1
|
Ferdaus MZ, Delpire E. Calcium-binding protein 39 in with-no-lysine kinase signaling and the modulation of renal tubular transport. Curr Opin Nephrol Hypertens 2025:00041552-990000000-00235. [PMID: 40357626 DOI: 10.1097/mnh.0000000000001083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
PURPOSE OF REVIEW The regulation of renal tubular transport is essential for maintaining electrolyte balance and blood pressure. Calcium-binding protein 39 (Cab39), also known as mouse protein-25 (MO25), plays a pivotal role in modulating this process through its interaction with WNK (with no lysine) kinases and Ste20-like kinases, including STE20/SPS1-related proline-alanine-rich kinase (SPAK) and oxidative stress response 1 (OSR1). By stabilizing and facilitating the activation of these kinases, Cab39 plays a crucial role in the regulation of key ion transporters, such as the sodium-chloride cotransporter (NCC) and the sodium-potassium-chloride cotransporters (NKCC1 and NKCC2). This review provides a comprehensive analysis of Cab39 structural properties, molecular interactions, and functional roles in renal physiology, emphasizing its significance in ion homeostasis. RECENT FINDINGS Studies reveal that Cab39 enhances SPAK activity up to 100-fold. Importantly, the role of Cab39 extends beyond simple kinase activation, as it supports kinase complex assembly and localization, enabling precise control over transporter regulation. Evidence also suggests that Cab39 may influence the regulation of NCC and NKCC2 through similar mechanisms, making it a promising target for therapeutic interventions in disorders such as hypertension and salt-wasting syndromes. SUMMARY The discovery of a small-molecule Cab39 inhibitor highlights its potential as a pharmacological target. Understanding the multifaceted functions of Cab39 may unlock novel strategies for managing renal and cardiovascular disorders.
Collapse
Affiliation(s)
- Mohammed Z Ferdaus
- Department of Anesthesiology, Vanderbilt University Medical School, Nashville, Tennessee, USA
| | | |
Collapse
|
2
|
Arrías PN, Osmanli Z, Peralta E, Chinestrad PM, Monzon AM, Tosatto SCE. Diversity and structural-functional insights of alpha-solenoid proteins. Protein Sci 2024; 33:e5189. [PMID: 39465903 PMCID: PMC11514114 DOI: 10.1002/pro.5189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/29/2024]
Abstract
Alpha-solenoids are a significant and diverse subset of structured tandem repeat proteins (STRPs) that are important in various domains of life. This review examines their structural and functional diversity and highlights their role in critical cellular processes such as signaling, apoptosis, and transcriptional regulation. Alpha-solenoids can be classified into three geometric folds: low curvature, high curvature, and corkscrew, as well as eight subfolds: ankyrin repeats; Huntingtin, elongation factor 3, protein phosphatase 2A, and target of rapamycin; armadillo repeats; tetratricopeptide repeats; pentatricopeptide repeats; Pumilio repeats; transcription activator-like; and Sel-1 and Sel-1-like repeats. These subfolds represent distinct protein families with unique structural properties and functions, highlighting the versatility of alpha-solenoids. The review also discusses their association with disease, highlighting their potential as therapeutic targets and their role in protein design. Advances in state-of-the-art structure prediction methods provide new opportunities and challenges in the functional characterization and classification of this kind of fold, emphasizing the need for continued development of methods for their identification and proper data curation and deposition in the main databases.
Collapse
Affiliation(s)
- Paula Nazarena Arrías
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- Department of Protein ScienceKTH Royal Institute of TechnologyStockholmSweden
| | - Zarifa Osmanli
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | - Estefanía Peralta
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biológicas, Facultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataBuenos AiresArgentina
| | | | | | - Silvio C. E. Tosatto
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- Institute of Biomembranes, Bioenergetics and Molecular BiotechnologiesNational Research Council (CNR‐IBIOM)BariItaly
| |
Collapse
|
3
|
Yu Z, Sun X, Chen Z, Wang Q, Zhang C, Liu X, Wu W, Yin Y. Exploring the roles of ZmARM gene family in maize development and abiotic stress response. PeerJ 2023; 11:e16254. [PMID: 37920843 PMCID: PMC10619510 DOI: 10.7717/peerj.16254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/18/2023] [Indexed: 11/04/2023] Open
Abstract
Armadillo (ARM) was a gene family important to plants, with crucial roles in regulating plant growth, development, and stress responses. However, the properties and functions of ARM family members in maize had received limited attention. Therefore, this study employed bioinformatics methods to analyze the structure and evolution of ARM-repeat protein family members in maize. The maize (Zea mays L.) genome contains 56 ARM genes distributed over 10 chromosomes, and collinearity analysis indicated 12 pairs of linkage between them. Analysis of the physicochemical properties of ARM proteins showed that most of these proteins were acidic and hydrophilic. According to the number and evolutionary analysis of the ARM genes, the ARM genes in maize can be divided into eight subgroups, and the gene structure and conserved motifs showed similar compositions in each group. The findings shed light on the significant roles of 56 ZmARM domain genes in development and abiotic stress, particularly drought stress. RNA-Seq and qRT-PCR analysis revealed that drought stress exerts an influence on specific members of the ZmARM family, such as ZmARM4, ZmARM12, ZmARM34 and ZmARM36. The comprehensive profiling of these genes in the whole genome, combined with expression analysis, establishes a foundation for further exploration of plant gene function in the context of abiotic stress and reproductive development.
Collapse
Affiliation(s)
- Zhijia Yu
- College of Agriculture, Yanbian University, Jilin, China
- Jilin Academy of Agricultural Sciences, Institute of Agricultural Biotechnology, Changchun, China
| | - Xiaopeng Sun
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement, Wuhan, China
| | - Ziqi Chen
- Jilin Academy of Agricultural Sciences, Institute of Agricultural Biotechnology, Changchun, China
| | - Qi Wang
- Jilin Academy of Agricultural Sciences, Institute of Agricultural Biotechnology, Changchun, China
| | - Chuang Zhang
- Jilin Academy of Agricultural Sciences, Institute of Agricultural Biotechnology, Changchun, China
| | - Xiangguo Liu
- College of Agriculture, Yanbian University, Jilin, China
- Jilin Academy of Agricultural Sciences, Institute of Agricultural Biotechnology, Changchun, China
| | - Weilin Wu
- College of Agriculture, Yanbian University, Jilin, China
| | - Yuejia Yin
- Jilin Academy of Agricultural Sciences, Institute of Agricultural Biotechnology, Changchun, China
| |
Collapse
|
4
|
Fang X, Svitkina TM. Adenomatous polyposis coli (APC) in cell migration. Eur J Cell Biol 2022; 101:151228. [DOI: 10.1016/j.ejcb.2022.151228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 12/22/2022] Open
|
5
|
Huang Y, Jiang Z, Gao X, Luo P, Jiang X. ARMC Subfamily: Structures, Functions, Evolutions, Interactions, and Diseases. Front Mol Biosci 2021; 8:791597. [PMID: 34912852 PMCID: PMC8666550 DOI: 10.3389/fmolb.2021.791597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/15/2021] [Indexed: 12/29/2022] Open
Abstract
Armadillo repeat-containing proteins (ARMCs) are widely distributed in eukaryotes and have important influences on cell adhesion, signal transduction, mitochondrial function regulation, tumorigenesis, and other processes. These proteins share a similar domain consisting of tandem repeats approximately 42 amino acids in length, and this domain constitutes a substantial platform for the binding between ARMCs and other proteins. An ARMC subfamily, including ARMC1∼10, ARMC12, and ARMCX1∼6, has received increasing attention. These proteins may have many terminal regions and play a critical role in various diseases. On the one hand, based on their similar central domain of tandem repeats, this ARMC subfamily may function similarly to other ARMCs. On the other hand, the unique domains on their terminals may cause these proteins to have different functions. Here, we focus on the ARMC subfamily (ARMC1∼10, ARMC12, and ARMCX1∼6), which is relatively conserved in vertebrates and highly conserved in mammals, particularly primates. We review the structures, biological functions, evolutions, interactions, and related diseases of the ARMC subfamily, which involve more than 30 diseases and 40 bypasses, including interactions and relationships between more than 100 proteins and signaling molecules. We look forward to obtaining a clearer understanding of the ARMC subfamily to facilitate further in-depth research and treatment of related diseases.
Collapse
Affiliation(s)
- Yutao Huang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Institue of Neurosurgery of People's Liberation Army of China (PLA), PLA's Key Laboratory of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zijian Jiang
- Department of Hepato-biliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiangyu Gao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Institue of Neurosurgery of People's Liberation Army of China (PLA), PLA's Key Laboratory of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Institue of Neurosurgery of People's Liberation Army of China (PLA), PLA's Key Laboratory of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
6
|
Liao HZ, Liao WJ, Zou DX, Zhang RQ, Ma JL. Identification and expression analysis of PUB genes in tea plant exposed to anthracnose pathogen and drought stresses. PLANT SIGNALING & BEHAVIOR 2021; 16:1976547. [PMID: 34633911 PMCID: PMC9208792 DOI: 10.1080/15592324.2021.1976547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
The plant U-box (PUB) gene family, one of the major ubiquitin ligase families in plants, plays important roles in multiple cellular processes including environmental stress responses and resistance. The function of U-box genes has been well characterized in Arabidopsis and other plants. However, little is known about the tea plant (Camellia sinensis) PUB genes. Here, 89 U-box proteins were identified from the chromosome-scale referenced genome of tea plant. According to the domain organization and phylogenetic analysis, the tea plant PUB family were classified into ten classes, named Class I to X, respectively. Using previously released stress-related RNA-seq data in tea plant, we identified 34 stress-inducible CsPUB genes. Specifically, eight CsPUB genes were expressed differentially under both anthracnose pathogen and drought stresses. Moreover, six of the eight CsPUBs were upregulated in response to these two stresses. Expression profiling performed by qRT-PCR was consistent with the RNA-seq analysis, and stress-related cis-acting elements were identified in the promoter regions of the six upregulated CsPUB genes. These results strongly implied the putative functions of U-box ligase genes in response to biotic and abiotic stresses in tea plant.
Collapse
Affiliation(s)
- Hong-Ze Liao
- Guangxi Key Laboratory of Special Non-wood Forest Cultivation and Utilization, Guangxi Forestry Research Institute, NanningChina
- Key Laboratory of Ministry of Education for Non-Wood Forest Cultivation and Protection, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Protection and Utilization of Marine Resources, Guangxi University for Nationalities, Nanning, China
| | - Wang-Jiao Liao
- Guangxi Key Laboratory of Special Non-wood Forest Cultivation and Utilization, Guangxi Forestry Research Institute, NanningChina
| | - Dong-Xia Zou
- Guangxi Key Laboratory of Special Non-wood Forest Cultivation and Utilization, Guangxi Forestry Research Institute, NanningChina
| | - Ri-Qing Zhang
- Key Laboratory of Ministry of Education for Non-Wood Forest Cultivation and Protection, Central South University of Forestry and Technology, Changsha, China
| | - Jin-Lin Ma
- Guangxi Key Laboratory of Special Non-wood Forest Cultivation and Utilization, Guangxi Forestry Research Institute, NanningChina
| |
Collapse
|
7
|
Kim MS, Kang KK, Cho YG. Molecular and Functional Analysis of U-box E3 Ubiquitin Ligase Gene Family in Rice ( Oryzasativa). Int J Mol Sci 2021; 22:ijms222112088. [PMID: 34769518 PMCID: PMC8584879 DOI: 10.3390/ijms222112088] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/21/2021] [Accepted: 11/05/2021] [Indexed: 02/03/2023] Open
Abstract
Proteins encoded by U-box type ubiquitin ligase (PUB) genes in rice are known to play an important role in plant responses to abiotic and biotic stresses. Functional analysis has revealed a detailed molecular mechanism involving PUB proteins in relation to abiotic and biotic stresses. In this study, characteristics of 77 OsPUB genes in rice were identified. Systematic and comprehensive analyses of the OsPUB gene family were then performed, including analysis of conserved domains, phylogenetic relationships, gene structure, chromosome location, cis-acting elements, and expression patterns. Through transcriptome analysis, we confirmed that 16 OsPUB genes show similar expression patterns in drought stress and blast infection response pathways. Numerous cis-acting elements were found in promoter sequences of 16 OsPUB genes, indicating that the OsPUB genes might be involved in complex regulatory networks to control hormones, stress responses, and cellular development. We performed qRT-PCR on 16 OsPUB genes under drought stress and blast infection to further identify the reliability of transcriptome and cis-element analysis data. It was confirmed that the expression pattern was similar to RNA-sequencing analysis results. The transcription of OsPUB under various stress conditions indicates that the PUB gene might have various functions in the responses of rice to abiotic and biotic stresses. Taken together, these results indicate that the genome-wide analysis of OsPUB genes can provide a solid basis for the functional analysis of U-box E3 ubiquitin ligase genes. The molecular information of the U-box E3 ubiquitin ligase gene family in rice, including gene expression patterns and cis-acting regulatory elements, could be useful for future crop breeding programs by genome editing.
Collapse
Affiliation(s)
- Me-Sun Kim
- Department of Crop Science, College of Agriculture and Life & Environment Sciences, Chungbuk National University, Cheongju 28644, Korea;
| | - Kwon-Kyoo Kang
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Korea;
| | - Yong-Gu Cho
- Department of Crop Science, College of Agriculture and Life & Environment Sciences, Chungbuk National University, Cheongju 28644, Korea;
- Correspondence:
| |
Collapse
|
8
|
Downregulation of ARMC8 promotes tumorigenesis through activating Wnt/β-catenin pathway and EMT in cutaneous squamous cell carcinomas. J Dermatol Sci 2021; 102:184-192. [PMID: 34016486 DOI: 10.1016/j.jdermsci.2021.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Aberrant expression of Armadillo repeat containing 8 (ARMC8) plays crucial roles in tumor growth and metastasis of various cancers. The specific role of ARMC8 in cutaneous squamous cell carcinoma (cSCC) is yet to be elucidated. OBJECTIVE The present study aimed to investigate the molecular mechanisms of ARMC8 and epithelial-mesenchymal transition (EMT) in cSCC development and provide translational insights for future therapeutics. METHODS cSCC tumor specimens were used to determine the ARMC8 by immunohistochemistry. Three cSCC cell lines including HSC-1, HSC-5 and A431 as well as BALB/C mouse tumor model was utilized to study the potential mechanisms in tumorigenesis. RESULTS Our data identified ARMC8 as a direct downstream target of miR-664. We found that ARMC8 was remarkably low expression in cSCC patient specimens and cSCC cell lines. Knockdown of ARMC8 promotes tumorigenic behaviors such as increased cell proliferation, migration and invasion capacities in vitro and enhanced tumorigenicity in xenograft mouse model. Whereas ARMC8 over-expression inhibits tumorigenesis in cSCC. Together, it revealed ARMC8 functions as a tumor suppressor via restraining Wnt/β-catenin pathway and epithelial-mesenchymal transition in cSCC. CONCLUSION Our data verifies that aberrant expression of ARMC8 plays a vital role in carcinogenesis of cSCC. And overexpression of ARMC8 will facilitate future development of cSCC therapeutic interventions.
Collapse
|
9
|
van der Wal T, van Amerongen R. Walking the tight wire between cell adhesion and WNT signalling: a balancing act for β-catenin. Open Biol 2020; 10:200267. [PMID: 33292105 PMCID: PMC7776579 DOI: 10.1098/rsob.200267] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
CTNNB1 (catenin β-1, also known as β-catenin) plays a dual role in the cell. It is the key effector of WNT/CTNNB1 signalling, acting as a transcriptional co-activator of TCF/LEF target genes. It is also crucial for cell adhesion and a critical component of cadherin-based adherens junctions. Two functional pools of CTNNB1, a transcriptionally active and an adhesive pool, can therefore be distinguished. Whether cells merely balance the distribution of available CTNNB1 between these functional pools or whether interplay occurs between them has long been studied and debated. While interplay has been indicated upon artificial modulation of cadherin expression levels and during epithelial-mesenchymal transition, it is unclear to what extent CTNNB1 exchange occurs under physiological conditions and in response to WNT stimulation. Here, we review the available evidence for both of these models, discuss how CTNNB1 binding to its many interaction partners is controlled and propose avenues for future studies.
Collapse
Affiliation(s)
| | - Renée van Amerongen
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
10
|
Characterization of the interaction between β-catenin and sorting nexin 27: contribution of the type I PDZ-binding motif to Wnt signaling. Biosci Rep 2020; 39:220894. [PMID: 31696214 PMCID: PMC6851508 DOI: 10.1042/bsr20191692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/05/2019] [Accepted: 10/16/2019] [Indexed: 12/31/2022] Open
Abstract
Background: Sorting Nexin 27 (SNX27) is a 62-kDa protein localized to early endosomes and known to regulate the intracellular trafficking of ion channels and receptors. In addition to a PX domain common among all of the sorting nexin family, SNX27 is the only sorting family member that contains a PDZ domain. To identify novel SNX27–PDZ binding partners, we performed a proteomic screen in mouse principal kidney cortical collecting duct cells (mpkCCD) using a GST-SNX27 fusion construct as bait. We found that the C-terminal type I PDZ binding motif (DTDL) of β-catenin, an adherens junction scaffolding protein and transcriptional co-activator, interacts directly with SNX27. Using biochemical and immunofluorescent techniques, β-catenin was identified in endosomal compartments where co-localization with SNX27 was observed. Furthermore, E-cadherin, but not Axin, GSK3 or Lef-1 was located in SNX27 protein complexes. While overexpression of wild-type β-catenin protein increased TCF-LEF dependent transcriptional activity, an enhanced transcriptional activity was not observed in cells expressing β-Catenin ΔFDTDL or diminished SNX27 expression. These results imply importance of the C-terminal PDZ binding motif for the transcriptional activity of β-catenin and propose that SNX27 might be involved in the assembly of β-catenin complexes in the endosome.
Collapse
|
11
|
Nefedova LN. Drosophila melanogaster as a Model of Developmental Genetics: Modern Approaches and Prospects. Russ J Dev Biol 2020. [DOI: 10.1134/s1062360420040050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Guo L, Glover J, Risner A, Wang C, Fulmer D, Moore K, Gensemer C, Rumph MK, Moore R, Beck T, Norris RA. Dynamic Expression Profiles of β-Catenin during Murine Cardiac Valve Development. J Cardiovasc Dev Dis 2020; 7:jcdd7030031. [PMID: 32824435 PMCID: PMC7570242 DOI: 10.3390/jcdd7030031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022] Open
Abstract
β-catenin has been widely studied in many animal and organ systems across evolution, and gain or loss of function has been linked to a number of human diseases. Yet fundamental knowledge regarding its protein expression and localization remains poorly described. Thus, we sought to define whether there was a temporal and cell-specific regulation of β-catenin activities that correlate with distinct cardiac morphological events. Our findings indicate that activated nuclear β-catenin is primarily evident early in gestation. As development proceeds, nuclear β-catenin is down-regulated and becomes restricted to the membrane in a subset of cardiac progenitor cells. After birth, little β-catenin is detected in the heart. The co-expression of β-catenin with its main transcriptional co-factor, Lef1, revealed that Lef1 and β-catenin expression domains do not extensively overlap in the cardiac valves. These data indicate mutually exclusive roles for Lef1 and β-catenin in most cardiac cell types during development. Additionally, these data indicate diverse functions for β-catenin within the nucleus and membrane depending on cell type and gestational timing. Cardiovascular studies should take into careful consideration both nuclear and membrane β-catenin functions and their potential contributions to cardiac development and disease.
Collapse
|
13
|
ARMCX Family Gene Expression Analysis and Potential Prognostic Biomarkers for Prediction of Clinical Outcome in Patients with Gastric Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3575038. [PMID: 32685472 PMCID: PMC7345962 DOI: 10.1155/2020/3575038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/20/2020] [Indexed: 01/04/2023]
Abstract
Armadillo gene subfamily members (ARMCX1-6) are well-known to regulate protein-protein interaction involved in nuclear transport, cellular connection, and transcription activation. Moreover, ARMCX signals on cell pathways also implicated in carcinogenesis and tumor progression. However, little is known about the associations of the ARMCX subfamily members with gastric carcinoma. This study investigated the prognostic value of ARMCX subfamily mRNA expression levels with the prognosis of gastric carcinoma (GC). We retrieved the data of a total of 351 GC patients from TCGA database. Survival and gene set enrichment analyses were employed to explore the predictive value and underlying mechanism of ARMCX genes in GC. The multivariate survival analysis revealed that individually low expressions of ARMCX1 (adjusted P = 0.006, HR = 0.620, CI = 0.440 - 0.874) and ARMCX2 (adjusted P = 0.005, HR = 0.610, 95%CI = 0.432-0.861) were related to preferable overall survival (OS). The joint-effects analysis shown that combinations of low level expression of ARMCX1 and ARMCX2 were correlated with favorable OS (adjusted P = 0.003, HR = 0.563, 95%CI = 0.384-0.825). ARMCX1 and ARMCX2 were implicated in WNT and NF-kappaB pathways, and biological processes including cell cycle, apoptosis, RNA modification, DNA replication, and damage response. Our results suggest that mRNA expression levels of ARMCX subfamily are potential prognostic markers of GC.
Collapse
|
14
|
Zhang C, Xie X, Yuan Y, Wang Y, Zhou M, Li X, Zhen P. MiR-664 Protects Against UVB Radiation-Induced HaCaT Cell Damage via Downregulating ARMC8. Dose Response 2020; 18:1559325820929234. [PMID: 32547335 PMCID: PMC7270940 DOI: 10.1177/1559325820929234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/03/2020] [Accepted: 04/17/2020] [Indexed: 11/17/2022] Open
Abstract
Background: MiR-664 has been demonstrated to play an important role in dermal diseases.
However, the functions of miR-664 in ultraviolet B (UVB) radiation-induced
keratinocytes damage remain to be elucidated. Objective: The present study aimed to investigate the molecular mechanisms under the
UVB-induced keratinocytes damage and provide translational insights for
future therapeutics and UVB protection. Methods: HaCaT cells were transfected with miR-664, either alone or combined with UVB
irradiation. Levels of messenger RNA and protein were tested by quantitative
real-time polymerase chain reaction and Western blot analyses. Cell
proliferation, percentage of apoptotic cells, and expression levels of
apoptosis-related factors were measured by Cell Counting Kit-8 assay, flow
cytometry assay, and Western blot analysis, respectively. Results: We found that a significant increase in miR-664 was observed in UVB-induced
HaCaT cells. Overexpressed miR-664 promoted cell vitalities and suppressed
apoptosis of UVB-induced HaCaT cells. Additionally, the loss/gain of
armadillo-repeat-containing protein 8 (ARMC8) rescued/blocked the effects of
miR-664 on the proliferation of UVB-induced HaCaT cells. Conclusions: Our data demonstrate that miR-664 functions as a protective regulator in
UVB-induced HaCaT cells via regulating ARMC8.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiongxiong Xie
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yawen Yuan
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yimeng Wang
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiangzhi Li
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.,Department of Public Health, Medical College, Guangxi University of Science and Technology, Liuzhou, China
| | - Peilin Zhen
- Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| |
Collapse
|
15
|
Wang G, Liu F, Xu Z, Ge J, Li J. Identification of Hc-β-catenin in freshwater mussel Hyriopsis cumingii and its involvement in innate immunity and sex determination. FISH & SHELLFISH IMMUNOLOGY 2019; 91:99-107. [PMID: 31075405 DOI: 10.1016/j.fsi.2019.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/29/2019] [Accepted: 05/04/2019] [Indexed: 06/09/2023]
Abstract
β-catenin is a multifunctional protein that participates in a variety of physiological activities, including immune regulation, sex determination, nervous system development and, cell differentiation. However, the function of β-catenin in freshwater mussel Hyriopsis cumingii remains unclear. Herein, the gene encoding β-catenin from H. cumingii (Hc-β-catenin) was cloned and characterised. The full-length 5544 bp gene includes an open reading frame (ORF) of 2463 bp encoding a putative protein of 820 amino acids residues containing 12 armadillo (ARM) repeats. After injecting H. cumingii with Aeromonas hydrophila or lipopolysaccharides, Hc-β-catenin transcription was induced in hemocytes and gills, and the greatest responses occurred at 24 h after bacterial challenge, confirming an important role in immune responses. Quantitative real-time PCR analysis showed that Hc-β-catenin mRNA was distributed in the gill, foot, liver, kidney, mantle, adductor muscle and gonad of male and female mussels. In gonad, Hc-β-catenin expression was markedly higher in females than males. During the embryonic period, Hc-β-catenin expression was highest at 3 day. In 1-, 2- and 3-year-old mature mussels, Hc-β-catenin expression in female gonad tissue was notably higher than in males. In situ hybridisation revealed a significant hybridisation signal in female gonads, indicating that Hc-β-catenin is a pro-ovarian, anti-testis gene. Our findings demonstrate that Hc-β-catenin is important in immune regulation and sex determination in freshwater mussel.
Collapse
Affiliation(s)
- Guiling Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306, China
| | - Feifei Liu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306, China
| | - Zhicheng Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306, China
| | - Jinyuan Ge
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306, China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306, China.
| |
Collapse
|
16
|
Classification of barley U-box E3 ligases and their expression patterns in response to drought and pathogen stresses. BMC Genomics 2019; 20:326. [PMID: 31035917 PMCID: PMC6489225 DOI: 10.1186/s12864-019-5696-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 04/15/2019] [Indexed: 12/20/2022] Open
Abstract
Background Controlled turnover of proteins as mediated by the ubiquitin proteasome system (UPS) is an important element in plant defense against environmental and pathogen stresses. E3 ligases play a central role in subjecting proteins to hydrolysis by the UPS. Recently, it has been demonstrated that a specific class of E3 ligases termed the U-box ligases are directly associated with the defense mechanisms against abiotic and biotic stresses in several plants. However, no studies on U-box E3 ligases have been performed in one of the important staple crops, barley. Results In this study, we identified 67 putative U-box E3 ligases from the barley genome and expressed sequence tags (ESTs). Similar to Arabidopsis and rice U-box E3 ligases, most of barley U-box E3 ligases possess evolutionary well-conserved domain organizations. Based on the domain compositions and arrangements, the barley U-box proteins were classified into eight different classes. Along with this new classification, we refined the previously reported classifications of U-box E3 ligase genes in Arabidopsis and rice. Furthermore, we investigated the expression profile of 67 U-box E3 ligase genes in response to drought stress and pathogen infection. We observed that many U-box E3 ligase genes were specifically up-and-down regulated by drought stress or by fungal infection, implying their possible roles of some U-box E3 ligase genes in the stress responses. Conclusion This study reports the classification of U-box E3 ligases in barley and their expression profiles against drought stress and pathogen infection. Therefore, the classification and expression profiling of barley U-box genes can be used as a platform to functionally define the stress-related E3 ligases in barley. Electronic supplementary material The online version of this article (10.1186/s12864-019-5696-z) contains supplementary material, which is available to authorized users.
Collapse
|
17
|
Song S, Tan B, Dong X, Yang Q, Chi S, Liu H, Zhang H, Zhang S. Molecular cloning, characterization and expression analysis of ARMC6, ARMC7, ARMC8 from Pacific white shrimp, Litopenaeus vannamei. Gene 2019; 682:50-66. [PMID: 30292870 DOI: 10.1016/j.gene.2018.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/30/2018] [Accepted: 10/04/2018] [Indexed: 10/28/2022]
Abstract
Armadillo repeat-containing proteins (ARMCs) comprise a large family that is widely distributed in eukaryotes and plays prominent roles in cell-cell adhesion, intracellular signaling, and cytoskeletal regulation. In this study, three ARMC genes, termed LvARMC6, LvARMC7 and LvARMC8, were identified and characterized from Litopenaeus vannamei. The complete cDNAs open reading frames (ORF) of LvARMC6, LvARMC7, and LvARMC8 (GenBank accession no. MG735126, MG728109 and KX058562) were 1410 bp, 570 bp and 2046 bp, encoding 469, 189, and 681 amino acids, respectively. Topology analysis indicated that three ARM domains were present in LvARMC6, one in LvARMC7 and six in LvARMC8. The identities of all the three LvARMCs with other species were between 50% and 71%. Phylogenetic analysis illustrated that different subtype of ARMCs formed their own separate branches and LvARMCs were placed in branch of invertebrates respectively with strong bootstrap support. The constitutive expressions of LvARMCs were confirmed by real-time quantitative PCR. LvARMC6, LvARMC7 and LvARMC8 were expressed highest in heart, gills and epithelium, respectively. After challenge with either white spot syndrome virus (WSSV), Vibrio parahemolyticus, or Staphylococcus aureus, all of the LvARMCs demonstrated differential expression profiles in hemocytes, hepatopancreas, intestine and gills. Taken together, our results suggest that LvARMCs may play a role in the innate immune defense against pathogenic viral and bacterial infections of L. vannamei.
Collapse
Affiliation(s)
- Shougang Song
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Beiping Tan
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, PR China
| | - Xiaohui Dong
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, PR China
| | - Qihui Yang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, PR China
| | - Shuyan Chi
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, PR China
| | - Hongyu Liu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, PR China
| | - Haitao Zhang
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, PR China; The Research Center of Guangdong Evergreen Feed Industry Co., Ltd., Zhanjiang 524022, PR China
| | - Shuang Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, PR China.
| |
Collapse
|
18
|
Wingless Signaling: A Genetic Journey from Morphogenesis to Metastasis. Genetics 2018; 208:1311-1336. [PMID: 29618590 DOI: 10.1534/genetics.117.300157] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/13/2017] [Indexed: 12/15/2022] Open
Abstract
This FlyBook chapter summarizes the history and the current state of our understanding of the Wingless signaling pathway. Wingless, the fly homolog of the mammalian Wnt oncoproteins, plays a central role in pattern generation during development. Much of what we know about the pathway was learned from genetic and molecular experiments in Drosophila melanogaster, and the core pathway works the same way in vertebrates. Like most growth factor pathways, extracellular Wingless/Wnt binds to a cell surface complex to transduce signal across the plasma membrane, triggering a series of intracellular events that lead to transcriptional changes in the nucleus. Unlike most growth factor pathways, the intracellular events regulate the protein stability of a key effector molecule, in this case Armadillo/β-catenin. A number of mysteries remain about how the "destruction complex" destabilizes β-catenin and how this process is inactivated by the ligand-bound receptor complex, so this review of the field can only serve as a snapshot of the work in progress.
Collapse
|
19
|
Li D, Song H, Mei H, Fang E, Wang X, Yang F, Li H, Chen Y, Huang K, Zheng L, Tong Q. Armadillo repeat containing 12 promotes neuroblastoma progression through interaction with retinoblastoma binding protein 4. Nat Commun 2018; 9:2829. [PMID: 30026490 PMCID: PMC6053364 DOI: 10.1038/s41467-018-05286-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 06/25/2018] [Indexed: 12/18/2022] Open
Abstract
Recent studies suggest the emerging roles of armadillo (ARM) family proteins in tumor progression. However, the functions and underlying mechanisms of ARM members in tumorigenesis and aggressiveness of neuroblastoma (NB) remain to be determined. Herein, we identify armadillo repeat containing 12 (ARMC12) as an ARM member associated with NB progression. ARMC12 promotes the growth and aggressiveness of NB cell lines. Mechanistically, ARMC12 physically interacts with retinoblastoma binding protein 4 (RBBP4) to facilitate the formation and activity of polycomb repressive complex 2, resulting in transcriptional repression of tumor suppressive genes. Blocking the interaction between ARMC12 and RBBP4 by cell-penetrating inhibitory peptide activates the downstream gene expression and suppresses the tumorigenesis and aggressiveness of NB cells. Both ARMC12 and RBBP4 are upregulated in NB tissues, and are associated with unfavorable outcome of patients. These findings suggest the crucial roles of ARMC12 in tumor progression and a potential therapeutic approach for NB. Armadillo (ARM) family proteins can act as oncogenes or tumor suppressors. Here, the authors show that a new ARM protein (ARMC12) is upregulated in neuroblastoma, binds the PRC2 component RBBP4, and inhibits transcription of tumor suppressive genes.
Collapse
Affiliation(s)
- Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Huajie Song
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Hong Mei
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Erhu Fang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Xiaojing Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Feng Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Huanhuan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Yajun Chen
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Kai Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China. .,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China.
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China. .,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China.
| |
Collapse
|
20
|
Yashiro R, Murota Y, Nishida KM, Yamashiro H, Fujii K, Ogai A, Yamanaka S, Negishi L, Siomi H, Siomi MC. Piwi Nuclear Localization and Its Regulatory Mechanism in Drosophila Ovarian Somatic Cells. Cell Rep 2018; 23:3647-3657. [DOI: 10.1016/j.celrep.2018.05.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/25/2018] [Accepted: 05/16/2018] [Indexed: 10/28/2022] Open
|
21
|
Coupling optogenetics and light-sheet microscopy, a method to study Wnt signaling during embryogenesis. Sci Rep 2017; 7:16636. [PMID: 29192250 PMCID: PMC5709371 DOI: 10.1038/s41598-017-16879-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/17/2017] [Indexed: 12/12/2022] Open
Abstract
Optogenetics allows precise, fast and reversible intervention in biological processes. Light-sheet microscopy allows observation of the full course of Drosophila embryonic development from egg to larva. Bringing the two approaches together allows unparalleled precision into the temporal regulation of signaling pathways and cellular processes in vivo. To develop this method, we investigated the regulation of canonical Wnt signaling during anterior-posterior patterning of the Drosophila embryonic epidermis. Cryptochrome 2 (CRY2) from Arabidopsis Thaliana was fused to mCherry fluorescent protein and Drosophila β–catenin to form an easy to visualize optogenetic switch. Blue light illumination caused oligomerization of the fusion protein and inhibited downstream Wnt signaling in vitro and in vivo. Temporal inactivation of β–catenin confirmed that Wnt signaling is required not only for Drosophila pattern formation, but also for maintenance later in development. We anticipate that this method will be easily extendable to other developmental signaling pathways and many other experimental systems.
Collapse
|
22
|
Introduction: Drosophila-A Model System for Developmental Biology. J Dev Biol 2017; 5:jdb5030009. [PMID: 29615566 PMCID: PMC5831767 DOI: 10.3390/jdb5030009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 09/20/2017] [Accepted: 09/20/2017] [Indexed: 11/16/2022] Open
Abstract
Drosophila melanogaster, known colloquially as the fruit fly, remains one of the most commonly used model organisms for biomedical science.[...].
Collapse
|
23
|
Suresh J, Harmston N, Lim KK, Kaur P, Jin HJ, Lusk JB, Petretto E, Tolwinski NS. An embryonic system to assess direct and indirect Wnt transcriptional targets. Sci Rep 2017; 7:11092. [PMID: 28894169 PMCID: PMC5593962 DOI: 10.1038/s41598-017-11519-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/25/2017] [Indexed: 02/07/2023] Open
Abstract
During animal development, complex signals determine and organize a vast number of tissues using a very small number of signal transduction pathways. These developmental signaling pathways determine cell fates through a coordinated transcriptional response that remains poorly understood. The Wnt pathway is involved in a variety of these cellular functions, and its signals are transmitted in part through a β-catenin/TCF transcriptional complex. Here we report an in vivo Drosophila assay that can be used to distinguish between activation, de-repression and repression of transcriptional responses, separating upstream and downstream pathway activation and canonical/non-canonical Wnt signals in embryos. We find specific sets of genes downstream of both β-catenin and TCF with an additional group of genes regulated by Wnt, while the non-canonical Wnt4 regulates a separate cohort of genes. We correlate transcriptional changes with phenotypic outcomes of cell differentiation and embryo size, showing our model can be used to characterize developmental signaling compartmentalization in vivo.
Collapse
Affiliation(s)
- Jahnavi Suresh
- Yale-NUS College, 12 College Ave West, #01- 201, Singapore, 138610, Republic of Singapore
| | - Nathan Harmston
- Duke-NUS Medical School, 8 College Road, 169857, Singapore, Republic of Singapore
| | - Ka Keat Lim
- Duke-NUS Medical School, 8 College Road, 169857, Singapore, Republic of Singapore
| | - Prameet Kaur
- Yale-NUS College, 12 College Ave West, #01- 201, Singapore, 138610, Republic of Singapore
| | - Helen Jingshu Jin
- Yale-NUS College, 12 College Ave West, #01- 201, Singapore, 138610, Republic of Singapore
| | - Jay B Lusk
- Yale-NUS College, 12 College Ave West, #01- 201, Singapore, 138610, Republic of Singapore
| | - Enrico Petretto
- Duke-NUS Medical School, 8 College Road, 169857, Singapore, Republic of Singapore
| | - Nicholas S Tolwinski
- Yale-NUS College, 12 College Ave West, #01- 201, Singapore, 138610, Republic of Singapore. .,Department of Biological Sciences, National University of Singapore, Block MD6, Centre for Translational Medicine, Yong Loo Lin School of Medicine, 14 Medical Drive, Level 10 South, 10-02M, Singapore, 117599, Republic of Singapore.
| |
Collapse
|
24
|
Li J, Su X, Wang Y, Yang W, Pan Y, Su C, Zhang X. Genome-wide identification and expression analysis of the BTB domain-containing protein gene family in tomato. Genes Genomics 2017; 40:1-15. [PMID: 29892895 DOI: 10.1007/s13258-017-0604-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/03/2017] [Indexed: 01/01/2023]
Abstract
BTB (broad-complex, tramtrack, and bric-a-brac) family proteins are characterized by the presence of a protein-protein interaction BTB domain. BTB proteins have diverse functions, including transcriptional regulation, protein degradation, chromatin remodeling, and cytoskeletal regulation. However, little is known about this gene family in tomato (Solanum lycopersicum), the most important model plant for crop species. In this study, 38 BTB genes were identified based on tomato whole-genome sequence. Phylogenetic analysis of BTB proteins in tomato revealed that SlBTB proteins could be divided into at least 4 subfamilies. The SlBTB proteins contains 1-3 BTB domains, and several other types of functional domains, including KCTD (Potassium channel tetramerization domain-containing), the MATH (meprin and TRAF homology), ANK (Ankyrin repeats), NPR1 (nonexpressor of pathogenesis-related proteins1), NPH3 (Nonphototropic Hypocotyl 3), TAZ zinc finger, C-terminal Kelch, Skp1 and Arm (Armadillo/beta-catenin-like repeat) domains are also found in some tomato BTB proteins. Moreover, their expression patterns in tissues/stages, in response to different abiotic stress treatments and hormones were also investigated. This study provides the first comprehensive analysis of BTB gene family in the tomato genome. The data will undoubtedly be useful for better understanding the potential functions of BTB genes, and their possible roles in mediating hormone cross-talk and abiotic stress in tomato as well as in some other relative species.
Collapse
Affiliation(s)
- Jinhua Li
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education; College of Horticulture and Landscape Architechture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Xiaoxing Su
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education; College of Horticulture and Landscape Architechture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Yinlei Wang
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Wei Yang
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education; College of Horticulture and Landscape Architechture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Yu Pan
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education; College of Horticulture and Landscape Architechture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Chenggang Su
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education; College of Horticulture and Landscape Architechture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Xingguo Zhang
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education; College of Horticulture and Landscape Architechture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, China.
| |
Collapse
|
25
|
Song J, Mo X, Yang H, Yue L, Song J, Mo B. The U-box family genes in Medicago truncatula: Key elements in response to salt, cold, and drought stresses. PLoS One 2017; 12:e0182402. [PMID: 28771553 PMCID: PMC5542650 DOI: 10.1371/journal.pone.0182402] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 07/17/2017] [Indexed: 11/18/2022] Open
Abstract
The ubiquitination pathway regulates growth, development, and stress responses in plants, and the U-box protein family of ubiquitin ligases has important roles in this pathway. Here, 64 putative U-box proteins were identified in the Medicago truncatula genome. In addition to the conserved U-box motif, other functional domains, such as the ARM, kinase, KAP, and WD40 domains, were also detected. Phylogenetic analysis of the M. truncatula U-box proteins grouped them into six subfamilies, and chromosomal mapping and synteny analyses indicated that tandem and segmental duplications may have contributed to the expansion and evolution of the U-box gene family in this species. Using RNA-seq data from M. truncatula seedlings subjected to three different abiotic stresses, we identified 33 stress-inducible plant U-box genes (MtPUBs). Specifically, 25 salinity-, 15 drought-, and 16 cold-regulated MtPUBs were detected. Among them, MtPUB10, MtPUB17, MtPUB18, MtPUB35, MtPUB42, and MtPUB44 responded to all three stress conditions. Expression profiling by qRT-PCR was consistent with the RNA-seq data, and stress-related elements were identified in the promoter regions. The present findings strongly indicate that U-box proteins play critical roles in abiotic stress response in M. truncatula.
Collapse
Affiliation(s)
- Jianbo Song
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Department of Biochemistry and Molecular Biology, College of Science, Jiang Xi Agricultural University, Nanchang, China
| | - Xiaowei Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Haiqi Yang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Luming Yue
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jun Song
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
26
|
Gul IS, Hulpiau P, Saeys Y, van Roy F. Evolution and diversity of cadherins and catenins. Exp Cell Res 2017; 358:3-9. [PMID: 28268172 DOI: 10.1016/j.yexcr.2017.03.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 01/07/2023]
Abstract
Cadherin genes encode a superfamily of conserved transmembrane proteins that share an adhesive ectodomain composed of tandem cadherin repeats. More than 100 human cadherin superfamily members have been identified, which can be classified into three families: major cadherins, protocadherins and cadherin-related proteins. These superfamily members are involved in diverse fundamental cellular processes including cell-cell adhesion, morphogenesis, cell recognition and signaling. Epithelial cadherin (E-cadherin) is the founding cadherin family member. Its cytoplasmic tail interacts with the armadillo catenins, p120 and β-catenin. Further, α-catenin links the cadherin/armadillo catenin complex to the actin filament network. Even genomes of ancestral metazoan species such as cnidarians and placozoans encode a limited number of distinct cadherins and catenins, emphasizing the conservation and functional importance of these gene families. Moreover, a large expansion of the cadherin and catenin families coincides with the emergence of vertebrates and reflects a major functional diversification in higher metazoans. Here, we revisit and review the functions, phylogenetic classifications and co-evolution of the cadherin and catenin protein families.
Collapse
Affiliation(s)
- Ismail Sahin Gul
- Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Paco Hulpiau
- Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Yvan Saeys
- Center for Inflammation Research, VIB, Ghent, Belgium; Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Frans van Roy
- Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
27
|
Gul IS, Hulpiau P, Saeys Y, van Roy F. Metazoan evolution of the armadillo repeat superfamily. Cell Mol Life Sci 2017; 74:525-541. [PMID: 27497926 PMCID: PMC11107757 DOI: 10.1007/s00018-016-2319-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/05/2016] [Accepted: 07/25/2016] [Indexed: 02/08/2023]
Abstract
The superfamily of armadillo repeat proteins is a fascinating archetype of modular-binding proteins involved in various fundamental cellular processes, including cell-cell adhesion, cytoskeletal organization, nuclear import, and molecular signaling. Despite their diverse functions, they all share tandem armadillo (ARM) repeats, which stack together to form a conserved three-dimensional structure. This superhelical armadillo structure enables them to interact with distinct partners by wrapping around them. Despite the important functional roles of this superfamily, a comprehensive analysis of the composition, classification, and phylogeny of this protein superfamily has not been reported. Furthermore, relatively little is known about a subset of ARM proteins, and some of the current annotations of armadillo repeats are incomplete or incorrect, often due to high similarity with HEAT repeats. We identified the entire armadillo repeat superfamily repertoire in the human genome, annotated each armadillo repeat, and performed an extensive evolutionary analysis of the armadillo repeat proteins in both metazoan and premetazoan species. Phylogenetic analyses of the superfamily classified them into several discrete branches with members showing significant sequence homology, and often also related functions. Interestingly, the phylogenetic structure of the superfamily revealed that about 30 % of the members predate metazoans and represent an ancient subset, which is gradually evolving to acquire complex and highly diverse functions.
Collapse
Affiliation(s)
- Ismail Sahin Gul
- Inflammation Research Center (IRC), VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, FSVM Building, Technologiepark 927, 9052, Ghent, Belgium
| | - Paco Hulpiau
- Inflammation Research Center (IRC), VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, FSVM Building, Technologiepark 927, 9052, Ghent, Belgium
| | - Yvan Saeys
- Inflammation Research Center (IRC), VIB, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University, Ghent, Belgium
| | - Frans van Roy
- Inflammation Research Center (IRC), VIB, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, FSVM Building, Technologiepark 927, 9052, Ghent, Belgium.
| |
Collapse
|
28
|
Bending-Twisting Motions and Main Interactions in Nucleoplasmin Nuclear Import. PLoS One 2016; 11:e0157162. [PMID: 27258022 PMCID: PMC4892583 DOI: 10.1371/journal.pone.0157162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/25/2016] [Indexed: 01/11/2023] Open
Abstract
Alpha solenoid proteins play a key role in regulating the classical nuclear import pathway, recognizing a target protein and transporting it into the nucleus. Importin-α (Impα) is the solenoid responsible for cargo protein recognition, and it has been extensively studied by X-ray crystallography to understand the binding specificity. To comprehend the main motions of Impα and to extend the information about the critical interactions during carrier-cargo recognition, we surveyed different conformational states based on molecular dynamics (MD) and normal mode (NM) analyses. Our model of study was a crystallographic structure of Impα complexed with the classical nuclear localization sequence (cNLS) from nucleoplasmin (Npl), which was submitted to multiple 100 ns of MD simulations. Representative conformations were selected for calculating the 87 lowest frequencies NMs of vibration, and a displacement approach was applied along each NM. Based on geometric criteria, using the radius of curvature and inter-repeat angles as the reference metrics, the main motions of Impα were described. Moreover, we determined the salt bridges, hydrogen bonds and hydrophobic interactions in the Impα-NplNLS interface. Our results show the bending and twisting motions participating in the recognition of nuclear proteins, allowing the accommodation and adjustment of a classical bipartite NLS sequence. The essential contacts for the nuclear import were also described and were mostly in agreement with previous studies, suggesting that the residues in the cNLS linker region establish important contacts with Impα adjusting the cNLS backbone. The MD simulations combined with NM analysis can be applied to the Impα-NLS system to help understand interactions between Impα and cNLSs and the analysis of non-classic NLSs.
Collapse
|
29
|
Gao Y, Wu JY, Zeng F, Liu GL, Zhang HT, Yun H, Song FZ. ALEX1 Regulates Proliferation and Apoptosis in Breast Cancer Cells. Asian Pac J Cancer Prev 2016; 16:3293-9. [PMID: 25921134 DOI: 10.7314/apjcp.2015.16.8.3293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Arm protein lost in epithelial cancers, on chromosome X (ALEX) is a novel subgroup within the armadillo (ARM) family, which has one or two ARM repeat domains as opposed to more than six-thirteen repeats in the classical Armadillo family members. MATERIALS AND METHODS In the study, we explore the biological functions of ALEX1 in breast cancer cells. Overexpression of ALEX1 and silencing of ALEX1 were performed with SK-BR3 and MCF-7 cell lines. Cell proliferation and colony formation assays, along with flow cytometry, were carried out to evaluate the roles of ALEX1. RESULTS ALEX1 overexpression in SK-BR3 breast cancer cells inhibited proliferation and induced apoptosis. Furthermore, depletion of ALEX1 in MCF-7 breast cancer cells increased proliferation and inhibited apoptosis. Additional analyses demonstrated that the overexpression of ALEX1 activated the intrinsic apoptosis cascades through up-regulating the expression of Bax, cytosol cytochrome c, active caspase-9 and active caspase-3 and down-regulating the levels of Bcl-2 and mitochondria cytochrome c. Simultaneouly, silencing of ALEX1 inhibited intrinsic apoptosis cascades through down-regulating the expression of Bax, cytosol cytochrome c, active caspase-9, and active caspase-3 and up-regulating the level of Bcl-2 and mitochondria cytochrome c. CONCLUSIONS Our data suggest that ALEX1 as a crucial tumor suppressor gene has been involved in cell proliferation and apoptosis in breast cancer, which may serve as a novel candidate therapeutic target.
Collapse
Affiliation(s)
- Yue Gao
- Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing, China E-mail :
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The disproportional enlargement of the neocortex through evolution has been instrumental in the success of vertebrates, in particular mammals. The neocortex is a multilayered sheet of neurons generated from a simple proliferative neuroepithelium through a myriad of mechanisms with substantial evolutionary conservation. This developing neuroepithelium is populated by progenitors that can generate additional progenitors as well as post-mitotic neurons. Subtle alterations in the production of progenitors vs. differentiated cells during development can result in dramatic differences in neocortical size. This review article will examine how cadherin adhesion proteins, in particular α-catenin and N-cadherin, function in regulating the neural progenitor microenvironment, cell proliferation, and differentiation in cortical development.
Collapse
Key Words
- APC, Adenomatous polyposis coli.
- CBD, catenin binding domain
- CK1, Casein kinase 1
- GSK3β, glycogen synthase kinase 3β
- Hh, Hedgehog
- JMD, juxtamembrane domain
- N-cadherin
- PCP, planar cell polarity
- PI3K, phosphatidylinositol 3-kinase
- PTEN, phosphatase and tensin homolog
- SHH, sonic hedgehog
- SNP, short neural precursor
- VZ, ventricular zone
- adherens junction
- differentiation
- proliferation
- wnt
- α-catenin
- β-catenin
Collapse
Affiliation(s)
- Adam M Stocker
- a Molecular Neurobiology Laboratory ; The Salk Institute ; La Jolla , CA USA
| | | |
Collapse
|
31
|
Christie M, Chang CW, Róna G, Smith KM, Stewart AG, Takeda AAS, Fontes MRM, Stewart M, Vértessy BG, Forwood JK, Kobe B. Structural Biology and Regulation of Protein Import into the Nucleus. J Mol Biol 2015; 428:2060-90. [PMID: 26523678 DOI: 10.1016/j.jmb.2015.10.023] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/16/2015] [Accepted: 10/24/2015] [Indexed: 11/28/2022]
Abstract
Proteins are translated in the cytoplasm, but many need to access the nucleus to perform their functions. Understanding how these nuclear proteins are transported through the nuclear envelope and how the import processes are regulated is therefore an important aspect of understanding cell function. Structural biology has played a key role in understanding the molecular events during the transport processes and their regulation, including the recognition of nuclear targeting signals by the corresponding receptors. Here, we review the structural basis of the principal nuclear import pathways and the molecular basis of their regulation. The pathways involve transport factors that are members of the β-karyopherin family, which can bind cargo directly (e.g., importin-β, transportin-1, transportin-3, importin-13) or through adaptor proteins (e.g., importin-α, snurportin-1, symportin-1), as well as unrelated transport factors such as Hikeshi, involved in the transport of heat-shock proteins, and NTF2, involved in the transport of RanGDP. Solenoid proteins feature prominently in these pathways. Nuclear transport factors recognize nuclear targeting signals on the cargo proteins, including the classical nuclear localization signals, recognized by the adaptor importin-α, and the PY nuclear localization signals, recognized by transportin-1. Post-translational modifications, particularly phosphorylation, constitute key regulatory mechanisms operating in these pathways.
Collapse
Affiliation(s)
- Mary Christie
- The Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales Faculty of Medicine, Darlinghurst, NSW 2010, Australia
| | - Chiung-Wen Chang
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gergely Róna
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1117, Hungary; Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest H-1111, Hungary
| | - Kate M Smith
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Alastair G Stewart
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia
| | - Agnes A S Takeda
- Department of Physics and Biophysics, Institute of Biosciences, Universidade Estadual Paulista, Botucatu, São Paulo 18618-000, Brazil
| | - Marcos R M Fontes
- Department of Physics and Biophysics, Institute of Biosciences, Universidade Estadual Paulista, Botucatu, São Paulo 18618-000, Brazil
| | - Murray Stewart
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Beáta G Vértessy
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1117, Hungary; Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest H-1111, Hungary
| | - Jade K Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
32
|
Jiang G, Zhang Y, Zhang X, Fan C, Wang L, Xu H, Yu J, Wang E. ARMc8 indicates aggressive colon cancers and promotes invasiveness and migration of colon cancer cells. Tumour Biol 2015; 36:9005-13. [PMID: 26081621 DOI: 10.1007/s13277-015-3664-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/10/2015] [Indexed: 10/23/2022] Open
Abstract
Recent studies have implicated ARMc8 in promoting tumor formation in non-small cell lung cancer and breast cancer; however, so far, no studies have revealed the expression pattern or cellular function of ARMc8 in colon cancer. In this study, we used immunohistochemical staining to measure ARMc8 expression in 206 cases of colon cancer and matched adjacent normal colon tissue. Clinically important behaviors of cells, including invasiveness and migration, were evaluated after upregulation of ARMc8 expression in HT29 cells through gene transfection or downregulation of expression in LoVo cells using RNAi. We found that ARMc8 was primarily located in the membrane and cytoplasm of tumor cells, and its expression level was significantly higher in colon cancer in comparison to that in the adjacent normal colon tissues (p < 0.001). ARMc8 expression was closely related to TNM stage (p = 0.006), lymph node metastasis (p = 0.001), and poor prognosis (p = 0.002) of colon cancer. The invasiveness and migration capacity of HT29 cells transfected with ARMc8 were significantly greater than those of control cells (p < 0.001), while ARMc8 siRNA treatment significantly reduced cell invasion and migration in LoVo cells (p < 0.001). Furthermore, we demonstrated that ARMc8 could upregulate the expression of MMP7 and snail and downregulate the expression of p120ctn and α-catenin. Therefore, ARMc8 probably enhanced invasiveness and metastatic capacity by affecting these tumor-associated factors, thereby playing a role in enhancing the tumorigenicity of colon cancer cells. ARMc8 is likely to become a potential therapeutic target for colon cancer.
Collapse
Affiliation(s)
- Guiyang Jiang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yong Zhang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xiupeng Zhang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Chuifeng Fan
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Liang Wang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Hongtao Xu
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Juanhan Yu
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Enhua Wang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
33
|
Jiang G, Yang D, Wang L, Zhang X, Xu H, Miao Y, Wang E, Zhang Y. A novel biomarker ARMc8 promotes the malignant progression of ovarian cancer. Hum Pathol 2015; 46:1471-9. [PMID: 26232863 DOI: 10.1016/j.humpath.2015.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/26/2015] [Accepted: 06/03/2015] [Indexed: 10/23/2022]
Abstract
Ovarian cancer is the most lethal gynecologic malignancy worldwide, and the survival rates have remained low in spite of medical advancements. More research is dedicated to the identification of novel biomarkers for this deadly disease. The association between ARMc8 and ovarian cancer remained unraveled. In this study, immunohistochemical staining was used to examine ARMc8 expression in 247 cases of ovarian cancer, 19 cases of borderline ovarian tumors, 41 cases of benign ovarian tumors, and 9 cases of normal ovarian tissues. It was shown that ARMc8 was predominantly located in the cytoplasm of tumor cells, and its expression was up-regulated in the ovarian cancer (61.9%) and the borderline ovarian tumor tissues (57.9%), in comparison with the benign ovarian tumors (12.2%; P < .05) and the normal ovarian tissues (11.1%; P < .05). In ovarian cancer, ARMc8 expression was closely related to International Federation of Gynecology and Obstetrics stages (P = .002), histology grade (P < .001), lymph node metastasis (P = .008), and poor prognosis (P < .001). Univariate and multivariate Cox analyses revealed that ARMc8 expression was an independent prognostic factor for ovarian cancer (P = .039 and P = .005). In addition, ARMc8 could promote the invasion and migration of ovarian cancer cells. Overexpressing ARMc8 enhanced the invasion and metastasis capacity of ARMc8-low Cavo-3 cells (P < .001), whereas interfering ARMc8 significantly reduced cell invasion and metastasis in ARMc8-high SK-OV-3 cells (P < .001). Furthermore, ARMc8 could up-regulate matrix metalloproteinase-7 and snail and down-regulate α-catenin, p120ctn, and E-cadherin. Collectively, ARMc8 may enhance the invasion and metastasis of ovarian cancer cells and likely to become a potential therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Guiyang Jiang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China, 110001
| | - Dalei Yang
- Center for Assisted Reproduction, Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, China, 110004
| | - Liang Wang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China, 110001
| | - Xiupeng Zhang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China, 110001
| | - Hongtao Xu
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China, 110001
| | - Yuan Miao
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China, 110001
| | - Enhua Wang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China, 110001
| | - Yong Zhang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China, 110001.
| |
Collapse
|
34
|
Genome-wide survey and expression analysis of the PUB family in Chinese cabbage (Brassica rapa ssp. pekinesis). Mol Genet Genomics 2015; 290:2241-60. [DOI: 10.1007/s00438-015-1075-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 05/27/2015] [Indexed: 10/23/2022]
|
35
|
A Combined NMR and Computational Approach to Investigate Peptide Binding to a Designed Armadillo Repeat Protein. J Mol Biol 2015; 427:1916-33. [DOI: 10.1016/j.jmb.2015.02.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/18/2015] [Accepted: 02/23/2015] [Indexed: 11/19/2022]
|
36
|
Bioluminescence imaging to track real-time armadillo promoter activity in live Drosophila embryos. Anal Bioanal Chem 2014; 406:5703-13. [PMID: 25023969 PMCID: PMC4149885 DOI: 10.1007/s00216-014-8000-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 06/17/2014] [Accepted: 06/25/2014] [Indexed: 12/13/2022]
Abstract
We established a method for bioluminescence imaging (BLI) to track real-time gene expression in live Drosophila embryos. We constructed a transgenesis vector containing multiple cloning sites and enhanced green-emitting luciferase (ELuc; Emerald Luc), a brighter and pH-insensitive luciferase for promoter analysis. To evaluate the utility of BLI using an ELuc reporter together with an optimized microscope system, we visualized the expression pattern of armadillo (arm), a member of the Wnt pathway in Drosophila, throughout embryogenesis. We generated transgenic flies carrying the arm:: ELuc fusion gene, and successfully performed BLI continuously for 22 h in the same embryos. Our study showed, for the first time, that arm::Eluc expression was dramatically increased in the anterior midgut rudiment, myoblasts of the dorsal/lateral musculature, and the posterior spiracle after stage 13, and the cephalic region at stage 17. To further demonstrate the application of our BLI system, we revealed that arm transcriptional activity in embryos was modulated inversely by treatment with ionomycin or 6-bromoindirubin-3-oxime (BIO), an inhibitor and activator of Wnt/β-catenin signaling, respectively. Therefore, our microscopic BLI system is useful for monitoring gene expression in live Drosophila embryos, and for investigating regulatory mechanisms by using chemicals and mutations that might affect expression. ᅟ ![]()
Collapse
|
37
|
Xie C, Jiang G, Fan C, Zhang X, Zhang Y, Miao Y, Lin X, Wu J, Wang L, Liu Y, Yu J, Yang L, Zhang D, Xu K, Wang E. ARMC8α promotes proliferation and invasion of non-small cell lung cancer cells by activating the canonical Wnt signaling pathway. Tumour Biol 2014; 35:8903-11. [PMID: 24894675 DOI: 10.1007/s13277-014-2162-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 05/27/2014] [Indexed: 10/25/2022] Open
Abstract
ARMC8 proteins are novel armadillo repeat containing proteins, which are well conserved in eukaryotes and are involved in a variety of processes such as cell migration, proliferation, tissue maintenance, signal transduction, and tumorigenesis. Armadillo repeat proteins include well-known proteins such as β-catenin and p120ctn. Our current knowledge of ARMC8, especially its role in cancer, is limited. In this study, we quantified ARMC8 expression in 112 non-small cell lung cancer (NSCLC) tissues and adjacent non-cancerous tissues, and seven lung cancer cell lines using immunohistochemistry staining and Western blotting. ARMC8 level was significantly higher in NSCLC tissues than in the adjacent normal tissues (67.9 % versus 5.4 %, p < 0.05) and was significantly associated with TNM stage (p = 0.022), lymph node metastasis (p = 0.001), and poor prognosis (p < 0.001) in NSCLC patients. Cox regression analysis demonstrated that ARMC8 was an independent prognostic factor for NSCLC. Consistent with this, ARMC8α downregulation by siRNA knockdown inhibited growth, colony formation, and invasion in A549 lung cancer cells, while ARMC8α overexpression promoted growth, colony formation, and invasion in H1299 lung cancer cells. In addition, ARMC8α knockdown downregulated canonical Wnt-signaling pathway activity and cyclin D1 and matrix metalloproteinase (MMP)-7 expression. Consistent with this, ARMC8α overexpression upregulated canonical Wnt-signaling pathway activity and cyclin D1 and MMP-7 expression. These results indicate that ARMC8α upregulates cyclin D1 and MMP7 expression by activating the canonical Wnt-signaling pathway and thereby promoting lung cancer cell proliferation and invasion. Therefore, ARMC8 might serve as a novel therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Chengyao Xie
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Modular peptide binding: From a comparison of natural binders to designed armadillo repeat proteins. J Struct Biol 2014; 185:147-62. [DOI: 10.1016/j.jsb.2013.07.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 07/26/2013] [Accepted: 07/27/2013] [Indexed: 11/23/2022]
|
39
|
Sawyer N, Chen J, Regan L. All repeats are not equal: a module-based approach to guide repeat protein design. J Mol Biol 2013; 425:1826-1838. [PMID: 23434848 DOI: 10.1016/j.jmb.2013.02.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/11/2013] [Accepted: 02/12/2013] [Indexed: 12/30/2022]
Abstract
Repeat proteins composed of tandem arrays of a short structural motif often mediate protein-protein interactions. Past efforts to design repeat protein-based molecular recognition tools have focused on the creation of templates from the consensus of individual repeats, regardless of their natural context. Such an approach assumes that all repeats are essentially equivalent. In this study, we present the results of a "module-based" approach in which modules composed of tandem repeats are aligned to identify repeat-specific features. Using this approach to analyze tetratricopeptide repeat modules that contain three tandem repeats (3TPRs), we identify two classes of 3TPR modules with distinct structural signatures that are correlated with different sets of functional residues. Our analyses also reveal a high degree of correlation between positions across the entire ligand-binding surface, indicative of a coordinated, coevolving binding surface. Extension of our analyses to different repeat protein modules reveals more examples of repeat-specific features, especially in armadillo repeat modules. In summary, the module-based analyses that we present effectively capture key repeat-specific features that will be important to include in future repeat protein design templates.
Collapse
Affiliation(s)
- Nicholas Sawyer
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, 266 Whitney Avenue, New Haven, CT 06511, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06511, USA
| | - Jieming Chen
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, 266 Whitney Avenue, New Haven, CT 06511, USA.,Program in Computational Biology and Bioinformatics, Yale University, 266 Whitney Avenue, New Haven, CT 06511, USA
| | - Lynne Regan
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, 266 Whitney Avenue, New Haven, CT 06511, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06511, USA.,Program in Computational Biology and Bioinformatics, Yale University, 266 Whitney Avenue, New Haven, CT 06511, USA.,Department of Chemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06511, USA
| |
Collapse
|
40
|
Abstract
The canonical Wnt/β-catenin pathway is an ancient and evolutionarily conserved signaling pathway that is required for the proper development of all metazoans, from the basal demosponge Amphimedon queenslandica to humans. Misregulation of Wnt signaling is implicated in many human diseases, making this pathway an intense area of research in industry as well as academia. In this review, we explore our current understanding of the molecular steps involved in the transduction of a Wnt signal. We will focus on how the critical Wnt pathway component, β-catenin, is in a "futile cycle" of constant synthesis and degradation and how this cycle is disrupted upon pathway activation. We describe the role of the Wnt pathway in major human cancers and in the control of stem cell self-renewal in the developing organism and in adults. Finally, we describe well-accepted criteria that have been proposed as evidence for the involvement of a molecule in regulating the canonical Wnt pathway.
Collapse
Affiliation(s)
- Kenyi Saito-Diaz
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232-8240, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Hulpiau P, Gul IS, van Roy F. New insights into the evolution of metazoan cadherins and catenins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 116:71-94. [PMID: 23481191 DOI: 10.1016/b978-0-12-394311-8.00004-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
E-Cadherin and β-catenin are the best studied representatives of the superfamilies of transmembrane cadherins and intracellular armadillo catenins, respectively. However, in over 600 million years of multicellular animal evolution, these two superfamilies have diversified remarkably both structurally and functionally. Although their basic building blocks, respectively, the cadherin repeat domain and the armadillo repeat domain, predate metazoans, the specific and complex domain compositions of the different family members and their functional roles in cell adhesion and signaling appear to be key features for the emergence of multicellular animal life. Basal animals such as placozoans and sponges have a limited number of distinct cadherins and catenins. The origin of vertebrates, in particular, coincided with a large increase in the number of cadherins and armadillo proteins, including modern "classical" cadherins, protocadherins, and plakophilins. Also, α-catenins increased. This chapter introduces the many different family members and describes the putative evolutionary relationships between them.
Collapse
Affiliation(s)
- Paco Hulpiau
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
| | | | | |
Collapse
|
42
|
YUAN C, LI XR, GU DD, GU Y, GAO YJ, CUI SJ. The Effect of Arabidopsis LFR Protein Domain on Its Co-transactivation and Subcellular Localization in Nucleus*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2012.00048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Two Drosophila DEG/ENaC channel subunits have distinct functions in gustatory neurons that activate male courtship. J Neurosci 2012; 32:11879-89. [PMID: 22915128 DOI: 10.1523/jneurosci.1376-12.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Trimeric sodium channels of the DEG/ENaC family have important roles in neurons, but the specific functions of different subunits present in heteromeric channels are poorly understood. We previously reported that the Drosophila DEG/ENaC subunit Ppk25 is essential in a small subset of gustatory neurons for activation of male courtship behavior, likely through detection of female pheromones. Here we show that, like mutations in ppk25, mutations in another Drosophila DEG/ENaC subunit gene, nope, specifically impair male courtship of females. nope regulatory sequences drive reporter gene expression in gustatory neurons of the labellum wings, and legs, including all gustatory neurons in which ppk25 function is required for male courtship of females. In addition, gustatory-specific knockdown of nope impairs male courtship. Further, the impaired courtship response of nope mutant males to females is rescued by targeted expression of nope in the subset of gustatory neurons in which ppk25 functions. However, nope and ppk25 have nonredundant functions, as targeted expression of ppk25 does not compensate for the lack of nope and vice versa. Moreover, Nope and Ppk25 form specific complexes when coexpressed in cultured cells. Together, these data indicate that the Nope and Ppk25 polypeptides have specific, nonredundant functions in a subset of gustatory neurons required for activation of male courtship in response to females, and suggest the hypothesis that Nope and Ppk25 function as subunits of a heteromeric DEG/ENaC channel required for gustatory detection of female pheromones.
Collapse
|
44
|
Urwyler O, Cortinas-Elizondo F, Suter B. Drosophila sosie functions with β(H)-Spectrin and actin organizers in cell migration, epithelial morphogenesis and cortical stability. Biol Open 2012; 1:994-1005. [PMID: 23213377 PMCID: PMC3507177 DOI: 10.1242/bio.20122154] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 06/26/2012] [Indexed: 11/25/2022] Open
Abstract
Morphogenesis in multicellular organisms requires the careful coordination of cytoskeletal elements, dynamic regulation of cell adhesion and extensive cell migration. sosie (sie) is a novel gene required in various morphogenesis processes in Drosophila oogenesis. Lack of sie interferes with normal egg chamber packaging, maintenance of epithelial integrity and control of follicle cell migration, indicating that sie is involved in controlling epithelial integrity and cell migration. For these functions sie is required both in the germ line and in the soma. Consistent with this, Sosie localizes to plasma membranes in the germ line and in the somatic follicle cells and is predicted to present an EGF-like domain on the extracellular side. Two positively charged residues, C-terminal to the predicted transmembrane domain (on the cytoplasmic side), are required for normal plasma membrane localization of Sosie. Because sie also contributes to normal cortical localization of βH-Spectrin, it appears that cortical βH-Spectrin mediates some of the functions of sosie. sie also interacts with the genes coding for the actin organizers Filamin and Profilin and, in the absence of sie function, F-actin is less well organized and nurse cells frequently fuse.
Collapse
Affiliation(s)
- Olivier Urwyler
- Present address: Vesalius Research Center, Flanders Institute of Biotechnology (VIB), University of Leuven (KUL), 3000 Leuven, Belgium
| | | | | |
Collapse
|
45
|
Vogelmann K, Drechsel G, Bergler J, Subert C, Philippar K, Soll J, Engelmann JC, Engelsdorf T, Voll LM, Hoth S. Early senescence and cell death in Arabidopsis saul1 mutants involves the PAD4-dependent salicylic acid pathway. PLANT PHYSIOLOGY 2012; 159:1477-87. [PMID: 22706448 PMCID: PMC3425192 DOI: 10.1104/pp.112.196220] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 06/14/2012] [Indexed: 05/21/2023]
Abstract
Age-dependent leaf senescence and cell death in Arabidopsis (Arabidopsis thaliana) requires activation of the transcription factor ORESARA1 (ORE1) and is not initiated prior to a leaf age of 28 d. Here, we investigate the conditional execution of events that regulate early senescence and cell death in senescence-associated ubiquitin ligase1 (saul1) mutants, deficient in the PLANT U-BOX-ARMADILLO E3 ubiquitin ligase SAUL1. In saul1 mutants challenged with low light, the switch of age-dependent cell death was turned on prematurely, as indicated by the accumulation of ORE1 transcripts, induction of the senescence marker gene SENESCENCE-ASSOCIATED GENE12, and cell death. However, ORE1 accumulation by itself was not sufficient to cause saul1 phenotypes, as demonstrated by double mutant analysis. Exposure of saul1 mutants to low light for only 24 h did not result in visible symptoms of senescence; however, the senescence-promoting transcription factor genes WRKY53, WRKY6, and NAC-LIKE ACTIVATED BY AP3/PI were up-regulated, indicating that senescence in saul1 seedlings was already initiated. To resolve the time course of gene expression, microarray experiments were performed at narrow intervals. Differential expression of the genes involved in salicylic acid and defense mechanisms were the earliest events detected, suggesting a central role for salicylic acid in saul1 senescence and cell death. The salicylic acid content increased in low-light-treated saul1 mutants, and application of exogenous salicylic acid was indeed sufficient to trigger saul1 senescence in permissive light conditions. Double mutant analyses showed that PHYTOALEXIN DEFICIENT4 (PAD4) but not NONEXPRESSER OF PR GENES1 (NPR1) is essential for saul1 phenotypes. Our results indicate that saul1 senescence depends on the PAD4-dependent salicylic acid pathway but does not require NPR1 signaling.
Collapse
|
46
|
Roberts DM, Pronobis MI, Alexandre KM, Rogers GC, Poulton JS, Schneider DE, Jung KC, McKay DJ, Peifer M. Defining components of the ß-catenin destruction complex and exploring its regulation and mechanisms of action during development. PLoS One 2012; 7:e31284. [PMID: 22359584 PMCID: PMC3281067 DOI: 10.1371/journal.pone.0031284] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 01/05/2012] [Indexed: 11/19/2022] Open
Abstract
Background A subset of signaling pathways play exceptionally important roles in embryonic and post-embryonic development, and mis-regulation of these pathways occurs in most human cancers. One such pathway is the Wnt pathway. The primary mechanism keeping Wnt signaling off in the absence of ligand is regulated proteasomal destruction of the canonical Wnt effector ßcatenin (or its fly homolog Armadillo). A substantial body of evidence indicates that SCFβTrCP mediates βcat destruction, however, an essential role for Roc1 has not been demonstrated in this process, as would be predicted. In addition, other E3 ligases have also been proposed to destroy βcat, suggesting that βcat destruction may be regulated differently in different tissues. Methodology/Principal Findings Here we used cultured Drosophila cells, human colon cancer cells, and Drosophila embryos and larvae to explore the machinery that targets Armadillo for destruction. Using RNAi in Drosophila S2 cells to examine which SCF components are essential for Armadillo destruction, we find that Roc1/Roc1a is essential for regulating Armadillo stability, and that in these cells the only F-box protein playing a detectable role is Slimb. Second, we find that while embryonic and larval Drosophila tissues use the same destruction complex proteins, the response of these tissues to destruction complex inactivation differs, with Armadillo levels more elevated in embryos. We provide evidence consistent with the possibility that this is due to differences in armadillo mRNA levels. Third, we find that there is no correlation between the ability of different APC2 mutant proteins to negatively regulate Armadillo levels, and their recently described function in positively-regulating Wnt signaling. Finally, we demonstrate that APC proteins lacking the N-terminal Armadillo-repeat domain cannot restore Armadillo destruction but retain residual function in negatively-regulating Wnt signaling. Conclusions/Significance We use these data to refine our model for how Wnt signaling is regulated during normal development.
Collapse
Affiliation(s)
- David M. Roberts
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biology, Franklin and Marshall College, Lancaster, Pennsylvania, United States of America
- * E-mail: (DMR); (MP)
| | - Mira I. Pronobis
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kelly M. Alexandre
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Gregory C. Rogers
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - John S. Poulton
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Daniel E. Schneider
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kuo-Chen Jung
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Daniel J. McKay
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail: (DMR); (MP)
| |
Collapse
|
47
|
Marfori M, Lonhienne TG, Forwood JK, Kobe B. Structural Basis of High-Affinity Nuclear Localization Signal Interactions with Importin-α. Traffic 2012; 13:532-48. [DOI: 10.1111/j.1600-0854.2012.01329.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 01/13/2012] [Accepted: 01/16/2012] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Jade K. Forwood
- School of Biomedical Sciences; Charles Sturt University; Wagga Wagga; NSW; 2650; Australia
| | | |
Collapse
|
48
|
Archbold HC, Yang YX, Chen L, Cadigan KM. How do they do Wnt they do?: regulation of transcription by the Wnt/β-catenin pathway. Acta Physiol (Oxf) 2012; 204:74-109. [PMID: 21624092 DOI: 10.1111/j.1748-1716.2011.02293.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Wnt/β-catenin signalling is known to play many roles in metazoan development and tissue homeostasis. Misregulation of the pathway has also been linked to many human diseases. In this review, specific aspects of the pathway's involvement in these processes are discussed, with an emphasis on how Wnt/β-catenin signalling regulates gene expression in a cell and temporally specific manner. The T-cell factor (TCF) family of transcription factors, which mediate a large portion of Wnt/β-catenin signalling, will be discussed in detail. Invertebrates contain a single TCF gene that contains two DNA-binding domains, the high mobility group (HMG) domain and the C-clamp, which increases the specificity of DNA binding. In vertebrates, the situation is more complex, with four TCF genes producing many isoforms that contain the HMG domain, but only some of which possess a C-clamp. Vertebrate TCFs have been reported to act in concert with many other transcription factors, which may explain how they obtain sufficient specificity for specific DNA sequences, as well as how they achieve a wide diversity of transcriptional outputs in different cells.
Collapse
Affiliation(s)
- H C Archbold
- Program in Cell and Molecular Biology, University of Michigan, Ann Arbor, 48109-1048, USA
| | | | | | | |
Collapse
|
49
|
Harris TJ. Adherens Junction Assembly and Function in the Drosophila Embryo. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 293:45-83. [DOI: 10.1016/b978-0-12-394304-0.00007-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
Abstract
Adherens junctions are the most common junction type found in animal epithelia. Their core components are classical cadherins and catenins, which form membrane-spanning complexes that mediate intercellular binding on the extracellular side and associate with the actin cytoskeleton on the intracellular side. Junctional cadherin-catenin complexes are key elements involved in driving animal morphogenesis. Despite their ubiquity and importance, comparative studies of classical cadherins, catenins and their related molecules suggest that the cadherin/catenin-based adherens junctions have undergone structural and compositional transitions during the diversification of animal lineages. This chapter describes the molecular diversities related to the cadherin-catenin complex, based on accumulated molecular and genomic information. Understanding when and how the junctional cadherin-catenin complex originated, and its subsequent diversification in animals, promotes a comprehensive understanding of the mechanisms of animal morphological diversification.
Collapse
Affiliation(s)
- Oda Hiroki
- JT Biohistory Research Hall, 1-1 Murasaki-cho, 569-1125, Takatsuki, Osaka, Japan,
| |
Collapse
|