S, Caccavo N, Cox GA, Philip VM, Blankenhorn EA. Identification of quantitative trait loci for survival in the mutant dynactin p150Glued mouse model of motor neuron disease. PLoS One 2022; 17:e0274615. [PMID: 36107978 PMCID: PMC9477371 DOI: 10.1371/journal.pone.0274615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/01/2022] [Indexed: 11/19/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common degenerative motor neuron disorder. Although most cases of ALS are sporadic, 5-10% of cases are familial, with mutations associated with over 40 genes. There is variation of ALS symptoms within families carrying the same mutation; the disease may develop in one sibling and not in another despite the presence of the mutation in both. Although the cause of this phenotypic variation is unknown, it is likely related to genetic modifiers of disease expression. The identification of ALS causing genes has led to the development of transgenic mouse models of motor neuron disease. Similar to families with familial ALS, there are background-dependent differences in disease phenotype in transgenic mouse models of ALS suggesting that, as in human ALS, differences in phenotype may be ascribed to genetic modifiers. These genetic modifiers may not cause ALS rather their expression either exacerbates or ameliorates the effect of the mutant ALS causing genes. We have reported that in both the G93A-hSOD1 and G59S-hDCTN1 mouse models, SJL mice demonstrated a more severe phenotype than C57BL6 mice. From reciprocal intercrosses between G93A-hSOD1 transgenic mice on SJL and C57BL6 strains, we identified a major quantitative trait locus (QTL) on mouse chromosome 17 that results in a significant shift in lifespan. In this study we generated reciprocal intercrosses between transgenic G59S-hDCTN1 mice on SJL and C57BL6 strains and identified survival QTLs on mouse chromosomes 17 and 18. The chromosome 17 survival QTL on G93A-hSOD1 and G59S-hDCTN1 mice partly overlap, suggesting that the genetic modifiers located in this region may be shared by these two ALS models despite the fact that motor neuron degeneration is caused by mutations in different proteins. The overlapping region contains eighty-seven genes with non-synonymous variations predicted to be deleterious and/or damaging. Two genes in this segment, NOTCH3 and Safb/SAFB1, have been associated with motor neuron disease. The identification of genetic modifiers of motor neuron disease, especially those modifiers that are shared by SOD1 and dynactin-1 transgenic mice, may result in the identification of novel targets for therapies that can alter the course of this devastating illness.
Collapse
Affiliation(s)
| | - Terry D. Heiman-Patterson
- Department of Neurology, Lewis Katz School of Medicine of Temple University, Philadelphia, Pennsylvania, United States of America
| | - Frank Bearoff
- Department of Microbiology Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Roger B. Sher
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York, United States of America
| | - Laura Hennessy
- The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Shannon Terek
- The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Nicole Caccavo
- Department of Neurology, Lewis Katz School of Medicine of Temple University, Philadelphia, Pennsylvania, United States of America
| | - Gregory A. Cox
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Vivek M. Philip
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Elizabeth A. Blankenhorn
- Department of Microbiology Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
14
|
Matsui M, Kajita S, Tsuchiya Y, Torii W, Tamekuni S, Nishi R. USP49 is a novel deubiquitylating enzyme for γ H2AX in DNA double-strand break repair. Gene 2022; 833:146599. [PMID: 35598681 DOI: 10.1016/j.gene.2022.146599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/16/2022] [Indexed: 12/29/2022]
Abstract
DNA double-strand break (DSB) that is one of the most serious DNA lesions is mainly repaired by two mutually exclusive pathways, homologous recombination and non-homologous end-joining. Proper choice of DSB repair pathway, in which recruitment of 53BP1 to chromatin around DSB sites plays a pivotal role, is crucial for maintaining genome integrity. Ubiquitylations of histone H2A and H2AX on Lys15 are prerequisite for 53BP1 loading onto chromatin. Although ubiquitylation mechanism of H2A and H2AX had been extensively studied, mechanism regulating deubiquitylation of γH2AX that is a phosphorylated form of H2AX remains elusive. Here, we identified USP49 as a novel deubiquitylating enzyme targeting DSB-induced γH2AX ubiquitylation. Over-expressed USP49 suppressed ubiquitylation of γH2AX in an enzymatic activity-dependent manner. Catalytic dead mutant of USP49 interacted and colocalized with γH2AX. Consequently, over-expression of USP49 inhibited the DSB-induced foci formation of 53BP1 and resulted in higher cell sensitivity to DSB-inducing drug treatment. Furthermore, endogenous USP49 protein was degraded via the proteasome upon DSB induction, indicating the importance of modulating USP49 protein level for γH2AX deubiquitylation. Consistent with our cell-based data, kidney renal clear cell carcinoma patients with higher expression of USP49 showed poor survival rate in comparison to the patients with unaltered USP49 expression. In conclusion, these data suggest that fine tuning of protein level of USP49 and USP49-mediated deubiquitylation of γH2AX are important for genome integrity.
Collapse
Affiliation(s)
- Misaki Matsui
- Graduate School of Bionics, Tokyo University of Technology, Hachioji, Tokyo 192-0982, Japan
| | - Shoki Kajita
- Department of Biomedical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Yuina Tsuchiya
- School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Tokyo 192-0982, Japan
| | - Wakana Torii
- Department of Biomedical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Shiori Tamekuni
- Department of Biomedical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Ryotaro Nishi
- Graduate School of Bionics, Tokyo University of Technology, Hachioji, Tokyo 192-0982, Japan; Department of Biomedical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Tokyo 192-0982, Japan.
| |
Collapse
|
15
|
Li Z, Zhao B, Qin C, Wang Y, Li T, Wang W. Chromatin Dynamics in Digestive System Cancer: Commander and Regulator. Front Oncol 2022; 12:935877. [PMID: 35965507 PMCID: PMC9372441 DOI: 10.3389/fonc.2022.935877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022] Open
Abstract
Digestive system tumors have a poor prognosis due to complex anatomy, insidious onset, challenges in early diagnosis, and chemoresistance. Epidemiological statistics has verified that digestive system tumors rank first in tumor-related death. Although a great number of studies are devoted to the molecular biological mechanism, early diagnostic markers, and application of new targeted drugs in digestive system tumors, the therapeutic effect is still not satisfactory. Epigenomic alterations including histone modification and chromatin remodeling are present in human cancers and are now known to cooperate with genetic changes to drive the cancer phenotype. Chromatin is the carrier of genetic information and consists of DNA, histones, non-histone proteins, and a small amount of RNA. Chromatin and nucleosomes control the stability of the eukaryotic genome and regulate DNA processes such as transcription, replication, and repair. The dynamic structure of chromatin plays a key role in this regulatory function. Structural fluctuations expose internal DNA and thus provide access to the nuclear machinery. The dynamic changes are affected by various complexes and epigenetic modifications. Variation of chromatin dynamics produces early and superior regulation of the expression of related genes and downstream pathways, thereby controlling tumor development. Intervention at the chromatin level can change the process of cancer earlier and is a feasible option for future tumor diagnosis and treatment. In this review, we introduced chromatin dynamics including chromatin remodeling, histone modifications, and chromatin accessibility, and current research on chromatin regulation in digestive system tumors was also summarized.
Collapse
|
16
|
c-MYC-USP49-BAG2 axis promotes proliferation and chemoresistance of colorectal cancer cells in vitro. Biochem Biophys Res Commun 2022; 607:117-123. [DOI: 10.1016/j.bbrc.2022.03.138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 03/26/2022] [Indexed: 12/26/2022]
|
17
|
USP49 mediates tumor progression and poor prognosis through a YAP1-dependent feedback loop in gastric cancer. Oncogene 2022; 41:2555-2570. [PMID: 35318441 DOI: 10.1038/s41388-022-02267-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 02/12/2022] [Accepted: 03/01/2022] [Indexed: 11/08/2022]
Abstract
The importance of the Hippo-Yes-associated protein 1 (YAP1) pathway in gastric carcinogenesis and metastasis has attracted considerable research attention; however, the regulatory network of YAP1 in gastric cancer (GC) is not completely understood. In this study, ubiquitin-specific peptidase 49 (USP49) was identified as a novel deubiquitinase of YAP1, knockdown of USP49 inhibited the proliferation, metastasis, chemoresistance, and peritoneal metastasis of GC cells. Overexpression of USP49 showed opposing biological effects. Moreover, USP49 was transcriptionally activated by the YAP1/TEAD4 complex, which formed a positive feedback loop with YAP1 to promote the malignant progression of GC cells. Finally, we collected tissue samples and clinical follow-up information from 482 GC patients. The results showed that USP49 expression was high in GC cells and positively correlated with the expression of YAP1 and its target genes, connective tissue growth factor (CTGF) and cysteine-rich angiogenic inducer 61 (CYR61). Survival and Cox regression analysis showed that high USP49 expression was associated with poor prognosis and was an independent prognostic factor. Moreover, patients with high USP49 and YAP1 expression had extremely short overall survival. The findings of this study reveal that the aberrant activation of the USP49/YAP1 positive feedback loop plays a critical role in the malignant progression of GC, thus providing potential novel prognostic factors and therapeutic targets for GC.
Collapse
|
18
|
Wu L, Yu K, Chen K, Zhu X, Yang Z, Wang Q, Gao J, Wang Y, Cao T, Xu H, Pan X, Wang L, Xia J, Li Y, Wang ZP, Ma J. Fbxo45 facilitates pancreatic carcinoma progression by targeting USP49 for ubiquitination and degradation. Cell Death Dis 2022; 13:231. [PMID: 35279684 PMCID: PMC8918322 DOI: 10.1038/s41419-022-04675-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 12/27/2022]
Abstract
Fbxo45, a conserved F-box protein, comprises of an atypical SKP1, CUL1, F-box protein (SCF) ubiquitin ligase complex that promotes tumorigenesis and development. However, the biological function and molecular mechanisms of Fbxo45 involved in pancreatic carcinogenesis are ambiguous. We conducted several approaches, including transfection, coIP, real-time polymerase chain reaction (RT-PCR), Western blotting, ubiquitin assays, and animal studies, to explore the role of Fbxo45 in pancreatic cancer. Here, we report that USP49 stability is governed by Fbxo45-mediated ubiquitination and is enhanced by the absence of Fbxo45. Moreover, Fbxo45 binds to a short consensus sequence of USP49 through its SPRY domain. Furthermore, Fbxo45-mediated USP49 ubiquitination and degradation are enhanced by NEK6 kinase. Functionally, Fbxo45 increases cell viability and motility capacity by targeting USP49 in pancreatic cancer cells. Xenograft mouse experiments demonstrated that ectopic expression of Fbxo45 enhanced tumor growth in mice and that USP49 overexpression inhibited tumor growth in vivo. Notably, Fbxo45 expression was negatively associated with USP49 expression in pancreatic cancer tissues. Fbxo45 serves as an oncoprotein to facilitate pancreatic oncogenesis by regulating the stability of the tumor suppressor USP49 in pancreatic cancer.
Collapse
Affiliation(s)
- Linhui Wu
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Ke Yu
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Kai Chen
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Xuelian Zhu
- Department of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Zheng Yang
- Department of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Qi Wang
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Junjie Gao
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Yingying Wang
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Tong Cao
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, China
| | - Hui Xu
- Department of Clinical Laboratory Diagnostics, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Xueshan Pan
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Lixia Wang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Jun Xia
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Yuyun Li
- Department of Clinical Laboratory Diagnostics, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Zhiwei Peter Wang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China.
- Center of Scientific Research, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Jia Ma
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China.
| |
Collapse
|
19
|
USP49-mediated histone H2B deubiquitination regulates HCT116 cell proliferation through MDM2-p53 axis. Mol Cell Biol 2022; 42:e0043421. [PMID: 35072515 DOI: 10.1128/mcb.00434-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Post-translational histone modifications play important roles in regulating chromatin structure and transcriptional regulation. Histone H2B monoubiquitination (H2Bub) is an essential regulator for transcriptional elongation and ongoing transcription. Here we reported that USP49, as a histone H2B deubiquitinase, is involved in HCT116 cell proliferation through modulating MDM2-p53 pathway genes. USP49 knockout contributes to increased HCT116 cell proliferation and migration. Importantly, USP49 knockout stimulated MDM2 transcriptional level and then inhibited the mRNA levels of TP53 target genes. Conversely, overexpression of USP49 suppressed MDM2 gene expression and then promoted TP53 target genes. Moreover, chromatin immunoprecipitation revealed that USP49 directly bound to the promoter of MDM2 gene. USP49 knockout increased the H2Bub enrichment at MDM2 gene whereas USP49 overexpression downregulated the H2Bub level at MDM2 gene. Therefore, our findings indicated that USP49-mediated H2B deubiquitination controls the transcription of MDM2-p53 axis genes in the process of HCT116 cell proliferation.
Collapse
|
20
|
Hu Y, Jiang Y, Zhang Z, Wang J, Zhang B, Gong L, Ji L, Pu Z, Yang X, Zou J, Yin Y. Oncogenic Activity of Glucocorticoid Receptor β Is Controlled by Ubiquitination-Dependent Interaction with USP49 in Glioblastoma Cells. Mol Cancer Res 2022; 20:92-101. [PMID: 34610959 PMCID: PMC9398152 DOI: 10.1158/1541-7786.mcr-20-1068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/20/2021] [Accepted: 09/28/2021] [Indexed: 01/07/2023]
Abstract
Previous studies have demonstrated that glucocorticoid receptor β (GRβ) functions as an oncoprotein, regulating the malignant phenotypes and stem-like cell maintaining in human glioblastoma (GBM). Of the glucocorticoid receptor (GR) isoforms, GRβ and GRα are highly homologous, though the mechanism underlying the distinct functions of these two isoforms in GBM has not been clarified. Here by establishing a carboxyl-terminal (COOH-terminal) deletion mutant, we determined that GRβ can be ubiquitinated. We also found that its COOH terminal is essential for this ubiquitination. The mutation of a lysine to arginine at residue 733 (K733R) blocked the ubiquitination of GRβ, indicating that K733 is a key site for ubiquitination. Using K733R to establish nonubiquitinated GRβ, we demonstrated that ubiquitination not only regulates the stability and nuclear translocation of GRβ, but is also a vital mechanism for its oncogenic functions in vitro and in vivo. Protein interaction assay further indicated that ubiquitin-specific protease 49 (USP49) is a GRβ-binding protein and the interaction depends on GRβ ubiquitination. USP49 knockdown resulted in a decrease of cell proliferation, invasion, and an increase of cell apoptosis. More importantly, USP49 knockdown increased ubiquitination and amplified the oncogenic effects of GRβ, confirming the decisive role of ubiquitination on GRβ carcinogenicity. Taken together, these findings established that ubiquitination is a vial process for GRβ the execution of oncogenic functions in GBM and that the K733 site is crucial for ubiquitination of GRβ. IMPLICATIONS: This work is the first identify of the activation GRβ by a single lysine point-mediated ubiquitination and proteasome degradation, which determines its oncogenic functions in GBM.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jian Zou
- Corresponding Authors: Jian Zou, Center of Clinical Research, The Affiliated Wuxi People's Hospital, Nanjing Medical University, No. 299 Qingyang Road, Wuxi, 214023, Jiangsu, China. Phone: 86510-8535-0368; E-mail: ; and Ying Yin, Phone: 510-8535-0363; E-mail:
| | - Ying Yin
- Corresponding Authors: Jian Zou, Center of Clinical Research, The Affiliated Wuxi People's Hospital, Nanjing Medical University, No. 299 Qingyang Road, Wuxi, 214023, Jiangsu, China. Phone: 86510-8535-0368; E-mail: ; and Ying Yin, Phone: 510-8535-0363; E-mail:
| |
Collapse
|
21
|
Cappelli K, Mecocci S, Capomaccio S, Beccati F, Palumbo AR, Tognoloni A, Pepe M, Chiaradia E. Circulating Transcriptional Profile Modulation in Response to Metabolic Unbalance Due to Long-Term Exercise in Equine Athletes: A Pilot Study. Genes (Basel) 2021; 12:genes12121965. [PMID: 34946914 PMCID: PMC8701225 DOI: 10.3390/genes12121965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 11/26/2022] Open
Abstract
Physical exercise has been associated with the modulation of micro RNAs (miRNAs), actively released in body fluids and recognized as accurate biomarkers. The aim of this study was to measure serum miRNA profiles in 18 horses taking part in endurance competitions, which represents a good model to test metabolic responses to moderate intensity prolonged efforts. Serum levels of miRNAs of eight horses that were eliminated due to metabolic unbalance (Non Performer-NP) were compared to those of 10 horses that finished an endurance competition in excellent metabolic condition (Performer-P). Circulating miRNA (ci-miRNA) profiles in serum were analyzed through sequencing, and differential gene expression analysis was assessed comparing NP versus P groups. Target and pathway analysis revealed the up regulation of a set of miRNAs (of mir-211 mir-451, mir-106b, mir-15b, mir-101-1, mir-18a, mir-20a) involved in the modulation of myogenesis, cardiac and skeletal muscle remodeling, angiogenesis, ventricular contractility, and in the regulation of gene expression. Our preliminary data open new scenarios in the definition of metabolic adaptations to the establishment of efficient training programs and the validation of athletes’ elimination from competitions.
Collapse
Affiliation(s)
- Katia Cappelli
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (K.C.); (S.M.); (F.B.); (A.R.P.); (A.T.); (M.P.); (E.C.)
- Sports Horse Research Center, University of Perugia, 06126 Perugia, Italy
| | - Samanta Mecocci
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (K.C.); (S.M.); (F.B.); (A.R.P.); (A.T.); (M.P.); (E.C.)
| | - Stefano Capomaccio
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (K.C.); (S.M.); (F.B.); (A.R.P.); (A.T.); (M.P.); (E.C.)
- Sports Horse Research Center, University of Perugia, 06126 Perugia, Italy
- Correspondence: ; Tel.: +39-0755857765
| | - Francesca Beccati
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (K.C.); (S.M.); (F.B.); (A.R.P.); (A.T.); (M.P.); (E.C.)
- Sports Horse Research Center, University of Perugia, 06126 Perugia, Italy
| | - Andrea Rosario Palumbo
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (K.C.); (S.M.); (F.B.); (A.R.P.); (A.T.); (M.P.); (E.C.)
| | - Alessia Tognoloni
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (K.C.); (S.M.); (F.B.); (A.R.P.); (A.T.); (M.P.); (E.C.)
| | - Marco Pepe
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (K.C.); (S.M.); (F.B.); (A.R.P.); (A.T.); (M.P.); (E.C.)
- Sports Horse Research Center, University of Perugia, 06126 Perugia, Italy
| | - Elisabetta Chiaradia
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (K.C.); (S.M.); (F.B.); (A.R.P.); (A.T.); (M.P.); (E.C.)
- Sports Horse Research Center, University of Perugia, 06126 Perugia, Italy
| |
Collapse
|
22
|
RNF2 ablation reprograms the tumor-immune microenvironment and stimulates durable NK and CD4 + T-cell-dependent antitumor immunity. NATURE CANCER 2021; 2:1018-1038. [PMID: 35121884 PMCID: PMC8809507 DOI: 10.1038/s43018-021-00263-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/25/2021] [Indexed: 02/08/2023]
Abstract
Expanding the utility of immune-based cancer treatments is a clinical challenge due to tumor-intrinsic factors that suppress the immune response. Here we report the identification of tumoral ring finger protein 2 (RNF2), the core subunit of polycomb repressor complex 1, as a negative regulator of antitumor immunity in various human cancers, including breast cancer. In syngeneic murine models of triple-negative breast cancer, we found that deleting genes encoding the polycomb repressor complex 1 subunits Rnf2, BMI1 proto-oncogene, polycomb ring finger (Bmi1), or the downstream effector of Rnf2, remodeling and spacing factor 1 (Rsf1), was sufficient by itself to induce durable tumor rejection and establish immune memory by enhancing infiltration and activation of natural killer and CD4+ T cells, but not CD8+ T cells, into the tumor and enabled their cooperativity. These findings uncover an epigenetic reprogramming of the tumor-immune microenvironment, which fosters durable antitumor immunity and memory.
Collapse
|
23
|
Jarome TJ, Perez GA, Webb WM, Hatch KM, Navabpour S, Musaus M, Farrell K, Hauser RM, McFadden T, Martin K, Butler AA, Wang J, Lubin FD. Ubiquitination of Histone H2B by Proteasome Subunit RPT6 Controls Histone Methylation Chromatin Dynamics During Memory Formation. Biol Psychiatry 2021; 89:1176-1187. [PMID: 33934885 PMCID: PMC8178164 DOI: 10.1016/j.biopsych.2020.12.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 11/29/2020] [Accepted: 12/22/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Posttranslational histone modifications play a critical role in the regulation of gene transcription underlying synaptic plasticity and memory formation. One such epigenetic change is histone ubiquitination, a process that is mediated by the ubiquitin-proteasome system in a manner similar to that by which proteins are normally targeted for degradation. However, histone ubiquitination mechanisms are poorly understood in the brain and in learning. In this article, we describe a new role for the ubiquitin-proteasome system in histone crosstalk, showing that learning-induced monoubiquitination of histone H2B (H2Bubi) is required for increases in the transcriptionally active H3 lysine 4 trimethylation (H3K4me3) mark at learning-related genes in the hippocampus. METHODS Using a series of molecular, biochemical, electrophysiological, and behavioral experiments, we interrogated the effects of short interfering RNA-mediated knockdown and CRISPR (clustered regularly interspaced short palindromic repeats)-mediated upregulation of ubiquitin ligases, deubiquitinating enzymes and histone methyltransferases in the rat dorsal hippocampus during memory consolidation. RESULTS We show that H2Bubi recruits H3K4me3 through a process that is dependent on the 19S proteasome subunit RPT6 and that a loss of H2Bubi in the hippocampus prevents learning-induced increases in H3K4me3, gene transcription, synaptic plasticity, and memory formation. Furthermore, we show that CRISPR-dCas9-mediated increases in H2Bubi promote H3K4me3 and memory formation under weak training conditions and that promoting histone methylation does not rescue memory impairments resulting from loss of H2Bubi. CONCLUSIONS These results suggest that H2B ubiquitination regulates histone crosstalk in learning by way of nonproteolytic proteasome function, demonstrating a novel mechanism by which histone modifications are coordinated in response to learning.
Collapse
Affiliation(s)
- Timothy J Jarome
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama; Fralin Biomedical Research Institute, Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, Virginia; School of Neuroscience, Virginia Polytechnic Institute and State University, Roanoke, Virginia; Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Roanoke, Virginia
| | - Gabriella A Perez
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - William M Webb
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Katrina M Hatch
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Shaghayegh Navabpour
- Fralin Biomedical Research Institute, Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, Virginia
| | - Madeline Musaus
- School of Neuroscience, Virginia Polytechnic Institute and State University, Roanoke, Virginia
| | - Kayla Farrell
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Roanoke, Virginia
| | - Rebecca M Hauser
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Taylor McFadden
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Roanoke, Virginia
| | - Kiley Martin
- School of Neuroscience, Virginia Polytechnic Institute and State University, Roanoke, Virginia
| | - Anderson A Butler
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jing Wang
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Farah D Lubin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
24
|
Wang Y, Wang F. Post-Translational Modifications of Deubiquitinating Enzymes: Expanding the Ubiquitin Code. Front Pharmacol 2021; 12:685011. [PMID: 34177595 PMCID: PMC8224227 DOI: 10.3389/fphar.2021.685011] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Post-translational modifications such as ubiquitination play important regulatory roles in several biological processes in eukaryotes. This process could be reversed by deubiquitinating enzymes (DUBs), which remove conjugated ubiquitin molecules from target substrates. Owing to their role as essential enzymes in regulating all ubiquitin-related processes, the abundance, localization, and catalytic activity of DUBs are tightly regulated. Dysregulation of DUBs can cause dramatic physiological consequences and a variety of disorders such as cancer, and neurodegenerative and inflammatory diseases. Multiple factors, such as transcription and translation of associated genes, and the presence of accessory domains, binding proteins, and inhibitors have been implicated in several aspects of DUB regulation. Beyond this level of regulation, emerging studies show that the function of DUBs can be regulated by a variety of post-translational modifications, which significantly affect the abundance, localization, and catalytic activity of DUBs. The most extensively studied post-translational modification of DUBs is phosphorylation. Besides phosphorylation, ubiquitination, SUMOylation, acetylation, oxidation, and hydroxylation are also reported in DUBs. In this review, we summarize the current knowledge on the regulatory effects of post-translational modifications of DUBs.
Collapse
Affiliation(s)
- Yanfeng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Feng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
25
|
miR-5000-3p confers oxaliplatin resistance by targeting ubiquitin-specific peptidase 49 in colorectal cancer. Cell Death Discov 2021; 7:129. [PMID: 34075026 PMCID: PMC8169888 DOI: 10.1038/s41420-021-00494-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/07/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the most common form of gastrointestinal malignancies. A growing number of reports focusing on oxaliplatin (OXA) resistance in CRC treatment have revealed that drug resistance is an urgent issue in clinical applications, especially for finding effective therapeutic targets. Recently, microRNAs (miRNAs) are reported to play a critical role in tumor progressions and multi-drug resistance. The main aim of this study is to establish whether miR-5000-3p is an oncogene that is resistant to OXA and further confirm its underlying regulatory role in CRC. The OXA-associated gene expression dataset in CRC cells was downloaded from Gene Expression Omnibus (GEO) database. Statistical software R was used for significance analysis of differentially expressed genes (DEGs) between OXA-resistant (OR)-CRC cells and CRC cells, and results indicated ubiquitin-specific peptidase 49 (USP49) was upregulated in OR-CRC cells. Luciferase reporter assay showed that USP49 was verified to act as a downstream target gene of miR-5000-3p. From the results of TCGA database, miR-5000-3p expression was upregulated and USP49 was downregulated in patients with CRC. The function of miR-5000-3p was detected using MTT assay, wound healing, Transwell, and flow cytometry assays. Moreover, through in vitro and in vivo experiments, miR-5000-3p expression was confirmed to be upregulated in CRC cells or OR-CRC cells comparing to normal cell lines. Molecular mechanism assays revealed that USP49 binds to the miR-5000-3p promoter to increase the expression of miR-5000-3p, resulting in cancer cells sensitized to OXA. To sum up, these results suggest that miR-5000-3p may be a novel biomarker involved in drug-resistance progression of CRC. Moreover, the drug-resistance mechanism of miR-5000-3p/USP49 axis provides new treatment strategies for CRC in clinical trials.
Collapse
|
26
|
Hou Z, Shi W, Feng J, Wang W, Zheng E, Lin H, Yu C, Li L. Self-stabilizing regulation of deubiquitinating enzymes in an enzymatic activity-dependent manner. Int J Biol Macromol 2021; 181:1081-1091. [PMID: 33864866 DOI: 10.1016/j.ijbiomac.2021.04.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/30/2021] [Accepted: 04/12/2021] [Indexed: 11/18/2022]
Abstract
Deubiquitinating enzymes (DUBs) play important roles in many physiological and pathological processes by modulating the ubiquitination of their substrates. DUBs undergo post-translational modifications including ubiquitination. However, whether DUBs can reverse their own ubiquitination and regulate their own protein stability requires further investigation. To answer this question, we screened an expression library of DUBs and their enzymatic activity mutants and found that some DUBs regulated their own protein stability in an enzymatic activity- and homomeric interaction-dependent manner. Taking Ubiquitin-specific-processing protease 29 (USP29) as an example, we found that USP29 deubiquitinates itself and protects itself from proteasomal degradation. We also revealed that the N-terminal region of USP29 is critical for its protein stability. Taken together, our work demonstrates that at least some DUBs regulate their own ubiquitination and protein stability. Our findings provide novel molecular insight into the diverse regulation of DUBs.
Collapse
Affiliation(s)
- Zhenzhu Hou
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Wanyan Shi
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jinan Feng
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Wei Wang
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Enrun Zheng
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Hanbin Lin
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Cheng Yu
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Lisheng Li
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xueyuan Road, Minhou, Fuzhou, China.
| |
Collapse
|
27
|
Marsh DJ, Ma Y, Dickson KA. Histone Monoubiquitination in Chromatin Remodelling: Focus on the Histone H2B Interactome and Cancer. Cancers (Basel) 2020; 12:E3462. [PMID: 33233707 PMCID: PMC7699835 DOI: 10.3390/cancers12113462] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022] Open
Abstract
Chromatin remodelling is a major mechanism by which cells control fundamental processes including gene expression, the DNA damage response (DDR) and ensuring the genomic plasticity required by stem cells to enable differentiation. The post-translational modification of histone H2B resulting in addition of a single ubiquitin, in humans at lysine 120 (K120; H2Bub1) and in yeast at K123, has key roles in transcriptional elongation associated with the RNA polymerase II-associated factor 1 complex (PAF1C) and in the DDR. H2Bub1 itself has been described as having tumour suppressive roles and a number of cancer-related proteins and/or complexes are recognised as part of the H2Bub1 interactome. These include the RING finger E3 ubiquitin ligases RNF20, RNF40 and BRCA1, the guardian of the genome p53, the PAF1C member CDC73, subunits of the switch/sucrose non-fermenting (SWI/SNF) chromatin remodelling complex and histone methyltransferase complexes DOT1L and COMPASS, as well as multiple deubiquitinases including USP22 and USP44. While globally depleted in many primary human malignancies, including breast, lung and colorectal cancer, H2Bub1 is selectively enriched at the coding region of certain highly expressed genes, including at p53 target genes in response to DNA damage, functioning to exercise transcriptional control of these loci. This review draws together extensive literature to cement a significant role for H2Bub1 in a range of human malignancies and discusses the interplay between key cancer-related proteins and H2Bub1-associated chromatin remodelling.
Collapse
Affiliation(s)
- Deborah J. Marsh
- Translational Oncology Group, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (Y.M.); (K.-A.D.)
- Kolling Institute, Faculty of Medicine and Health, Northern Clinical School, University of Sydney, Camperdown, NSW 2006, Australia
| | - Yue Ma
- Translational Oncology Group, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (Y.M.); (K.-A.D.)
| | - Kristie-Ann Dickson
- Translational Oncology Group, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (Y.M.); (K.-A.D.)
| |
Collapse
|
28
|
Zhao Z, Su Z, Liang P, Liu D, Yang S, Wu Y, Ma L, Feng J, Zhang X, Wu C, Huang J, Cui J. USP38 Couples Histone Ubiquitination and Methylation via KDM5B to Resolve Inflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002680. [PMID: 33240782 PMCID: PMC7675183 DOI: 10.1002/advs.202002680] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/24/2020] [Indexed: 05/15/2023]
Abstract
Chromatin modifications, such as histone acetylation, ubiquitination, and methylation, play fundamental roles in maintaining chromatin architecture and regulating gene transcription. Although their crosstalk in chromatin remodeling has been gradually uncovered, the functional relationship between histone ubiquitination and methylation in regulating immunity and inflammation remains unclear. Here, it is reported that USP38 is a novel histone deubiquitinase that works together with the histone H3K4 modifier KDM5B to orchestrate inflammatory responses. USP38 specifically removes the monoubiquitin on H2B at lysine 120, which functions as a prerequisite for the subsequent recruitment of demethylase KDM5B to the promoters of proinflammatory cytokines Il6 and Il23a during LPS stimulation. KDM5B in turn inhibits the binding of NF-κB transcription factors to the Il6 and Il23a promoters by reducing H3K4 trimethylation. Furthermore, USP38 can bind to KDM5B and prevent it from proteasomal degradation, which further enhances the function of KDM5B in the regulation of inflammation-related genes. Loss of Usp38 in mice markedly enhances susceptibility to endotoxin shock and acute colitis, and these mice display a more severe inflammatory phenotype compared to wild-type mice. The studies identify USP38-KDM5B as a distinct chromatin modification complex that restrains inflammatory responses through manipulating the crosstalk of histone ubiquitination and methylation.
Collapse
Affiliation(s)
- Zhiyao Zhao
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
- Department of Internal MedicineGuangzhou Institute of PediatricsGuangzhou Women and Children's Medical CenterGuangzhouGuangdong510623China
| | - Zexiong Su
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Puping Liang
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Di Liu
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Shuai Yang
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Yaoxing Wu
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Ling Ma
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Junyan Feng
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Xiya Zhang
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Chenglei Wu
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Jun Cui
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| |
Collapse
|
29
|
Development of an MS Workflow Based on Combining Database Search Engines for Accurate Protein Identification and Its Validation to Identify the Serum Proteomic Profile in Female Stress Urinary Incontinence. BIOMED RESEARCH INTERNATIONAL 2020. [DOI: 10.1155/2020/8740468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A critical stage of shotgun proteomics is database search, a process which attempts to match the experimental spectra to the theoretical one. Given the considerable time and effort spent in analysis, it is self-evident for a researcher to aspire for rigorous computational analysis and a more confident and accurate peptide/protein identification. Mass spectrometry (MS) has been applied across several clinical disciplines. The pathophysiology of Stress Urinary Incontinence (SUI), caused by a damaged pelvic floor, has become a boundless disease altering the quality of life worldwide. Although some studies pointed markers that can be bioindicators for SUI, these findings raise the issue of sensitivity and specificity. Therefore, it is critical to have a sensitive and specific analytical approach to identify markers that have been associated with protective and deleterious associations in disease. Here, we describe our designed and developed workflow for protein identification from tandem mass spectrometry that uses multiple search engines. We apply our workflow to an existing study addressing the pathophysiology of SUI. We demonstrate how using the combined approach together with high-performance computing techniques can surmount the challenges of complex analyses and extended computing time. We also compare the relative performance of each combination. Our results suggest that a combination of MS-GF+ and COMET represents the best sensitivity-specificity trade-off, outperforming all other tested combinations. The approach was also sensitive and accurately identified a set of protein that was shown to be markers for categories of diseases associated with the pathophysiology of SUI. This workflow was developed to encourage proteomic researchers to adopt MS-based techniques for accurate analysis and to promote MS as a routine tool to the clinical cohorts.
Collapse
|
30
|
Yang L, Wang Z, Zou C, Mi Y, Tang H, Wu X. Ubiquitin-specific protease 49 attenuates IL-1β-induced rat primary chondrocyte apoptosis by facilitating Axin deubiquitination and subsequent Wnt/β-catenin signaling cascade inhibition. Mol Cell Biochem 2020; 474:263-275. [PMID: 32737772 DOI: 10.1007/s11010-020-03850-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022]
Abstract
Osteoarthritis (OA) is an age-related chronic joint degenerative disease. Interleukin 1 beta (IL-1β) is considered a marker for the progression of OA. In this study, we found that Ubiquitin-Specific Peptidase 49 (USP49) was significantly less expressed in OA patients compared with healthy individuals. Treating primary rat chondrocytes with different concentrations of IL-1β resulted in decreased Usp49 expression, while Usp49 overexpression could attenuate IL-1β-induced chondrocyte apoptosis by promoting Axin deubiquitination. The deubiquitination of Axin led to the accumulation of the protein, which in turn resulted in β-catenin degradation and Wnt/β-catenin signaling cascade inhibition. Interestingly, we also found that [6]-gingerol, an anti-OA drug, could upregulate the protein level of Usp49 and suppress the Wnt/β-catenin signaling cascade in primary rat chondrocytes. Taken together, our study not only demonstrates that Usp49 can negatively regulate the progression of OA by inhibiting the Wnt/β-catenin signaling cascade, but also elucidates the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Lanbo Yang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhanchao Wang
- Knee Injury Center, Luoyang Orthopedic Hospital of Henan Province (Henan Provincial Orthopaedic Hospital), Luoyang, 471000, Henan, China
| | - Chunyu Zou
- Knee Injury Center, Luoyang Orthopedic Hospital of Henan Province (Henan Provincial Orthopaedic Hospital), Luoyang, 471000, Henan, China
| | - Yufei Mi
- Knee Injury Center, Luoyang Orthopedic Hospital of Henan Province (Henan Provincial Orthopaedic Hospital), Luoyang, 471000, Henan, China
| | - Hengtao Tang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xuejian Wu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
31
|
Differential Expression of DUB Genes in Ovarian Cells Treated with Di-2-Ethylhexyl Phthalate. Int J Mol Sci 2020; 21:ijms21051755. [PMID: 32143396 PMCID: PMC7084536 DOI: 10.3390/ijms21051755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/11/2020] [Accepted: 03/03/2020] [Indexed: 11/16/2022] Open
Abstract
Premature ovarian failure (POF) is defined as loss of ovarian function in women less than 40 years of age. The causes of POF are diverse and include environmental factors. Di-2-ethylhexyl phthalate (DEHP) is one factor that may cause POF. The ubiquitin-proteasome system maintains intracellular balance by promoting or inhibiting protein degradation. To investigate the differential expressions of deubiquitinating enzyme (DUB) genes in patients with POF, we developed two in vitro POF models by treating A2780 or OVCAR5 with DEHP. Using these models, a multiplex RT-PCR system for DUB genes was applied to identify biomarkers by comparing expression patterns and DUB mRNA levels; multiplex RT-PCR results were validated by qRT-PCR and Western blotting analyses. Observed differential expression levels of several DUB genes including USP12, COPS5, ATXN3L, USP49, and USP34 in A2780 and OVCAR5 cells at the mRNA and protein levels suggest that they should be investigated as potential biomarkers of POF.
Collapse
|
32
|
Wang Y, Yang L, Zhang X, Cui W, Liu Y, Sun Q, He Q, Zhao S, Zhang G, Wang Y, Chen S. Epigenetic regulation of ferroptosis by H2B monoubiquitination and p53. EMBO Rep 2019; 20:e47563. [PMID: 31267712 PMCID: PMC6607012 DOI: 10.15252/embr.201847563] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/05/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
Monoubiquitination of histone H2B on lysine 120 (H2Bub1) is an epigenetic mark generally associated with transcriptional activation, yet the global functions of H2Bub1 remain poorly understood. Ferroptosis is a form of non-apoptotic cell death characterized by the iron-dependent overproduction of lipid hydroperoxides, which can be inhibited by the antioxidant activity of the solute carrier family member 11 (SLC7A11/xCT), a component of the cystine/glutamate antiporter. Whether nuclear events participate in the regulation of ferroptosis is largely unknown. Here, we show that the levels of H2Bub1 are decreased during erastin-induced ferroptosis and that loss of H2Bub1 increases the cellular sensitivity to ferroptosis. H2Bub1 epigenetically activates the expression of SLC7A11. Additionally, we show that the tumor suppressor p53 negatively regulates H2Bub1 levels independently of p53's transcription factor activity by promoting the nuclear translocation of the deubiquitinase USP7. Moreover, our studies reveal that p53 decreases H2Bub1 occupancy on the SLC7A11 gene regulatory region and represses the expression of SLC7A11 during erastin treatment. These data not only suggest a noncanonical role of p53 in chromatin regulation but also link p53 to ferroptosis via an H2Bub1-mediated epigenetic pathway. Overall, our work uncovers a previously unappreciated epigenetic mechanism for the regulation of ferroptosis.
Collapse
Affiliation(s)
- Yufei Wang
- Laboratory of Molecular and Cellular BiologySchool of Forensic SciencesCenter for Translational Medicine at The First Affiliated HospitalXi'an Jiao Tong University Health Science CenterXi'anShaanxiChina
| | - Lu Yang
- Laboratory of Molecular and Cellular BiologySchool of Forensic SciencesCenter for Translational Medicine at The First Affiliated HospitalXi'an Jiao Tong University Health Science CenterXi'anShaanxiChina
| | - Xiaojun Zhang
- Department of Science and EducationPeople's Hospital of ZunhuaTangshanHebeiChina
| | - Wen Cui
- School of Forensic Sciences and Laboratory MedicineJining Medical UniversityJiningShandongChina
| | - Yanping Liu
- Laboratory of Molecular and Cellular BiologySchool of Forensic SciencesCenter for Translational Medicine at The First Affiliated HospitalXi'an Jiao Tong University Health Science CenterXi'anShaanxiChina
| | - Qin‐Ru Sun
- Laboratory of Molecular and Cellular BiologySchool of Forensic SciencesCenter for Translational Medicine at The First Affiliated HospitalXi'an Jiao Tong University Health Science CenterXi'anShaanxiChina
| | - Qing He
- Laboratory of Molecular and Cellular BiologySchool of Forensic SciencesCenter for Translational Medicine at The First Affiliated HospitalXi'an Jiao Tong University Health Science CenterXi'anShaanxiChina
| | - Shiyan Zhao
- Community Health Service Center of YaoqiangJinanShandongChina
| | - Guo‐An Zhang
- School of Forensic Sciences and Laboratory MedicineJining Medical UniversityJiningShandongChina
| | - Yequan Wang
- School of Forensic Sciences and Laboratory MedicineJining Medical UniversityJiningShandongChina
| | - Su Chen
- Laboratory of Molecular and Cellular BiologySchool of Forensic SciencesCenter for Translational Medicine at The First Affiliated HospitalXi'an Jiao Tong University Health Science CenterXi'anShaanxiChina
- Department of Science and EducationPeople's Hospital of ZunhuaTangshanHebeiChina
- School of Forensic Sciences and Laboratory MedicineJining Medical UniversityJiningShandongChina
| |
Collapse
|
33
|
Young MJ, Hsu KC, Lin TE, Chang WC, Hung JJ. The role of ubiquitin-specific peptidases in cancer progression. J Biomed Sci 2019; 26:42. [PMID: 31133011 PMCID: PMC6537419 DOI: 10.1186/s12929-019-0522-0] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022] Open
Abstract
Protein ubiquitination is an important mechanism for regulating the activity and levels of proteins under physiological conditions. Loss of regulation by protein ubiquitination leads to various diseases, such as cancer. Two types of enzymes, namely, E1/E2/E3 ligases and deubiquitinases, are responsible for controlling protein ubiquitination. The ubiquitin-specific peptidases (USPs) are the main members of the deubiquitinase family. Many studies have addressed the roles of USPs in various diseases. An increasing number of studies have indicated that USPs are critical for cancer progression, and some USPs have been used as targets to develop inhibitors for cancer prevention. Herein we collect and organize most of the recent studies on the roles of USPs in cancer progression and discuss the development of USP inhibitors for cancer therapy in the future.
Collapse
Affiliation(s)
- Ming-Jer Young
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan
| | - Tony Eight Lin
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wen-Chang Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jan-Jong Hung
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan. .,The Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
34
|
Shen WM, Yin JN, Xu RJ, Xu DF, Zheng SY. Ubiquitin specific peptidase 49 inhibits non-small cell lung cancer cell growth by suppressing PI3K/AKT signaling. Kaohsiung J Med Sci 2019; 35:401-407. [PMID: 31001918 DOI: 10.1002/kjm2.12073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/01/2019] [Indexed: 12/16/2022] Open
Abstract
Ubiquitin specific peptidase 49 (USP49) has been reported as a tumor suppressor in several tumors, but its function and molecular mechanism in non-small cell lung cancer (NSCLC) are still unknown. In this study, USP49 was found downregulated in NSCLC primary tissues and cell lines, and high USP49 predicted a positive index for the overall survival of NSCLC patients. Overexpression of USP49 downregulated the expression levels of Cyclin D1, and upregulated p53 expression. Further flow cytometry analysis showed that overexpressed USP49 induced cell cycle arrest at G0/G1 phase. As a result, overexpression of USP49 significantly inhibited cell growth of NSCLC cells. In mechanism, overexpression of USP49 inhibited PI3K/AKT signaling, but knockdown of USP49 enhanced this signaling. Further studies indicated that USP49 deubiquitinated PTEN and stabilized PTEN protein, which suggested that USP49 inhibited PI3K/AKT signaling by stabilizing PTEN in NSCLC cells. In conclusion, we demonstrated that USP49 was functional in NSCLC cells, and inhibited NSCLC cell growth by suppressing PI3K/AKT signaling, suggesting that USP49 could be as a novel target for NSCLC therapy.
Collapse
Affiliation(s)
- Wen-Ming Shen
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Department of Emergency Surgery, The Affiliated Wujin People's Hospital of Jiangsu University, Changzhou, Jiangsu, China
| | - Jin-Nan Yin
- Department of Emergency Surgery, The Affiliated Wujin People's Hospital of Jiangsu University, Changzhou, Jiangsu, China
| | - Rui-Jun Xu
- Department of Endocrinology, The Affiliated Wujin People's Hospital of Jiangsu University, Changzhou, Jiangsu, China
| | - Da-Fu Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Department of Thoracic Surgery, Huai'an First People's Hospital, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Shi-Ying Zheng
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
35
|
Ye L, Zhang Q, Liuyu T, Xu Z, Zhang MX, Luo MH, Zeng WB, Zhu Q, Lin D, Zhong B. USP49 negatively regulates cellular antiviral responses via deconjugating K63-linked ubiquitination of MITA. PLoS Pathog 2019; 15:e1007680. [PMID: 30943264 PMCID: PMC6464240 DOI: 10.1371/journal.ppat.1007680] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/15/2019] [Accepted: 03/04/2019] [Indexed: 01/02/2023] Open
Abstract
Mediator of IRF3 activation (MITA, also known as STING and ERIS) is an essential adaptor protein for cytoplasmic DNA-triggered signaling and involved in innate immune responses, autoimmunity and tumorigenesis. The activity of MITA is critically regulated by ubiquitination and deubiquitination. Here, we report that USP49 interacts with and deubiquitinates MITA after HSV-1 infection, thereby turning down cellular antiviral responses. Knockdown or knockout of USP49 potentiated HSV-1-, cytoplasmic DNA- or cGAMP-induced production of type I interferons (IFNs) and proinflammatory cytokines and impairs HSV-1 replication. Consistently, Usp49-/- mice exhibit resistance to lethal HSV-1 infection and attenuated HSV-1 replication compared to Usp49+/+ mice. Mechanistically, USP49 removes K63-linked ubiquitin chains from MITA after HSV-1 infection which inhibits the aggregation of MITA and the subsequent recruitment of TBK1 to the signaling complex. These findings suggest a critical role of USP49 in terminating innate antiviral responses and provide insights into the complex regulatory mechanisms of MITA activation.
Collapse
Affiliation(s)
- Liya Ye
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Qiang Zhang
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Tianzi Liuyu
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhigao Xu
- Department of Pathology, Center for Pathology and Molecular Diagnostics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Meng-Xin Zhang
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Min-Hua Luo
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wen-Bo Zeng
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Qiyun Zhu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dandan Lin
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo Zhong
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
36
|
Histone 2B monoubiquitination complex integrates transcript elongation with RNA processing at circadian clock and flowering regulators. Proc Natl Acad Sci U S A 2019; 116:8060-8069. [PMID: 30923114 DOI: 10.1073/pnas.1806541116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
HISTONE MONOUBIQUITINATION1 (HUB1) and its paralog HUB2 act in a conserved heterotetrameric complex in the chromatin-mediated transcriptional modulation of developmental programs, such as flowering time, dormancy, and the circadian clock. The KHD1 and SPEN3 proteins were identified as interactors of the HUB1 and HUB2 proteins with in vitro RNA-binding activity. Mutants in SPEN3 and KHD1 had reduced rosette and leaf areas. Strikingly, in spen3 mutants, the flowering time was slightly, but significantly, delayed, as opposed to the early flowering time in the hub1-4 mutant. The mutant phenotypes in biomass and flowering time suggested a deregulation of their respective regulatory genes CIRCADIAN CLOCK-ASSOCIATED1 (CCA1) and FLOWERING LOCUS C (FLC) that are known targets of the HUB1-mediated histone H2B monoubiquitination (H2Bub). Indeed, in the spen3-1 and hub1-4 mutants, the circadian clock period was shortened as observed by luciferase reporter assays, the levels of the CCA1α and CCA1β splice forms were altered, and the CCA1 expression and H2Bub levels were reduced. In the spen3-1 mutant, the delay in flowering time was correlated with an enhanced FLC expression, possibly due to an increased distal versus proximal ratio of its antisense COOLAIR transcript. Together with transcriptomic and double-mutant analyses, our data revealed that the HUB1 interaction with SPEN3 links H2Bub during transcript elongation with pre-mRNA processing at CCA1 Furthermore, the presence of an intact HUB1 at the FLC is required for SPEN3 function in the formation of the FLC-derived antisense COOLAIR transcripts.
Collapse
|
37
|
Jeusset LMP, McManus KJ. Developing Targeted Therapies That Exploit Aberrant Histone Ubiquitination in Cancer. Cells 2019; 8:cells8020165. [PMID: 30781493 PMCID: PMC6406838 DOI: 10.3390/cells8020165] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 12/13/2022] Open
Abstract
Histone ubiquitination is a critical epigenetic mechanism regulating DNA-driven processes such as gene transcription and DNA damage repair. Importantly, the cellular machinery regulating histone ubiquitination is frequently altered in cancers. Moreover, aberrant histone ubiquitination can drive oncogenesis by altering the expression of tumor suppressors and oncogenes, misregulating cellular differentiation and promoting cancer cell proliferation. Thus, targeting aberrant histone ubiquitination may be a viable strategy to reprogram transcription in cancer cells, in order to halt cellular proliferation and induce cell death, which is the basis for the ongoing development of therapies targeting histone ubiquitination. In this review, we present the normal functions of histone H2A and H2B ubiquitination and describe the role aberrant histone ubiquitination has in oncogenesis. We also describe the key benefits and challenges associated with current histone ubiquitination targeting strategies. As these strategies are predicted to have off-target effects, we discuss additional efforts aimed at developing synthetic lethal strategies and epigenome editing tools, which may prove pivotal in achieving effective and selective therapies targeting histone ubiquitination, and ultimately improving the lives and outcomes of those living with cancer.
Collapse
Affiliation(s)
- Lucile M-P Jeusset
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada.
| | - Kirk J McManus
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada.
| |
Collapse
|
38
|
Lin YH, Forster M, Liang Y, Yu M, Wang H, Robert F, Langlais D, Pelletier J, Clare S, Nijnik A. USP44 is dispensable for normal hematopoietic stem cell function, lymphocyte development, and B-cell-mediated immune response in a mouse model. Exp Hematol 2019; 72:1-8. [PMID: 30639577 DOI: 10.1016/j.exphem.2019.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/02/2019] [Accepted: 01/06/2019] [Indexed: 02/06/2023]
Abstract
Ubiquitin-specific protease 44 (USP44) is a nuclear protein with deubiquitinase (DUB) catalytic activity that has been implicated as an important regulator of cell cycle progression, gene expression, and genomic stability. Dysregulation in the molecular machinery controlling cell proliferation, gene expression, and genomic stability in human or mouse is commonly linked to hematopoietic dysfunction, immunodeficiency, and cancer. We therefore set out to explore the role of USP44 in hematopoietic and immune systems through characterization of a Usp44-deficient mouse model. We report that USP44 is dispensable for the maintenance of hematopoietic stem cell numbers and function under homeostatic conditions, and also after irradiation or serial transplantation. USP44 is also not required for normal lymphocyte development. Usp44-deficient B cells show normal activation, proliferation, and immunoglobulin class switching in response to in vitro stimulation, and Usp44-deficient mice mount normal antibody response to immunization. We also tested the effects of USP44 deficiency on disease progression and survival in the Emu-myc model of mouse B-cell lymphoma and observed a trend toward earlier lethality of Usp44-/- Emu-myc mice; however, this did not reach statistical significance. Overall, we conclude that USP44 is dispensable for the normal physiology of hematopoietic and immune systems, and its functions in these systems are likely redundant with other USP family proteins.
Collapse
Affiliation(s)
- Yun Hsiao Lin
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Michael Forster
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Yue Liang
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Mansen Yu
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - HanChen Wang
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Francis Robert
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - David Langlais
- McGill University Centre on Complex Traits, McGill University, Montreal, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada; McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, QC, Canada; The Rosalind and Morris Goodman Cancer Research Centre, McGill University, QC, Canada
| | - Simon Clare
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Centre on Complex Traits, McGill University, Montreal, QC, Canada.
| |
Collapse
|
39
|
Luoma LM, Berry FB. Molecular analysis of NPAS3 functional domains and variants. BMC Mol Biol 2018; 19:14. [PMID: 30509165 PMCID: PMC6276216 DOI: 10.1186/s12867-018-0117-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 11/26/2018] [Indexed: 12/14/2022] Open
Abstract
Background NPAS3 encodes a transcription factor which has been associated with multiple human psychiatric and neurodevelopmental disorders. In mice, deletion of Npas3 was found to cause alterations in neurodevelopment, as well as a marked reduction in neurogenesis in the adult mouse hippocampus. This neurogenic deficit, alongside the reduction in cortical interneuron number, likely contributes to the behavioral and cognitive alterations observed in Npas3 knockout mice. Although loss of Npas3 has been found to affect proliferation and apoptosis, the molecular function of NPAS3 is largely uncharacterized outside of predictions based on its high homology to bHLH–PAS transcription factors. Here we set out to characterize NPAS3 as a transcription factor, and to confirm whether NPAS3 acts as predicted for a Class 1 bHLH–PAS family member. Results Through these studies we have experimentally demonstrated that NPAS3 behaves as a true transcription factor, capable of gene regulation through direct association with DNA. NPAS3 and ARNT are confirmed to directly interact in human cells through both bHLH and PAS dimerization domains. The C-terminus of NPAS3 was found to contain a functional transactivation domain. Further, the NPAS3::ARNT heterodimer was shown to directly regulate the expression of VGF and TXNIP through binding of their proximal promoters. Finally, we assessed the effects of three human variants of NPAS3 on gene regulatory function and do not observe significant deficits. Conclusions NPAS3 is a true transcription factor capable of regulating expression of target genes through their promoters by directly cooperating with ARNT. The tested human variants of NPAS3 require further characterization to identify their effects on NPAS3 expression and function in the individuals that carry them. These data enhance our understanding of the molecular function of NPAS3 and the mechanism by which it contributes to normal and abnormal neurodevelopment and neural function. Electronic supplementary material The online version of this article (10.1186/s12867-018-0117-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leiah M Luoma
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Fred B Berry
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada. .,Department of Surgery, 3002D Li Ka Shing Centre, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
| |
Collapse
|
40
|
He L, Liu X, Yang J, Li W, Liu S, Liu X, Yang Z, Ren J, Wang Y, Shan L, Guan C, Pei F, Lei L, Zhang Y, Yi X, Yang X, Liang J, Liu R, Sun L, Shang Y. Imbalance of the reciprocally inhibitory loop between the ubiquitin-specific protease USP43 and EGFR/PI3K/AKT drives breast carcinogenesis. Cell Res 2018; 28:934-951. [PMID: 30135474 DOI: 10.1038/s41422-018-0079-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/18/2018] [Accepted: 07/17/2018] [Indexed: 01/09/2023] Open
Abstract
Hyperactivation of EGFR/PI3K/AKT is a prominent feature of various human cancers. Thus, understanding how this molecular cascade is balanced is of great importance. We report here that the ubiquitin-specific protease USP43 is physically associated with the chromatin remodeling NuRD complex and catalyzes H2BK120 deubiquitination. Functionally this coordinates the NuRD complex to repress a cohort of genes, including EGFR, which are critically involved in cell proliferation and carcinogenesis. We show that USP43 strongly suppresses the growth and metastasis of breast cancer in vivo. Interestingly, USP43 also exists in the cytoplasm, where it is phosphorylated by AKT, enabling its binding to the 14-3-3β/ε heterodimer and sequestration in the cytoplasm. Significantly, hyperactivation of EGFR/PI3K/AKT in breast cancer is associated with the cytoplasmic retention of USP43 and thus, the inhibition of its transcriptional regulatory function. Moreover, cancer-associated mutations of USP43 affect its subcellular localization and/or epigenetic regulatory functions. Nuclear USP43 is significantly reduced in breast carcinomas and is associated with EGFR accumulation and AKT hyperactivation. A low level of nuclear USP43 correlates with higher histologic grades and poor prognosis. Our study identifies USP43 to be an H2BK120 deubiquitinase and a potential tumor suppressor and reveals a reciprocally inhibitory loop between USP43 and EGFR/PI3K/AKT, whose imbalance drives breast carcinogenesis.
Collapse
Affiliation(s)
- Lin He
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xinhua Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Jianguo Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Wanjin Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Shumeng Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xujun Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Ziran Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jie Ren
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yue Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Lin Shan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Chengjian Guan
- Department of Hepatobiliary and Pancreatic Surgical Oncology, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Fei Pei
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Liandi Lei
- Laboratory of Molecular Imaging, Peking University Health Science Center, Beijing, 100191, China
| | - Yu Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xia Yi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xiaohan Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jing Liang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Rong Liu
- Department of Hepatobiliary and Pancreatic Surgical Oncology, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Luyang Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Yongfeng Shang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China. .,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China. .,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
41
|
Jin X, Yan Y, Wang D, Ding D, Ma T, Ye Z, Jimenez R, Wang L, Wu H, Huang H. DUB3 Promotes BET Inhibitor Resistance and Cancer Progression by Deubiquitinating BRD4. Mol Cell 2018; 71:592-605.e4. [PMID: 30057199 PMCID: PMC6086352 DOI: 10.1016/j.molcel.2018.06.036] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/30/2018] [Accepted: 06/22/2018] [Indexed: 02/07/2023]
Abstract
The bromodomain and extra-terminal domain (BET) protein BRD4 is emerging as a promising anticancer therapeutic target. However, resistance to BET inhibitors often occurs, and it has been linked to aberrant degradation of BRD4 protein in cancer. Here, we demonstrate that the deubiquitinase DUB3 binds to BRD4 and promotes its deubiquitination and stabilization. Expression of DUB3 is transcriptionally repressed by the NCOR2-HDAC10 complex. The NCOR2 gene is frequently deleted in castration-resistant prostate cancer patient specimens, and loss of NCOR2 induces elevation of DUB3 and BRD4 proteins in cancer cells. DUB3-proficient prostate cancer cells are resistant to the BET inhibitor JQ1 in vitro and in mice, but this effect is diminished by DUB3 inhibitory agents such as CDK4/6 inhibitor in a RB-independent manner. Our findings identify a previously unrecognized mechanism causing BRD4 upregulation and drug resistance, suggesting that DUB3 is a viable therapeutic target to overcome BET inhibitor resistance in cancer.
Collapse
Affiliation(s)
- Xin Jin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Yuqian Yan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Dejie Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Donglin Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Tao Ma
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Zhenqing Ye
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Rafael Jimenez
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Liguo Wang
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Department of Urology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| |
Collapse
|
42
|
Role of RNF20 in cancer development and progression - a comprehensive review. Biosci Rep 2018; 38:BSR20171287. [PMID: 29934362 PMCID: PMC6043722 DOI: 10.1042/bsr20171287] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 02/06/2023] Open
Abstract
Evolving strategies to counter cancer initiation and progression rely on the identification of novel therapeutic targets that exploit the aberrant genetic changes driving oncogenesis. Several chromatin associated enzymes have been shown to influence post-translational modification (PTM) in DNA, histones, and non-histone proteins. Any deregulation of this core group of enzymes often leads to cancer development. Ubiquitylation of histone H2B in mammalian cells was identified over three decades ago. An exciting really interesting new gene (RING) family of E3 ubiquitin ligases, known as RNF20 and RNF40, monoubiquitinates histone H2A at K119 or H2B at K120, is known to function in transcriptional elongation, DNA double-strand break (DSB) repair processes, maintenance of chromatin differentiation, and exerting tumor suppressor activity. RNF20 is somatically altered in breast, lung, prostate cancer, clear cell renal cell carcinoma (ccRCC), and mixed lineage leukemia, and its reduced expression is a key factor in initiating genome instability; and it also functions as one of the significant driving factors of oncogenesis. Loss of RNF20/40 and H2B monoubiquitination (H2Bub1) is found in several cancers and is linked to an aggressive phenotype, and is also an indicator of poor prognosis. In this review, we summarized the current knowledge of RNF20 in chronic inflammation-driven cancers, DNA DSBs, and apoptosis, and its impact on chromatin structure beyond the single nucleosome level.
Collapse
|
43
|
Cheung P, Vallania F, Dvorak M, Chang SE, Schaffert S, Donato M, Rao AM, Mao R, Utz PJ, Khatri P, Kuo AJ. Single-cell epigenetics - Chromatin modification atlas unveiled by mass cytometry. Clin Immunol 2018; 196:40-48. [PMID: 29960011 DOI: 10.1016/j.clim.2018.06.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 12/13/2022]
Abstract
Modifications of histone proteins are fundamental to the regulation of epigenetic phenotypes. Dysregulations of histone modifications have been linked to the pathogenesis of diverse human diseases. However, identifying differential histone modifications in patients with immune-mediated diseases has been challenging, in part due to the lack of a powerful analytic platform to study histone modifications in the complex human immune system. We recently developed a highly multiplexed platform, Epigenetic landscape profiling using cytometry by Time-Of-Flight (EpiTOF), to analyze the global levels of a broad array of histone modifications in single cells using mass cytometry. In this review, we summarize the development of EpiTOF and discuss its potential applications in biomedical research. We anticipate that this platform will provide new insights into the roles of epigenetic regulation in hematopoiesis, immune cell functions, and immune system aging, and reveal aberrant epigenetic patterns associated with immune-mediated diseases.
Collapse
Affiliation(s)
- Peggie Cheung
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California 94305, USA; Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Francesco Vallania
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California 94305, USA; Department of Medicine, Division of Biomedical Informatics Research, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Mai Dvorak
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California 94305, USA; Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Sarah E Chang
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California 94305, USA; Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Steven Schaffert
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California 94305, USA; Department of Medicine, Division of Biomedical Informatics Research, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Michele Donato
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California 94305, USA; Department of Medicine, Division of Biomedical Informatics Research, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Aditya M Rao
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California 94305, USA; Department of Medicine, Division of Biomedical Informatics Research, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Rong Mao
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California 94305, USA; Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Paul J Utz
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California 94305, USA; Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California 94305, USA.
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California 94305, USA; Department of Medicine, Division of Biomedical Informatics Research, Stanford University School of Medicine, Stanford, California 94305, USA.
| | - Alex J Kuo
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California 94305, USA; Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California 94305, USA.
| |
Collapse
|
44
|
USP49 participates in the DNA damage response by forming a positive feedback loop with p53. Cell Death Dis 2018; 9:553. [PMID: 29748582 PMCID: PMC5945681 DOI: 10.1038/s41419-018-0475-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/26/2018] [Accepted: 03/07/2018] [Indexed: 12/21/2022]
Abstract
The p53 tumor suppressor is a critical factor in the DNA damage response (DDR), and regulation of p53 stability has a key role in this process. In our study, we identified USP49 as a novel deubiquitinase (DUB) for p53 from a library consisting of 80 DUBs and found that USP49 has a positive effect on p53 transcriptional activity and protein stability. Investigation of the mechanism revealed that USP49 interacts with the N terminus of p53 and suppresses several types of p53 ubiquitination. Furthermore, USP49 rendered HCT116 cells more sensitive to etoposide (Eto)-induced DNA damage and was upregulated in response to several types of cell stress, including DNA damage. Remarkably, USP49 expression was regulated by p53 and USP49 in knockout mice, which are more susceptible to azoxymethane/dextran sulfate sodium (AOM/DSS)-induced colon tumors. These findings suggest that USP49 has an important role in DDR and may act as a potential tumor suppressor by forming a positive feedback loop with p53.
Collapse
|
45
|
Shah VJ, Maddika S. CRL7 SMU1 E3 ligase complex-driven H2B ubiquitylation functions in sister chromatid cohesion by regulating SMC1 expression. J Cell Sci 2018; 131:jcs.213868. [PMID: 29507117 DOI: 10.1242/jcs.213868] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/26/2018] [Indexed: 12/26/2022] Open
Abstract
Cullin-RING-type E3 ligases (CRLs) control a broad range of biological processes by ubiquitylating numerous cellular substrates. However, the role of CRL E3 ligases in chromatid cohesion is unknown. In this study, we identified a new CRL-type E3 ligase (designated as CRL7SMU1 complex) that has an essential role in the maintenance of chromatid cohesion. We demonstrate that SMU1, DDB1, CUL7 and RNF40 are integral components of this complex. SMU1, by acting as a substrate recognition module, binds to H2B and mediates monoubiquitylation at the lysine (K) residue K120 through CRL7SMU1 E3 ligase complex. Depletion of CRL7SMU1 leads to loss of H2B ubiquitylation at the SMC1a locus and, thus, subsequently compromised SMC1a expression in cells. Knockdown of CRL7SMU1 components or loss of H2B ubiquitylation leads to defective sister chromatid cohesion, which is rescued by restoration of SMC1a expression. Together, our results unveil an important role of CRL7SMU1 E3 ligase in promoting H2B ubiquitylation for maintenance of sister chromatid cohesion during mitosis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Varun Jayeshkumar Shah
- Laboratory of Cell Death & Cell Survival, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India-500 039.,Graduate studies, Manipal Academy of Higher Education, Manipal, India-576 104
| | - Subbareddy Maddika
- Laboratory of Cell Death & Cell Survival, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India-500 039
| |
Collapse
|
46
|
Jarome TJ, Devulapalli RK. The Ubiquitin-Proteasome System and Memory: Moving Beyond Protein Degradation. Neuroscientist 2018. [DOI: 10.1177/1073858418762317] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cellular models of memory formation have focused on the need for protein synthesis. Recently, evidence has emerged that protein degradation mediated by the ubiquitin-proteasome system (UPS) is also important for this process. This has led to revised cellular models of memory formation that focus on a balance between protein degradation and synthesis. However, protein degradation is only one function of the UPS. Studies using single-celled organisms have shown that non-proteolytic ubiquitin-proteasome signaling is involved in histone modifications and DNA methylation, suggesting that ubiquitin and the proteasome can regulate chromatin remodeling independent of protein degradation. Despite this evidence, the idea that the UPS is more than a protein degradation pathway has not been examined in the context of memory formation. In this article, we summarize recent findings implicating protein degradation in memory formation and discuss various ways in which both ubiquitin signaling and the proteasome could act independently to regulate epigenetic-mediated transcriptional processes necessary for learning-dependent synaptic plasticity. We conclude by proposing comprehensive models of how non-proteolytic functions of the UPS could work in concert to control epigenetic regulation of the cellular memory consolidation process, which will serve as a framework for future studies examining the role of the UPS in memory formation.
Collapse
Affiliation(s)
- Timothy J. Jarome
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Rishi K. Devulapalli
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
47
|
Daszkowska-Golec A. Emerging Roles of the Nuclear Cap-Binding Complex in Abiotic Stress Responses. PLANT PHYSIOLOGY 2018; 176:242-253. [PMID: 29142023 PMCID: PMC5761810 DOI: 10.1104/pp.17.01017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/23/2017] [Indexed: 05/26/2023]
Abstract
Plant nuclear CBC consisted of two subunits (CBP20 and CBP80) is involved in both conserved processes related to RNA metabolism and simultaneously in extremely dynamic plant stress response.
Collapse
Affiliation(s)
- Agata Daszkowska-Golec
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland
| |
Collapse
|
48
|
DeVine T, Sears RC, Dai MS. The ubiquitin-specific protease USP36 is a conserved histone H2B deubiquitinase. Biochem Biophys Res Commun 2017; 495:2363-2368. [PMID: 29274341 DOI: 10.1016/j.bbrc.2017.12.107] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 12/19/2017] [Indexed: 01/16/2023]
Abstract
Histone H2B monoubiquitination plays a critical role in the regulation of gene transcription. Deregulation of H2B monoubiquitination contributes to human pathologies, such as cancer. Here we report that human USP36 is a novel H2Bub1 deubiquitinase. We show that USP36 interacts with H2B and deubiquitinates H2Bub1 in cells and in vitro. Overexpression of USP36 markedly reduced the levels of H2Bub1 in cells. Using the p21 gene as a model, we demonstrate that depletion of USP36 increases H2Bub1 at the p21 locus, primarily within its gene body. Consistently, knockdown of USP36 induced the expression of p21 and inhibits cell proliferation. Together, our results reveal USP36 as a novel H2B deubiquitinase and shed light on its additional functions in regulating gene expression.
Collapse
Affiliation(s)
- Tiffany DeVine
- Department of Molecular and Medical Genetics, School of Medicine, The OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, United States
| | - Rosalie C Sears
- Department of Molecular and Medical Genetics, School of Medicine, The OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, United States
| | - Mu-Shui Dai
- Department of Molecular and Medical Genetics, School of Medicine, The OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, United States.
| |
Collapse
|
49
|
Somasagara RR, Spencer SM, Tripathi K, Clark DW, Mani C, da Silva LM, Scalici J, Kothayer H, Westwell AD, Rocconi RP, Palle K. RAD6 promotes DNA repair and stem cell signaling in ovarian cancer and is a promising therapeutic target to prevent and treat acquired chemoresistance. Oncogene 2017; 36:6680-6690. [PMID: 28806395 PMCID: PMC5709226 DOI: 10.1038/onc.2017.279] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/14/2017] [Accepted: 07/07/2017] [Indexed: 12/28/2022]
Abstract
Ovarian cancer (OC) is the most deadly gynecological cancer and unlike most other neoplasms, survival rates for OC have not significantly improved in recent decades. We show that RAD6, an ubiquitin-conjugating enzyme, is significantly overexpressed in ovarian tumors and its expression increases in response to carboplatin chemotherapy. RAD6 expression correlated strongly with acquired chemoresistance and malignant behavior of OC cells, expression of stem cell genes and poor prognosis of OC patients, suggesting an important role for RAD6 in ovarian tumor progression. Upregulated RAD6 enhances DNA damage tolerance and repair efficiency of OC cells and promotes their survival. Increased RAD6 levels cause histone 2B ubiquitination-mediated epigenetic changes that stimulate transcription of stem cell genes, including ALDH1A1 and SOX2, leading to a cancer stem cell phenotype, which is implicated in disease recurrence and metastasis. Downregulation of RAD6 or its inhibition using a small molecule inhibitor attenuated DNA repair signaling and expression of cancer stem cells markers and sensitized chemoresistant OC cells to carboplatin. Together, these results suggest that RAD6 could be a therapeutic target to prevent and treat acquired chemoresistance and disease recurrence in OC and enhance the efficacy of standard chemotherapy.
Collapse
Affiliation(s)
- Ranganatha R. Somasagara
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, Alabama 36604, USA
| | - Sebastian M. Spencer
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, Alabama 36604, USA
| | - Kaushlendra Tripathi
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, Alabama 36604, USA
| | - David W. Clark
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, Alabama 36604, USA
| | - Chinnadurai Mani
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, Alabama 36604, USA
| | - Luciana Madeira da Silva
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, Alabama 36604, USA
| | - Jennifer Scalici
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, Alabama 36604, USA
| | - Hend Kothayer
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Egypt
| | - Andrew D. Westwell
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, Wales, UK
| | - Rodney P. Rocconi
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, Alabama 36604, USA
| | - Komaraiah Palle
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, Alabama 36604, USA
| |
Collapse
|
50
|
Lan X, Atanassov BS, Li W, Zhang Y, Florens L, Mohan RD, Galardy PJ, Washburn MP, Workman JL, Dent SYR. USP44 Is an Integral Component of N-CoR that Contributes to Gene Repression by Deubiquitinating Histone H2B. Cell Rep 2017; 17:2382-2393. [PMID: 27880911 DOI: 10.1016/j.celrep.2016.10.076] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/20/2016] [Accepted: 10/19/2016] [Indexed: 11/20/2022] Open
Abstract
Decreased expression of the USP44 deubiquitinase has been associated with global increases in H2Bub1 levels during mouse embryonic stem cell (mESC) differentiation. However, whether USP44 directly deubiquitinates histone H2B or how its activity is targeted to chromatin is not known. We identified USP44 as an integral subunit of the nuclear receptor co-repressor (N-CoR) complex. USP44 within N-CoR deubiquitinates H2B in vitro and in vivo, and ablation of USP44 impairs the repressive activity of the N-CoR complex. Chromatin immunoprecipitation (ChIP) experiments confirmed that USP44 recruitment reduces H2Bub1 levels at N-CoR target loci. Furthermore, high expression of USP44 correlates with reduced levels of H2Bub1 in the breast cancer cell line MDA-MB-231. Depletion of either USP44 or TBL1XR1 impairs the invasiveness of MDA-MB-231 cells in vitro and causes an increase of global H2Bub1 levels. Our findings indicate that USP44 contributes to N-CoR functions in regulating gene expression and is required for efficient invasiveness of triple-negative breast cancer cells.
Collapse
Affiliation(s)
- Xianjiang Lan
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Program in Epigenetics and Molecular Carcinogenesis, Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Boyko S Atanassov
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wenqian Li
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Program in Epigenetics and Molecular Carcinogenesis, Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Ying Zhang
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Ryan D Mohan
- University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Paul J Galardy
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael P Washburn
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jerry L Workman
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Sharon Y R Dent
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|