1
|
Xing Y, Li Y, Gui X, Zhang X, Hu Q, Zhao Q, Qiao Y, Xu N, Liu J. An RNA helicase coordinates with iron signal regulators to alleviate chilling stress in Arabidopsis. Nat Commun 2025; 16:3988. [PMID: 40295523 PMCID: PMC12037725 DOI: 10.1038/s41467-025-59334-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 04/18/2025] [Indexed: 04/30/2025] Open
Abstract
Chilling stress is one of the major environmental stresses that restrains plant development and growth. Our previous study showed that a potential iron sensor BTS (BRUTUS) was involved in temperature response in Arabidopsis plants. However, whether plant iron homeostasis is involved in plant response to temperature fluctuation is not known. In this study, we discover that BTS mutant bts-2 is sensitive to chilling stress, and the sensitivity is attributed to the accumulation of iron. The suppressor screening of bts-2 led to the discovery of RH24, a DEAD-box RNA helicase, that fully suppresses bts-2 chilling sensitivity. RH24 is accumulated under low temperatures, where it unwinds the iron regulator ILR3 (IAA-leucine resistant 3) mRNA and increases the ILR3 protein levels. Intriguingly, RH24 sequesters ILR3 in phase-separated condensates to reduce ILR3-mediated iron overload, and BTS or cold treatments further facilitated the condensate formation. Therefore, RH24 and BTS coordinately control ILR3 to reduce iron uptake under chilling stress. Our findings reveal that the RNA helicase RH24 and BTS finetunes ILR3 to maintain plant iron homeostasis in response to temperature fluctuations.
Collapse
Affiliation(s)
- Yingying Xing
- State Key Laboratory of Agricultural and Forestry Biosecurity, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yawen Li
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xinmeng Gui
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xianyu Zhang
- State Key Laboratory of Agricultural and Forestry Biosecurity, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Qian Hu
- State Key Laboratory of Agricultural and Forestry Biosecurity, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Qiqi Zhao
- State Key Laboratory of Agricultural and Forestry Biosecurity, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yongli Qiao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Ning Xu
- State Key Laboratory of Agricultural and Forestry Biosecurity, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China.
| | - Jun Liu
- State Key Laboratory of Agricultural and Forestry Biosecurity, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China.
| |
Collapse
|
2
|
Amorello AN, Chandrashekar Reddy G, Melillo B, Cravatt BF, Ghosh AK, Jurica MS. SF3B1 thermostability as an assay for splicing inhibitor interactions. J Biol Chem 2025; 301:108135. [PMID: 39725033 PMCID: PMC11791315 DOI: 10.1016/j.jbc.2024.108135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 11/16/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
The spliceosome protein, SF3B1, is associated with U2 snRNP during early spliceosome assembly for pre-mRNA splicing. Frequent somatic mutations in SF3B1 observed in cancer necessitates the characterization of its role in identifying the branchpoint adenosine of introns. Remarkably, SF3B1 is the target of three distinct natural product drugs, each identified by their potent anti-tumor properties. Structural studies indicate that SF3B1 conformational flexibility is functionally important, and suggest that drug binding blocks the transition to a closed state of SF3B1 required for the next stage of spliceosome assembly. This model is confounded, however, by the antagonistic property of an inactive herboxidiene analog. In this study, we established an assay for evaluating the thermostability of SF3B1 present in the nuclear extract preparations employed for in vitro splicing studies, to investigate inhibitor interactions with SF3B1 in a functional context. We show that both active and antagonistic analogs of natural product inhibitors affect SF3B1 thermostability, consistent with binding alone being insufficient to impair SF3B1 function. Surprisingly, SF3B1 thermostability differs among nuclear extract preparations, likely reflecting its conformational status. We also investigated a synthetic SF3B1 ligand, WX-02-23, and found that it increases SF3B1 thermostability and interferes with in vitro splicing by a mechanism that strongly resembles the activity of natural product inhibitors. We propose that altered SF3B1 thermostability can serve as an indicator of inhibitor binding to complement functional assays of their general effect on splicing. It may also provide a means to investigate the factors that influence SF3B1 conformation.
Collapse
Affiliation(s)
- Angela N Amorello
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California, USA
| | - Guddeti Chandrashekar Reddy
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Bruno Melillo
- Department of Chemistry, Scripps Research, La Jolla, California, USA
| | | | - Arun K Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Melissa S Jurica
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, California, USA; Center for Molecular Biology of RNA, University of California, Santa Cruz, California, USA.
| |
Collapse
|
3
|
Senn KA, Lipinski KA, Zeps NJ, Griffin AF, Wilkinson ME, Hoskins AA. Control of 3' splice site selection by the yeast splicing factor Fyv6. eLife 2024; 13:RP100449. [PMID: 39688371 DOI: 10.7554/elife.100449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
Pre-mRNA splicing is catalyzed in two steps: 5' splice site (SS) cleavage and exon ligation. A number of proteins transiently associate with spliceosomes to specifically impact these steps (first and second step factors). We recently identified Fyv6 (FAM192A in humans) as a second step factor in Saccharomyces cerevisiae; however, we did not determine how widespread Fyv6's impact is on the transcriptome. To answer this question, we have used RNA sequencing (RNA-seq) to analyze changes in splicing. These results show that loss of Fyv6 results in activation of non-consensus, branch point (BP) proximal 3' SS transcriptome-wide. To identify the molecular basis of these observations, we determined a high-resolution cryo-electron microscopy (cryo-EM) structure of a yeast product complex spliceosome containing Fyv6 at 2.3 Å. The structure reveals that Fyv6 is the only second step factor that contacts the Prp22 ATPase and that Fyv6 binding is mutually exclusive with that of the first step factor Yju2. We then use this structure to dissect Fyv6 functional domains and interpret results of a genetic screen for fyv6Δ suppressor mutations. The combined transcriptomic, structural, and genetic studies allow us to propose a model in which Yju2/Fyv6 exchange facilitates exon ligation and Fyv6 promotes usage of consensus, BP distal 3' SS.
Collapse
Affiliation(s)
- Katherine A Senn
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Karli A Lipinski
- Department of Chemistry, University of Wisconsin-Madison, Madison, United States
| | - Natalie J Zeps
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Amory F Griffin
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Max E Wilkinson
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Aaron A Hoskins
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
4
|
Senn KA, Lipinski KA, Zeps NJ, Griffin AF, Wilkinson ME, Hoskins AA. Control of 3' splice site selection by the yeast splicing factor Fyv6. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.04.592262. [PMID: 38746449 PMCID: PMC11092753 DOI: 10.1101/2024.05.04.592262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Pre-mRNA splicing is catalyzed in two steps: 5' splice site (SS) cleavage and exon ligation. A number of proteins transiently associate with spliceosomes to specifically impact these steps (1st and 2nd step factors). We recently identified Fyv6 (FAM192A in humans) as a 2nd step factor in S. cerevisiae; however, we did not determine how widespread Fyv6's impact is on the transcriptome. To answer this question, we have used RNA-seq to analyze changes in splicing. These results show that loss of Fyv6 results in activation of non-consensus, branch point (BP) proximal 3' SS transcriptome-wide. To identify the molecular basis of these observations, we determined a high-resolution cryo-EM structure of a yeast product complex spliceosome containing Fyv6 at 2.3 Å. The structure reveals that Fyv6 is the only 2nd step factor that contacts the Prp22 ATPase and that Fyv6 binding is mutually exclusive with that of the 1st step factor Yju2. We then use this structure to dissect Fyv6 functional domains and interpret results of a genetic screen for fyv6Δ suppressor mutations. The combined transcriptomic, structural, and genetic studies allow us to propose a model in which Yju2/Fyv6 exchange facilitates exon ligation and Fyv6 promotes usage of consensus, BP distal 3' SS.
Collapse
Affiliation(s)
- Katherine A. Senn
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Karli A. Lipinski
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Natalie J. Zeps
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Amory F. Griffin
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Max E. Wilkinson
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH UK
- Present Addresses: Broad Institute of MIT and Harvard, Cambridge MA 02142 USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Aaron A. Hoskins
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| |
Collapse
|
5
|
Tholen J. Branch site recognition by the spliceosome. RNA (NEW YORK, N.Y.) 2024; 30:1397-1407. [PMID: 39187383 PMCID: PMC11482624 DOI: 10.1261/rna.080198.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024]
Abstract
The spliceosome is a eukaryotic multimegadalton RNA-protein complex that removes introns from transcripts. The spliceosome ensures the selection of each exon-intron boundary through multiple recognition events. Initially, the 5' splice site (5' SS) and branch site (BS) are bound by the U1 small nuclear ribonucleoprotein (snRNP) and the U2 snRNP, respectively, while the 3' SS is mostly determined by proximity to the branch site. A large number of splicing factors recognize the splice sites and recruit the snRNPs before the stable binding of the snRNPs occurs by base-pairing the snRNA to the transcript. Fidelity of this process is crucial, as mutations in splicing factors and U2 snRNP components are associated with many diseases. In recent years, major advances have been made in understanding how splice sites are selected in Saccharomyces cerevisiae and humans. Here, I review and discuss the current understanding of the recognition of splice sites by the spliceosome with a focus on recognition and binding of the branch site by the U2 snRNP in humans.
Collapse
Affiliation(s)
- Jonas Tholen
- Department of Structural Biology, Genentech Inc., South San Francisco, California 94080, USA
| |
Collapse
|
6
|
Liao X, Zhang S, Li X, Qian W, Li M, Chen S, Wu X, Yu X, Li Z, Tang M, Xu Y, Yu R, Zhang Q, Wu G, Zhang N, Song L, Li J. Dynamic structural remodeling of LINC01956 enhances temozolomide resistance in MGMT-methylated glioblastoma. Sci Transl Med 2024; 16:eado1573. [PMID: 39356744 DOI: 10.1126/scitranslmed.ado1573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/02/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
The mechanisms underlying stimuli-induced dynamic structural remodeling of RNAs for the maintenance of cellular physiological function and survival remain unclear. Here, we showed that in MGMT promoter-methylated glioblastoma (GBM), the RNA helicase DEAD-box helicase 46 (DDX46) is phosphorylated by temozolomide (TMZ)-activated checkpoint kinase 1 (CHK1), resulting in a dense-to-loose conformational change and an increase in DDX46 helicase activity. DDX46-mediated tertiary structural remodeling of LINC01956 exposes the binding motifs of LINC01956 to the 3' untranslated region of O6-methylguanine DNA methyltransferase (MGMT). This accelerates recruitment of MGMT mRNA to the RNA export machinery and transportation of MGMT mRNA from the nucleus to the cytoplasm, leading to increased MGMT abundance and TMZ resistance. Using patient-derived xenograft (PDX) and tumor organoid models, we found that treatment with the CHK1 inhibitor SRA737abolishes TMZ-induced structural remodeling of LINC01956 and subsequent MGMT up-regulation, resensitizing TMZ-resistant MGMT promoter-methylated GBM to TMZ. In conclusion, these findings highlight a mechanism underlying temozolomide-induced RNA structural remodeling and may represent a potential therapeutic strategy for patients with TMZ-resistant MGMT promoter-methylated GBM.
Collapse
Affiliation(s)
- Xinyi Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangdong 510060, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Shuxia Zhang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Xincheng Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Wanying Qian
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Man Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Suwen Chen
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Xingui Wu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Xuexin Yu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Ziwen Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Miaoling Tang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Yingru Xu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Ruyuan Yu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Qiliang Zhang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Geyan Wu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Nu Zhang
- Department of Neurosurgery, First Affiliated Hospital, Sun Yat-sen University, Guangdong 510080, China
| | - Libing Song
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangdong 510060, China
| | - Jun Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangdong 510060, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| |
Collapse
|
7
|
Senn KA, Hoskins AA. Mechanisms and regulation of spliceosome-mediated pre-mRNA splicing in Saccharomyces cerevisiae. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1866. [PMID: 38972853 PMCID: PMC11585973 DOI: 10.1002/wrna.1866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 07/09/2024]
Abstract
Pre-mRNA splicing, the removal of introns and ligation of flanking exons, is a crucial step in eukaryotic gene expression. The spliceosome, a macromolecular complex made up of five small nuclear RNAs (snRNAs) and dozens of proteins, assembles on introns via a complex pathway before catalyzing the two transesterification reactions necessary for splicing. All of these steps have the potential to be highly regulated to ensure correct mRNA isoform production for proper cellular function. While Saccharomyces cerevisiae (yeast) has a limited set of intron-containing genes, many of these genes are highly expressed, resulting in a large number of transcripts in a cell being spliced. As a result, splicing regulation is of critical importance for yeast. Just as in humans, yeast splicing can be influenced by protein components of the splicing machinery, structures and properties of the pre-mRNA itself, or by the action of trans-acting factors. It is likely that further analysis of the mechanisms and pathways of splicing regulation in yeast can reveal general principles applicable to other eukaryotes. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Katherine Anne Senn
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Aaron A. Hoskins
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
8
|
Beusch I, Madhani HD. Understanding the dynamic design of the spliceosome. Trends Biochem Sci 2024; 49:583-595. [PMID: 38641465 DOI: 10.1016/j.tibs.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/21/2024]
Abstract
The spliceosome catalyzes the splicing of pre-mRNAs. Although the spliceosome evolved from a prokaryotic self-splicing intron and an associated protein, it is a vastly more complex and dynamic ribonucleoprotein (RNP) whose function requires at least eight ATPases and multiple RNA rearrangements. These features afford stepwise opportunities for multiple inspections of the intron substrate, coupled with spliceosome disassembly for substrates that fail inspection. Early work using splicing-defective pre-mRNAs or small nuclear (sn)RNAs in Saccharomyces cerevisiae demonstrated that such checks could occur in catalytically active spliceosomes. We review recent results on pre-mRNA splicing in various systems, including humans, suggesting that earlier steps in spliceosome assembly are also subject to such quality control. The inspection-rejection framework helps explain the dynamic nature of the spliceosome.
Collapse
Affiliation(s)
- Irene Beusch
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Hiten D Madhani
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
9
|
Nagasawa CK, Bailey AO, Russell WK, Garcia-Blanco MA. Inefficient recruitment of DDX39B impedes pre-spliceosome assembly on FOXP3 introns. RNA (NEW YORK, N.Y.) 2024; 30:824-838. [PMID: 38575347 PMCID: PMC11182011 DOI: 10.1261/rna.079933.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/19/2024] [Indexed: 04/06/2024]
Abstract
Forkhead box P3 (FOXP3) is the master fate-determining transcription factor in regulatory T (Treg) cells and is essential for their development, function, and homeostasis. Mutations in FOXP3 cause immunodysregulation polyendocrinopathy enteropathy X-linked (IPEX) syndrome, and aberrant expression of FOXP3 has been implicated in other diseases such as multiple sclerosis and cancer. We previously demonstrated that pre-mRNA splicing of FOXP3 RNAs is highly sensitive to levels of DExD-box polypeptide 39B (DDX39B), and here we investigate the mechanism of this sensitivity. FOXP3 introns have cytidine (C)-rich/uridine (U)-poor polypyrimidine (py) tracts that are responsible for their inefficient splicing and confer sensitivity to DDX39B. We show that there is a deficiency in the assembly of commitment complexes (CCs) on FOXP3 introns, which is consistent with the lower affinity of U2AF2 for C-rich/U-poor py tracts. Our data indicate an even stronger effect on the conversion of CCs to pre-spliceosomes. We propose that this is due to an altered conformation that U2AF2 adopts when it binds to C-rich/U-poor py tracts and that this conformation has a lower affinity for DDX39B. As a consequence, CCs assembled on FOXP3 introns are defective in recruiting DDX39B, and this leads to the inefficient assembly of pre-spliceosome complexes.
Collapse
Affiliation(s)
- Chloe K Nagasawa
- Human Pathophysiology and Translational Medicine Program, Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas 77550, USA
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77550, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Aaron O Bailey
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77550, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77550, USA
| | - Mariano A Garcia-Blanco
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77550, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia 22908, USA
| |
Collapse
|
10
|
Zhang W, Zhang X, Zhan X, Bai R, Lei J, Yan C, Shi Y. Structural insights into human exon-defined spliceosome prior to activation. Cell Res 2024; 34:428-439. [PMID: 38658629 PMCID: PMC11143319 DOI: 10.1038/s41422-024-00949-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/01/2024] [Indexed: 04/26/2024] Open
Abstract
Spliceosome is often assembled across an exon and undergoes rearrangement to span a neighboring intron. Most states of the intron-defined spliceosome have been structurally characterized. However, the structure of a fully assembled exon-defined spliceosome remains at large. During spliceosome assembly, the pre-catalytic state (B complex) is converted from its precursor (pre-B complex). Here we report atomic structures of the exon-defined human spliceosome in four sequential states: mature pre-B, late pre-B, early B, and mature B. In the previously unknown late pre-B state, U1 snRNP is already released but the remaining proteins are still in the pre-B state; unexpectedly, the RNAs are in the B state, with U6 snRNA forming a duplex with 5'-splice site and U5 snRNA recognizing the 3'-end of the exon. In the early and mature B complexes, the B-specific factors are stepwise recruited and specifically recognize the exon 3'-region. Our study reveals key insights into the assembly of the exon-defined spliceosomes and identifies mechanistic steps of the pre-B-to-B transition.
Collapse
Affiliation(s)
- Wenyu Zhang
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaofeng Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xiechao Zhan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Rui Bai
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Jianlin Lei
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Chuangye Yan
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Yigong Shi
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Zhang X, Zhan X, Bian T, Yang F, Li P, Lu Y, Xing Z, Fan R, Zhang QC, Shi Y. Structural insights into branch site proofreading by human spliceosome. Nat Struct Mol Biol 2024; 31:835-845. [PMID: 38196034 DOI: 10.1038/s41594-023-01188-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/23/2023] [Indexed: 01/11/2024]
Abstract
Selection of the pre-mRNA branch site (BS) by the U2 small nuclear ribonucleoprotein (snRNP) is crucial to prespliceosome (A complex) assembly. The RNA helicase PRP5 proofreads BS selection but the underlying mechanism remains unclear. Here we report the atomic structures of two sequential complexes leading to prespliceosome assembly: human 17S U2 snRNP and a cross-exon pre-A complex. PRP5 is anchored on 17S U2 snRNP mainly through occupation of the RNA path of SF3B1 by an acidic loop of PRP5; the helicase domain of PRP5 associates with U2 snRNA; the BS-interacting stem-loop (BSL) of U2 snRNA is shielded by TAT-SF1, unable to engage the BS. In the pre-A complex, an initial U2-BS duplex is formed; the translocated helicase domain of PRP5 stays with U2 snRNA and the acidic loop still occupies the RNA path. The pre-A conformation is specifically stabilized by the splicing factors SF1, DNAJC8 and SF3A2. Cancer-derived mutations in SF3B1 damage its association with PRP5, compromising BS proofreading. Together, these findings reveal key insights into prespliceosome assembly and BS selection or proofreading by PRP5.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China.
- Division of Reproduction and Genetics, The First Affiliated Hospital of USTC; MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Xiechao Zhan
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
| | - Tong Bian
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- College of Life Sciences, Fudan University, Shanghai, China
| | - Fenghua Yang
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- College of Life Sciences, Fudan University, Shanghai, China
| | - Pan Li
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure; Tsinghua-Peking Joint Center for Life Sciences; School of Life Sciences, Tsinghua University, Beijing, China
| | - Yichen Lu
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- College of Life Sciences, Fudan University, Shanghai, China
| | - Zhihan Xing
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
| | - Rongyan Fan
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
| | - Qiangfeng Cliff Zhang
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure; Tsinghua-Peking Joint Center for Life Sciences; School of Life Sciences, Tsinghua University, Beijing, China
| | - Yigong Shi
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China.
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure; Tsinghua-Peking Joint Center for Life Sciences; School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
12
|
Cheng F, Chapman T, Zhang S, Morsch M, Chung R, Lee A, Rayner SL. Understanding age-related pathologic changes in TDP-43 functions and the consequence on RNA splicing and signalling in health and disease. Ageing Res Rev 2024; 96:102246. [PMID: 38401571 DOI: 10.1016/j.arr.2024.102246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
TAR DNA binding protein-43 (TDP-43) is a key component in RNA splicing which plays a crucial role in the aging process. In neurodegenerative diseases such as amyotrophic lateral sclerosis, frontotemporal dementia and limbic-predominant age-related TDP-43 encephalopathy, TDP-43 can be mutated, mislocalised out of the nucleus of neurons and glial cells and form cytoplasmic inclusions. These TDP-43 alterations can lead to its RNA splicing dysregulation and contribute to mis-splicing of various types of RNA, such as mRNA, microRNA, and circular RNA. These changes can result in the generation of an altered transcriptome and proteome within cells, ultimately changing the diversity and quantity of gene products. In this review, we summarise the findings of novel atypical RNAs resulting from TDP-43 dysfunction and their potential as biomarkers or targets for therapeutic development.
Collapse
Affiliation(s)
- Flora Cheng
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, Australia.
| | - Tyler Chapman
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Selina Zhang
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Marco Morsch
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Roger Chung
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Albert Lee
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Stephanie L Rayner
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, Australia.
| |
Collapse
|
13
|
Hunter O, Talkish J, Quick-Cleveland J, Igel H, Tan A, Kuersten S, Katzman S, Donohue JP, S Jurica M, Ares M. Broad variation in response of individual introns to splicing inhibitors in a humanized yeast strain. RNA (NEW YORK, N.Y.) 2024; 30:149-170. [PMID: 38071476 PMCID: PMC10798247 DOI: 10.1261/rna.079866.123] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
Intron branchpoint (BP) recognition by the U2 snRNP is a critical step of splicing, vulnerable to recurrent cancer mutations and bacterial natural product inhibitors. The BP binds a conserved pocket in the SF3B1 (human) or Hsh155 (yeast) U2 snRNP protein. Amino acids that line this pocket affect the binding of splicing inhibitors like Pladienolide-B (Plad-B), such that organisms differ in their sensitivity. To study the mechanism of splicing inhibitor action in a simplified system, we modified the naturally Plad-B resistant yeast Saccharomyces cerevisiae by changing 14 amino acids in the Hsh155 BP pocket to those from human. This humanized yeast grows normally, and splicing is largely unaffected by the mutation. Splicing is inhibited within minutes after the addition of Plad-B, and different introns appear inhibited to different extents. Intron-specific inhibition differences are also observed during cotranscriptional splicing in Plad-B using single-molecule intron tracking to minimize gene-specific transcription and decay rates that cloud estimates of inhibition by standard RNA-seq. Comparison of Plad-B intron sensitivities to those of the structurally distinct inhibitor Thailanstatin-A reveals intron-specific differences in sensitivity to different compounds. This work exposes a complex relationship between the binding of different members of this class of inhibitors to the spliceosome and intron-specific rates of BP recognition and catalysis. Introns with variant BP sequences seem particularly sensitive, echoing observations from mammalian cells, where monitoring individual introns is complicated by multi-intron gene architecture and alternative splicing. The compact yeast system may hasten the characterization of splicing inhibitors, accelerating improvements in selectivity and therapeutic efficacy.
Collapse
Affiliation(s)
- Oarteze Hunter
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - Jason Talkish
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - Jen Quick-Cleveland
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - Haller Igel
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - Asako Tan
- Illumina, Inc., Madison, Wisconsin 53719, USA
| | | | - Sol Katzman
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - John Paul Donohue
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - Melissa S Jurica
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - Manuel Ares
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| |
Collapse
|
14
|
Hunter O, Talkish J, Quick-Cleveland J, Igel H, Tan A, Kuersten S, Katzman S, Donohue JP, Jurica M, Ares M. Broad variation in response of individual introns to splicing inhibitors in a humanized yeast strain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.05.560965. [PMID: 37873484 PMCID: PMC10592967 DOI: 10.1101/2023.10.05.560965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Intron branch point (BP) recognition by the U2 snRNP is a critical step of splicing, vulnerable to recurrent cancer mutations and bacterial natural product inhibitors. The BP binds a conserved pocket in the SF3B1 (human) or Hsh155 (yeast) U2 snRNP protein. Amino acids that line this pocket affect binding of splicing inhibitors like Pladienolide-B (Plad-B), such that organisms differ in their sensitivity. To study the mechanism of splicing inhibitor action in a simplified system, we modified the naturally Plad-B resistant yeast Saccharomyces cerevisiae by changing 14 amino acids in the Hsh155 BP pocket to those from human. This humanized yeast grows normally, and splicing is largely unaffected by the mutation. Splicing is inhibited within minutes after addition of Plad-B, and different introns appear inhibited to different extents. Intron-specific inhibition differences are also observed during co-transcriptional splicing in Plad-B using single-molecule intron tracking (SMIT) to minimize gene-specific transcription and decay rates that cloud estimates of inhibition by standard RNA-seq. Comparison of Plad-B intron sensitivities to those of the structurally distinct inhibitor Thailanstatin-A reveals intron-specific differences in sensitivity to different compounds. This work exposes a complex relationship between binding of different members of this class of inhibitors to the spliceosome and intron-specific rates of BP recognition and catalysis. Introns with variant BP sequences seem particularly sensitive, echoing observations from mammalian cells, where monitoring individual introns is complicated by multi-intron gene architecture and alternative splicing. The compact yeast system may hasten characterization of splicing inhibitors, accelerating improvements in selectivity and therapeutic efficacy.
Collapse
Affiliation(s)
- Oarteze Hunter
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064
| | - Jason Talkish
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064
| | - Jen Quick-Cleveland
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064
| | - Haller Igel
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064
| | | | | | - Sol Katzman
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064
| | - John Paul Donohue
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064
| | - Melissa Jurica
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064
| | - Manuel Ares
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064
| |
Collapse
|
15
|
Feng Q, Krick K, Chu J, Burge CB. Splicing quality control mediated by DHX15 and its G-patch activator SUGP1. Cell Rep 2023; 42:113223. [PMID: 37805921 PMCID: PMC10842378 DOI: 10.1016/j.celrep.2023.113223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 07/27/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023] Open
Abstract
Pre-mRNA splicing is surveilled at different stages by quality control (QC) mechanisms. The leukemia-associated DExH-box family helicase hDHX15/scPrp43 is known to disassemble spliceosomes after splicing. Here, using rapid protein depletion and analysis of nascent and mature RNA to enrich for direct effects, we identify a widespread splicing QC function for DHX15 in human cells, consistent with recent in vitro studies. We find that suboptimal introns with weak splice sites, multiple branch points, and cryptic introns are repressed by DHX15, suggesting a general role in promoting splicing fidelity. We identify SUGP1 as a G-patch factor that activates DHX15's splicing QC function. This interaction is dependent on both DHX15's ATPase activity and on SUGP1's U2AF ligand motif (ULM) domain. Together, our results support a model in which DHX15 plays a major role in splicing QC when recruited and activated by SUGP1.
Collapse
Affiliation(s)
- Qing Feng
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02138, USA.
| | - Keegan Krick
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02138, USA
| | - Jennifer Chu
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02138, USA
| | - Christopher B Burge
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02138, USA.
| |
Collapse
|
16
|
Bohnsack KE, Yi S, Venus S, Jankowsky E, Bohnsack MT. Cellular functions of eukaryotic RNA helicases and their links to human diseases. Nat Rev Mol Cell Biol 2023; 24:749-769. [PMID: 37474727 DOI: 10.1038/s41580-023-00628-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/22/2023]
Abstract
RNA helicases are highly conserved proteins that use nucleoside triphosphates to bind or remodel RNA, RNA-protein complexes or both. RNA helicases are classified into the DEAD-box, DEAH/RHA, Ski2-like, Upf1-like and RIG-I families, and are the largest class of enzymes active in eukaryotic RNA metabolism - virtually all aspects of gene expression and its regulation involve RNA helicases. Mutation and dysregulation of these enzymes have been linked to a multitude of diseases, including cancer and neurological disorders. In this Review, we discuss the regulation and functional mechanisms of RNA helicases and their roles in eukaryotic RNA metabolism, including in transcription regulation, pre-mRNA splicing, ribosome assembly, translation and RNA decay. We highlight intriguing models that link helicase structure, mechanisms of function (such as local strand unwinding, translocation, winching, RNA clamping and displacing RNA-binding proteins) and biological roles, including emerging connections between RNA helicases and cellular condensates formed through liquid-liquid phase separation. We also discuss associations of RNA helicases with human diseases and recent efforts towards the design of small-molecule inhibitors of these pivotal regulators of eukaryotic gene expression.
Collapse
Affiliation(s)
- Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany.
| | - Soon Yi
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Sarah Venus
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Eckhard Jankowsky
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Moderna, Cambridge, MA, USA.
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany.
- Göttingen Centre for Molecular Biosciences, University of Göttingen, Göttingen, Germany.
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
17
|
Kolathur KK, Mallya S, Barve S, Bojja SL, Wagle MM. Moonlighting functions of the ubiquitin-like protein, Hub1/UBL-5. Int J Biochem Cell Biol 2023; 162:106445. [PMID: 37453225 DOI: 10.1016/j.biocel.2023.106445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/28/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
The faithful splicing of pre-mRNA is critical for accurate gene expression. Dysregulation of pre-mRNA splicing has been associated with several human diseases including cancer. The ubiquitin-like protein Hub1/UBL5 binds to the substrates non-covalently and promotes pre-mRNA splicing. Additionally, UBL5 promotes the common fragile sites stability and the Fanconi anemia pathway of DNA damage repair. These functions strongly suggests that UBL5 could potentially be implicated in cancer. Therefore, we analyzed the UBL5 expression in TCGA tumor sample datasets and observed the differences between tumor and normal tissues among different tumor subtypes. We have noticed the alteration frequency of UBL5 in TCGA tumor samples. Altogether, this review summarizes the UBL5 functions and discusses its putative role in tumorigenesis.
Collapse
Affiliation(s)
- Kiran Kumar Kolathur
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences (MCOPS), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India.
| | - Sandeep Mallya
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Shivmani Barve
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences (MCOPS), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Sree Lalitha Bojja
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences (MCOPS), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Manoj M Wagle
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
18
|
Zhao Y, Tabet D, Rubio Contreras D, Lao L, Kousholt AN, Weile J, Melo H, Hoeg L, Feng S, Coté AG, Lin ZY, Setiaputra D, Jonkers J, Gingras AC, Gómez Herreros F, Roth FP, Durocher D. Genome-scale mapping of DNA damage suppressors through phenotypic CRISPR-Cas9 screens. Mol Cell 2023; 83:2792-2809.e9. [PMID: 37478847 PMCID: PMC10530064 DOI: 10.1016/j.molcel.2023.06.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 04/18/2023] [Accepted: 06/21/2023] [Indexed: 07/23/2023]
Abstract
To maintain genome integrity, cells must accurately duplicate their genome and repair DNA lesions when they occur. To uncover genes that suppress DNA damage in human cells, we undertook flow-cytometry-based CRISPR-Cas9 screens that monitored DNA damage. We identified 160 genes whose mutation caused spontaneous DNA damage, a list enriched in essential genes, highlighting the importance of genomic integrity for cellular fitness. We also identified 227 genes whose mutation caused DNA damage in replication-perturbed cells. Among the genes characterized, we discovered that deoxyribose-phosphate aldolase DERA suppresses DNA damage caused by cytarabine (Ara-C) and that GNB1L, a gene implicated in 22q11.2 syndrome, promotes biogenesis of ATR and related phosphatidylinositol 3-kinase-related kinases (PIKKs). These results implicate defective PIKK biogenesis as a cause of some phenotypes associated with 22q11.2 syndrome. The phenotypic mapping of genes that suppress DNA damage therefore provides a rich resource to probe the cellular pathways that influence genome maintenance.
Collapse
Affiliation(s)
- Yichao Zhao
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Daniel Tabet
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | | | - Linjiang Lao
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Arne Nedergaard Kousholt
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Jochen Weile
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Donnelly Centre and Department of Computer Science, University of Toronto, 160 College Street, Toronto M5S 3E1, Canada
| | - Henrique Melo
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Lisa Hoeg
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Sumin Feng
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Atina G Coté
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Dheva Setiaputra
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | | | - Frederick P Roth
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Donnelly Centre and Department of Computer Science, University of Toronto, 160 College Street, Toronto M5S 3E1, Canada
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
19
|
Yang F, Bian T, Zhan X, Chen Z, Xing Z, Larsen NA, Zhang X, Shi Y. Mechanisms of the RNA helicases DDX42 and DDX46 in human U2 snRNP assembly. Nat Commun 2023; 14:897. [PMID: 36797247 PMCID: PMC9935549 DOI: 10.1038/s41467-023-36489-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
Three RNA helicases - DDX42, DDX46 and DHX15 - are found to be associated with human U2 snRNP, but their roles and mechanisms in U2 snRNP and spliceosome assembly are insufficiently understood. Here we report the cryo-electron microscopy (cryo-EM) structures of the DDX42-SF3b complex and a putative assembly precursor of 17S U2 snRNP that contains DDX42 (DDX42-U2 complex). DDX42 is anchored on SF3B1 through N-terminal sequences, with its N-plug occupying the RNA path of SF3B1. The binding mode of DDX42 to SF3B1 is in striking analogy to that of DDX46. In the DDX42-U2 complex, the N-terminus of DDX42 remains anchored on SF3B1, but the helicase domain has been displaced by U2 snRNA and TAT-SF1. Through in vitro assays, we show DDX42 and DDX46 are mutually exclusive in terms of binding to SF3b. Cancer-driving mutations of SF3B1 target the residues in the RNA path that directly interact with DDX42 and DDX46. These findings reveal the distinct roles of DDX42 and DDX46 in assembly of 17S U2 snRNP and provide insights into the mechanisms of SF3B1 cancer mutations.
Collapse
Affiliation(s)
- Fenghua Yang
- College of Life Sciences, Fudan University, Shanghai, 200433, China
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Tong Bian
- College of Life Sciences, Fudan University, Shanghai, 200433, China
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Xiechao Zhan
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Zhe Chen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, Xinjiang, China
| | - Zhihan Xing
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Nicolas A Larsen
- Foghorn Therapeutics, 500 Technology Square, Suite 700, Cambridge, MA, 02139, USA
| | - Xiaofeng Zhang
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.
| | - Yigong Shi
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.
| |
Collapse
|
20
|
Tholen J, Galej WP. Structural studies of the spliceosome: Bridging the gaps. Curr Opin Struct Biol 2022; 77:102461. [PMID: 36116369 PMCID: PMC9762485 DOI: 10.1016/j.sbi.2022.102461] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 02/07/2023]
Abstract
The spliceosome is a multi-megadalton RNA-protein complex responsible for the removal of non-coding introns from pre-mRNAs. Due to its complexity and dynamic nature, it has proven to be a very challenging target for structural studies. Developments in single particle cryo-EM have overcome these previous limitations and paved the way towards a structural characterisation of the splicing machinery. Despite tremendous progress, many aspects of spliceosome structure and function remain elusive. In particular, the events leading to the definition of exon-intron boundaries, alternative and non-canonical splicing events, and cross-talk with other cellular machineries. Efforts are being made to address these knowledge gaps and further our mechanistic understanding of the spliceosome. Here, we summarise recent progress in the structural and functional analysis of the spliceosome.
Collapse
Affiliation(s)
- J Tholen
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042 Grenoble, France. https://twitter.com/@Structjon
| | - W P Galej
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042 Grenoble, France.
| |
Collapse
|
21
|
Maul-Newby HM, Amorello AN, Sharma T, Kim JH, Modena MS, Prichard BE, Jurica MS. A model for DHX15 mediated disassembly of A-complex spliceosomes. RNA (NEW YORK, N.Y.) 2022; 28:583-595. [PMID: 35046126 PMCID: PMC8925973 DOI: 10.1261/rna.078977.121] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
A critical step of pre-mRNA splicing is the recruitment of U2 snRNP to the branch point sequence of an intron. U2 snRNP conformation changes extensively during branch helix formation, and several RNA-dependent ATPases are implicated in the process. However, the molecular mechanisms involved remain to be fully dissected. We took advantage of the differential nucleotide triphosphates requirements for DExD/H-box enzymes to probe their contributions to in vitro spliceosome assembly. Both ATP and GTP hydrolysis support the formation of A-complex, indicating the activity of a DEAH-enzyme because DEAD-enzymes are selective for ATP. We immunodepleted DHX15 to assess its involvement, and although splicing efficiency decreases with reduced DHX15, A-complex accumulation incongruently increases. DHX15 depletion also results in the persistence of the atypical ATP-independent interaction between U2 snRNP and a minimal substrate that is otherwise destabilized in the presence of either ATP or GTP. These results lead us to hypothesize that DHX15 plays a quality control function in U2 snRNP's engagement with an intron. In efforts to identify the RNA target of DHX15, we determined that an extended polypyrimidine tract is not necessary for disruption of the atypical interaction between U2 snRNP and the minimal substrate. We also examined U2 snRNA by RNase H digestion and identified nucleotides in the branch binding region that become accessible with both ATP and GTP hydrolysis, again implicating a DEAH-enzyme. Together, our results demonstrate that multiple ATP-dependent rearrangements are likely involved in U2 snRNP addition to the spliceosome and that DHX15 may have an expanded role in maintaining splicing fidelity.
Collapse
Affiliation(s)
- Hannah M Maul-Newby
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Angela N Amorello
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Turvi Sharma
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - John H Kim
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Matthew S Modena
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Beth E Prichard
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Melissa S Jurica
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California 95064, USA
| |
Collapse
|
22
|
Abstract
Recognition of the intron branch site (BS) by the U2 small nuclear ribonucleoprotein (snRNP) is a critical event during spliceosome assembly. In mammals, BS sequences are poorly conserved, and unambiguous intron recognition cannot be achieved solely through a base-pairing mechanism. We isolated human 17S U2 snRNP and reconstituted in vitro its adenosine 5´-triphosphate (ATP)–dependent remodeling and binding to the pre–messenger RNA substrate. We determined a series of high-resolution (2.0 to 2.2 angstrom) structures providing snapshots of the BS selection process. The substrate-bound U2 snRNP shows that SF3B6 stabilizes the BS:U2 snRNA duplex, which could aid binding of introns with poor sequence complementarity. ATP-dependent remodeling uncoupled from substrate binding captures U2 snRNA in a conformation that competes with BS recognition, providing a selection mechanism based on branch helix stability.
Collapse
Affiliation(s)
- Jonas Tholen
- European Molecular Biology Laboratory; 71 Avenue des Martyrs, 38042 Grenoble, France
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences
| | - Michal Razew
- European Molecular Biology Laboratory; 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Felix Weis
- European Molecular Biology Laboratory, Structural and Computational Biology Unit; Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Wojciech P. Galej
- European Molecular Biology Laboratory; 71 Avenue des Martyrs, 38042 Grenoble, France
| |
Collapse
|
23
|
Kikuta H, Goto S, Kondo M, Akada R, Hoshida H. Identification of essential intron sequences that enhance gene expression independently of splicing in the yeast Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194784. [PMID: 34990853 DOI: 10.1016/j.bbagrm.2021.194784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Gene expression in eukaryotes is enhanced by the presence of introns in a process known as intron-mediated enhancement (IME), but its mechanism remains unclear. In Saccharomyces cerevisiae, sequences at the 5'-splice sites (SS) and branch point sites (BPS) are highly conserved compared with other higher eukaryotes. Here, the minimum intron sequence essential for IME was investigated using various short introns and a yeast codon-optimized luciferase gene as an IME model. Mutations at the 5'-SS conserved sequence and branch point in the QCR10 intron caused splicing deficiency with either a complete loss or a marked decrease in IME. By contrast, however, the 3'-AG to tG mutant was spliced and retained IME function. Moreover, heterologous introns, which did not show IME in S. cerevisiae, gained splicing competency and IME ability by substitutions to the S. cerevisiae-type 5'-SS and BPS sequences. Intriguingly, several deletion mutants between the 5'-SS and BPS in introns exhibited high levels of IME despite a loss in splicing competency. In most cases, further deletions or substitutions did not recover splicing competency and were found to decrease IME. However, a 16-nt variant consisting of the conserved 5'-SS and BPS sequences and 3'-CAG showed an IME level comparable with that of the wild-type intron. These results indicate that IME can be independent of splicing in S. cerevisiae while intron sequences at the 5'-SS and BPS play an essential role in IME.
Collapse
Affiliation(s)
- Hiroki Kikuta
- Division of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan
| | - Satoshi Goto
- Division of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan
| | - Masaki Kondo
- Division of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan
| | - Rinji Akada
- Division of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan; Research Center for Thermotolerant Microbial Resources, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8315, Japan; Yamaguchi University Biomedical Engineering Center, 2-16-1 Tokiwadai, Ube 755-8611, Japan
| | - Hisashi Hoshida
- Division of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan; Research Center for Thermotolerant Microbial Resources, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8315, Japan; Yamaguchi University Biomedical Engineering Center, 2-16-1 Tokiwadai, Ube 755-8611, Japan.
| |
Collapse
|
24
|
Urabe VK, Stevers M, Ghosh AK, Jurica MS. U2 snRNA structure is influenced by SF3A and SF3B proteins but not by SF3B inhibitors. PLoS One 2021; 16:e0258551. [PMID: 34648557 PMCID: PMC8516221 DOI: 10.1371/journal.pone.0258551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/29/2021] [Indexed: 11/19/2022] Open
Abstract
U2 snRNP is an essential component of the spliceosome. It is responsible for branch point recognition in the spliceosome A-complex via base-pairing of U2 snRNA with an intron to form the branch helix. Small molecule inhibitors target the SF3B component of the U2 snRNP and interfere with A-complex formation during spliceosome assembly. We previously found that the first SF3B inhibited-complex is less stable than A-complex and hypothesized that SF3B inhibitors interfere with U2 snRNA secondary structure changes required to form the branch helix. Using RNA chemical modifiers, we probed U2 snRNA structure in A-complex and SF3B inhibited splicing complexes. The reactivity pattern for U2 snRNA in the SF3B inhibited-complex is indistinguishable from that of A-complex, suggesting that they have the same secondary structure conformation, including the branch helix. This observation suggests SF3B inhibited-complex instability does not stem from an alternate RNA conformation and instead points to the inhibitors interfering with protein component interactions that normally stabilize U2 snRNP’s association with an intron. In addition, we probed U2 snRNA in the free U2 snRNP in the presence of SF3B inhibitor and again saw no differences. However, increased protection of nucleotides upstream of Stem I in the absence of SF3A and SF3B proteins suggests a change of secondary structure at the very 5′ end of U2 snRNA. Chemical probing of synthetic U2 snRNA in the absence of proteins results in similar protections and predicts a previously uncharacterized extension of Stem I. Because this stem must be disrupted for SF3A and SF3B proteins to stably join the snRNP, the structure has the potential to influence snRNP assembly and recycling after spliceosome disassembly.
Collapse
Affiliation(s)
- Veronica K. Urabe
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, California, United States of America
| | - Meredith Stevers
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, California, United States of America
| | - Arun K. Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Melissa S. Jurica
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, California, United States of America
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California, United States of America
- * E-mail:
| |
Collapse
|
25
|
Abstract
CircRNAs are a subclass of lncRNAs that have been found to be abundantly present in a wide range of species, including humans. CircRNAs are generally produced by a noncanonical splicing event called backsplicing that is dependent on the canonical splicing machinery, giving rise to circRNAs classified into three main categories: exonic circRNA, circular intronic RNA, and exon-intron circular RNA. Notably, circRNAs possess functional importance and display their functions through different mechanisms of action including sponging miRNAs, or even being translated into functional proteins. In addition, circRNAs also have great potential as biomarkers, particularly in cancer, thanks to their high stability, tissue type and developmental stage specificity, and their presence in biological fluids, which make them promising candidates as noninvasive biomarkers. In this chapter, we describe the most commonly used techniques for the study of circRNAs as cancer biomarkers, including high-throughput techniques such as RNA-Seq and microarrays, and other methods to analyze the presence of specific circRNAs in patient samples.
Collapse
Affiliation(s)
- Carla Solé
- Molecular Oncology Group, Biodonostia Research Institute, San Sebastián, Spain
| | - Gartze Mentxaka
- Molecular Oncology Group, Biodonostia Research Institute, San Sebastián, Spain
| | - Charles H Lawrie
- Molecular Oncology Group, Biodonostia Research Institute, San Sebastián, Spain. .,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain. .,Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
26
|
Chanarat S. UBL5/Hub1: An Atypical Ubiquitin-Like Protein with a Typical Role as a Stress-Responsive Regulator. Int J Mol Sci 2021; 22:ijms22179384. [PMID: 34502293 PMCID: PMC8431670 DOI: 10.3390/ijms22179384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/25/2021] [Accepted: 08/29/2021] [Indexed: 11/23/2022] Open
Abstract
Members of the ubiquitin-like protein family are known for their ability to modify substrates by covalent conjugation. The highly conserved ubiquitin relative UBL5/Hub1, however, is atypical because it lacks a carboxy-terminal di-glycine motif required for conjugation, and the whole E1-E2-E3 enzyme cascade is likely absent. Though the conjugation-mediated role of UBL5/Hub1 is controversial, it undoubtedly functions by interacting non-covalently with its partners. Several interactors of UBL5/Hub1 identified to date have suggested broad stress-responsive functions of the protein, for example, stress-induced control of pre-mRNA splicing, Fanconi anemia pathway of DNA damage repair, and mitochondrial unfolded protein response. While having an atypical mode of function, UBL5/Hub1 is still a stress protein that regulates feedback to various stimuli in a similar manner to other ubiquitin-like proteins. In this review, I discuss recent progress in understanding the functions of UBL5/Hub1 and the fundamental questions which remain to be answered.
Collapse
Affiliation(s)
- Sittinan Chanarat
- Laboratory of Molecular Cell Biology, Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
27
|
Kao CY, Cao EC, Wai HL, Cheng SC. Evidence for complex dynamics during U2 snRNP selection of the intron branchpoint. Nucleic Acids Res 2021; 49:9965-9977. [PMID: 34387687 PMCID: PMC8464032 DOI: 10.1093/nar/gkab695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/27/2021] [Accepted: 08/11/2021] [Indexed: 12/16/2022] Open
Abstract
Splicing of pre-mRNA is initiated by binding of U1 to the 5′ splice site and of Msl5-Mud2 heterodimer to the branch site (BS). Subsequent binding of U2 displaces Msl5-Mud2 from the BS to form the prespliceosome, a step governing branchpoint selection and hence 3′ splice site choice, and linking splicing to myelodysplasia and many cancers in human. Two DEAD-box proteins, Prp5 and Sub2, are required for this step, but neither is stably associated with the pre-mRNA during the reaction. Using BS-mutated ACT1 pre-mRNA, we previously identified a splicing intermediate complex, FIC, which contains U2 and Prp5, but cannot bind the tri-snRNP. We show here that Msl5 remains associated with the upstream cryptic branch site (CBS) in the FIC, with U2 binding a few bases downstream of the BS. U2 mutants that restore U2-BS base pairing enable dissociation of Prp5 and allows splicing to proceed. The CBS is required for splicing rescue by compensatory U2 mutants, and for formation of FIC, demonstrating a role for Msl5 in directing U2 to the BS, and of U2-BS base pairing for release of Prp5 and Msl5-Mud2 to form the prespliceosome. Our results provide insights into how the prespliceosome may form in normal splicing reaction.
Collapse
Affiliation(s)
- Ching-Yang Kao
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan 106, Republic of China.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - En-Cih Cao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Hsu Lei Wai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Soo-Chen Cheng
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan 106, Republic of China.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| |
Collapse
|
28
|
Zhang Z, Rigo N, Dybkov O, Fourmann JB, Will CL, Kumar V, Urlaub H, Stark H, Lührmann R. Structural insights into how Prp5 proofreads the pre-mRNA branch site. Nature 2021; 596:296-300. [PMID: 34349264 PMCID: PMC8357632 DOI: 10.1038/s41586-021-03789-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/30/2021] [Indexed: 02/07/2023]
Abstract
During the splicing of introns from precursor messenger RNAs (pre-mRNAs), the U2 small nuclear ribonucleoprotein (snRNP) must undergo stable integration into the spliceosomal A complex-a poorly understood, multistep process that is facilitated by the DEAD-box helicase Prp5 (refs. 1-4). During this process, the U2 small nuclear RNA (snRNA) forms an RNA duplex with the pre-mRNA branch site (the U2-BS helix), which is proofread by Prp5 at this stage through an unclear mechanism5. Here, by deleting the branch-site adenosine (BS-A) or mutating the branch-site sequence of an actin pre-mRNA, we stall the assembly of spliceosomes in extracts from the yeast Saccharomyces cerevisiae directly before the A complex is formed. We then determine the three-dimensional structure of this newly identified assembly intermediate by cryo-electron microscopy. Our structure indicates that the U2-BS helix has formed in this pre-A complex, but is not yet clamped by the HEAT domain of the Hsh155 protein (Hsh155HEAT), which exhibits an open conformation. The structure further reveals a large-scale remodelling/repositioning of the U1 and U2 snRNPs during the formation of the A complex that is required to allow subsequent binding of the U4/U6.U5 tri-snRNP, but that this repositioning is blocked in the pre-A complex by the presence of Prp5. Our data suggest that binding of Hsh155HEAT to the bulged BS-A of the U2-BS helix triggers closure of Hsh155HEAT, which in turn destabilizes Prp5 binding. Thus, Prp5 proofreads the branch site indirectly, hindering spliceosome assembly if branch-site mutations prevent the remodelling of Hsh155HEAT. Our data provide structural insights into how a spliceosomal helicase enhances the fidelity of pre-mRNA splicing.
Collapse
Affiliation(s)
- Zhenwei Zhang
- Department of Structural Dynamics, MPI for Biophysical Chemistry, Göttingen, Germany
| | - Norbert Rigo
- Cellular Biochemistry, MPI for Biophysical Chemistry, Göttingen, Germany
| | - Olexandr Dybkov
- Cellular Biochemistry, MPI for Biophysical Chemistry, Göttingen, Germany
| | | | - Cindy L Will
- Cellular Biochemistry, MPI for Biophysical Chemistry, Göttingen, Germany
| | - Vinay Kumar
- Cellular Biochemistry, MPI for Biophysical Chemistry, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, MPI for Biophysical Chemistry, Göttingen, Germany
- Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Holger Stark
- Department of Structural Dynamics, MPI for Biophysical Chemistry, Göttingen, Germany.
| | - Reinhard Lührmann
- Cellular Biochemistry, MPI for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
29
|
Cretu C, Gee P, Liu X, Agrawal A, Nguyen TV, Ghosh AK, Cook A, Jurica M, Larsen NA, Pena V. Structural basis of intron selection by U2 snRNP in the presence of covalent inhibitors. Nat Commun 2021; 12:4491. [PMID: 34301950 PMCID: PMC8302644 DOI: 10.1038/s41467-021-24741-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 07/01/2021] [Indexed: 12/27/2022] Open
Abstract
Intron selection during the formation of prespliceosomes is a critical event in pre-mRNA splicing. Chemical modulation of intron selection has emerged as a route for cancer therapy. Splicing modulators alter the splicing patterns in cells by binding to the U2 snRNP (small nuclear ribonucleoprotein)—a complex chaperoning the selection of branch and 3′ splice sites. Here we report crystal structures of the SF3B module of the U2 snRNP in complex with spliceostatin and sudemycin FR901464 analogs, and the cryo-electron microscopy structure of a cross-exon prespliceosome-like complex arrested with spliceostatin A. The structures reveal how modulators inactivate the branch site in a sequence-dependent manner and stall an E-to-A prespliceosome intermediate by covalent coupling to a nucleophilic zinc finger belonging to the SF3B subunit PHF5A. These findings support a mechanism of intron recognition by the U2 snRNP as a toehold-mediated strand invasion and advance an unanticipated drug targeting concept. Chemical modulation of intron selection has emerged as a route for cancer therapy. Here, structures of the U2 snRNP’s SF3B module and of prespliceosome- both in complexes with splicing modulators- provide insight into the mechanisms of intron recognition and branch site inactivation.
Collapse
Affiliation(s)
- Constantin Cretu
- Research Group Mechanisms and Regulation of Splicing, The Institute of Cancer Research, London, UK.,Cluster of Excellence Multiscale Bioimaging (MBExC), Universitätsmedizin Göttingen, Göttingen, Germany
| | | | - Xiang Liu
- H3 Biomedicine, Inc, Cambridge, MA, USA
| | | | | | - Arun K Ghosh
- Departments of Chemistry and Medicinal Chemistry, Purdue University, West Lafayette, IN, USA
| | | | - Melissa Jurica
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA, USA
| | | | - Vladimir Pena
- Research Group Mechanisms and Regulation of Splicing, The Institute of Cancer Research, London, UK.
| |
Collapse
|
30
|
DEAD-Box RNA Helicases in Cell Cycle Control and Clinical Therapy. Cells 2021; 10:cells10061540. [PMID: 34207140 PMCID: PMC8234093 DOI: 10.3390/cells10061540] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022] Open
Abstract
Cell cycle is regulated through numerous signaling pathways that determine whether cells will proliferate, remain quiescent, arrest, or undergo apoptosis. Abnormal cell cycle regulation has been linked to many diseases. Thus, there is an urgent need to understand the diverse molecular mechanisms of how the cell cycle is controlled. RNA helicases constitute a large family of proteins with functions in all aspects of RNA metabolism, including unwinding or annealing of RNA molecules to regulate pre-mRNA, rRNA and miRNA processing, clamping protein complexes on RNA, or remodeling ribonucleoprotein complexes, to regulate gene expression. RNA helicases also regulate the activity of specific proteins through direct interaction. Abnormal expression of RNA helicases has been associated with different diseases, including cancer, neurological disorders, aging, and autosomal dominant polycystic kidney disease (ADPKD) via regulation of a diverse range of cellular processes such as cell proliferation, cell cycle arrest, and apoptosis. Recent studies showed that RNA helicases participate in the regulation of the cell cycle progression at each cell cycle phase, including G1-S transition, S phase, G2-M transition, mitosis, and cytokinesis. In this review, we discuss the essential roles and mechanisms of RNA helicases in the regulation of the cell cycle at different phases. For that, RNA helicases provide a rich source of targets for the development of therapeutic or prophylactic drugs. We also discuss the different targeting strategies against RNA helicases, the different types of compounds explored, the proposed inhibitory mechanisms of the compounds on specific RNA helicases, and the therapeutic potential of these compounds in the treatment of various disorders.
Collapse
|
31
|
Abstract
Circular RNAs (circRNAs) are covalently circularized RNA moieties that despite being relatively abundant were only recently identified and have only begun to be investigated within the last couple of years. Even though there are many thousands of genes that appear capable of producing circRNAs, and the fact that many circRNAs appear to be highly evolutionarily conserved, the function of all but a few remain to be fully explored. What has been determined, however, is that circRNAs play key regulatory roles in many aspects of biology with focus being given to their function in cancer. Most of the studies to date have found that circRNAs act as master regulator of gene expression most often than not acting to regulate levels though sequestration or "sponging" of other gene expression regulators, particularly miRNAs. They can also function directly modulating transcription, or by interfering with splicing mechanisms. Some circRNAs can also be translated into functional proteins or peptides. A combination of tissue and developmental stage specific expression along with an innate resistance to RNAse activity means that circRNAs show perhaps their greatest potential as novel biomarkers of cancer. In this chapter we consider the current state of knowledge regarding these molecules, their synthesis, function, and association with cancer. We also consider some of the challenges that remain to be overcome to allow this emerging class of RNAs to fulfill their potential in clinical practice.
Collapse
Affiliation(s)
- Carla Solé
- Molecular Oncology Group, Biodonostia Research Institute, San Sebastián, Spain
| | - Charles Henderson Lawrie
- Molecular Oncology Group, Biodonostia Research Institute, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
32
|
Abstract
Splicing of the precursor messenger RNA, involving intron removal and exon ligation, is mediated by the spliceosome. Together with biochemical and genetic investigations of the past four decades, structural studies of the intact spliceosome at atomic resolution since 2015 have led to mechanistic delineation of RNA splicing with remarkable insights. The spliceosome is proven to be a protein-orchestrated metalloribozyme. Conserved elements of small nuclear RNA (snRNA) constitute the splicing active site with two catalytic metal ions and recognize three conserved intron elements through duplex formation, which are delivered into the splicing active site for branching and exon ligation. The protein components of the spliceosome stabilize the conformation of the snRNA, drive spliceosome remodeling, orchestrate the movement of the RNA elements, and facilitate the splicing reaction. The overall organization of the spliceosome and the configuration of the splicing active site are strictly conserved between human and yeast.
Collapse
Affiliation(s)
- Ruixue Wan
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China;,
| | - Rui Bai
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou 310024, China
| | - Xiechao Zhan
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China;,
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China;,
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou 310024, China
| |
Collapse
|
33
|
Molecular architecture of the human 17S U2 snRNP. Nature 2020; 583:310-313. [PMID: 32494006 DOI: 10.1038/s41586-020-2344-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/19/2020] [Indexed: 11/08/2022]
Abstract
The U2 small nuclear ribonucleoprotein (snRNP) has an essential role in the selection of the precursor mRNA branch-site adenosine, the nucleophile for the first step of splicing1. Stable addition of U2 during early spliceosome formation requires the DEAD-box ATPase PRP52-7. Yeast U2 small nuclear RNA (snRNA) nucleotides that form base pairs with the branch site are initially sequestered in a branchpoint-interacting stem-loop (BSL)8, but whether the human U2 snRNA folds in a similar manner is unknown. The U2 SF3B1 protein, a common mutational target in haematopoietic cancers9, contains a HEAT domain (SF3B1HEAT) with an open conformation in isolated SF3b10, but a closed conformation in spliceosomes11, which is required for stable interaction between U2 and the branch site. Here we report a 3D cryo-electron microscopy structure of the human 17S U2 snRNP at a core resolution of 4.1 Å and combine it with protein crosslinking data to determine the molecular architecture of this snRNP. Our structure reveals that SF3B1HEAT interacts with PRP5 and TAT-SF1, and maintains its open conformation in U2 snRNP, and that U2 snRNA forms a BSL that is sandwiched between PRP5, TAT-SF1 and SF3B1HEAT. Thus, substantial remodelling of the BSL and displacement of BSL-interacting proteins must occur to allow formation of the U2-branch-site helix. Our studies provide a structural explanation of why TAT-SF1 must be displaced before the stable addition of U2 to the spliceosome, and identify RNP rearrangements facilitated by PRP5 that are required for stable interaction between U2 and the branch site.
Collapse
|
34
|
Beier DH, Carrocci TJ, van der Feltz C, Tretbar US, Paulson JC, Grabowski N, Hoskins AA. Dynamics of the DEAD-box ATPase Prp5 RecA-like domains provide a conformational switch during spliceosome assembly. Nucleic Acids Res 2020; 47:10842-10851. [PMID: 31712821 PMCID: PMC6846040 DOI: 10.1093/nar/gkz765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 07/29/2019] [Accepted: 08/21/2019] [Indexed: 11/26/2022] Open
Abstract
The DEAD-box family of proteins are ATP-dependent, RNA-binding proteins implicated in many aspects of RNA metabolism. Pre-mRNA splicing in eukaryotes requires three DEAD-box ATPases (Prp5, Prp28 and Sub2), the molecular mechanisms of which are poorly understood. Here, we use single molecule FRET (smFRET) to study the conformational dynamics of yeast Prp5. Prp5 is essential for stable association of the U2 snRNP with the intron branch site (BS) sequence during spliceosome assembly. Our data show that the Prp5 RecA-like domains undergo a large conformational rearrangement only in response to binding of both ATP and RNA. Mutations in Prp5 impact the fidelity of BS recognition and change the conformational dynamics of the RecA-like domains. We propose that BS recognition during spliceosome assembly involves a set of coordinated conformational switches among U2 snRNP components. Spontaneous toggling of Prp5 into a stable, open conformation may be important for its release from U2 and to prevent competition between Prp5 re-binding and subsequent steps in spliceosome assembly.
Collapse
Affiliation(s)
- David H Beier
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tucker J Carrocci
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.,Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | | | - U Sandy Tretbar
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joshua C Paulson
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nikolai Grabowski
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Aaron A Hoskins
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.,Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| |
Collapse
|
35
|
Cooperative Analysis of Structural Dynamics in RNA-Protein Complexes by Single-Molecule Förster Resonance Energy Transfer Spectroscopy. Molecules 2020; 25:molecules25092057. [PMID: 32354083 PMCID: PMC7248720 DOI: 10.3390/molecules25092057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/31/2020] [Accepted: 04/13/2020] [Indexed: 12/24/2022] Open
Abstract
RNA-protein complexes (RNPs) are essential components in a variety of cellular processes, and oftentimes exhibit complex structures and show mechanisms that are highly dynamic in conformation and structure. However, biochemical and structural biology approaches are mostly not able to fully elucidate the structurally and especially conformationally dynamic and heterogeneous nature of these RNPs, to which end single molecule Förster resonance energy transfer (smFRET) spectroscopy can be harnessed to fill this gap. Here we summarize the advantages of strategic smFRET studies to investigate RNP dynamics, complemented by structural and biochemical data. Focusing on recent smFRET studies of three essential biological systems, we demonstrate that investigation of RNPs on a single molecule level can answer important functional questions that remained elusive with structural or biochemical approaches alone: The complex structural rearrangements throughout the splicing cycle, unwinding dynamics of the G-quadruplex (G4) helicase RHAU, and aspects in telomere maintenance regulation and synthesis.
Collapse
|
36
|
Chanarat S, Svasti J. Stress-induced upregulation of the ubiquitin-relative Hub1 modulates pre-mRNA splicing and facilitates cadmium tolerance in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118565. [PMID: 31666190 DOI: 10.1016/j.bbamcr.2019.118565] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 09/17/2019] [Accepted: 09/26/2019] [Indexed: 02/09/2023]
|
37
|
Lu CA, Huang CK, Huang WS, Huang TS, Liu HY, Chen YF. DEAD-Box RNA Helicase 42 Plays a Critical Role in Pre-mRNA Splicing under Cold Stress. PLANT PHYSIOLOGY 2020; 182:255-271. [PMID: 31753844 PMCID: PMC6945872 DOI: 10.1104/pp.19.00832] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/13/2019] [Indexed: 05/24/2023]
Abstract
Low temperature is an important environmental stress that adversely affects rice (Oryza sativa) growth and productivity. Splicing of pre-mRNA is a crucial posttranscriptional regulatory step in gene expression in plants and is sensitive to temperature. DEAD-box RNA helicases belong to an RNA helicase family involved in the rearrangement of ribonucleoprotein complexes and the modification of RNA structure and are therefore involved in all aspects of RNA metabolism. In this study, we demonstrate that the rate of pre-mRNA splicing is reduced in rice at low temperatures and that the DEAD-box RNA Helicase42 (OsRH42) is necessary to support effective splicing of pre-mRNA during mRNA maturation at low temperatures. OsRH42 expression is tightly coupled to temperature fluctuation, and OsRH42 is localized in the splicing speckles and interacts directly with U2 small nuclear RNA. Retarded pre-mRNA splicing and plant growth defects were exhibited by OsRH42-knockdown transgenic lines at low temperatures, thus indicating that OsRH42 performs an essential role in ensuring accurate pre-mRNA splicing and normal plant growth under low ambient temperature. Unexpectedly, our results show that OsRH42 overexpression significantly disrupts the pre-mRNA splicing pathway, causing retarded plant growth and reducing plant cold tolerance. Combined, these results indicate that accurate control of OsRH42 homeostasis is essential for rice plants to respond to changes in ambient temperature. In addition, our study presents the molecular mechanism of DEAD-box RNA helicase function in pre-mRNA splicing, which is required for adaptation to cold stress in rice.
Collapse
Affiliation(s)
- Chung-An Lu
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, Republic of China
| | - Chun-Kai Huang
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, Republic of China
| | - Wen-Shan Huang
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, Republic of China
| | - Tian-Sheng Huang
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, Republic of China
| | - Hsin-Yi Liu
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, Republic of China
| | - Yu-Fu Chen
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, Republic of China
| |
Collapse
|
38
|
Vester K, Santos KF, Kuropka B, Weise C, Wahl MC. The inactive C-terminal cassette of the dual-cassette RNA helicase BRR2 both stimulates and inhibits the activity of the N-terminal helicase unit. J Biol Chem 2019; 295:2097-2112. [PMID: 31914407 DOI: 10.1074/jbc.ra119.010964] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/27/2019] [Indexed: 11/06/2022] Open
Abstract
The RNA helicase bad response to refrigeration 2 homolog (BRR2) is required for the activation of the spliceosome before the first catalytic step of RNA splicing. BRR2 represents a distinct subgroup of Ski2-like nucleic acid helicases whose members comprise tandem helicase cassettes. Only the N-terminal cassette of BRR2 is an active ATPase and can unwind substrate RNAs. The C-terminal cassette represents a pseudoenzyme that can stimulate RNA-related activities of the N-terminal cassette. However, the molecular mechanisms by which the C-terminal cassette modulates the activities of the N-terminal unit remain elusive. Here, we show that N- and C-terminal cassettes adopt vastly different relative orientations in a crystal structure of BRR2 in complex with an activating domain of the spliceosomal Prp8 protein at 2.4 Å resolution compared with the crystal structure of BRR2 alone. Likewise, inspection of BRR2 structures within spliceosomal complexes revealed that the cassettes occupy different relative positions and engage in different intercassette contacts during different splicing stages. Engineered disulfide bridges that locked the cassettes in two different relative orientations had opposite effects on the RNA-unwinding activity of the N-terminal cassette, with one configuration enhancing and the other configuration inhibiting RNA unwinding compared with the unconstrained protein. Moreover, we found that differences in relative positioning of the cassettes strongly influence RNA-stimulated ATP hydrolysis by the N-terminal cassette. Our results indicate that the inactive C-terminal cassette of BRR2 can both positively and negatively affect the activity of the N-terminal helicase unit from a distance.
Collapse
Affiliation(s)
- Karen Vester
- Structural Biochemistry Group, Department of Biochemistry, Freie Universität Berlin, Takustrasse 63, D-14195 Berlin, Germany
| | - Karine F Santos
- Structural Biochemistry Group, Department of Biochemistry, Freie Universität Berlin, Takustrasse 63, D-14195 Berlin, Germany
| | - Benno Kuropka
- Protein Biochemistry Group, Department of Biochemistry, Freie Universität Berlin, Thielallee 63, D-14195 Berlin, Germany
| | - Christoph Weise
- Protein Biochemistry Group, Department of Biochemistry, Freie Universität Berlin, Thielallee 63, D-14195 Berlin, Germany
| | - Markus C Wahl
- Structural Biochemistry Group, Department of Biochemistry, Freie Universität Berlin, Takustrasse 63, D-14195 Berlin, Germany; Macromolecular Crystallography Group, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, D-12489 Berlin, Germany.
| |
Collapse
|
39
|
Abstract
The spliceosome removes introns from messenger RNA precursors (pre-mRNA). Decades of biochemistry and genetics combined with recent structural studies of the spliceosome have produced a detailed view of the mechanism of splicing. In this review, we aim to make this mechanism understandable and provide several videos of the spliceosome in action to illustrate the intricate choreography of splicing. The U1 and U2 small nuclear ribonucleoproteins (snRNPs) mark an intron and recruit the U4/U6.U5 tri-snRNP. Transfer of the 5' splice site (5'SS) from U1 to U6 snRNA triggers unwinding of U6 snRNA from U4 snRNA. U6 folds with U2 snRNA into an RNA-based active site that positions the 5'SS at two catalytic metal ions. The branch point (BP) adenosine attacks the 5'SS, producing a free 5' exon. Removal of the BP adenosine from the active site allows the 3'SS to bind, so that the 5' exon attacks the 3'SS to produce mature mRNA and an excised lariat intron.
Collapse
Affiliation(s)
- Max E Wilkinson
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; ,
| | - Clément Charenton
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; ,
| | - Kiyoshi Nagai
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; ,
| |
Collapse
|
40
|
van der Feltz C, Hoskins AA. Structural and functional modularity of the U2 snRNP in pre-mRNA splicing. Crit Rev Biochem Mol Biol 2019; 54:443-465. [PMID: 31744343 DOI: 10.1080/10409238.2019.1691497] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The U2 small nuclear ribonucleoprotein (snRNP) is an essential component of the spliceosome, the cellular machine responsible for removing introns from precursor mRNAs (pre-mRNAs) in all eukaryotes. U2 is an extraordinarily dynamic splicing factor and the most frequently mutated in cancers. Cryo-electron microscopy (cryo-EM) has transformed our structural and functional understanding of the role of U2 in splicing. In this review, we synthesize these and other data with respect to a view of U2 as an assembly of interconnected functional modules. These modules are organized by the U2 small nuclear RNA (snRNA) for roles in spliceosome assembly, intron substrate recognition, and protein scaffolding. We describe new discoveries regarding the structure of U2 components and how the snRNP undergoes numerous conformational and compositional changes during splicing. We specifically highlight large scale movements of U2 modules as the spliceosome creates and rearranges its active site. U2 serves as a compelling example for how cellular machines can exploit the modular organization and structural plasticity of an RNP.
Collapse
Affiliation(s)
| | - Aaron A Hoskins
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
41
|
Talkish J, Igel H, Hunter O, Horner SW, Jeffery NN, Leach JR, Jenkins JL, Kielkopf CL, Ares M. Cus2 enforces the first ATP-dependent step of splicing by binding to yeast SF3b1 through a UHM-ULM interaction. RNA (NEW YORK, N.Y.) 2019; 25:1020-1037. [PMID: 31110137 PMCID: PMC6633205 DOI: 10.1261/rna.070649.119] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/15/2019] [Indexed: 05/16/2023]
Abstract
Stable recognition of the intron branchpoint (BP) by the U2 snRNP to form the pre-spliceosome is the first ATP-dependent step of splicing. Genetic and biochemical data from yeast indicate that Cus2 aids U2 snRNA folding into the stem IIa conformation prior to pre-spliceosome formation. Cus2 must then be removed by an ATP-dependent function of Prp5 before assembly can progress. However, the location from which Cus2 is displaced and the nature of its binding to the U2 snRNP are unknown. Here, we show that Cus2 contains a conserved UHM (U2AF homology motif) that binds Hsh155, the yeast homolog of human SF3b1, through a conserved ULM (U2AF ligand motif). Mutations in either motif block binding and allow pre-spliceosome formation without ATP. A 2.0 Å resolution structure of the Hsh155 ULM in complex with the UHM of Tat-SF1, the human homolog of Cus2, and complementary binding assays show that the interaction is highly similar between yeast and humans. Furthermore, we show that Tat-SF1 can replace Cus2 function by enforcing ATP dependence of pre-spliceosome formation in yeast extracts. Cus2 is removed before pre-spliceosome formation, and both Cus2 and its Hsh155 ULM binding site are absent from available cryo-EM structure models. However, our data are consistent with the apparent location of the disordered Hsh155 ULM between the U2 stem-loop IIa and the HEAT repeats of Hsh155 that interact with Prp5. We propose a model in which Prp5 uses ATP to remove Cus2 from Hsh155 such that extended base-pairing between U2 snRNA and the intron BP can occur.
Collapse
Affiliation(s)
- Jason Talkish
- Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | - Haller Igel
- Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | - Oarteze Hunter
- Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | - Steven W Horner
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Nazish N Jeffery
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Justin R Leach
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Jermaine L Jenkins
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Clara L Kielkopf
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Manuel Ares
- Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| |
Collapse
|
42
|
Plaschka C, Newman AJ, Nagai K. Structural Basis of Nuclear pre-mRNA Splicing: Lessons from Yeast. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032391. [PMID: 30765413 DOI: 10.1101/cshperspect.a032391] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Noncoding introns are removed from nuclear precursor messenger RNA (pre-mRNA) in a two-step phosphoryl transfer reaction by the spliceosome, a dynamic multimegadalton enzyme. Cryo-electron microscopy (cryo-EM) structures of the Saccharomyces cerevisiae spliceosome were recently determined in eight key states. Combined with the wealth of available genetic and biochemical data, these structures have revealed new insights into the mechanisms of spliceosome assembly, activation, catalysis, and disassembly. The structures show how a single RNA catalytic center forms during activation and accomplishes both steps of the splicing reaction. The structures reveal how spliceosomal helicases remodel the spliceosome for active site formation, substrate docking, reaction product undocking, and spliceosome disassembly and how they facilitate splice site proofreading. Although human spliceosomes contain additional proteins, their cryo-EM structures suggest that the underlying mechanism is conserved across all eukaryotes. In this review, we summarize the current structural understanding of pre-mRNA splicing.
Collapse
Affiliation(s)
- Clemens Plaschka
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Andrew J Newman
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Kiyoshi Nagai
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
43
|
Vijayakumari D, Sharma AK, Bawa PS, Kumar R, Srinivasan S, Vijayraghavan U. Early splicing functions of fission yeast Prp16 and its unexpected requirement for gene Silencing is governed by intronic features. RNA Biol 2019; 16:754-769. [PMID: 30810475 DOI: 10.1080/15476286.2019.1585737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Prp16 is a DEAH box pre-mRNA splicing factor that triggers a key spliceosome conformational switch to facilitate second step splicing in Saccharomyces cerevisiae. However, Prp16 functions are largely unexplored in Schizosaccharomyces pombe, an attractive model with exon-intron architecture more relevant to several other eukaryotes. Here, we generated mis-sense alleles in SpPrp16 whose consequences on genome-wide splicing uncover its nearly global splicing role with only a small subset of unaffected introns. Prp16 dependent and independent intron categories displayed a striking difference in the strength of intronic 5' splice site (5'SS)-U6 snRNA and branch site (BS)-U2 snRNA interactions. Selective weakening of these interactions could convert a Prp16 dependent intron into an independent one. These results point to the role of SpPrp16 in destabilizing 5'SS-U6snRNA and BS-U2snRNA interactions which plausibly trigger structural alterations in the spliceosome to facilitate first step catalysis. Our data suggest that SpPrp16 interactions with early acting factors, its enzymatic activities and association with intronic elements collectively account for efficient and accurate first step catalysis. In addition to splicing derangements in the spprp16F528S mutant, we show that SpPrp16 influences cell cycle progression and centromeric heterochromatinization. We propose that strong 5'SS-U6 snRNA and BS-U2 snRNA complementarity of intron-like elements in non-coding RNAs which lead to complete splicing arrest and impaired Seb1 functions at the pericentromeric loci may cumulatively account for the heterochromatin defects in spprp16F528S cells. These findings suggest that the diverse Prp16 functions within a genome are likely governed by its intronic features that influence splice site-snRNA interaction strength.
Collapse
Affiliation(s)
- Drisya Vijayakumari
- a Department of Microbiology and Cell Biology , Indian Institute of Science , Bangalore , India
| | - Amit Kumar Sharma
- a Department of Microbiology and Cell Biology , Indian Institute of Science , Bangalore , India
| | | | - Rakesh Kumar
- a Department of Microbiology and Cell Biology , Indian Institute of Science , Bangalore , India
| | | | - Usha Vijayraghavan
- a Department of Microbiology and Cell Biology , Indian Institute of Science , Bangalore , India
| |
Collapse
|
44
|
Arnaiz E, Sole C, Manterola L, Iparraguirre L, Otaegui D, Lawrie CH. CircRNAs and cancer: Biomarkers and master regulators. Semin Cancer Biol 2018; 58:90-99. [PMID: 30550956 DOI: 10.1016/j.semcancer.2018.12.002] [Citation(s) in RCA: 298] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/30/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023]
Abstract
Circular RNAs (circRNAs) are a novel class of regulatory RNAs that despite being relatively abundant have only recently begun to be explored. There are many thousands of genes that appear capable of producing circRNAs, however the function of all but a handful remain to be determined. What is emerging about these highly conserved molecules is that they play important roles in biology and cancer biology in particular. The most explored function of circRNAs is as master regulators of gene expression that act to sequester or ´sponge´ other gene expression regulators, in particular miRNAs. They have also been demonstrated to function via direct modulation of transcription, and by interfering with splicing mechanisms. Although generally expressed in low abundance when compared to their linear counterparts, they are often expressed in a tissue- and developmental stage- specific manner. Coupled with their remarkable resistance to RNAse activity due to a covalent closed cyclic structure, circRNAs show great promise as novel biomarkers of cancer and other diseases. In this review we consider the current state of knowledge regarding these molecules, their synthesis, function, and association with cancer. We will also review some of the challenges that remain to be resolved if this emerging class of RNAs are really to become useful in the clinic.
Collapse
Affiliation(s)
- Esther Arnaiz
- Molecular Oncology Group, Biodonostia Research Institute, Paseo Doctor Begiristain, s/n San Sebastián, 20014, Spain
| | - Carla Sole
- Molecular Oncology Group, Biodonostia Research Institute, Paseo Doctor Begiristain, s/n San Sebastián, 20014, Spain
| | - Lorea Manterola
- Molecular Oncology Group, Biodonostia Research Institute, Paseo Doctor Begiristain, s/n San Sebastián, 20014, Spain
| | - Leire Iparraguirre
- Multiple Sclerosis Group, Biodonostia Research Institute, Paseo Doctor Begiristain, s/n San Sebastián, 20014, Spain
| | - David Otaegui
- Multiple Sclerosis Group, Biodonostia Research Institute, Paseo Doctor Begiristain, s/n San Sebastián, 20014, Spain
| | - Charles H Lawrie
- Molecular Oncology Group, Biodonostia Research Institute, Paseo Doctor Begiristain, s/n San Sebastián, 20014, Spain; Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom; IKERBASQUE, Basque Foundation for Science, María Díaz Haroko Kalea, 3, 48013, Bilbao, Spain.
| |
Collapse
|
45
|
Structural studies of the spliceosome: past, present and future perspectives. Biochem Soc Trans 2018; 46:1407-1422. [PMID: 30420411 DOI: 10.1042/bst20170240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 12/18/2022]
Abstract
The spliceosome is a multi-subunit RNA-protein complex involved in the removal of non-coding segments (introns) from between the coding regions (exons) in precursors of messenger RNAs (pre-mRNAs). Intron removal proceeds via two transesterification reactions, occurring between conserved sequences at intron-exon junctions. A tightly regulated, hierarchical assembly with a multitude of structural and compositional rearrangements posed a great challenge for structural studies of the spliceosome. Over the years, X-ray crystallography dominated the field, providing valuable high-resolution structural information that was mostly limited to individual proteins and smaller sub-complexes. Recent developments in the field of cryo-electron microscopy allowed the visualisation of fully assembled yeast and human spliceosomes, providing unprecedented insights into substrate recognition, catalysis, and active site formation. This has advanced our mechanistic understanding of pre-mRNA splicing enormously.
Collapse
|
46
|
Emerging Roles of Ubiquitin-like Proteins in Pre-mRNA Splicing. Trends Biochem Sci 2018; 43:896-907. [PMID: 30269981 DOI: 10.1016/j.tibs.2018.09.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/31/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022]
Abstract
Ubiquitin-like proteins (UBLs) belong to the protein family whose members share a globular beta-grasp fold structure. The archetypal member, ubiquitin, is known for its function in proteasome-mediated protein degradation. UBLs have been shown to play several crucial roles besides protein turnover, including DNA damage response, cell cycle control, cellular signaling, protein trafficking, and innate immunity activation. In the past few years, accumulating evidence illustrates that four UBLs, namely, ubiquitin, SUMO, Hub1, and Sde2, are involved in eukaryotic pre-mRNA splicing. They modify the spliceosomes and promote splicing by adding new surfaces for intermolecular interactions, thereby refining the outcome of gene expression. In this review article, we highlight recent discoveries with an emphasis on the emerging roles of UBLs in splicing regulation.
Collapse
|
47
|
Carrocci TJ, Paulson JC, Hoskins AA. Functional analysis of Hsh155/SF3b1 interactions with the U2 snRNA/branch site duplex. RNA (NEW YORK, N.Y.) 2018; 24:1028-1040. [PMID: 29752352 PMCID: PMC6049509 DOI: 10.1261/rna.065664.118] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/10/2018] [Indexed: 05/25/2023]
Abstract
SF3b1 is an essential component of the U2 snRNP implicated in branch site (BS) recognition and found to be frequently mutated in several human cancers. While recent structures of yeast and human SF3b1 have revealed its molecular architecture, the importance of specific RNA:protein contacts and conformational changes remains largely uncharacterized. Here, we performed mutational analysis of yeast SF3b1, guided by recent structures of the spliceosome. We find that conserved amino acids contacting the U2 snRNA backbone of the U2/BS duplex are nonessential, and that yeast can tolerate truncation of the HEAT repeats containing these amino acids. The pocket housing the branchpoint adenosine (BP-A) is also amenable to mutation despite strong conservation. However, mutations that support viability can still lead to defects in splicing pre-mRNAs with nonconsensus BS substitutions found at -3, -2, -1, and +1 positions relative to the BP-A or at the branchpoint position. Through the generation of yeast and human chimeric proteins, we further defined the functionally conserved regions of Hsh155 as well as identify changes in BS usage resulting from inclusion of human SF3b1 HEAT repeats. Moreover, these chimeric proteins confer a sensitivity to small molecule inhibition by pladienolide B to yeast splicing. Together, these data reveal the importance of individual contacts of Hsh155/SF3b1 to the U2/BS duplex and define their contribution to BS usage by the spliceosome.
Collapse
Affiliation(s)
- Tucker J Carrocci
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Joshua C Paulson
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Aaron A Hoskins
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
48
|
Prespliceosome structure provides insights into spliceosome assembly and regulation. Nature 2018; 559:419-422. [PMID: 29995849 PMCID: PMC6141012 DOI: 10.1038/s41586-018-0323-8] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/16/2018] [Indexed: 11/17/2022]
Abstract
The spliceosome catalyzes the excision of introns from pre-mRNA in two steps, branching
and exon ligation, and is assembled from five small nuclear ribonucleoprotein
particles (snRNPs; U1, U2, U4, U5, U6) and numerous non-snRNP factors1. For branching, the intron
5'-splice site (5'SS) and the branch point (BP) sequence are
selected and brought into the prespliceosome by the U1 and U2 snRNPs1, which is a focal point for the regulation
by alternative splicing factors2. The
U4/U6.U5 tri-snRNP subsequently joins the prespliceosome to form the complete
pre-catalytic spliceosome. Recent studies have revealed the structural basis of
the branching and exon-ligation reactions3. However, the structural basis of early spliceosome assembly events
remains poorly understood4. Here we report
the cryo-electron microscopy structure of the yeast Saccharomyces
cerevisiae prespliceosome at near-atomic resolution. The structure
reveals an induced stabilization of the 5'SS in the U1 snRNP, and
provides structural insights into the functions of the human alternative
splicing factors LUC7-like (yeast Luc7) and TIA-1 (yeast Nam8) that are linked
to human disease5,6. In the prespliceosome, the U1 snRNP associates with the
U2 snRNP through a stable contact with the U2 3' domain and a transient
yeast-specific contact with the U2 SF3b-containing 5' region, leaving its
tri-snRNP-binding interface fully exposed. The results suggest mechanisms for
5'SS transfer to the U6 ACAGAGA region within the assembled spliceosome
and for its subsequent conversion to the activation-competent B complex
spliceosome7,8. Taken together, the data provide a working model to
investigate the early steps of spliceosome assembly.
Collapse
|
49
|
Wilkinson ME, Lin PC, Plaschka C, Nagai K. Cryo-EM Studies of Pre-mRNA Splicing: From Sample Preparation to Model Visualization. Annu Rev Biophys 2018; 47:175-199. [PMID: 29494253 DOI: 10.1146/annurev-biophys-070317-033410] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The removal of noncoding introns from pre-messenger RNA (pre-mRNA) is an essential step in eukaryotic gene expression and is catalyzed by a dynamic multi-megadalton ribonucleoprotein complex called the spliceosome. The spliceosome assembles on pre-mRNA substrates by the stepwise addition of small nuclear ribonucleoprotein particles and numerous protein factors. Extensive remodeling is required to form the RNA-based active site and to mediate the pre-mRNA branching and ligation reactions. In the past two years, cryo-electron microscopy (cryo-EM) structures of spliceosomes captured in different assembly and catalytic states have greatly advanced our understanding of its mechanism. This was made possible by long-standing efforts in the purification of spliceosome intermediates as well as recent developments in cryo-EM imaging and computational methodology. The resulting high-resolution densities allow for de novo model building in core regions of the complexes. In peripheral and less ordered regions, the combination of cross-linking, bioinformatics, biochemical, and genetic data is essential for accurate modeling. Here, we summarize these achievements and highlight the critical steps in obtaining near-atomic resolution structures of the spliceosome.
Collapse
Affiliation(s)
- Max E Wilkinson
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; , , ,
| | - Pei-Chun Lin
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; , , ,
| | - Clemens Plaschka
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; , , ,
| | - Kiyoshi Nagai
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; , , ,
| |
Collapse
|
50
|
Carrocci TJ, Zoerner DM, Paulson JC, Hoskins AA. SF3b1 mutations associated with myelodysplastic syndromes alter the fidelity of branchsite selection in yeast. Nucleic Acids Res 2017; 45:4837-4852. [PMID: 28062854 PMCID: PMC5416834 DOI: 10.1093/nar/gkw1349] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/22/2016] [Indexed: 12/19/2022] Open
Abstract
RNA and protein components of the spliceosome work together to identify the 5΄ splice site, the 3΄ splice site, and the branchsite (BS) of nascent pre-mRNA. SF3b1 plays a key role in recruiting the U2 snRNP to the BS. Mutations in human SF3b1 have been linked to many diseases such as myelodysplasia (MDS) and cancer. We have used SF3b1 mutations associated with MDS to interrogate the role of the yeast ortholog, Hsh155, in BS selection and splicing. These alleles change how the spliceosome recognizes the BS and alter splicing when nonconsensus nucleotides are present at the −2, −1 and +1 positions relative to the branchpoint adenosine. This indicates that changes in BS usage observed in humans with SF3b1 mutations may result from perturbation of a conserved mechanism of BS recognition. Notably, different HSH155 alleles elicit disparate effects on splicing: some increase the fidelity of BS selection while others decrease fidelity. Our data support a model wherein conformational changes in SF3b1 promote U2 association with the BS independently of the action of the DEAD-box ATPase Prp5. We propose that SF3b1 functions to stabilize weak U2/BS duplexes to drive spliceosome assembly and splicing.
Collapse
Affiliation(s)
- Tucker J Carrocci
- Department of Biochemistry, U. Wisconsin-Madison, Madison, WI 53706, USA
| | - Douglas M Zoerner
- Department of Biochemistry, U. Wisconsin-Madison, Madison, WI 53706, USA
| | - Joshua C Paulson
- Department of Biochemistry, U. Wisconsin-Madison, Madison, WI 53706, USA
| | - Aaron A Hoskins
- Department of Biochemistry, U. Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|