1
|
Lopes-Paciencia S, Ferbeyre G. Increased chromatin accessibility underpins senescence. FEBS J 2025. [PMID: 40387486 DOI: 10.1111/febs.70136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/27/2025] [Accepted: 05/07/2025] [Indexed: 05/20/2025]
Abstract
Senescence is a cellular state induced by various stressors or extracellular signals, but a universal pathway that triggers this process irrespective of the initial stressor has yet to be identified. Recent data indicate that chromatin opening, particularly in the noncoding genome, is a hallmark of cellular senescence. We propose a model in which this increased chromatin accessibility mediated by transcription factors downstream of the senescence-inducing stressors acts as a decisive factor to commit cells toward the senescence fate. Engagement toward senescence is then determined by the balance between mechanisms that increase or decrease chromatin accessibility and can be influenced by modulating the activity of specific histone-modifying complexes. Traits of senescent cells, such as increased nuclear and nucleolar size, the secretion of pro-inflammatory cytokines, reduced rRNA biogenesis, telomere dysfunction, expression of retrotransposons and endogenous retroviruses, as well as DNA damage, can all be attributed to increased chromatin accessibility. This concept suggests potential targets to tilt the balance toward the senescence response in the context of future therapies against cancer and age-related diseases.
Collapse
Affiliation(s)
- Stéphane Lopes-Paciencia
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Canada
| | - Gerardo Ferbeyre
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Canada
| |
Collapse
|
2
|
Paul P, Kumar A, Parida AS, De AK, Bhadke G, Khatua S, Tiwari B. p53-mediated regulation of LINE1 retrotransposon-derived R-loops. J Biol Chem 2025; 301:108200. [PMID: 39828096 PMCID: PMC11903798 DOI: 10.1016/j.jbc.2025.108200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/30/2024] [Accepted: 01/11/2025] [Indexed: 01/22/2025] Open
Abstract
Long interspersed nuclear element 1 (LINE1/L1) retrotransposons, which comprise 17% of the human genome, typically remain inactive in healthy somatic cells but are reactivated in several cancers. We previously demonstrated that p53 silences L1 transposons in human somatic cells, potentially acting as a tumor-suppressive mechanism. However, the precise molecular mechanisms underlying p53-mediated repression of L1 and its life cycle intermediates remain unclear. In this study, we used DNA-RNA immunoprecipitation-sequencing experiments to investigate RNA-DNA hybrids, which are key intermediates formed during L1 retrotransposition. Our findings reveal that L1 mRNA-genomic DNA (cis L1 R-loops) and L1 mRNA-complementary DNA (trans L1 R-loops) hybrids are upregulated in p53-/- cells. This increase is synergistic with L1 activation by histone deacetylase (HDAC) inhibitors (HDACi). However, treatment with a reverse transcriptase inhibitor reduces this accumulation, indicating that retrotransposition activity plays a significant role in R-loop accumulation. Interestingly, in WT cells, hyperactivated L1 transposons are suppressed upon HDACi withdrawal. L1 suppression in WT cells coincided with the recruitment of repressive marks, specifically H3K9me3 and H3K27me3, simultaneously preventing the addition of activating marks like H3K4me3, and H3K9ac at the L1 5'UTR. Mechanistically, we demonstrate that p53 cooperates with histone methyltransferases SETDB1 and G9A to deposit H3K9me3 marks at the L1 promoter, thereby silencing transposons. This study is the first to reveal novel roles of p53 in preventing the formation of L1-derived RNA-DNA hybrids (R-loops) and suppression of hyperactivated L1 elements by cooperating with histone methyltransferases, underscoring its critical role in maintaining genomic stability.
Collapse
Affiliation(s)
- Pratyashaa Paul
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, Odisha, India
| | - Arun Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, Odisha, India
| | - Ankita Subhadarsani Parida
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, Odisha, India
| | - Astik Kumar De
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, Odisha, India
| | - Gauri Bhadke
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, Odisha, India
| | - Satyajeet Khatua
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, Odisha, India
| | - Bhavana Tiwari
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, Odisha, India.
| |
Collapse
|
3
|
Solovyov A, Behr JM, Hoyos D, Banks E, Drong AW, Thornlow B, Zhong JZ, Garcia-Rivera E, McKerrow W, Chu C, Arisdakessian C, Zaller DM, Kamihara J, Diao L, Fromer M, Greenbaum BD. Pan-cancer multi-omic model of LINE-1 activity reveals locus heterogeneity of retrotransposition efficiency. Nat Commun 2025; 16:2049. [PMID: 40021663 PMCID: PMC11871128 DOI: 10.1038/s41467-025-57271-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 02/12/2025] [Indexed: 03/03/2025] Open
Abstract
Somatic mobilization of LINE-1 (L1) has been implicated in cancer etiology. We analyzed a recent TCGA data release comprised of nearly 5000 pan-cancer paired tumor-normal whole-genome sequencing (WGS) samples and ~9000 tumor RNA samples. We developed TotalReCall an improved algorithm and pipeline for detection of L1 retrotransposition (RT), finding high correlation between L1 expression and "RT burden" per sample. Furthermore, we mathematically model the dual regulatory roles of p53, where mutations in TP53 disrupt regulation of both L1 expression and retrotransposition. We found those with Li-Fraumeni Syndrome (LFS) heritable TP53 pathogenic and likely pathogenic variants bear similarly high L1 activity compared to matched cancers from patients without LFS, suggesting this population be considered in attempts to target L1 therapeutically. Due to improved sensitivity, we detect over 10 genes beyond TP53 whose mutations correlate with L1, including ATRX, suggesting other, potentially targetable, mechanisms underlying L1 regulation in cancer remain to be discovered.
Collapse
Affiliation(s)
- Alexander Solovyov
- Halvorsen Center for Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | | | - David Hoyos
- Halvorsen Center for Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eric Banks
- ROME Therapeutics, Inc., Boston, MA, USA
- Acorn Biosciences, Cambridge, MA, USA
| | | | | | | | | | | | - Chong Chu
- ROME Therapeutics, Inc., Boston, MA, USA
| | | | | | - Junne Kamihara
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Division of Population Sciences, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | | | - Benjamin D Greenbaum
- Halvorsen Center for Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Physiology, Biophysics & Systems Biology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
4
|
Liu M, Xie XJ, Li X, Ren X, Sun JL, Lin Z, Hemba-Waduge RUS, Ji JY. Transcriptional coupling of telomeric retrotransposons with the cell cycle. SCIENCE ADVANCES 2025; 11:eadr2299. [PMID: 39752503 PMCID: PMC11698117 DOI: 10.1126/sciadv.adr2299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/27/2024] [Indexed: 01/06/2025]
Abstract
Unlike most species that use telomerase for telomere maintenance, many dipterans, including Drosophila, rely on three telomere-specific retrotransposons (TRs)-HeT-A, TART, and TAHRE-to form tandem repeats at chromosome ends. Although TR transcription is crucial in their life cycle, its regulation remains poorly understood. This study identifies the Mediator complex, E2F1-Dp, and Scalloped/dTEAD as key regulators of TR transcription. Reducing the activity of the Mediator or Sd/dTEAD increases TR expression and telomere length, while overexpressing E2F1-Dp or depleting Rbf1 stimulates TR transcription. The Mediator and Sd/dTEAD regulate this process through E2F1-Dp. CUT&RUN (Cleavage under targets and release using nuclease) analysis shows direct binding of CDK8, Dp, and Sd/dTEAD to telomeric repeats, with motif enrichment revealing E2F- and TEAD-binding sites. These findings uncover the Mediator complex's role in controlling TR transcription and telomere length through E2F1-Dp and Sd, coupling the transcriptional regulation of the TR life cycle with host cell-cycle machinery to protect chromosome ends in Drosophila.
Collapse
Affiliation(s)
- Mengmeng Liu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Xiao-Jun Xie
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Xiao Li
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Xingjie Ren
- Institute for Human Genetics and Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jasmine L. Sun
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Zhen Lin
- Department of Pathology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Rajitha-Udakara-Sampath Hemba-Waduge
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Jun-Yuan Ji
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| |
Collapse
|
5
|
Sun S, You E, Hong J, Hoyos D, Del Priore I, Tsanov KM, Mattagajasingh O, Di Gioacchino A, Marhon SA, Chacon-Barahona J, Li H, Jiang H, Hozeifi S, Rosas-Bringas O, Xu KH, Song Y, Lang ER, Rojas AS, Nieman LT, Patel BK, Murali R, Chanda P, Karacay A, Vabret N, De Carvalho DD, Zenklusen D, LaCava J, Lowe SW, Ting DT, Iacobuzio-Donahue CA, Solovyov A, Greenbaum BD. Cancer cells restrict immunogenicity of retrotransposon expression via distinct mechanisms. Immunity 2024; 57:2879-2894.e11. [PMID: 39577413 PMCID: PMC12022969 DOI: 10.1016/j.immuni.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/28/2024] [Accepted: 10/29/2024] [Indexed: 11/24/2024]
Abstract
To thrive, cancer cells must navigate acute inflammatory signaling accompanying oncogenic transformation, such as via overexpression of repeat elements. We examined the relationship between immunostimulatory repeat expression, tumor evolution, and the tumor-immune microenvironment. Integration of multimodal data from a cohort of pancreatic ductal adenocarcinoma (PDAC) patients revealed expression of specific Alu repeats predicted to form double-stranded RNAs (dsRNAs) and trigger retinoic-acid-inducible gene I (RIG-I)-like-receptor (RLR)-associated type-I interferon (IFN) signaling. Such Alu-derived dsRNAs also anti-correlated with pro-tumorigenic macrophage infiltration in late stage tumors. We defined two complementary pathways whereby PDAC may adapt to such anti-tumorigenic signaling. In mutant TP53 tumors, ORF1p from long interspersed nuclear element (LINE)-1 preferentially binds Alus and decreases their expression, whereas adenosine deaminases acting on RNA 1 (ADAR1) editing primarily reduces dsRNA formation in wild-type TP53 tumors. Depletion of either LINE-1 ORF1p or ADAR1 reduced tumor growth in vitro. The fact that tumors utilize multiple pathways to mitigate immunostimulatory repeats implies the stress from their expression is a fundamental phenomenon to which PDAC, and likely other tumors, adapt.
Collapse
Affiliation(s)
- Siyu Sun
- Halvorsen Center for Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Eunae You
- Massachusetts General Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Jungeui Hong
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David Hoyos
- Tri-Institutional Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Isabella Del Priore
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kaloyan M Tsanov
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Om Mattagajasingh
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada
| | - Andrea Di Gioacchino
- Laboratoire de Physique de l'Ecole Normale Supérieure, Sorbonne Université, Université de Paris, Paris, France
| | - Sajid A Marhon
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Jonathan Chacon-Barahona
- Tri-Institutional Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Hao Li
- Halvorsen Center for Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hua Jiang
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Samira Hozeifi
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands
| | - Omar Rosas-Bringas
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands
| | - Katherine H Xu
- Massachusetts General Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Yuhui Song
- Massachusetts General Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Evan R Lang
- Massachusetts General Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Alexandra S Rojas
- Massachusetts General Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Linda T Nieman
- Massachusetts General Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Bidish K Patel
- Massachusetts General Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Rajmohan Murali
- Last Wish Program and Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pharto Chanda
- Last Wish Program and Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ali Karacay
- Last Wish Program and Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicolas Vabret
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel D De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Daniel Zenklusen
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada
| | - John LaCava
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - David T Ting
- Massachusetts General Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Christine A Iacobuzio-Donahue
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Last Wish Program and Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexander Solovyov
- Halvorsen Center for Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benjamin D Greenbaum
- Halvorsen Center for Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Physiology, Biophysics & Systems Biology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
6
|
Roy N, Haq I, Ngo JC, Bennett DA, Teich AF, De Jager PL, Olah M, Sher F. Elevated expression of the retrotransposon LINE-1 drives Alzheimer's disease-associated microglial dysfunction. Acta Neuropathol 2024; 148:75. [PMID: 39604588 PMCID: PMC11602836 DOI: 10.1007/s00401-024-02835-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/05/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Aberrant activity of the retrotransposable element long interspersed nuclear element-1 (LINE-1) has been hypothesized to contribute to cellular dysfunction in age-related disorders, including late-onset Alzheimer's disease (LOAD). However, whether LINE-1 is differentially expressed in cell types of the LOAD brain, and whether these changes contribute to disease pathology is largely unknown. Here, we examined patterns of LINE-1 expression across neurons, astrocytes, oligodendrocytes, and microglia in human postmortem prefrontal cortex tissue from LOAD patients and cognitively normal, age-matched controls. We report elevated immunoreactivity of the open reading frame 1 protein (ORF1p) encoded by LINE-1 in microglia from LOAD patients and find that this immunoreactivity correlates positively with disease-associated microglial morphology. In human iPSC-derived microglia (iMG), we found that CRISPR-mediated transcriptional activation of LINE-1 drives changes in microglial morphology and cytokine secretion and impairs the phagocytosis of amyloid beta (Aβ). We also find LINE-1 upregulation in iMG induces transcriptomic changes genes associated with antigen presentation and lipid metabolism as well as impacting the expression of many AD-relevant genes. Our data posit that heightened LINE-1 expression may trigger microglial dysregulation in LOAD and that these changes may contribute to disease pathogenesis, suggesting a central role for LINE-1 activity in human LOAD.
Collapse
Affiliation(s)
- Nainika Roy
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research On Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Imdadul Haq
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Jason C Ngo
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research On Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Andrew F Teich
- Taub Institute for Research On Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research On Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Marta Olah
- Taub Institute for Research On Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Falak Sher
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA.
- Taub Institute for Research On Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA.
- Department of Neurology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
7
|
Tang H, Yang J, Xu J, Zhang W, Geng A, Jiang Y, Mao Z. The transcription factor PAX5 activates human LINE1 retrotransposons to induce cellular senescence. EMBO Rep 2024; 25:3263-3275. [PMID: 38866979 PMCID: PMC11315925 DOI: 10.1038/s44319-024-00176-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024] Open
Abstract
As a hallmark of senescent cells, the derepression of Long Interspersed Elements 1 (LINE1) transcription results in accumulated LINE1 cDNA, which triggers the secretion of the senescence-associated secretory phenotype (SASP) and paracrine senescence in a cGAS-STING pathway-dependent manner. However, transcription factors that govern senescence-associated LINE1 reactivation remain ill-defined. Here, we predict several transcription factors that bind to human LINE1 elements to regulate their transcription by analyzing the conserved binding motifs in the 5'-untranslated regions (UTR) of the commonly upregulated LINE1 elements in different types of senescent cells. Further analysis reveals that PAX5 directly binds to LINE1 5'-UTR and the binding is enhanced in senescent cells. The enrichment of PAX5 at the 5'-UTR promotes cellular senescence and SASP by activating LINE1. We also demonstrate that the longevity gene SIRT6 suppresses PAX5 transcription by directly binding to the PAX5 promoter, and overexpressing PAX5 abrogates the suppressive effect of SIRT6 on stress-dependent cellular senescence. Our work suggests that PAX5 could serve as a potential target for drug development aiming to suppress LINE1 activation and treat senescence-associated diseases.
Collapse
Affiliation(s)
- Huanyin Tang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jiaqing Yang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Junhao Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Weina Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Anke Geng
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Ying Jiang
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
- School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
8
|
Wei J, Dai J, Shi X, Zhao R, Fu G, Li R, Xia C, Zhang L, Zhou T, Wang H, Shi Y. Cadmium disrupts spermatogenic cell cycle via piRNA-DQ717867/p53 pathway. Reprod Toxicol 2024; 125:108554. [PMID: 38331007 DOI: 10.1016/j.reprotox.2024.108554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Cadmium (Cd) is a harmful environmental pollutant that disrupts public health, including respiratory, digestive, and reproductive systems. In this study, male rats were exposed to CdCl2 at a dose of 3 mg/kg by oral for 28 days to investigate the impact on spermatogenesis. Testis tissue samples were collected after sacrifice, and piRNA expression levels were measured using piRNA microarray and qPCR. PiRNAs, specialized molecules involved in spermatogenesis, were examined. CdCl2 exposure led to disrupted piRNA expression, particularly in piRNA-DQ759395 in rats. This piRNA was found to have a binding site with p53, and a similar piRNA-DQ717867 was discovered in mice. In GC-2spd cells, CdCl2 exposure increased piRNA-DQ717867 expression, which resulted in cell cycle arrest and abnormal expression of cell cycle-related proteins. The activation of p53-related pathways and disruptions in cell cycle regulation were also observed. Antagomir-717867 transfections and PFT-a pretreatment in GC-2spd cells supported the involvement of piRNA-DQ717867 in regulating cell cycle-related proteins. This study suggests that Cd exposure induces abnormal expression of piRNA-DQ759395 in rat testis and that piRNA-DQ717867 may regulate p53, causing cell cycle abnormalities in GC-2spd cells. These findings help understand the mechanisms of male reproductive toxicity caused by Cd exposure and emphasize the role of piRNAs in cell cycle regulation and male reproductive health.
Collapse
Affiliation(s)
- Jiaoyang Wei
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Juan Dai
- Wuhan centers for Disease Prevention and Control, China
| | - Xiaofan Shi
- Qinghai centers for Disease Prevention and Control, China
| | - Ruixue Zhao
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | | | - Rui Li
- Central China Normal University, China
| | - Chao Xia
- Ezhou centers for Disease Prevention and Control, China
| | - Ling Zhang
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Ting Zhou
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Huaiji Wang
- Wuhan centers for Disease Prevention and Control, China.
| | - Yuqin Shi
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China.
| |
Collapse
|
9
|
Liang Y, Qu X, Shah NM, Wang T. Towards targeting transposable elements for cancer therapy. Nat Rev Cancer 2024; 24:123-140. [PMID: 38228901 DOI: 10.1038/s41568-023-00653-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/18/2024]
Abstract
Transposable elements (TEs) represent almost half of the human genome. Historically deemed 'junk DNA', recent technological advancements have stimulated a wave of research into the functional impact of TEs on gene-regulatory networks in evolution and development, as well as in diseases including cancer. The genetic and epigenetic evolution of cancer involves the exploitation of TEs, whereby TEs contribute directly to cancer-specific gene activities. This Review provides a perspective on the role of TEs in cancer as being a 'double-edged sword', both promoting cancer evolution and representing a vulnerability that could be exploited in cancer therapy. We discuss how TEs affect transcriptome regulation and other cellular processes in cancer. We highlight the potential of TEs as therapeutic targets for cancer. We also summarize technical hurdles in the characterization of TEs with genomic assays. Last, we outline open questions and exciting future research avenues.
Collapse
Affiliation(s)
- Yonghao Liang
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, USA
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Xuan Qu
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, USA
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Nakul M Shah
- Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, USA.
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO, USA.
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
10
|
Ow MC, Hall SE. Inheritance of Stress Responses via Small Non-Coding RNAs in Invertebrates and Mammals. EPIGENOMES 2023; 8:1. [PMID: 38534792 DOI: 10.3390/epigenomes8010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 03/28/2024] Open
Abstract
While reports on the generational inheritance of a parental response to stress have been widely reported in animals, the molecular mechanisms behind this phenomenon have only recently emerged. The booming interest in epigenetic inheritance has been facilitated in part by the discovery that small non-coding RNAs are one of its principal conduits. Discovered 30 years ago in the Caenorhabditis elegans nematode, these small molecules have since cemented their critical roles in regulating virtually all aspects of eukaryotic development. Here, we provide an overview on the current understanding of epigenetic inheritance in animals, including mice and C. elegans, as it pertains to stresses such as temperature, nutritional, and pathogenic encounters. We focus on C. elegans to address the mechanistic complexity of how small RNAs target their cohort mRNAs to effect gene expression and how they govern the propagation or termination of generational perdurance in epigenetic inheritance. Presently, while a great amount has been learned regarding the heritability of gene expression states, many more questions remain unanswered and warrant further investigation.
Collapse
Affiliation(s)
- Maria C Ow
- Department of Biology, Syracuse University, Syracuse, NY 13210, USA
| | - Sarah E Hall
- Department of Biology and Program in Neuroscience, Syracuse University, Syracuse, NY 13210, USA
| |
Collapse
|
11
|
Taylor MS, Wu C, Fridy PC, Zhang SJ, Senussi Y, Wolters JC, Cajuso T, Cheng WC, Heaps JD, Miller BD, Mori K, Cohen L, Jiang H, Molloy KR, Chait BT, Goggins MG, Bhan I, Franses JW, Yang X, Taplin ME, Wang X, Christiani DC, Johnson BE, Meyerson M, Uppaluri R, Egloff AM, Denault EN, Spring LM, Wang TL, Shih IM, Fairman JE, Jung E, Arora KS, Yilmaz OH, Cohen S, Sharova T, Chi G, Norden BL, Song Y, Nieman LT, Pappas L, Parikh AR, Strickland MR, Corcoran RB, Mustelin T, Eng G, Yilmaz ÖH, Matulonis UA, Chan AT, Skates SJ, Rueda BR, Drapkin R, Klempner SJ, Deshpande V, Ting DT, Rout MP, LaCava J, Walt DR, Burns KH. Ultrasensitive Detection of Circulating LINE-1 ORF1p as a Specific Multicancer Biomarker. Cancer Discov 2023; 13:2532-2547. [PMID: 37698949 PMCID: PMC10773488 DOI: 10.1158/2159-8290.cd-23-0313] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/09/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023]
Abstract
Improved biomarkers are needed for early cancer detection, risk stratification, treatment selection, and monitoring treatment response. Although proteins can be useful blood-based biomarkers, many have limited sensitivity or specificity for these applications. Long INterspersed Element-1 (LINE-1) open reading frame 1 protein (ORF1p) is a transposable element protein overexpressed in carcinomas and high-risk precursors during carcinogenesis with negligible expression in normal tissues, suggesting ORF1p could be a highly specific cancer biomarker. To explore ORF1p as a blood-based biomarker, we engineered ultrasensitive digital immunoassays that detect mid-attomolar (10-17 mol/L) ORF1p concentrations in plasma across multiple cancers with high specificity. Plasma ORF1p shows promise for early detection of ovarian cancer, improves diagnostic performance in a multianalyte panel, provides early therapeutic response monitoring in gastroesophageal cancers, and is prognostic for overall survival in gastroesophageal and colorectal cancers. Together, these observations nominate ORF1p as a multicancer biomarker with potential utility for disease detection and monitoring. SIGNIFICANCE The LINE-1 ORF1p transposon protein is pervasively expressed in many cancers and is a highly specific biomarker of multiple common, lethal carcinomas and their high-risk precursors in tissue and blood. Ultrasensitive ORF1p assays from as little as 25 μL plasma are novel, rapid, cost-effective tools in cancer detection and monitoring. See related commentary by Doucet and Cristofari, p. 2502. This article is featured in Selected Articles from This Issue, p. 2489.
Collapse
Affiliation(s)
- Martin S. Taylor
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, Massachusetts
| | - Connie Wu
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, Massachusetts
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
| | - Peter C. Fridy
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York
| | - Stephanie J. Zhang
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, Massachusetts
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
| | - Yasmeen Senussi
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, Massachusetts
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
| | - Justina C. Wolters
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Tatiana Cajuso
- Department of Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Wen-Chih Cheng
- Department of Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - John D. Heaps
- Department of Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Bryant D. Miller
- Department of Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Kei Mori
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, Massachusetts
- Healthcare Optics Research Laboratory, Canon U.S.A., Inc., Cambridge, Massachusetts
| | - Limor Cohen
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, Massachusetts
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| | - Hua Jiang
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York
| | - Kelly R. Molloy
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York
| | - Brian T. Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York
| | | | - Irun Bhan
- Mass General Cancer Center and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Joseph W. Franses
- Mass General Cancer Center and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Xiaoyu Yang
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Mary-Ellen Taplin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Xinan Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - David C. Christiani
- Mass General Cancer Center and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Bruce E. Johnson
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Ravindra Uppaluri
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ann Marie Egloff
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Elyssa N. Denault
- Mass General Cancer Center and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Laura M. Spring
- Mass General Cancer Center and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Tian-Li Wang
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ie-Ming Shih
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Euihye Jung
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Kshitij S. Arora
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, Massachusetts
| | - Osman H. Yilmaz
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Sonia Cohen
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Tatyana Sharova
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Gary Chi
- Mass General Cancer Center and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Bryanna L. Norden
- Mass General Cancer Center and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Yuhui Song
- Mass General Cancer Center and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Linda T. Nieman
- Mass General Cancer Center and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Leontios Pappas
- Mass General Cancer Center and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Aparna R. Parikh
- Mass General Cancer Center and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Matthew R. Strickland
- Mass General Cancer Center and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ryan B. Corcoran
- Mass General Cancer Center and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, Washington
| | - George Eng
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, Massachusetts
- The David H. Koch Institute for Integrative Cancer Research at MIT, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Ömer H. Yilmaz
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, Massachusetts
- The David H. Koch Institute for Integrative Cancer Research at MIT, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Ursula A. Matulonis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Andrew T. Chan
- Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Steven J. Skates
- MGH Biostatistics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Bo R. Rueda
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Ronny Drapkin
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Samuel J. Klempner
- Mass General Cancer Center and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Vikram Deshpande
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, Massachusetts
| | - David T. Ting
- Mass General Cancer Center and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Michael P. Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York
| | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, the Netherlands
| | - David R. Walt
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, Massachusetts
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
| | - Kathleen H. Burns
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
12
|
Vylegzhanina AV, Bespalov IA, Novototskaya-Vlasova KA, Hall BM, Gleiberman AS, Yu H, Leontieva OV, Leonova KI, Kurnasov OV, Osterman AL, Dy GK, Komissarov AA, Vasilieva E, Gehlhausen J, Iwasaki A, Ambrosone CB, Tsuji T, Matsuzaki J, Odunsi K, Andrianova EL, Gudkov AV. Cancer Relevance of Circulating Antibodies Against LINE-1 Antigens in Humans. CANCER RESEARCH COMMUNICATIONS 2023; 3:2256-2267. [PMID: 37870410 PMCID: PMC10631453 DOI: 10.1158/2767-9764.crc-23-0289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/16/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023]
Abstract
Long interspersed nuclear element-1 (LINE-1 or L1), the most abundant family of autonomous retrotransposons occupying over 17% of human DNA, is epigenetically silenced in normal tissues by the mechanisms involving p53 but is frequently derepressed in cancer, suggesting that L1-encoded proteins may act as tumor-associated antigens recognized by the immune system. In this study, we established an immunoassay to detect circulating autoantibodies against L1 proteins in human blood. Using this assay in >2,800 individuals with or without cancer, we observed significantly higher IgG titers against L1-encoded ORF1p and ORF2p in patients with lung, pancreatic, ovarian, esophageal, and liver cancers than in healthy individuals. Remarkably, elevated levels of anti-ORF1p-reactive IgG were observed in patients with cancer with disease stages 1 and 2, indicating that the immune response to L1 antigens can occur in the early phases of carcinogenesis. We concluded that the antibody response against L1 antigens could contribute to the diagnosis and determination of immunoreactivity of tumors among cancer types that frequently escape early detection. SIGNIFICANCE The discovery of autoantibodies against antigens encoded by L1 retrotransposons in patients with five poorly curable cancer types has potential implications for the detection of an ongoing carcinogenic process and tumor immunoreactivity.
Collapse
Affiliation(s)
| | | | | | | | | | - Han Yu
- Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | | | | | - Oleg V. Kurnasov
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Andrei L. Osterman
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Grace K. Dy
- Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Alexey A. Komissarov
- I.V. Davydovsky Clinical City Hospital, Moscow, Russia
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Elena Vasilieva
- I.V. Davydovsky Clinical City Hospital, Moscow, Russia
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | | | - Akiko Iwasaki
- Yale University, New Haven, Connecticut
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | | | - Takemasa Tsuji
- University of Chicago Medicine Comprehensive Cancer Center, Chicago, Illinois
| | - Junko Matsuzaki
- University of Chicago Medicine Comprehensive Cancer Center, Chicago, Illinois
| | - Kunle Odunsi
- University of Chicago Medicine Comprehensive Cancer Center, Chicago, Illinois
| | | | - Andrei V. Gudkov
- Genome Protection, Inc., Buffalo, New York
- Roswell Park Comprehensive Cancer Center, Buffalo, New York
| |
Collapse
|
13
|
Liu M, Xie XJ, Li X, Ren X, Sun J, Lin Z, Hemba-Waduge RUS, Ji JY. Transcriptional coupling of telomeric retrotransposons with the cell cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.30.560321. [PMID: 37808851 PMCID: PMC10557779 DOI: 10.1101/2023.09.30.560321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Instead of employing telomerases to safeguard chromosome ends, dipteran species maintain their telomeres by transposition of telomeric-specific retrotransposons (TRs): in Drosophila , these are HeT-A , TART , and TAHRE . Previous studies have shown how these TRs create tandem repeats at chromosome ends, but the exact mechanism controlling TR transcription has remained unclear. Here we report the identification of multiple subunits of the transcription cofactor Mediator complex and transcriptional factors Scalloped (Sd, the TEAD homolog in flies) and E2F1-Dp as novel regulators of TR transcription and telomere length in Drosophila . Depletion of multiple Mediator subunits, Dp, or Sd increased TR expression and telomere length, while over-expressing E2F1-Dp or knocking down the E2F1 regulator Rbf1 (Retinoblastoma-family protein 1) stimulated TR transcription, with Mediator and Sd affecting TR expression through E2F1-Dp. The CUT&RUN analysis revealed direct binding of CDK8, Dp, and Sd to telomeric repeats. These findings highlight the essential role of the Mediator complex in maintaining telomere homeostasis by regulating TR transcription through E2F1-Dp and Sd, revealing the intricate coupling of TR transcription with the host cell-cycle machinery, thereby ensuring chromosome end protection and genomic stability during cell division.
Collapse
|
14
|
Luqman-Fatah A, Miyoshi T. Human LINE-1 retrotransposons: impacts on the genome and regulation by host factors. Genes Genet Syst 2023; 98:121-154. [PMID: 36436935 DOI: 10.1266/ggs.22-00038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Genome sequencing revealed that nearly half of the human genome is comprised of transposable elements. Although most of these elements have been rendered inactive due to mutations, full-length intact long interspersed element-1 (LINE-1 or L1) copies retain the ability to mobilize through RNA intermediates by a so-called "copy-and-paste" mechanism, termed retrotransposition. L1 is the only known autonomous mobile genetic element in the genome, and its retrotransposition contributes to inter- or intra-individual genetic variation within the human population. However, L1 retrotransposition also poses a threat to genome integrity due to gene disruption and chromosomal instability. Moreover, recent studies suggest that aberrant L1 expression can impact human health by causing diseases such as cancer and chronic inflammation that might lead to autoimmune disorders. To counteract these adverse effects, the host cells have evolved multiple layers of defense mechanisms at the epigenetic, RNA and protein levels. Intriguingly, several host factors have also been reported to facilitate L1 retrotransposition, suggesting that there is competition between negative and positive regulation of L1 by host factors. Here, we summarize the known host proteins that regulate L1 activity at different stages of the replication cycle and discuss how these factors modulate disease-associated phenotypes caused by L1.
Collapse
Affiliation(s)
- Ahmad Luqman-Fatah
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University
- Department of Stress Response, Radiation Biology Center, Graduate School of Biostudies, Kyoto University
| | - Tomoichiro Miyoshi
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University
- Department of Stress Response, Radiation Biology Center, Graduate School of Biostudies, Kyoto University
| |
Collapse
|
15
|
Karttunen K, Patel D, Xia J, Fei L, Palin K, Aaltonen L, Sahu B. Transposable elements as tissue-specific enhancers in cancers of endodermal lineage. Nat Commun 2023; 14:5313. [PMID: 37658059 PMCID: PMC10474299 DOI: 10.1038/s41467-023-41081-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/23/2023] [Indexed: 09/03/2023] Open
Abstract
Transposable elements (TE) are repetitive genomic elements that harbor binding sites for human transcription factors (TF). A regulatory role for TEs has been suggested in embryonal development and diseases such as cancer but systematic investigation of their functions has been limited by their widespread silencing in the genome. Here, we utilize unbiased massively parallel reporter assay data using a whole human genome library to identify TEs with functional enhancer activity in two human cancer types of endodermal lineage, colorectal and liver cancers. We show that the identified TE enhancers are characterized by genomic features associated with active enhancers, such as epigenetic marks and TF binding. Importantly, we identify distinct TE subfamilies that function as tissue-specific enhancers, namely MER11- and LTR12-elements in colon and liver cancers, respectively. These elements are bound by distinct TFs in each cell type, and they have predicted associations to differentially expressed genes. In conclusion, these data demonstrate how different cancer types can utilize distinct TEs as tissue-specific enhancers, paving the way for comprehensive understanding of the role of TEs as bona fide enhancers in the cancer genomes.
Collapse
Affiliation(s)
- Konsta Karttunen
- Applied Tumor Genomics Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Divyesh Patel
- Applied Tumor Genomics Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Jihan Xia
- Applied Tumor Genomics Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Liangru Fei
- Applied Tumor Genomics Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kimmo Palin
- Applied Tumor Genomics Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Lauri Aaltonen
- Applied Tumor Genomics Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Biswajyoti Sahu
- Applied Tumor Genomics Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland.
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway.
| |
Collapse
|
16
|
Alkailani MI, Gibbings D. The Regulation and Immune Signature of Retrotransposons in Cancer. Cancers (Basel) 2023; 15:4340. [PMID: 37686616 PMCID: PMC10486412 DOI: 10.3390/cancers15174340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Advances in sequencing technologies and the bioinformatic analysis of big data facilitate the study of jumping genes' activity in the human genome in cancer from a broad perspective. Retrotransposons, which move from one genomic site to another by a copy-and-paste mechanism, are regulated by various molecular pathways that may be disrupted during tumorigenesis. Active retrotransposons can stimulate type I IFN responses. Although accumulated evidence suggests that retrotransposons can induce inflammation, the research investigating the exact mechanism of triggering these responses is ongoing. Understanding these mechanisms could improve the therapeutic management of cancer through the use of retrotransposon-induced inflammation as a tool to instigate immune responses to tumors.
Collapse
Affiliation(s)
- Maisa I. Alkailani
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Derrick Gibbings
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| |
Collapse
|
17
|
Wolf MM, Rathmell WK, de Cubas AA. Immunogenicity in renal cell carcinoma: shifting focus to alternative sources of tumour-specific antigens. Nat Rev Nephrol 2023; 19:440-450. [PMID: 36973495 PMCID: PMC10801831 DOI: 10.1038/s41581-023-00700-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 03/29/2023]
Abstract
Renal cell carcinoma (RCC) comprises a group of malignancies arising from the kidney with unique tumour-specific antigen (TSA) signatures that can trigger cytotoxic immunity. Two classes of TSAs are now considered potential drivers of immunogenicity in RCC: small-scale insertions and deletions (INDELs) that result in coding frameshift mutations, and activation of human endogenous retroviruses. The presence of neoantigen-specific T cells is a hallmark of solid tumours with a high mutagenic burden, which typically have abundant TSAs owing to non-synonymous single nucleotide variations within the genome. However, RCC exhibits high cytotoxic T cell reactivity despite only having an intermediate non-synonymous single nucleotide variation mutational burden. Instead, RCC tumours have a high pan-cancer proportion of INDEL frameshift mutations, and coding frameshift INDELs are associated with high immunogenicity. Moreover, cytotoxic T cells in RCC subtypes seem to recognize tumour-specific endogenous retrovirus epitopes, whose presence is associated with clinical responses to immune checkpoint blockade therapy. Here, we review the distinct molecular landscapes in RCC that promote immunogenic responses, discuss clinical opportunities for discovery of biomarkers that can inform therapeutic immune checkpoint blockade strategies, and identify gaps in knowledge for future investigations.
Collapse
Affiliation(s)
- Melissa M Wolf
- Department of Medicine, Program in Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - W Kimryn Rathmell
- Department of Medicine, Program in Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Aguirre A de Cubas
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA.
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
18
|
Isbel L, Iskar M, Durdu S, Weiss J, Grand RS, Hietter-Pfeiffer E, Kozicka Z, Michael AK, Burger L, Thomä NH, Schübeler D. Readout of histone methylation by Trim24 locally restricts chromatin opening by p53. Nat Struct Mol Biol 2023:10.1038/s41594-023-01021-8. [PMID: 37386214 DOI: 10.1038/s41594-023-01021-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 05/15/2023] [Indexed: 07/01/2023]
Abstract
The genomic binding sites of the transcription factor (TF) and tumor suppressor p53 are unusually diverse with regard to their chromatin features, including histone modifications, raising the possibility that the local chromatin environment can contextualize p53 regulation. Here, we show that epigenetic characteristics of closed chromatin, such as DNA methylation, do not influence the binding of p53 across the genome. Instead, the ability of p53 to open chromatin and activate its target genes is locally restricted by its cofactor Trim24. Trim24 binds to both p53 and unmethylated histone 3 lysine 4 (H3K4), thereby preferentially localizing to those p53 sites that reside in closed chromatin, whereas it is deterred from accessible chromatin by H3K4 methylation. The presence of Trim24 increases cell viability upon stress and enables p53 to affect gene expression as a function of the local chromatin state. These findings link H3K4 methylation to p53 function and illustrate how specificity in chromatin can be achieved, not by TF-intrinsic sensitivity to histone modifications, but by employing chromatin-sensitive cofactors that locally modulate TF function.
Collapse
Affiliation(s)
- Luke Isbel
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Murat Iskar
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Sevi Durdu
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Joscha Weiss
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Faculty of Sciences, University of Basel, Basel, Switzerland
| | - Ralph S Grand
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Eric Hietter-Pfeiffer
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Faculty of Sciences, University of Basel, Basel, Switzerland
| | - Zuzanna Kozicka
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Faculty of Sciences, University of Basel, Basel, Switzerland
| | - Alicia K Michael
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| | - Lukas Burger
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
- Faculty of Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
19
|
Mosaddeghi P, Farahmandnejad M, Zarshenas MM. The role of transposable elements in aging and cancer. Biogerontology 2023:10.1007/s10522-023-10028-z. [PMID: 37017895 DOI: 10.1007/s10522-023-10028-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/06/2023] [Indexed: 04/06/2023]
Abstract
Transposable elements (TEs) constitute a large portion of the human genome. Various mechanisms at the transcription and post-transcription levels developed to suppress TE activity in healthy conditions. However, a growing body of evidence suggests that TE dysregulation is involved in various human diseases, including age-related diseases and cancer. In this review, we explained how sensing TEs by the immune system could induce innate immune responses, chronic inflammation, and following age-related diseases. We also noted that inflammageing and exogenous carcinogens could trigger the upregulation of TEs in precancerous cells. Increased inflammation could enhance epigenetic plasticity and upregulation of early developmental TEs, which rewires the transcriptional networks and gift the survival advantage to the precancerous cells. In addition, upregulated TEs could induce genome instability, activation of oncogenes, or inhibition of tumor suppressors and consequent cancer initiation and progression. So, we suggest that TEs could be considered therapeutic targets in aging and cancer.
Collapse
Affiliation(s)
- Pouria Mosaddeghi
- Medicinal Plants Processing Research Center, School of Pharmacy, Shiraz University of Medical Science, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mitra Farahmandnejad
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Quality Control of Drug Products Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad M Zarshenas
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
20
|
Yushkova E, Moskalev A. Transposable elements and their role in aging. Ageing Res Rev 2023; 86:101881. [PMID: 36773759 DOI: 10.1016/j.arr.2023.101881] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/16/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Transposable elements (TEs) are an important part of eukaryotic genomes. The role of somatic transposition in aging, carcinogenesis, and other age-related diseases has been determined. This review discusses the fundamental properties of TEs and their complex interactions with cellular processes, which are crucial for understanding the diverse effects of their activity on the genetics and epigenetics of the organism. The interactions of TEs with recombination, replication, repair, and chromosomal regulation; the ability of TEs to maintain a balance between their own activity and repression, the involvement of TEs in the creation of new or alternative genes, the expression of coding/non-coding RNA, and the role in DNA damage and modification of regulatory networks are reviewed. The contribution of the derepressed TEs to age-dependent effects in individual cells/tissues in different organisms was assessed. Conflicting information about TE activity under stress as well as theories of aging mechanisms related to TEs is discussed. On the one hand, transposition activity in response to stressors can lead to organisms acquiring adaptive innovations of great importance for evolution at the population level. On the other hand, the TE expression can cause decreased longevity and stress tolerance at the individual level. The specific features of TE effects on aging processes in germline and soma and the ways of their regulation in cells are highlighted. Recent results considering somatic mutations in normal human and animal tissues are indicated, with the emphasis on their possible functional consequences. In the context of aging, the correlation between somatic TE activation and age-related changes in the number of proteins required for heterochromatin maintenance and longevity regulation was analyzed. One of the original features of this review is a discussion of not only effects based on the TEs insertions and the associated consequences for the germline cell dynamics and somatic genome, but also the differences between transposon- and retrotransposon-mediated structural genome changes and possible phenotypic characteristics associated with aging and various age-related pathologies. Based on the analysis of published data, a hypothesis about the influence of the species-specific features of number, composition, and distribution of TEs on aging dynamics of different animal genomes was formulated.
Collapse
Affiliation(s)
- Elena Yushkova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russian Federation
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russian Federation; Laboratory of Genetics and Epigenetics of Aging, Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Moscow 129226, Russian Federation; Longaevus Technologies, London, UK.
| |
Collapse
|
21
|
Hosseiniporgham S, Sechi LA. Anti-HERV-K Drugs and Vaccines, Possible Therapies against Tumors. Vaccines (Basel) 2023; 11:vaccines11040751. [PMID: 37112663 PMCID: PMC10144246 DOI: 10.3390/vaccines11040751] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
The footprint of human endogenous retroviruses (HERV), specifically HERV-K, has been found in malignancies, such as melanoma, teratocarcinoma, osteosarcoma, breast cancer, lymphoma, and ovary and prostate cancers. HERV-K is characterized as the most biologically active HERV due to possession of open reading frames (ORF) for all Gag, Pol, and Env genes, which enables it to be more infective and obstructive towards specific cell lines and other exogenous viruses, respectively. Some factors might contribute to carcinogenicity and at least one of them has been recognized in various tumors, including overexpression/methylation of long interspersed nuclear element 1 (LINE-1), HERV-K Gag, and Env genes themselves plus their transcripts and protein products, and HERV-K reverse transcriptase (RT). Therapies effective for HERV-K-associated tumors mostly target invasive autoimmune responses or growth of tumors through suppression of HERV-K Gag or Env protein and RT. To design new therapeutic options, more studies are needed to better understand whether HERV-K and its products (Gag/Env transcripts and HERV-K proteins/RT) are the initiators of tumor formation or just the disorder’s developers. Accordingly, this review aims to present evidence that highlights the association between HERV-K and tumorigenicity and introduces some of the available or potential therapies against HERV-K-induced tumors.
Collapse
|
22
|
Hu Y, Sun HX, Sakurai M, Jones AE, Liu L, Cheng T, Zheng C, Li J, Ravaux B, Luo Z, Ding Y, Liu T, Wu Y, Chen EH, Chen ZJ, Abrams JM, Gu Y, Wu J. RNA Sensing and Innate Immunity Constitutes a Barrier for Interspecies Chimerism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531624. [PMID: 36945615 PMCID: PMC10028900 DOI: 10.1101/2023.03.07.531624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Interspecies chimera formation with human pluripotent stem cells (PSCs) holds great promise to generate humanized animal models and provide donor organs for transplant. However, the approach is currently limited by low levels of human cells ultimately represented in chimeric embryos. Different strategies have been developed to improve chimerism by genetically editing donor human PSCs. To date, however, it remains unexplored if human chimerism can be enhanced in animals through modifying the host embryos. Leveraging the interspecies PSC competition model, here we discovered retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) signaling, an RNA sensor, in "winner" cells plays an important role in the competitive interactions between co-cultured mouse and human PSCs. We found that genetic inactivation of Ddx58/Ifih1-Mavs-Irf7 axis compromised the "winner" status of mouse PSCs and their ability to outcompete PSCs from evolutionarily distant species during co-culture. Furthermore, by using Mavs-deficient mouse embryos we substantially improved unmodified donor human cell survival. Comparative transcriptome analyses based on species-specific sequences suggest contact-dependent human-to-mouse transfer of RNAs likely plays a part in mediating the cross-species interactions. Taken together, these findings establish a previously unrecognized role of RNA sensing and innate immunity in "winner" cells during cell competition and provides a proof-of-concept for modifying host embryos, rather than donor PSCs, to enhance interspecies chimerism.
Collapse
Affiliation(s)
- Yingying Hu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- BGI-Shenzhen, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Hai-Xi Sun
- BGI-Shenzhen, Shenzhen, Guangdong, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Beijing, Beijing, China
| | - Masahiro Sakurai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amanda E. Jones
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lizhong Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tianlei Cheng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Canbin Zheng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jie Li
- BGI-Shenzhen, Shenzhen, Guangdong, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Beijing, Beijing, China
| | - Benjamin Ravaux
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhou Luo
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yi Ding
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tianbin Liu
- BGI-Shenzhen, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, Guangdong, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Wu
- BGI-Shenzhen, Shenzhen, Guangdong, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Beijing, Beijing, China
| | - Elizabeth H. Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhijian J. Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - John M. Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ying Gu
- BGI-Shenzhen, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, Guangdong, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Hangzhou, Hangzhou, Zhejiang, China
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
23
|
Nishikawa S, Iwakuma T. Drugs Targeting p53 Mutations with FDA Approval and in Clinical Trials. Cancers (Basel) 2023; 15:429. [PMID: 36672377 PMCID: PMC9856662 DOI: 10.3390/cancers15020429] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/01/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Mutations in the tumor suppressor p53 (p53) promote cancer progression. This is mainly due to loss of function (LOS) as a tumor suppressor, dominant-negative (DN) activities of missense mutant p53 (mutp53) over wild-type p53 (wtp53), and wtp53-independent oncogenic activities of missense mutp53 by interacting with other tumor suppressors or oncogenes (gain of function: GOF). Since p53 mutations occur in ~50% of human cancers and rarely occur in normal tissues, p53 mutations are cancer-specific and ideal therapeutic targets. Approaches to target p53 mutations include (1) restoration or stabilization of wtp53 conformation from missense mutp53, (2) rescue of p53 nonsense mutations, (3) depletion or degradation of mutp53 proteins, and (4) induction of p53 synthetic lethality or targeting of vulnerabilities imposed by p53 mutations (enhanced YAP/TAZ activities) or deletions (hyperactivated retrotransposons). This review article focuses on clinically available FDA-approved drugs and drugs in clinical trials that target p53 mutations and summarizes their mechanisms of action and activities to suppress cancer progression.
Collapse
Affiliation(s)
- Shigeto Nishikawa
- Department of Pediatrics, Division of Hematology & Oncology, Children’s Mercy Research Institute, Kansas City, MO 64108, USA
| | - Tomoo Iwakuma
- Department of Pediatrics, Division of Hematology & Oncology, Children’s Mercy Research Institute, Kansas City, MO 64108, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
24
|
Esposito M, Gualandi N, Spirito G, Ansaloni F, Gustincich S, Sanges R. Transposons Acting as Competitive Endogenous RNAs: In-Silico Evidence from Datasets Characterised by L1 Overexpression. Biomedicines 2022; 10:biomedicines10123279. [PMID: 36552034 PMCID: PMC9776036 DOI: 10.3390/biomedicines10123279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
LINE L1 are transposable elements that can replicate within the genome by passing through RNA intermediates. The vast majority of these element copies in the human genome are inactive and just between 100 and 150 copies are still able to mobilize. During evolution, they could have been positively selected for beneficial cellular functions. Nonetheless, L1 deregulation can be detrimental to the cell, causing diseases such as cancer. The activity of miRNAs represents a fundamental mechanism for controlling transcript levels in somatic cells. These are a class of small non-coding RNAs that cause degradation or translational inhibition of their target transcripts. Beyond this, competitive endogenous RNAs (ceRNAs), mostly made by circular and non-coding RNAs, have been seen to compete for the binding of the same set of miRNAs targeting protein coding genes. In this study, we have investigated whether autonomously transcribed L1s may act as ceRNAs by analyzing public dataset in-silico. We observed that genes sharing miRNA target sites with L1 have a tendency to be upregulated when L1 are overexpressed, suggesting the possibility that L1 might act as ceRNAs. This finding will help in the interpretation of transcriptomic responses in contexts characterized by the specific activation of transposons.
Collapse
Affiliation(s)
- Mauro Esposito
- Computational Genomics Laboratory, Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
| | - Nicolò Gualandi
- Computational Genomics Laboratory, Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
| | - Giovanni Spirito
- Computational Genomics Laboratory, Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
- CMP3vda, via Lavoratori Vittime del Col Du Mont 28, 11100 Aosta, Italy
| | - Federico Ansaloni
- Computational Genomics Laboratory, Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
- Central RNA Laboratory, Istituto Italiano di Tecnologia, 16132 Genova, Italy
| | - Stefano Gustincich
- CMP3vda, via Lavoratori Vittime del Col Du Mont 28, 11100 Aosta, Italy
- Central RNA Laboratory, Istituto Italiano di Tecnologia, 16132 Genova, Italy
| | - Remo Sanges
- Computational Genomics Laboratory, Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
- Central RNA Laboratory, Istituto Italiano di Tecnologia, 16132 Genova, Italy
- Correspondence:
| |
Collapse
|
25
|
Casarotto M, Lupato V, Giurato G, Guerrieri R, Sulfaro S, Salvati A, D’Angelo E, Furlan C, Menegaldo A, Baboci L, Montico B, Turturici I, Dolcetti R, Romeo S, Baggio V, Corrado S, Businello G, Guido M, Weisz A, Giacomarra V, Franchin G, Steffan A, Sigalotti L, Vaccher E, Boscolo-Rizzo P, Jerry P, Fanetti G, Fratta E. LINE-1 hypomethylation is associated with poor outcomes in locoregionally advanced oropharyngeal cancer. Clin Epigenetics 2022; 14:171. [PMID: 36503584 PMCID: PMC9743592 DOI: 10.1186/s13148-022-01386-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Currently, human papillomavirus (HPV) positivity represents a strong prognostic factor for both reduced risk of relapse and improved survival in patients with oropharyngeal squamous cell carcinoma (OPSCC). However, a subset of HPV-positive OPSCC patients still experience poor outcomes. Furthermore, HPV-negative OPSCC patients, who have an even higher risk of relapse, are still lacking suitable prognostic biomarkers for clinical outcome. Here, we evaluated the prognostic value of LINE-1 methylation level in OPSCC patients and further addressed the relationship between LINE-1 methylation status and p53 protein expression as well as genome-wide/gene-specific DNA methylation. RESULTS In this study, DNA was extracted from 163 formalin-fixed paraffin-embedded tissue samples retrospectively collected from stage III-IVB OPSCC patients managed with curative intent with up-front treatment. Quantitative methylation-specific PCR revealed that LINE-1 hypomethylation was directly associated with poor prognosis (5-year overall survival-OS: 28.1% for LINE-1 methylation < 35% vs. 69.1% for ≥ 55%; p < 0.0001). When LINE-1 methylation was dichotomized as < 55% versus ≥ 55%, interaction with HPV16 emerged: compared with hypermethylated HPV16-positive patients, subjects with hypomethylated HPV16-negative OPSCC reported an adjusted higher risk of death (HR 4.83, 95% CI 2.24-10.38) and progression (HR 4.54, 95% CI 2.18-9.48). Tumor protein p53 (TP53) gene is often mutated and overexpressed in HPV-negative OPSCC. Since p53 has been reported to repress LINE-1 promoter, we then analyzed the association between p53 protein expression and LINE-1 methylation levels. Following p53 immunohistochemistry, results indicated that among HPV16-negative patients with p53 ≥ 50%, LINE-1 methylation levels declined and remained stable at approximately 43%; any HPV16-positive patient reported p53 ≥ 50%. Finally, DNA methylation analysis demonstrated that genome-wide average methylation level at cytosine-phosphate-guanine sites was significantly lower in HPV16-negative OPSCC patients who relapsed within two years. The subsequent integrative analysis of gene expression and DNA methylation identified 20 up-regulated/hypomethylated genes in relapsed patients, and most of them contained LINE-1 elements in their promoter sequences. CONCLUSIONS Evaluation of the methylation level of LINE-1 may help in identifying the subset of OPSCC patients with bad prognosis regardless of their HPV status. Aberrant LINE-1 hypomethylation might occur along with TP53 mutations and lead to altered gene expression in OPSCC.
Collapse
Affiliation(s)
- Mariateresa Casarotto
- grid.414603.4Unit of Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Valentina Lupato
- grid.415199.10000 0004 1756 8284Division of Otolaryngology, General Hospital “S. Maria Degli Angeli”, Pordenone, Italy
| | - Giorgio Giurato
- grid.11780.3f0000 0004 1937 0335Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Baronissi, SA Italy ,grid.11780.3f0000 0004 1937 0335Genome Research Center for Health, Campus of Medicine, University of Salerno, Baronissi, SA Italy
| | - Roberto Guerrieri
- grid.414603.4Unit of Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Sandro Sulfaro
- grid.415199.10000 0004 1756 8284Division of Pathology, General Hospital “S. Maria Degli Angeli”, Pordenone, Italy
| | - Annamaria Salvati
- grid.11780.3f0000 0004 1937 0335Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Baronissi, SA Italy ,grid.11780.3f0000 0004 1937 0335Genome Research Center for Health, Campus of Medicine, University of Salerno, Baronissi, SA Italy ,grid.11780.3f0000 0004 1937 0335Medical Genomics Program, AOU ‘SS. Giovanni di Dio e Ruggi d’Aragona’, University of Salerno, Salerno, Italy
| | - Elisa D’Angelo
- grid.413363.00000 0004 1769 5275Department of Radiation Oncology, University Hospital of Modena, Modena, Italy
| | - Carlo Furlan
- grid.415199.10000 0004 1756 8284Department of Radiation Oncology, General Hospital “San Martino”, Belluno, Italy
| | - Anna Menegaldo
- Unit of Otolaryngology, AULSS 2 - Marca Trevigiana, Treviso, Italy
| | - Lorena Baboci
- grid.414603.4Unit of Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Barbara Montico
- grid.414603.4Unit of Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Irene Turturici
- grid.418321.d0000 0004 1757 9741Division of Radiotherapy, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, PN Italy
| | - Riccardo Dolcetti
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010 Australia ,grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC 3010 Australia
| | - Salvatore Romeo
- Department of Services of Diagnosis and Care, Santorso Hospital, Santorso, VI Italy
| | - Vittorio Baggio
- grid.413196.8Department of Radiation Oncology, Treviso Regional Hospital, Treviso, Italy
| | - Stefania Corrado
- grid.413363.00000 0004 1769 5275Department of Anatomy and Pathology, University Hospital of Modena, Modena, Italy
| | - Gianluca Businello
- grid.413196.8Department of Pathology, Treviso Regional Hospital, Treviso, Italy
| | - Maria Guido
- grid.413196.8Department of Pathology, Treviso Regional Hospital, Treviso, Italy ,grid.5608.b0000 0004 1757 3470Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Alessandro Weisz
- grid.11780.3f0000 0004 1937 0335Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Baronissi, SA Italy ,grid.11780.3f0000 0004 1937 0335Genome Research Center for Health, Campus of Medicine, University of Salerno, Baronissi, SA Italy ,grid.11780.3f0000 0004 1937 0335Medical Genomics Program, AOU ‘SS. Giovanni di Dio e Ruggi d’Aragona’, University of Salerno, Salerno, Italy
| | - Vittorio Giacomarra
- grid.415199.10000 0004 1756 8284Division of Otolaryngology, General Hospital “S. Maria Degli Angeli”, Pordenone, Italy
| | - Giovanni Franchin
- grid.418321.d0000 0004 1757 9741Division of Radiotherapy, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, PN Italy
| | - Agostino Steffan
- grid.414603.4Unit of Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Luca Sigalotti
- grid.414603.4Oncogenetics and Functional Oncogenomics Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Emanuela Vaccher
- grid.414603.4Division of Medical Oncology A, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Paolo Boscolo-Rizzo
- grid.5608.b0000 0004 1757 3470Section of Otolaryngology, Department of Neurosciences, University of Padova, Treviso, Italy
| | - Polesel Jerry
- grid.414603.4Unit of Cancer Epidemiology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Giuseppe Fanetti
- grid.418321.d0000 0004 1757 9741Division of Radiotherapy, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, PN Italy
| | - Elisabetta Fratta
- grid.414603.4Unit of Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy ,grid.418321.d0000 0004 1757 9741Division of Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Via Franco Gallini, 2, 33081 Aviano, PN Italy
| |
Collapse
|
26
|
Das S, Jones AE, Abrams JM. Generalized nuclear localization of retroelement transcripts. Mob DNA 2022; 13:30. [PMID: 36461093 PMCID: PMC9717504 DOI: 10.1186/s13100-022-00287-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/19/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND LINE-1s, Alus and SVAs are the only retrotransposition competent elements in humans. Their mobilization followed by insertional mutagenesis is often linked to disease. Apart from these rare integration events, accumulation of retrotransposition intermediates in the cytoplasm is potentially pathogenic due to induction of inflammatory response pathways. Although the retrotransposition of LINE-1 and Alu retroelements has been studied in considerable detail, there are mixed observations about the localization of their RNAs. RESULTS We undertook a comprehensive and unbiased approach to analyze retroelement RNA localization using common cell lines and publicly available datasets containing RNA-sequencing data from subcellular fractions. Using our customized analytic pipeline, we compared localization patterns of RNAs transcribed from retroelements and single-copy protein coding genes. Our results demonstrate a generalized characteristic pattern of retroelement RNA nuclear localization that is conserved across retroelement classes as well as evolutionarily young and ancient elements. Preferential nuclear enrichment of retroelement transcripts was consistently observed in cell lines, in vivo and across species. Moreover, retroelement RNA localization patterns were dynamic and subject to change during development, as seen in zebrafish embryos. CONCLUSION The pronounced nuclear localization of transcripts arising from ancient as well as de novo transcribed retroelements suggests that these transcripts are retained in the nucleus as opposed to being re-imported to the nucleus or degraded in the cytoplasm. This raises the possibility that there is adaptive value associated with this localization pattern to the host, the retroelements or possibly both.
Collapse
Affiliation(s)
- Simanti Das
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Amanda E Jones
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
27
|
Dumetier B, Sauter C, Hajmirza A, Pernon B, Aucagne R, Fournier C, Row C, Guidez F, Rossi C, Lepage C, Delva L, Callanan MB. Repeat Element Activation-Driven Inflammation: Role of NFκB and Implications in Normal Development and Cancer? Biomedicines 2022; 10:biomedicines10123101. [PMID: 36551854 PMCID: PMC9775655 DOI: 10.3390/biomedicines10123101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/14/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022] Open
Abstract
The human genome is composed of unique DNA sequences that encode proteins and unique sequence noncoding RNAs that are essential for normal development and cellular differentiation. The human genome also contains over 50% of genome sequences that are repeat in nature (tandem and interspersed repeats) that are now known to contribute dynamically to genetic diversity in populations, to be transcriptionally active under certain physiological conditions, and to be aberrantly active in disease states including cancer, where consequences are pleiotropic with impact on cancer cell phenotypes and on the tumor immune microenvironment. Repeat element-derived RNAs play unique roles in exogenous and endogenous cell signaling under normal and disease conditions. A key component of repeat element-derived transcript-dependent signaling occurs via triggering of innate immune receptor signaling that then feeds forward to inflammatory responses through interferon and NFκB signaling. It has recently been shown that cancer cells display abnormal transcriptional activity of repeat elements and that this is linked to either aggressive disease and treatment failure or to improved prognosis/treatment response, depending on cell context and the amplitude of the so-called 'viral mimicry' response that is engaged. 'Viral mimicry' refers to a cellular state of active antiviral response triggered by endogenous nucleic acids often derived from aberrantly transcribed endogenous retrotransposons and other repeat elements. In this paper, the literature regarding transcriptional activation of repeat elements and engagement of inflammatory signaling in normal (focusing on hematopoiesis) and cancer is reviewed with an emphasis on the role of innate immune receptor signaling, in particular by dsRNA receptors of the RIG-1 like receptor family and interferons/NFκB. How repeat element-derived RNA reprograms cell identity through RNA-guided chromatin state modulation is also discussed.
Collapse
Affiliation(s)
- Baptiste Dumetier
- Faculty of Medicine, INSERM1231, University of Burgundy, 21000 Dijon, France
- Correspondence: (B.D.); (M.B.C.)
| | - Camille Sauter
- Faculty of Medicine, INSERM1231, University of Burgundy, 21000 Dijon, France
| | - Azadeh Hajmirza
- Institute for Research in Immunology and Cancer, Montreal, QC H3C 3J7, Canada
| | - Baptiste Pernon
- Faculty of Medicine, INSERM1231, University of Burgundy, 21000 Dijon, France
| | - Romain Aucagne
- Faculty of Medicine, INSERM1231, University of Burgundy, 21000 Dijon, France
- Unit for Innovation in Genetics and Epigenetics in Oncology, Dijon University Hospital, 21000 Dijon, France
- CRIGEN, Crispr-Functional Genomics, Dijon University Hospital and University of Burgundy, 21000 Dijon, France
| | - Cyril Fournier
- Faculty of Medicine, INSERM1231, University of Burgundy, 21000 Dijon, France
- Unit for Innovation in Genetics and Epigenetics in Oncology, Dijon University Hospital, 21000 Dijon, France
| | - Céline Row
- Faculty of Medicine, INSERM1231, University of Burgundy, 21000 Dijon, France
- Unit for Innovation in Genetics and Epigenetics in Oncology, Dijon University Hospital, 21000 Dijon, France
| | - Fabien Guidez
- Faculty of Medicine, INSERM1231, University of Burgundy, 21000 Dijon, France
| | - Cédric Rossi
- School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Côme Lepage
- Faculty of Medicine, INSERM1231, University of Burgundy, 21000 Dijon, France
| | - Laurent Delva
- Faculty of Medicine, INSERM1231, University of Burgundy, 21000 Dijon, France
| | - Mary B. Callanan
- Faculty of Medicine, INSERM1231, University of Burgundy, 21000 Dijon, France
- Unit for Innovation in Genetics and Epigenetics in Oncology, Dijon University Hospital, 21000 Dijon, France
- CRIGEN, Crispr-Functional Genomics, Dijon University Hospital and University of Burgundy, 21000 Dijon, France
- Correspondence: (B.D.); (M.B.C.)
| |
Collapse
|
28
|
Combined Assay of rDNA and SatIII Copy Numbers as an Individual Profile of Stress Resistance, Longevity, Fertility and Disease Predisposition. J Pers Med 2022; 12:jpm12101752. [PMID: 36294891 PMCID: PMC9604575 DOI: 10.3390/jpm12101752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/08/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
The ribosomal DNA and pericentromeric satellite repeats are two important types of moderately repeated sequences existing in the human genome. They are functionally involved in the universal stress response. There is accumulating evidence that the copy number variation (CNV) of the repeat units is a novel factor modulating the stress response and, thus, has phenotypic manifestations. The ribosomal repeat copy number plays a role in stress resistance, lifespan, in vitro fertilization chances, disease progression and aging, while the dynamics of the satellite copy number are a sort of indicator of the current stress state. Here, we review some facts showing that a combined assay of rDNA and SatII/III abundance can provide valuable individual data ("stress profile") indicating not only the inherited adaptive reserve but also the stress duration and acute or chronic character of the stress. Thus, the repeat count could have applications in personalized medicine in the future.
Collapse
|
29
|
Romero MA, Mumford PW, Roberson PA, Osburn SC, Young KC, Sedivy JM, Roberts MD. Translational Significance of the LINE-1 Jumping Gene in Skeletal Muscle. Exerc Sport Sci Rev 2022; 50:185-193. [PMID: 35749745 PMCID: PMC9651911 DOI: 10.1249/jes.0000000000000301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Retrotransposons are gene segments that proliferate in the genome, and the Long INterspersed Element 1 (LINE-1 or L1) retrotransposon is active in humans. Although older mammals show enhanced skeletal muscle L1 expression, exercise generally reverses this trend. We hypothesize skeletal muscle L1 expression influences muscle physiology, and additional innovative investigations are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Matthew A. Romero
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California USA
| | - Petey W. Mumford
- Department of Exercise Science, Lindenwood University, St. Charles, Missouri USA
| | - Paul A. Roberson
- Department of Cellular and Molecular Physiology, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania USA
| | | | - Kaelin C. Young
- School of Kinesiology, Auburn University, Auburn, Alabama USA
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine-Auburn, Auburn, Alabama, USA
| | - John M. Sedivy
- Department of Molecular Biology, Cell Biology and Biochemistry, Center on the Biology of Aging, Brown University, Providence, Rhode Island, USA
| | - Michael D. Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama USA
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine-Auburn, Auburn, Alabama, USA
| |
Collapse
|
30
|
Porter RL, Sun S, Flores MN, Berzolla E, You E, Phillips IE, KC N, Desai N, Tai EC, Szabolcs A, Lang ER, Pankaj A, Raabe MJ, Thapar V, Xu KH, Nieman LT, Rabe DC, Kolin DL, Stover EH, Pepin D, Stott SL, Deshpande V, Liu JF, Solovyov A, Matulonis UA, Greenbaum BD, Ting DT. Satellite repeat RNA expression in epithelial ovarian cancer associates with a tumor-immunosuppressive phenotype. J Clin Invest 2022; 132:e155931. [PMID: 35708912 PMCID: PMC9374379 DOI: 10.1172/jci155931] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
Aberrant expression of viral-like repeat elements is a common feature of epithelial cancers, and the substantial diversity of repeat species provides a distinct view of the cancer transcriptome. Repeatome profiling across ovarian, pancreatic, and colorectal cell lines identifies distinct clustering independent of tissue origin that is seen with coding gene analysis. Deeper analysis of ovarian cancer cell lines demonstrated that human satellite II (HSATII) satellite repeat expression was highly associated with epithelial-mesenchymal transition (EMT) and anticorrelated with IFN-response genes indicative of a more aggressive phenotype. SATII expression - and its correlation with EMT and anticorrelation with IFN-response genes - was also found in ovarian cancer RNA-Seq data and was associated with significantly shorter survival in a second independent cohort of patients with ovarian cancer. Repeat RNAs were enriched in tumor-derived extracellular vesicles capable of stimulating monocyte-derived macrophages, demonstrating a mechanism that alters the tumor microenvironment with these viral-like sequences. Targeting of HSATII with antisense locked nucleic acids stimulated IFN response and induced MHC I expression in ovarian cancer cell lines, highlighting a potential strategy of modulating the repeatome to reestablish antitumor cell immune surveillance.
Collapse
Affiliation(s)
- Rebecca L. Porter
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Gynecologic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Siyu Sun
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Micayla N. Flores
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Emily Berzolla
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Eunae You
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Ildiko E. Phillips
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Neelima KC
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Niyati Desai
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Eric C. Tai
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Annamaria Szabolcs
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Evan R. Lang
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Amaya Pankaj
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
- Department of Surgery, Massachusetts General Hospital
| | - Michael J. Raabe
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Vishal Thapar
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Katherine H. Xu
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Linda T. Nieman
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Daniel C. Rabe
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
| | - David L. Kolin
- Department of Pathology, Brigham and Women’s Hospital, and
| | - Elizabeth H. Stover
- Division of Gynecologic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - David Pepin
- Department of Surgery, Massachusetts General Hospital
| | - Shannon L. Stott
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joyce F. Liu
- Division of Gynecologic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Alexander Solovyov
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ursula A. Matulonis
- Division of Gynecologic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Benjamin D. Greenbaum
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - David T. Ting
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
31
|
Wylie A, Jones AE, Das S, Lu WJ, Abrams JM. Distinct p53 isoforms code for opposing transcriptional outcomes. Dev Cell 2022; 57:1833-1846.e6. [PMID: 35820415 PMCID: PMC9378576 DOI: 10.1016/j.devcel.2022.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/15/2022] [Accepted: 06/15/2022] [Indexed: 12/19/2022]
Abstract
p53 genes are conserved transcriptional activators that respond to stress. These proteins can also downregulate genes, but the mechanisms are not understood and are generally assumed to be indirect. Here, we investigate synthetic and native cis-regulatory elements in Drosophila to examine opposing features of p53-mediated transcriptional control in vivo. We show that transcriptional repression by p53 operates continuously through canonical DNA binding sites that confer p53-dependent transactivation at earlier developmental stages. p53 transrepression is correlated with local H3K9me3 chromatin marks and occurs without the need for stress or Chk2. In sufficiency tests, two p53 isoforms qualify as transrepressors and a third qualifies as a transcriptional activator. Targeted isoform-specific knockouts dissociate these opposing transcriptional activities, highlighting features that are dispensable for transactivation but critical for repression and for proper germ cell formation. Together, these results demonstrate that certain p53 isoforms function as constitutive tissue-specific repressors, raising important implications for tumor suppression by the human counterpart.
Collapse
Affiliation(s)
- Annika Wylie
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Amanda E Jones
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Simanti Das
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wan-Jin Lu
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
32
|
Ugarković Đ, Sermek A, Ljubić S, Feliciello I. Satellite DNAs in Health and Disease. Genes (Basel) 2022; 13:genes13071154. [PMID: 35885937 PMCID: PMC9324158 DOI: 10.3390/genes13071154] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 12/10/2022] Open
Abstract
Tandemly repeated satellite DNAs are major components of centromeres and pericentromeric heterochromatin which are crucial chromosomal elements responsible for accurate chromosome segregation. Satellite DNAs also contribute to genome evolution and the speciation process and are important for the maintenance of the entire genome inside the nucleus. In addition, there is increasing evidence for active and tightly regulated transcription of satellite DNAs and for the role of their transcripts in diverse processes. In this review, we focus on recent discoveries related to the regulation of satellite DNA expression and the role of their transcripts, either in heterochromatin establishment and centromere function or in gene expression regulation under various biological contexts. We discuss the role of satellite transcripts in the stress response and environmental adaptation as well as consequences of the dysregulation of satellite DNA expression in cancer and their potential use as cancer biomarkers.
Collapse
Affiliation(s)
- Đurđica Ugarković
- Department of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (A.S.); (S.L.)
- Correspondence: (Đ.U.); (I.F.); Tel.: +385-1-4561-083 (D.U.); +39-081-746-4317 (I.F.)
| | - Antonio Sermek
- Department of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (A.S.); (S.L.)
| | - Sven Ljubić
- Department of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (A.S.); (S.L.)
| | - Isidoro Feliciello
- Department of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (A.S.); (S.L.)
- Department of Clinical Medicine and Surgery, School of Medicine, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
- Correspondence: (Đ.U.); (I.F.); Tel.: +385-1-4561-083 (D.U.); +39-081-746-4317 (I.F.)
| |
Collapse
|
33
|
Rajurkar M, Parikh AR, Solovyov A, You E, Kulkarni AS, Chu C, Xu KH, Jaicks C, Taylor MS, Wu C, Alexander KA, Good CR, Szabolcs A, Gerstberger S, Tran AV, Xu N, Ebright RY, Van Seventer EE, Vo KD, Tai EC, Lu C, Joseph-Chazan J, Raabe MJ, Nieman LT, Desai N, Arora KS, Ligorio M, Thapar V, Cohen L, Garden PM, Senussi Y, Zheng H, Allen JN, Blaszkowsky LS, Clark JW, Goyal L, Wo JY, Ryan DP, Corcoran RB, Deshpande V, Rivera MN, Aryee MJ, Hong TS, Berger SL, Walt DR, Burns KH, Park PJ, Greenbaum BD, Ting DT. Reverse Transcriptase Inhibition Disrupts Repeat Element Life Cycle in Colorectal Cancer. Cancer Discov 2022; 12:1462-1481. [PMID: 35320348 PMCID: PMC9167735 DOI: 10.1158/2159-8290.cd-21-1117] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/27/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022]
Abstract
Altered RNA expression of repetitive sequences and retrotransposition are frequently seen in colorectal cancer, implicating a functional importance of repeat activity in cancer progression. We show the nucleoside reverse transcriptase inhibitor 3TC targets activities of these repeat elements in colorectal cancer preclinical models with a preferential effect in p53-mutant cell lines linked with direct binding of p53 to repeat elements. We translate these findings to a human phase II trial of single-agent 3TC treatment in metastatic colorectal cancer with demonstration of clinical benefit in 9 of 32 patients. Analysis of 3TC effects on colorectal cancer tumorspheres demonstrates accumulation of immunogenic RNA:DNA hybrids linked with induction of interferon response genes and DNA damage response. Epigenetic and DNA-damaging agents induce repeat RNAs and have enhanced cytotoxicity with 3TC. These findings identify a vulnerability in colorectal cancer by targeting the viral mimicry of repeat elements. SIGNIFICANCE Colorectal cancers express abundant repeat elements that have a viral-like life cycle that can be therapeutically targeted with nucleoside reverse transcriptase inhibitors (NRTI) commonly used for viral diseases. NRTIs induce DNA damage and interferon response that provide a new anticancer therapeutic strategy. This article is highlighted in the In This Issue feature, p. 1397.
Collapse
Affiliation(s)
- Mihir Rajurkar
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | - Aparna R. Parikh
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Alexander Solovyov
- Computational Oncology, Department of Epidemiology and Biostatistics; Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eunae You
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | | | - Chong Chu
- Department of Biomedical Informatics, Harvard Medical School; Boston, MA, USA
| | - Katherine H. Xu
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | - Christopher Jaicks
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | - Martin S. Taylor
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Connie Wu
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School; Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard Medical School; Boston, MA, USA
| | - Katherine A. Alexander
- Epigenetics Institute, Departments of Cell and Developmental Biology, Genetics, and Biology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Charly R. Good
- Epigenetics Institute, Departments of Cell and Developmental Biology, Genetics, and Biology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Annamaria Szabolcs
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | - Stefanie Gerstberger
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Antuan V. Tran
- Department of Biomedical Informatics, Harvard Medical School; Boston, MA, USA
| | - Nova Xu
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | - Richard Y. Ebright
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | | | - Kevin D. Vo
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | - Eric C. Tai
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | - Chenyue Lu
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | | | - Michael J. Raabe
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | - Linda T. Nieman
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | - Niyati Desai
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | - Kshitij S. Arora
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Matteo Ligorio
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Vishal Thapar
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | - Limor Cohen
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School; Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard Medical School; Boston, MA, USA
| | - Padric M. Garden
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School; Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard Medical School; Boston, MA, USA
| | - Yasmeen Senussi
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School; Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard Medical School; Boston, MA, USA
| | - Hui Zheng
- Biostatistics Center, Massachusetts General Hospital, Boston, MA, USA
| | - Jill N. Allen
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Lawrence S. Blaszkowsky
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Jeffrey W. Clark
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Lipika Goyal
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Jennifer Y. Wo
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - David P. Ryan
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Ryan B. Corcoran
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Vikram Deshpande
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Miguel N. Rivera
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Martin J. Aryee
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Theodore S. Hong
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Shelley L. Berger
- Epigenetics Institute, Departments of Cell and Developmental Biology, Genetics, and Biology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - David R. Walt
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School; Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard Medical School; Boston, MA, USA
| | - Kathleen H. Burns
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School; Boston, MA, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School; Boston, MA, USA
| | - Peter J. Park
- Department of Biomedical Informatics, Harvard Medical School; Boston, MA, USA
| | - Benjamin D. Greenbaum
- Computational Oncology, Department of Epidemiology and Biostatistics; Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Physiology, Biophysics & Systems Biology, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | - David T. Ting
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| |
Collapse
|
34
|
Hubley R, Wheeler TJ, Smit AFA. Accuracy of multiple sequence alignment methods in the reconstruction of transposable element families. NAR Genom Bioinform 2022; 4:lqac040. [PMID: 35591887 PMCID: PMC9112768 DOI: 10.1093/nargab/lqac040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 03/29/2022] [Accepted: 04/29/2022] [Indexed: 02/06/2023] Open
Abstract
The construction of a high-quality multiple sequence alignment (MSA) from copies of a transposable element (TE) is a critical step in the characterization of a new TE family. Most studies of MSA accuracy have been conducted on protein or RNA sequence families, where structural features and strong signals of selection may assist with alignment. Less attention has been given to the quality of sequence alignments involving neutrally evolving DNA sequences such as those resulting from TE replication. Transposable element sequences are challenging to align due to their wide divergence ranges, fragmentation, and predominantly-neutral mutation patterns. To gain insight into the effects of these properties on MSA accuracy, we developed a simulator of TE sequence evolution, and used it to generate a benchmark with which we evaluated the MSA predictions produced by several popular aligners, along with Refiner, a method we developed in the context of our RepeatModeler software. We find that MAFFT and Refiner generally outperform other aligners for low to medium divergence simulated sequences, while Refiner is uniquely effective when tasked with aligning high-divergent and fragmented instances of a family.
Collapse
Affiliation(s)
- Robert Hubley
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Travis J Wheeler
- Department of Computer Science, University of Montana, Missoula, MT 59801, USA
| | | |
Collapse
|
35
|
Hoyos D, Zappasodi R, Schulze I, Sethna Z, de Andrade KC, Bajorin DF, Bandlamudi C, Callahan MK, Funt SA, Hadrup SR, Holm JS, Rosenberg JE, Shah SP, Vázquez-García I, Weigelt B, Wu M, Zamarin D, Campitelli LF, Osborne EJ, Klinger M, Robins HS, Khincha PP, Savage SA, Balachandran VP, Wolchok JD, Hellmann MD, Merghoub T, Levine AJ, Łuksza M, Greenbaum BD. Fundamental immune-oncogenicity trade-offs define driver mutation fitness. Nature 2022; 606:172-179. [PMID: 35545680 PMCID: PMC9159948 DOI: 10.1038/s41586-022-04696-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/28/2022] [Indexed: 12/29/2022]
Abstract
Missense driver mutations in cancer are concentrated in a few hotspots1. Various mechanisms have been proposed to explain this skew, including biased mutational processes2, phenotypic differences3-6 and immunoediting of neoantigens7,8; however, to our knowledge, no existing model weighs the relative contribution of these features to tumour evolution. We propose a unified theoretical 'free fitness' framework that parsimoniously integrates multimodal genomic, epigenetic, transcriptomic and proteomic data into a biophysical model of the rate-limiting processes underlying the fitness advantage conferred on cancer cells by driver gene mutations. Focusing on TP53, the most mutated gene in cancer1, we present an inference of mutant p53 concentration and demonstrate that TP53 hotspot mutations optimally solve an evolutionary trade-off between oncogenic potential and neoantigen immunogenicity. Our model anticipates patient survival in The Cancer Genome Atlas and patients with lung cancer treated with immunotherapy as well as the age of tumour onset in germline carriers of TP53 variants. The predicted differential immunogenicity between hotspot mutations was validated experimentally in patients with cancer and in a unique large dataset of healthy individuals. Our data indicate that immune selective pressure on TP53 mutations has a smaller role in non-cancerous lesions than in tumours, suggesting that targeted immunotherapy may offer an early prophylactic opportunity for the former. Determining the relative contribution of immunogenicity and oncogenic function to the selective advantage of hotspot mutations thus has important implications for both precision immunotherapies and our understanding of tumour evolution.
Collapse
Affiliation(s)
- David Hoyos
- Computational Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Roberta Zappasodi
- Swim Across America Laboratory and Ludwig Collaborative, Immunology Program, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| | - Isabell Schulze
- Swim Across America Laboratory and Ludwig Collaborative, Immunology Program, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zachary Sethna
- Computational Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kelvin César de Andrade
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Dean F Bajorin
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chaitanya Bandlamudi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Margaret K Callahan
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samuel A Funt
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sine R Hadrup
- Experimental and Translational Immunology, Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Jeppe S Holm
- Experimental and Translational Immunology, Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Jonathan E Rosenberg
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sohrab P Shah
- Computational Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Physiology, Biophysics & Systems Biology, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Ignacio Vázquez-García
- Computational Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Britta Weigelt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michelle Wu
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dmitriy Zamarin
- Swim Across America Laboratory and Ludwig Collaborative, Immunology Program, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | | | | - Payal P Khincha
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Sharon A Savage
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Vinod P Balachandran
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jedd D Wolchok
- Swim Across America Laboratory and Ludwig Collaborative, Immunology Program, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew D Hellmann
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Taha Merghoub
- Swim Across America Laboratory and Ludwig Collaborative, Immunology Program, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Arnold J Levine
- Simons Center for Systems Biology, Institute for Advanced Study, Princeton, NJ, USA
| | - Marta Łuksza
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin D Greenbaum
- Computational Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Physiology, Biophysics & Systems Biology, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
36
|
Chesnokova E, Beletskiy A, Kolosov P. The Role of Transposable Elements of the Human Genome in Neuronal Function and Pathology. Int J Mol Sci 2022; 23:5847. [PMID: 35628657 PMCID: PMC9148063 DOI: 10.3390/ijms23105847] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/13/2022] Open
Abstract
Transposable elements (TEs) have been extensively studied for decades. In recent years, the introduction of whole-genome and whole-transcriptome approaches, as well as single-cell resolution techniques, provided a breakthrough that uncovered TE involvement in host gene expression regulation underlying multiple normal and pathological processes. Of particular interest is increased TE activity in neuronal tissue, and specifically in the hippocampus, that was repeatedly demonstrated in multiple experiments. On the other hand, numerous neuropathologies are associated with TE dysregulation. Here, we provide a comprehensive review of literature about the role of TEs in neurons published over the last three decades. The first chapter of the present review describes known mechanisms of TE interaction with host genomes in general, with the focus on mammalian and human TEs; the second chapter provides examples of TE exaptation in normal neuronal tissue, including TE involvement in neuronal differentiation and plasticity; and the last chapter lists TE-related neuropathologies. We sought to provide specific molecular mechanisms of TE involvement in neuron-specific processes whenever possible; however, in many cases, only phenomenological reports were available. This underscores the importance of further studies in this area.
Collapse
Affiliation(s)
- Ekaterina Chesnokova
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, 117485 Moscow, Russia; (A.B.); (P.K.)
| | | | | |
Collapse
|
37
|
Colonna Romano N, Fanti L. Transposable Elements: Major Players in Shaping Genomic and Evolutionary Patterns. Cells 2022; 11:cells11061048. [PMID: 35326499 PMCID: PMC8947103 DOI: 10.3390/cells11061048] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/04/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Transposable elements (TEs) are ubiquitous genetic elements, able to jump from one location of the genome to another, in all organisms. For this reason, on the one hand, TEs can induce deleterious mutations, causing dysfunction, disease and even lethality in individuals. On the other hand, TEs can increase genetic variability, making populations better equipped to respond adaptively to environmental change. To counteract the deleterious effects of TEs, organisms have evolved strategies to avoid their activation. However, their mobilization does occur. Usually, TEs are maintained silent through several mechanisms, but they can be reactivated during certain developmental windows. Moreover, TEs can become de-repressed because of drastic changes in the external environment. Here, we describe the ‘double life’ of TEs, being both ‘parasites’ and ‘symbionts’ of the genome. We also argue that the transposition of TEs contributes to two important evolutionary processes: the temporal dynamic of evolution and the induction of genetic variability. Finally, we discuss how the interplay between two TE-dependent phenomena, insertional mutagenesis and epigenetic plasticity, plays a role in the process of evolution.
Collapse
|
38
|
Grundy EE, Diab N, Chiappinelli KB. Transposable element regulation and expression in cancer. FEBS J 2022; 289:1160-1179. [PMID: 33471418 PMCID: PMC11577309 DOI: 10.1111/febs.15722] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/08/2021] [Accepted: 01/14/2021] [Indexed: 12/11/2022]
Abstract
Approximately 45% of the human genome is composed of transposable elements (TEs). Expression of these elements is tightly regulated during normal development. TEs may be expressed at high levels in embryonic stem cells but are epigenetically silenced in terminally differentiated cells. As part of the global 'epigenetic dysregulation' that cells undergo during transformation from normal to cancer, TEs can lose epigenetic silencing and become transcribed, and, in some cases, active. Here, we summarize recent advances detailing the consequences of TE activation in cancer and describe how these understudied residents of our genome can both aid tumorigenesis and potentially be harnessed for anticancer therapies.
Collapse
Affiliation(s)
- Erin E Grundy
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
- The GW Cancer Center, The George Washington University, Washington, DC, USA
- The Institute for Biomedical Sciences at The George Washington University, Washington, DC, USA
| | - Noor Diab
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
- The GW Cancer Center, The George Washington University, Washington, DC, USA
| | - Katherine B Chiappinelli
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
- The GW Cancer Center, The George Washington University, Washington, DC, USA
| |
Collapse
|
39
|
Canale M, Andrikou K, Priano I, Cravero P, Pasini L, Urbini M, Delmonte A, Crinò L, Bronte G, Ulivi P. The Role of TP53 Mutations in EGFR-Mutated Non-Small-Cell Lung Cancer: Clinical Significance and Implications for Therapy. Cancers (Basel) 2022; 14:cancers14051143. [PMID: 35267450 PMCID: PMC8909869 DOI: 10.3390/cancers14051143] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/29/2022] [Accepted: 02/16/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Non-Small-Cell Lung Cancer (NSCLC) is the primary cause of cancer-related death worldwide. Patients carrying Epidermal Growth Factor Receptor (EGFR) mutations usually benefit from targeted therapy treatment. Nonetheless, primary or acquired resistance mechanisms lead to treatment discontinuation and disease progression. Tumor protein 53 (TP53) mutations are the most common mutations in NSCLC, and several reports highlighted a role for these mutations in influencing prognosis and responsiveness to EGFR targeted therapy. In this review, we discuss the emerging data about the role of TP53 in predicting EGFR mutated NSCLC patients’ prognosis and responsiveness to targeted therapy. Abstract Non-Small-Cell Lung Cancer (NSCLC) is the primary cause of cancer-related death worldwide. Oncogene-addicted patients usually benefit from targeted therapy, but primary and acquired resistance mechanisms inevitably occur. Tumor protein 53 (TP53) gene is the most frequently mutated gene in cancer, including NSCLC. TP53 mutations are able to induce carcinogenesis, tumor development and resistance to therapy, influencing patient prognosis and responsiveness to therapy. TP53 mutants present in different forms, suggesting that different gene alterations confer specific acquired protein functions. In recent years, many associations between different TP53 mutations and responses to Epidermal Growth Factor Receptor (EGFR) targeted therapy in NSCLC patients have been found. In this review, we discuss the current landscape concerning the role of TP53 mutants to guide primary and acquired resistance to Tyrosine-Kinase Inhibitors (TKIs) EGFR-directed, investigating the possible mechanisms of TP53 mutants within the cellular compartments. We also discuss the role of the TP53 mutations in predicting the response to targeted therapy with EGFR-TKIs, as a possible biomarker to guide patient stratification for treatment.
Collapse
Affiliation(s)
- Matteo Canale
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (M.U.); (P.U.)
| | - Kalliopi Andrikou
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (K.A.); (I.P.); (A.D.); (L.C.); (G.B.)
| | - Ilaria Priano
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (K.A.); (I.P.); (A.D.); (L.C.); (G.B.)
| | - Paola Cravero
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (K.A.); (I.P.); (A.D.); (L.C.); (G.B.)
- Correspondence: (P.C.); (L.P.)
| | - Luigi Pasini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (M.U.); (P.U.)
- Correspondence: (P.C.); (L.P.)
| | - Milena Urbini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (M.U.); (P.U.)
| | - Angelo Delmonte
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (K.A.); (I.P.); (A.D.); (L.C.); (G.B.)
| | - Lucio Crinò
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (K.A.); (I.P.); (A.D.); (L.C.); (G.B.)
| | - Giuseppe Bronte
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (K.A.); (I.P.); (A.D.); (L.C.); (G.B.)
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (M.U.); (P.U.)
| |
Collapse
|
40
|
McKerrow W, Wang X, Mendez-Dorantes C, Mita P, Cao S, Grivainis M, Ding L, LaCava J, Burns KH, Boeke JD, Fenyö D. LINE-1 expression in cancer correlates with p53 mutation, copy number alteration, and S phase checkpoint. Proc Natl Acad Sci U S A 2022; 119:e2115999119. [PMID: 35169076 PMCID: PMC8872788 DOI: 10.1073/pnas.2115999119] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/14/2022] [Indexed: 12/12/2022] Open
Abstract
Retrotransposons are genomic DNA sequences that copy themselves to new genomic locations via RNA intermediates; LINE-1 is the only active and autonomous retrotransposon in the human genome. The mobility of LINE-1 is largely repressed in somatic tissues but is derepressed in many cancers, where LINE-1 retrotransposition is correlated with p53 mutation and copy number alteration (CNA). In cell lines, inducing LINE-1 expression can cause double-strand breaks (DSBs) and replication stress. Reanalyzing multiomic data from breast, ovarian, endometrial, and colon cancers, we confirmed correlations between LINE-1 expression, p53 mutation status, and CNA. We observed a consistent correlation between LINE-1 expression and the abundance of DNA replication complex components, indicating that LINE-1 may also induce replication stress in human tumors. In endometrial cancer, high-quality phosphoproteomic data allowed us to identify the DSB-induced ATM-MRN-SMC S phase checkpoint pathway as the primary DNA damage response (DDR) pathway associated with LINE-1 expression. Induction of LINE-1 expression in an in vitro model led to increased phosphorylation of MRN complex member RAD50, suggesting that LINE-1 directly activates this pathway.
Collapse
Affiliation(s)
- Wilson McKerrow
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY 10016
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016
| | - Xuya Wang
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY 10016
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016
| | - Carlos Mendez-Dorantes
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Paolo Mita
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY 10016
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016
| | - Song Cao
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108
| | - Mark Grivainis
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY 10016
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016
| | - Li Ding
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108
| | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Kathleen H Burns
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Jef D Boeke
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY 10016;
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016
- Department of Biomedical Engineering, Tandon School of Engineering, Brooklyn, NY11201
| | - David Fenyö
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY 10016;
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016
| |
Collapse
|
41
|
Alpha Satellite RNA Levels Are Upregulated in the Blood of Patients with Metastatic Castration-Resistant Prostate Cancer. Genes (Basel) 2022; 13:genes13020383. [PMID: 35205427 PMCID: PMC8871578 DOI: 10.3390/genes13020383] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 01/25/2023] Open
Abstract
The aberrant overexpression of alpha satellite DNA is characteristic of many human cancers including prostate cancer; however, it is not known whether the change in the alpha satellite RNA amount occurs in the peripheral tissues of cancer patients, such as blood. Here, we analyse the level of intracellular alpha satellite RNA in the whole blood of cancer prostate patients at different stages of disease and compare it with the levels found in healthy controls. Our results reveal a significantly increased level of intracellular alpha satellite RNA in the blood of metastatic cancers patients, particularly those with metastatic castration-resistant prostate cancer relative to controls. In the blood of patients with localised tumour, no significant change relative to the controls was detected. Our results show a link between prostate cancer pathogenesis and blood intracellular alpha satellite RNA levels. We discuss the possible mechanism which could lead to the increased level of blood intracellular alpha satellite RNA at a specific metastatic stage of prostate cancer. Additionally, we analyse the clinically accepted prostate cancer biomarker PSA in all samples and discuss the possibility that alpha satellite RNA can serve as a novel prostate cancer diagnostic blood biomarker.
Collapse
|
42
|
Freeman B, White T, Kaul T, Stow EC, Baddoo M, Ungerleider N, Morales M, Yang H, Deharo D, Deininger P, Belancio V. Analysis of epigenetic features characteristic of L1 loci expressed in human cells. Nucleic Acids Res 2022; 50:1888-1907. [PMID: 35100410 PMCID: PMC8887483 DOI: 10.1093/nar/gkac013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/27/2021] [Accepted: 01/24/2022] [Indexed: 12/26/2022] Open
Abstract
Only a select few L1 loci in the human genome are expressed in any given cell line or organ, likely to minimize damage done to the genome. The epigenetic features and requirements of expressed L1 loci are currently unknown. Using human cells and comprehensive epigenetic analysis of individual expressed and unexpressed L1 loci, we determined that endogenous L1 transcription depends on a combination of epigenetic factors, including open chromatin, activating histone modifications, and hypomethylation at the L1 promoter. We demonstrate that the L1 promoter seems to require interaction with enhancer elements for optimal function. We utilize epigenetic context to predict the expression status of L1Hs loci that are poorly mappable with RNA-Seq. Our analysis identified a population of ‘transitional’ L1 loci that likely have greater potential to be activated during the epigenetic dysregulation seen in tumors and during aging because they are the most responsive to targeted CRISPR-mediated delivery of trans-activating domains. We demonstrate that an engineered increase in endogenous L1 mRNA expression increases Alu mobilization. Overall, our findings present the first global and comprehensive analysis of epigenetic status of individual L1 loci based on their expression status and demonstrate the importance of epigenetic context for L1 expression heterogeneity.
Collapse
Affiliation(s)
- Benjamin Freeman
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Travis White
- Sloan Kettering Institute for Cancer Research, NY, NY 10065, USA
| | - Tiffany Kaul
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Emily C Stow
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Melody Baddoo
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Nathan Ungerleider
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Maria Morales
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Hanlin Yang
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Dawn Deharo
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Prescott Deininger
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
- Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Victoria P Belancio
- To whom correspondence should be addressed. Tel: +1 504 988 4506; Fax: +1 504 988 1687;
| |
Collapse
|
43
|
Chakravarti A, Thirimanne HN, Brown S, Calvi BR. Drosophila p53 isoforms have overlapping and distinct functions in germline genome integrity and oocyte quality control. eLife 2022; 11:61389. [PMID: 35023826 PMCID: PMC8758136 DOI: 10.7554/elife.61389] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
p53 gene family members in humans and other organisms encode a large number of protein isoforms whose functions are largely undefined. Using Drosophila as a model, we find that a p53B isoform is expressed predominantly in the germline where it colocalizes with p53A into subnuclear bodies. It is only p53A, however, that mediates the apoptotic response to ionizing radiation in the germline and soma. In contrast, p53A and p53B are both required for the normal repair of meiotic DNA breaks, an activity that is more crucial when meiotic recombination is defective. We find that in oocytes with persistent DNA breaks p53A is also required to activate a meiotic pachytene checkpoint. Our findings indicate that Drosophila p53 isoforms have DNA lesion and cell type-specific functions, with parallels to the functions of mammalian p53 family members in the genotoxic stress response and oocyte quality control.
Collapse
Affiliation(s)
| | | | - Savanna Brown
- Department of Biology, Indiana University, Bloomington, United States
| | - Brian R Calvi
- Department of Biology, Indiana University, Bloomington, United States
| |
Collapse
|
44
|
Mehta S, Campbell H, Drummond CJ, Li K, Murray K, Slatter T, Bourdon JC, Braithwaite AW. Adaptive homeostasis and the p53 isoform network. EMBO Rep 2021; 22:e53085. [PMID: 34779563 PMCID: PMC8647153 DOI: 10.15252/embr.202153085] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 10/12/2021] [Accepted: 10/28/2021] [Indexed: 12/25/2022] Open
Abstract
All living organisms have developed processes to sense and address environmental changes to maintain a stable internal state (homeostasis). When activated, the p53 tumour suppressor maintains cell and organ integrity and functions in response to homeostasis disruptors (stresses) such as infection, metabolic alterations and cellular damage. Thus, p53 plays a fundamental physiological role in maintaining organismal homeostasis. The TP53 gene encodes a network of proteins (p53 isoforms) with similar and distinct biochemical functions. The p53 network carries out multiple biological activities enabling cooperation between individual cells required for long‐term survival of multicellular organisms (animals) in response to an ever‐changing environment caused by mutation, infection, metabolic alteration or damage. In this review, we suggest that the p53 network has evolved as an adaptive response to pathogen infections and other environmental selection pressures.
Collapse
Affiliation(s)
- Sunali Mehta
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Hamish Campbell
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand
| | - Catherine J Drummond
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Kunyu Li
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand
| | - Kaisha Murray
- Dundee Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Tania Slatter
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Jean-Christophe Bourdon
- Dundee Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Antony W Braithwaite
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| |
Collapse
|
45
|
Zhou X, Singh M, Sanz Santos G, Guerlavais V, Carvajal LA, Aivado M, Zhan Y, Oliveira MM, Westerberg LS, Annis DA, Johnsen JI, Selivanova G. Pharmacologic Activation of p53 Triggers Viral Mimicry Response Thereby Abolishing Tumor Immune Evasion and Promoting Antitumor Immunity. Cancer Discov 2021; 11:3090-3105. [PMID: 34230007 PMCID: PMC9414294 DOI: 10.1158/2159-8290.cd-20-1741] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/04/2021] [Accepted: 06/09/2021] [Indexed: 01/07/2023]
Abstract
The repression of repetitive elements is an important facet of p53's function as a guardian of the genome. Paradoxically, we found that p53 activated by MDM2 inhibitors induced the expression of endogenous retroviruses (ERV) via increased occupancy on ERV promoters and inhibition of two major ERV repressors, histone demethylase LSD1 and DNA methyltransferase DNMT1. Double-stranded RNA stress caused by ERVs triggered type I/III interferon expression and antigen processing and presentation. Pharmacologic activation of p53 in vivo unleashed the IFN program, promoted T-cell infiltration, and significantly enhanced the efficacy of checkpoint therapy in an allograft tumor model. Furthermore, the MDM2 inhibitor ALRN-6924 induced a viral mimicry pathway and tumor inflammation signature genes in patients with melanoma. Our results identify ERV expression as the central mechanism whereby p53 induction overcomes tumor immune evasion and transforms tumor microenvironment to a favorable phenotype, providing a rationale for the synergy of MDM2 inhibitors and immunotherapy. SIGNIFICANCE We found that p53 activated by MDM2 inhibitors induced the expression of ERVs, in part via epigenetic factors LSD1 and DNMT1. Induction of IFN response caused by ERV derepression upon p53-targeting therapies provides a possibility to overcome resistance to immune checkpoint blockade and potentially transform "cold" tumors into "hot." This article is highlighted in the In This Issue feature, p. 2945.
Collapse
Affiliation(s)
- Xiaolei Zhou
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Madhurendra Singh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Gema Sanz Santos
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Manuel Aivado
- Aileron Therapeutics, Inc., Watertown, Massachusetts
| | - Yue Zhan
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mariana M.S. Oliveira
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Lisa S. Westerberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - John Inge Johnsen
- Department of Women's and Children's Health, Childhood Cancer Research Unit, Karolinska Institutet, Stockholm, Sweden
| | - Galina Selivanova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Corresponding Author: Galina Selivanova, Department of Microbiology, Tumor and Cell Biology, Biomedicum C8, Karolinska Institutet, Stockholm 171 65, Sweden. Phone: 46-8-52486302; E-mail:
| |
Collapse
|
46
|
Zhao Y, Seluanov A, Gorbunova V. Revelations About Aging and Disease from Unconventional Vertebrate Model Organisms. Annu Rev Genet 2021; 55:135-159. [PMID: 34416119 PMCID: PMC8903061 DOI: 10.1146/annurev-genet-071719-021009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Aging is a major risk factor for multiple diseases. Understanding the underlying mechanisms of aging would help to delay and prevent age-associated diseases. Short-lived model organisms have been extensively used to study the mechanisms of aging. However, these short-lived species may be missing the longevity mechanisms that are needed to extend the lifespan of an already long-lived species such as humans. Unconventional long-lived animal species are an excellent resource to uncover novel mechanisms of longevity and disease resistance. Here, we review mechanisms that evolved in nonmodel vertebrate species to counteract age-associated diseases. Some antiaging mechanisms are conserved across species; however, various nonmodel species also evolved unique mechanisms to delay aging and prevent disease. This variety of antiaging mechanisms has evolved due to the remarkably diverse habitats and behaviors of these species. We propose that exploring a wider range of unconventional vertebrates will provide important resources to study antiaging mechanisms that are potentially applicable to humans.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Biology, University of Rochester, Rochester, New York 14627, USA; ,
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, New York 14627, USA; ,
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, New York 14627, USA; ,
| |
Collapse
|
47
|
McDonald JI, Diab N, Arthofer E, Hadley M, Kanholm T, Rentia U, Gomez S, Yu A, Grundy EE, Cox O, Topper MJ, Xing X, Strissel PL, Strick R, Wang T, Baylin SB, Chiappinelli KB. Epigenetic Therapies in Ovarian Cancer Alter Repetitive Element Expression in a TP53-Dependent Manner. Cancer Res 2021; 81:5176-5189. [PMID: 34433584 PMCID: PMC8530980 DOI: 10.1158/0008-5472.can-20-4243] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 06/15/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022]
Abstract
Epithelial ovarian carcinomas are particularly deadly due to intratumoral heterogeneity, resistance to standard-of-care therapies, and poor response to alternative treatments such as immunotherapy. Targeting the ovarian carcinoma epigenome with DNA methyltransferase inhibitors (DNMTi) or histone deacetylase inhibitors (HDACi) increases immune signaling and recruits CD8+ T cells and natural killer cells to fight ovarian carcinoma in murine models. This increased immune activity is caused by increased transcription of repetitive elements (RE) that form double-stranded RNA (dsRNA) and trigger an IFN response. To understand which REs are affected by epigenetic therapies in ovarian carcinoma, we assessed the effect of DNMTi and HDACi on ovarian carcinoma cell lines and patient samples. Subfamily-level (TEtranscripts) and individual locus-level (Telescope) analysis of REs showed that DNMTi treatment upregulated more REs than HDACi treatment. Upregulated REs were predominantly LTR and SINE subfamilies, and SINEs exhibited the greatest loss of DNA methylation upon DNMTi treatment. Cell lines with TP53 mutations exhibited significantly fewer upregulated REs with epigenetic therapy than wild-type TP53 cell lines. This observation was validated using isogenic cell lines; the TP53-mutant cell line had significantly higher baseline expression of REs but upregulated fewer upon epigenetic treatment. In addition, p53 activation increased expression of REs in wild-type but not mutant cell lines. These data give a comprehensive, genome-wide picture of RE chromatin and transcription-related changes in ovarian carcinoma after epigenetic treatment and implicate p53 in RE transcriptional regulation. SIGNIFICANCE: This study identifies the repetitive element targets of epigenetic therapies in ovarian carcinoma and indicates a role for p53 in this process.
Collapse
Affiliation(s)
- James I McDonald
- The George Washington University Cancer Center (GWCC), Washington, D.C
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC
| | - Noor Diab
- The George Washington University Cancer Center (GWCC), Washington, D.C
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC
| | - Elisa Arthofer
- The George Washington University Cancer Center (GWCC), Washington, D.C
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC
| | - Melissa Hadley
- The George Washington University Cancer Center (GWCC), Washington, D.C
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC
| | - Tomas Kanholm
- The George Washington University Cancer Center (GWCC), Washington, D.C
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC
- The Institute for Biomedical Sciences at the George Washington University, Washington, DC
| | - Uzma Rentia
- The George Washington University Cancer Center (GWCC), Washington, D.C
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC
| | - Stephanie Gomez
- The George Washington University Cancer Center (GWCC), Washington, D.C
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC
- The Institute for Biomedical Sciences at the George Washington University, Washington, DC
| | - Angela Yu
- The George Washington University Cancer Center (GWCC), Washington, D.C
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC
| | - Erin E Grundy
- The George Washington University Cancer Center (GWCC), Washington, D.C
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC
- The Institute for Biomedical Sciences at the George Washington University, Washington, DC
| | - Olivia Cox
- The George Washington University Cancer Center (GWCC), Washington, D.C
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC
| | - Michael J Topper
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Xiaoyun Xing
- The Edison Family Center for Genome Sciences and Systems Biology, Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Pamela L Strissel
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Reiner Strick
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ting Wang
- The Edison Family Center for Genome Sciences and Systems Biology, Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Stephen B Baylin
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Katherine B Chiappinelli
- The George Washington University Cancer Center (GWCC), Washington, D.C.
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC
| |
Collapse
|
48
|
Factors Regulating the Activity of LINE1 Retrotransposons. Genes (Basel) 2021; 12:genes12101562. [PMID: 34680956 PMCID: PMC8535693 DOI: 10.3390/genes12101562] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
LINE-1 (L1) is a class of autonomous mobile genetic elements that form somatic mosaicisms in various tissues of the organism. The activity of L1 retrotransposons is strictly controlled by many factors in somatic and germ cells at all stages of ontogenesis. Alteration of L1 activity was noted in a number of diseases: in neuropsychiatric and autoimmune diseases, as well as in various forms of cancer. Altered activity of L1 retrotransposons for some pathologies is associated with epigenetic changes and defects in the genes involved in their repression. This review discusses the molecular genetic mechanisms of the retrotransposition and regulation of the activity of L1 elements. The contribution of various factors controlling the expression and distribution of L1 elements in the genome occurs at all stages of the retrotransposition. The regulation of L1 elements at the transcriptional, post-transcriptional and integration into the genome stages is described in detail. Finally, this review also focuses on the evolutionary aspects of L1 accumulation and their interplay with the host regulation system.
Collapse
|
49
|
p53-Dependent Repression: DREAM or Reality? Cancers (Basel) 2021; 13:cancers13194850. [PMID: 34638334 PMCID: PMC8508069 DOI: 10.3390/cancers13194850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary The tumor suppressor p53 is a complex cell signaling hub encompassing multiple transcription programs and governs a vast repertoire of biological responses. However, despite several decades of research, how p53 selects one program over another is still elusive. Recent attempts have used meta-analyses of p53 ChIP-seq data to determine the core p53 transcriptional program, conserved across different models and stimuli. This review highlights the complexity of the multiple layers of p53 regulation and the context specificity of p53 target genes. More specifically, we discuss the controversy over the mechanisms of p53-dependent transcriptional repression and its potential role in the flexibility of p53 response. Abstract p53 is a major tumor suppressor that integrates diverse types of signaling in mammalian cells. In response to a broad range of intra- or extra-cellular stimuli, p53 controls the expression of multiple target genes and elicits a vast repertoire of biological responses. The exact code by which p53 integrates the various stresses and translates them into an appropriate transcriptional response is still obscure. p53 is tightly regulated at multiple levels, leading to a wide diversity in p53 complexes on its target promoters and providing adaptability to its transcriptional program. As p53-targeted therapies are making their way into clinics, we need to understand how to direct p53 towards the desired outcome (i.e., cell death, senescence or other) selectively in cancer cells without affecting normal tissues or the immune system. While the core p53 transcriptional program has been proposed, the mechanisms conferring a cell type- and stimuli-dependent transcriptional outcome by p53 require further investigations. The mechanism by which p53 localizes to repressed promoters and manages its co-repressor interactions is controversial and remains an important gap in our understanding of the p53 cistrome. We hope that our review of the recent literature will help to stimulate the appreciation and investigation of largely unexplored p53-mediated repression.
Collapse
|
50
|
Transposon-triggered innate immune response confers cancer resistance to the blind mole rat. Nat Immunol 2021; 22:1219-1230. [PMID: 34556881 PMCID: PMC8488014 DOI: 10.1038/s41590-021-01027-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/11/2021] [Indexed: 02/05/2023]
Abstract
Blind mole rats (BMRs) are small rodents, characterized by exceptionally long lifespan (> 21 years) and resistance to both spontaneous and induced tumorigenesis. Here we report that cancer resistance in the BMR is mediated by retrotransposable elements (RTEs). BMR cells and tissues express very low levels of DNA methyltransferase 1 (DNMT1). Upon cell hyperplasia, the BMR genome DNA loses methylation, resulting in activation of RTEs. Up-regulated RTEs form cytoplasmic RNA/DNA hybrids, which activate cGAS-STING pathway to induce cell death. Although this mechanism is enhanced in the BMR, we show that it functions in mice and human. We propose that RTEs were coopted to serve as tumor suppressors that monitor cell proliferation and are activated in premalignant cells to trigger cell death via activation of innate immune response. RTEs activation is a double-edged sword, serving as a tumor suppressor but in late life contributing to aging via induction of sterile inflammation.
Collapse
|