1
|
Ku D, Yang Y, Park Y, Jang D, Lee N, Lee YK, Lee K, Lee J, Han YB, Jang S, Choi SR, Ha YJ, Choi YS, Jeong WJ, Lee YJ, Lee KJ, Cha S, Kim Y. SLIRP amplifies antiviral signaling via positive feedback regulation and contributes to autoimmune diseases. Cell Rep 2025; 44:115588. [PMID: 40253699 DOI: 10.1016/j.celrep.2025.115588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 01/24/2025] [Accepted: 03/28/2025] [Indexed: 04/22/2025] Open
Abstract
Abnormal innate immune response is a prominent feature underlying autoimmune diseases. One emerging factor driving dysregulated immune activation is cytosolic mitochondrial double-stranded RNAs (mt-dsRNAs). However, the mechanism by which mt-dsRNAs stimulate immune responses remains poorly understood. Here, we discover SRA stem-loop-interacting RNA-binding protein (SLIRP) as an amplifier of mt-dsRNA-triggered antiviral signals. In autoimmune diseases, SLIRP is commonly upregulated, and the targeted knockdown of SLIRP dampens the interferon response. We find that the activation of melanoma differentiation-associated gene 5 (MDA5) by exogenous dsRNAs upregulates SLIRP, which then stabilizes mt-dsRNAs and elevates their cytosolic levels to activate MDA5 further, augmenting the interferon response. Furthermore, the downregulation of SLIRP partially rescues the abnormal interferon-stimulated gene expression in primary cells of patients with autoimmune disease and makes cells vulnerable to certain viral infections. Our study unveils SLIRP as a pivotal mediator of the interferon response through positive feedback amplification of antiviral signaling via mt-dsRNAs.
Collapse
Affiliation(s)
- Doyeong Ku
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yewon Yang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Youngran Park
- Center for RNA Research, Institute of Basic Science, Seoul 08826, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Daesong Jang
- Department of Oral and Maxillofacial Diagnostic Science, Center for Orphaned Autoimmune Disorders, University of Florida College of Dentistry, Gainesville, FL 32610, USA
| | - Namseok Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yong-Ki Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Keonyong Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jaeseon Lee
- R&D Institute, ORGANOIDSCIENCES Ltd., Seongnam 13488, Republic of Korea
| | - Yeon Bi Han
- Department of Pathology and Translational Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Soojin Jang
- R&D Institute, ORGANOIDSCIENCES Ltd., Seongnam 13488, Republic of Korea
| | - Se Rim Choi
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - You-Jung Ha
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Yong Seok Choi
- Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Woo-Jin Jeong
- Department of Otorhinolaryngology - Head & Neck Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea; Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Yun Jong Lee
- Department of Pathology and Translational Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea; Division of Rheumatology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Kyung Jin Lee
- R&D Institute, ORGANOIDSCIENCES Ltd., Seongnam 13488, Republic of Korea
| | - Seunghee Cha
- Department of Oral and Maxillofacial Diagnostic Science, Center for Orphaned Autoimmune Disorders, University of Florida College of Dentistry, Gainesville, FL 32610, USA.
| | - Yoosik Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Graduate School of Engineering Biology, KAIST, Daejeon 34141, Republic of Korea; KAIST Institute for BioCentury (KIB), Daejeon 34141, Republic of Korea; KAIST Institute for Health Science and Technology (KIHST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
2
|
Bass BL, Ranganathan S. The importance of IP6 for ADAR RNA-editing enzymes and antiviral defense. Proc Natl Acad Sci U S A 2025; 122:e2425207122. [PMID: 39835908 PMCID: PMC11789051 DOI: 10.1073/pnas.2425207122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Affiliation(s)
- Brenda L. Bass
- Department of Biochemistry, University of Utah, Salt Lake City, UT84112
| | | |
Collapse
|
3
|
Andrews RJ, Bass BL. Comprehensive Mapping of Human dsRNAome Reveals Conservation, Neuronal Enrichment, and Intermolecular Interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.634786. [PMID: 39975386 PMCID: PMC11838218 DOI: 10.1101/2025.01.24.634786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The human transcriptome contains millions of A-to-I editing sites arising from an unclear number of poorly characterized dsRNAs. Editing sites are often used to infer presence of dsRNA, but this method is limited by transcription levels, read depth, ADAR expression and cannot identify unedited dsRNA. To address these limitations, we developed dsRNAscan. Applying dsRNAscan to the human genome predicted 5 million dsRNAs. Genomic distribution of dsRNAs encompassing repetitive elements was widespread, but non-repetitive dsRNAs were sparse and enriched at chromosomal tips. dsRNAscan predicted hundreds of long, highly paired dsRNAs suspected to be immunogenic, but only one was in a 3'UTR, and thus likely to challenge cytoplasmic immune sensors. We observed several thousand editing enriched regions suspected to arise from intermolecular structures, and dozens of neuronally enriched dsRNAs conserved across vertebrates. This study offers the first comprehensive set of dsRNA annotations for the human genome, available as a resource at https://dsrna.chpc.utah.edu/.
Collapse
Affiliation(s)
- Ryan J Andrews
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Brenda L Bass
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
4
|
Knittel TL, Montgomery BE, Tate AJ, Deihl EW, Nawrocki AS, Hoerndli FJ, Montgomery TA. A low-abundance class of Dicer-dependent siRNAs produced from a variety of features in C. elegans. Genome Res 2024; 34:2203-2216. [PMID: 39622635 PMCID: PMC11694761 DOI: 10.1101/gr.279083.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 10/03/2024] [Indexed: 12/25/2024]
Abstract
Canonical small interfering RNAs (siRNAs) are processed from double-stranded RNA (dsRNA) by Dicer and associate with Argonautes to direct RNA silencing. In Caenorhabditis elegans, 22G-RNAs and 26G-RNAs are often referred to as siRNAs but display distinct characteristics. For example, 22G-RNAs do not originate from dsRNA and do not depend on Dicer, whereas 26G-RNAs require Dicer but derive from an atypical RNA duplex and are produced exclusively antisense to their messenger RNA (mRNA) templates. To identify canonical siRNAs in C. elegans, we first characterized the siRNAs produced via the exogenous RNA interference (RNAi) pathway. During RNAi, dsRNA is processed into ∼23 nt duplexes with ∼2 nt, 3'-overhangs, ultimately yielding siRNAs devoid of 5'G-containing sequences that bind with high affinity to the Argonaute RDE-1, but also to the microRNA (miRNA) pathway Argonaute, ALG-1. Using these characteristics, we searched for their endogenous counterparts and identified thousands of endogenous loci representing dozens of unique elements that give rise to mostly low to moderate levels of siRNAs, called 23H-RNAs. These loci include repetitive elements, putative coding genes, pseudogenes, noncoding RNAs, and unannotated features, many of which adopt hairpin (hp) structures reminiscent of the hpRNA/RNAi pathway in flies and mice. RDE-1 competes with other Argonautes for binding to 23H-RNAs. When RDE-1 is depleted, these siRNAs are enriched in ALG-1 and ALG-2 complexes. Our results expand the known repertoire of C. elegans small RNAs and their Argonaute interactors, and demonstrate that key features of the endogenous siRNA pathway are relatively unchanged in animals.
Collapse
Affiliation(s)
- Thiago L Knittel
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Brooke E Montgomery
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Alex J Tate
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Ennis W Deihl
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Anastasia S Nawrocki
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Frederic J Hoerndli
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Taiowa A Montgomery
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA;
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
5
|
Xu W, Sun Y, Breen P, Ruvkun G, Mao K. Caenorhabditis elegans inositol hexaphosphate pathways couple to RNA interference and pathogen defense. Proc Natl Acad Sci U S A 2024; 121:e2416982121. [PMID: 39602251 PMCID: PMC11626161 DOI: 10.1073/pnas.2416982121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
RNA interference (RNAi) is an evolutionarily conserved pathway that defends against viral infections in diverse organisms. Caenorhabditis elegans mutations that enhance RNAi have revealed pathways that may regulate antiviral defense. A genetic screen for C. elegans mutations that fail to up-regulate a defense response reporter transgene detected mutations that enhance RNAi to silence this reporter gene in the inositol polyphosphate multikinase impk-1, the synMuv B gene lin-15B, and the pathogen defense response gene pals-22. Using other assays for enhanced RNAi, we found that the impk-1 alleles and an ippk-1 gene inactivation of a later step in inositol hexaphosphate (IP6) synthesis, and the lin-15B and pals-22 alleles enhance RNAi. IP6 has been known for decades to bind and stabilize human adenosine deaminase that acts on RNA (ADAR) as well as the paralog tRNA editing ADAT. We show that the C. elegans IP6 pathway is also required for mRNA and tRNA editing. Thus, a deficiency in two axes of RNA editing enhances the already potent C. elegans RNAi antiviral defense, suggesting adenosine to inosine RNA editing may normally moderate this siRNA antiviral defense pathway. The C. elegans IP6-deficient mutants are synthetic lethal with a set of enhanced RNAi mutants that act in the polyploid hypodermis to regulate collagen secretion and signaling from that tissue, implicating IP6 signaling especially in this tissue. This enhanced antiviral RNAi response uses the C. elegans RIG-I-like receptor DRH-1 to activate the unfolded protein response (UPR). The production of primary siRNAs, rather than secondary siRNAs, contributes to this activation of the UPR through XBP-1 signaling. The gon-14 and pal-17 mutants that also emerged from this screen act in the mitochondrial defense pathway rather than by enhancing RNAi.
Collapse
Affiliation(s)
- Wenjing Xu
- Institute of Future Agriculture, Northwest Agriculture and Forestry University, Yangling, Shaanxi712100, China
| | - Yifan Sun
- Institute of Future Agriculture, Northwest Agriculture and Forestry University, Yangling, Shaanxi712100, China
| | - Peter Breen
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Kai Mao
- Institute of Future Agriculture, Northwest Agriculture and Forestry University, Yangling, Shaanxi712100, China
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Genetics, Harvard Medical School, Boston, MA02115
| |
Collapse
|
6
|
Dailamy A, Lyu W, Nourreddine S, Tong M, Rainaldi J, McDonald D, Panwala R, Muotri A, Breen MS, Zhang K, Mali P. Charting and probing the activity of ADARs in human development and cell-fate specification. Nat Commun 2024; 15:9818. [PMID: 39537590 PMCID: PMC11561244 DOI: 10.1038/s41467-024-53973-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Adenosine deaminases acting on RNA (ADARs) impact diverse cellular processes and pathological conditions, but their functions in early cell-fate specification remain less understood. To gain insights here, we began by charting time-course RNA editing profiles in human organs from fetal to adult stages. Next, we utilized hPSC differentiation to experimentally probe ADARs, harnessing brain organoids as neural specific, and teratomas as pan-tissue developmental models. We show that time-series teratomas faithfully recapitulate fetal developmental trends, and motivated by this, conducted pan-tissue, single-cell CRISPR-KO screens of ADARs in teratomas. Knocking out ADAR leads to a global decrease in RNA editing across all germ-layers. Intriguingly, knocking out ADAR leads to an enrichment of adipogenic cells, revealing a role for ADAR in human adipogenesis. Collectively, we present a multi-pronged framework charting time-resolved RNA editing profiles and coupled ADAR perturbations in developmental models, thereby shedding light on the role of ADARs in cell-fate specification.
Collapse
Affiliation(s)
- Amir Dailamy
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
| | - Weiqi Lyu
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Sami Nourreddine
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
| | - Michael Tong
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
| | - Joseph Rainaldi
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
- Biomedical Sciences Graduate Program, University of California San Diego, San Diego, CA, USA
| | - Daniella McDonald
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
- Biomedical Sciences Graduate Program, University of California San Diego, San Diego, CA, USA
| | - Rebecca Panwala
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
| | - Alysson Muotri
- Department of Pediatrics and Cellular & Molecular Medicine, University of California San Diego, San Diego, CA, USA
| | | | - Kun Zhang
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Prashant Mali
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
7
|
Erdmann EA, Forbes M, Becker M, Perez S, Hundley HA. ADR-2 regulates fertility and oocyte fate in Caenorhabditis elegans. Genetics 2024; 228:iyae114. [PMID: 39028799 PMCID: PMC11457940 DOI: 10.1093/genetics/iyae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 05/24/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024] Open
Abstract
RNA-binding proteins (RBPs) play essential roles in coordinating germline gene expression and development in all organisms. Here, we report that loss of ADR-2, a member of the adenosine deaminase acting on RNA family of RBPs and the sole adenosine-to-inosine RNA-editing enzyme in Caenorhabditis elegans, can improve fertility in multiple genetic backgrounds. First, we show that loss of RNA editing by ADR-2 restores normal embryo production to subfertile animals that transgenically express a vitellogenin (yolk protein) fusion to green fluorescent protein. Using this phenotype, a high-throughput screen was designed to identify RBPs that when depleted yield synthetic phenotypes with loss of adr-2. The screen uncovered a genetic interaction between ADR-2 and SQD-1, a member of the heterogeneous nuclear ribonucleoprotein family of RBPs. Microscopy, reproductive assays, and high-throughput sequencing reveal that sqd-1 is essential for the onset of oogenesis and oogenic gene expression in young adult animals and that loss of adr-2 can counteract the effects of loss of sqd-1 on gene expression and rescue the switch from spermatogenesis to oogenesis. Together, these data demonstrate that ADR-2 can contribute to the suppression of fertility and suggest novel roles for both RNA editing-dependent and RNA editing-independent mechanisms in regulating embryogenesis.
Collapse
Affiliation(s)
- Emily A Erdmann
- Genome, Cell and Developmental Biology Graduate Program, Indiana University, Bloomington, IN 47405, USA
| | - Melanie Forbes
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Margaret Becker
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington IN 47405, USA
| | - Sarina Perez
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Heather A Hundley
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
8
|
Eliad B, Schneider N, Ben-Naim Zgayer O, Amichan Y, Glaser F, Erdmann EA, Rajendren S, Hundley HA, Lamm AT. ADBP-1 regulates ADR-2 nuclear localization to control editing substrate selection. Nucleic Acids Res 2024; 52:9501-9518. [PMID: 39036970 PMCID: PMC11381337 DOI: 10.1093/nar/gkae641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/05/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024] Open
Abstract
Adenosine-to-inosine (A-to-I) RNA editing, catalyzed by ADAR enzymes, is a prevalent and conserved RNA modification. While A-to-I RNA editing is essential in mammals, in Caenorhabditis elegans, it is not, making them invaluable for RNA editing research. In C. elegans, ADR-2 is the sole catalytic A-to-I editing enzyme, and ADR-1 is an RNA editing regulator. ADAR localization is well-studied in humans but not well-established in C. elegans. In this study, we examine the cellular and tissue-specific localization of ADR-2. We show that while ADR-2 is present in most cells in the embryo, at later developmental stages, its expression is both tissue- and cell-type-specific. Additionally, both ADARs are mainly in the nucleus. ADR-2 is adjacent to the chromosomes during the cell cycle. We show that the nuclear localization of endogenous ADR-2 depends on ADBP-1, not ADR-1. In adbp-1 mutant worms, ADR-2 is mislocalized, while ADR-1 is not, leading to decreased editing levels and de-novo editing, mostly in exons, suggesting that ADR-2 is also functional in the cytoplasm. Besides, mutated ADBP-1 affects gene expression. Furthermore, we show that ADR-2 targets adenosines with different surrounding nucleotides in exons and introns. Our findings indicate that ADR-2 cellular localization is highly regulated and affects its function.
Collapse
Affiliation(s)
- Berta Eliad
- Faculty of Biology, Technion- Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Noa Schneider
- Faculty of Biology, Technion- Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Orna Ben-Naim Zgayer
- Faculty of Biology, Technion- Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Yarden Amichan
- Faculty of Biology, Technion- Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Fabian Glaser
- Technion Center for Structural Biology, Technion Human Health Initiative, Technion, Haifa 32000, Israel
| | - Emily A Erdmann
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Suba Rajendren
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Heather A Hundley
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Ayelet T Lamm
- Faculty of Biology, Technion- Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| |
Collapse
|
9
|
Eliad B, Schneider N, Zgayer OBN, Amichan Y, Glaser F, Erdmann EA, Rajendren S, Hundley HA, Lamm AT. ADBP-1 regulates ADR-2 nuclear localization to control editing substrate selection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.14.540679. [PMID: 38895382 PMCID: PMC11185548 DOI: 10.1101/2023.05.14.540679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing, catalyzed by ADAR enzymes, is a prevalent and conserved RNA modification. While A-to-I RNA editing is essential in mammals, in Caenorhabditis elegans , it is not, making them invaluable for RNA editing research. In C. elegans , ADR-2 is the sole catalytic A-to-I editing enzyme, and ADR-1 is an RNA editing regulator. ADAR localization is well-studied in humans but not well-established in C. elegans . In this study, we examine the cellular and tissue-specific localization of ADR-2. We show that while ADR-2 is present in most cells in the embryo, at later developmental stages, its expression is both tissue- and cell-type-specific. Additionally, both ADARs are mainly in the nucleus. ADR-2 is adjacent to the chromosomes during the cell cycle. We show that the nuclear localization of endogenous ADR-2 depends on ADBP-1, not ADR-1. In adbp-1 mutant worms, ADR-2 is mislocalized, while ADR-1 is not, leading to decreased editing levels and de-novo editing, mostly in exons, suggesting that ADR-2 is also functional in the cytoplasm. Besides, mutated ADBP-1 affects gene expression. Furthermore, we show that ADR-2 targets adenosines with different surrounding nucleotides in exons and introns. Our findings indicate that ADR-2 cellular localization is highly regulated and affects its function.
Collapse
|
10
|
Erdmann EA, Forbes M, Becker M, Perez S, Hundley HA. ADR-2 regulates fertility and oocyte fate in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.01.565157. [PMID: 37961348 PMCID: PMC10635048 DOI: 10.1101/2023.11.01.565157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
RNA binding proteins play essential roles in coordinating germline gene expression and development in all organisms. Here, we report that loss of ADR-2, a member of the Adenosine DeAminase acting on RNA (ADAR) family of RNA binding proteins and the sole adenosine-to-inosine RNA editing enzyme in C. elegans, can improve fertility in multiple genetic backgrounds. First, we show that loss of RNA editing by ADR-2 restores normal embryo production to subfertile animals that transgenically express a vitellogenin (yolk protein) fusion to green fluorescent protein. Using this phenotype, a high-throughput screen was designed to identify RNA binding proteins that when depleted yield synthetic phenotypes with loss of adr-2. The screen uncovered a genetic interaction between ADR-2 and SQD-1, a member of the heterogenous nuclear ribonucleoprotein (hnRNP) family of RNA binding proteins. Microscopy, reproductive assays, and high-throughput sequencing reveal that sqd-1 is essential for the onset of oogenesis and oogenic gene expression in young adult animals, and that loss of adr-2 can counteract the effects of loss of sqd-1 on gene expression and rescue the switch from spermatogenesis to oogenesis. Together, these data demonstrate that ADR-2 can contribute to the suppression of fertility and suggest novel roles for both RNA editing-dependent and independent mechanisms in regulating embryogenesis.
Collapse
Affiliation(s)
- Emily A. Erdmann
- Genome, Cell and Developmental Biology Graduate Program, Indiana University, Bloomington IN, US 47405
| | - Melanie Forbes
- Department of Biology, Indiana University, Bloomington IN, US 47405
| | - Margaret Becker
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington IN, US 47405
| | - Sarina Perez
- Department of Biology, Indiana University, Bloomington IN, US 47405
| | | |
Collapse
|
11
|
Bass BL. Adenosine deaminases that act on RNA, then and now. RNA (NEW YORK, N.Y.) 2024; 30:521-529. [PMID: 38531651 PMCID: PMC11019741 DOI: 10.1261/rna.079990.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 02/11/2024] [Indexed: 03/28/2024]
Abstract
In this article, I recount my memories of key experiments that led to my entry into the RNA editing/modification field. I highlight initial observations made by the pioneers in the ADAR field, and how they fit into our current understanding of this family of enzymes. I discuss early mysteries that have now been solved, as well as those that still linger. Finally, I discuss important, outstanding questions and acknowledge my hope for the future of the RNA editing/modification field.
Collapse
Affiliation(s)
- Brenda L Bass
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
12
|
Dhakal A, Salim C, Skelly M, Amichan Y, Lamm AT, Hundley HA. ADARs regulate cuticle collagen expression and promote survival to pathogen infection. BMC Biol 2024; 22:37. [PMID: 38360623 PMCID: PMC10870475 DOI: 10.1186/s12915-024-01840-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 02/02/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND In all organisms, the innate immune system defends against pathogens through basal expression of molecules that provide critical barriers to invasion and inducible expression of effectors that combat infection. The adenosine deaminase that act on RNA (ADAR) family of RNA-binding proteins has been reported to influence innate immunity in metazoans. However, studies on the susceptibility of ADAR mutant animals to infection are largely lacking. RESULTS Here, by analyzing adr-1 and adr-2 null mutants in well-established slow-killing assays, we find that both Caenorhabditis elegans ADARs are important for organismal survival to gram-negative and gram-positive bacteria, all of which are pathogenic to humans. Furthermore, our high-throughput sequencing and genetic analysis reveal that ADR-1 and ADR-2 function in the same pathway to regulate collagen expression. Consistent with this finding, our scanning electron microscopy studies indicate adr-1;adr-2 mutant animals also have altered cuticle morphology prior to pathogen exposure. CONCLUSIONS Our data uncover a critical role of the C. elegans ADAR family of RNA-binding proteins in promoting cuticular collagen expression, which represents a new post-transcriptional regulatory node that influences the extracellular matrix. In addition, we provide the first evidence that ADAR mutant animals have altered susceptibility to infection with several opportunistic human pathogens, suggesting a broader role of ADARs in altering physical barriers to infection to influence innate immunity.
Collapse
Affiliation(s)
- Alfa Dhakal
- Cell, Molecular and Cancer Biology Graduate Program, Indiana University School of Medicine-Bloomington, Bloomington, IN, 47405, USA
| | - Chinnu Salim
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Mary Skelly
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Yarden Amichan
- Faculty of Biology, Technion Institute of Technology, Haifa, Israel
| | - Ayelet T Lamm
- Faculty of Biology, Technion Institute of Technology, Haifa, Israel
| | - Heather A Hundley
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
13
|
Cottrell KA, Andrews RJ, Bass BL. The competitive landscape of the dsRNA world. Mol Cell 2024; 84:107-119. [PMID: 38118451 PMCID: PMC10843539 DOI: 10.1016/j.molcel.2023.11.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/22/2023]
Abstract
The ability to sense and respond to infection is essential for life. Viral infection produces double-stranded RNAs (dsRNAs) that are sensed by proteins that recognize the structure of dsRNA. This structure-based recognition of viral dsRNA allows dsRNA sensors to recognize infection by many viruses, but it comes at a cost-the dsRNA sensors cannot always distinguish between "self" and "nonself" dsRNAs. "Self" RNAs often contain dsRNA regions, and not surprisingly, mechanisms have evolved to prevent aberrant activation of dsRNA sensors by "self" RNA. Here, we review current knowledge about the life of endogenous dsRNAs in mammals-the biosynthesis and processing of dsRNAs, the proteins they encounter, and their ultimate degradation. We highlight mechanisms that evolved to prevent aberrant dsRNA sensor activation and the importance of competition in the regulation of dsRNA sensors and other dsRNA-binding proteins.
Collapse
Affiliation(s)
- Kyle A Cottrell
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA.
| | - Ryan J Andrews
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Brenda L Bass
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
14
|
Starr LA, McKay LE, Peter KN, Seyfarth LM, Berkowitz LA, Caldwell KA, Caldwell GA. Attenuation of Dopaminergic Neurodegeneration in a C. elegans Parkinson's Model through Regulation of Xanthine Dehydrogenase (XDH-1) Expression by the RNA Editase, ADR-2. J Dev Biol 2023; 11:jdb11020020. [PMID: 37218814 DOI: 10.3390/jdb11020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023] Open
Abstract
Differential RNA editing by adenosine deaminases that act on RNA (ADARs) has been implicated in several neurological disorders, including Parkinson's disease (PD). Here, we report results of a RNAi screen of genes differentially regulated in adr-2 mutants, normally encoding the only catalytically active ADAR in Caenorhabditis elegans, ADR-2. Subsequent analysis of candidate genes that alter the misfolding of human α-synuclein (α-syn) and dopaminergic neurodegeneration, two PD pathologies, reveal that reduced expression of xdh-1, the ortholog of human xanthine dehydrogenase (XDH), is protective against α-synuclein-induced dopaminergic neurodegeneration. Further, RNAi experiments show that WHT-2, the worm ortholog of the human ABCG2 transporter and a predicted interactor of XDH-1, is the rate-limiting factor in the ADR-2, XDH-1, WHT-2 system for dopaminergic neuroprotection. In silico structural modeling of WHT-2 indicates that the editing of one nucleotide in the wht-2 mRNA leads to the substitution of threonine with alanine at residue 124 in the WHT-2 protein, changing hydrogen bonds in this region. Thus, we propose a model where wht-2 is edited by ADR-2, which promotes optimal export of uric acid, a known substrate of WHT-2 and a product of XDH-1 activity. In the absence of editing, uric acid export is limited, provoking a reduction in xdh-1 transcription to limit uric acid production and maintain cellular homeostasis. As a result, elevation of uric acid is protective against dopaminergic neuronal cell death. In turn, increased levels of uric acid are associated with a decrease in ROS production. Further, downregulation of xdh-1 is protective against PD pathologies because decreased levels of XDH-1 correlate to a concomitant reduction in xanthine oxidase (XO), the form of the protein whose by-product is superoxide anion. These data indicate that modifying specific targets of RNA editing may represent a promising therapeutic strategy for PD.
Collapse
Affiliation(s)
- Lindsey A Starr
- Department of Biological Sciences, Center for Convergent Biomedicine, Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Luke E McKay
- Department of Biological Sciences, Center for Convergent Biomedicine, Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Kylie N Peter
- Department of Biological Sciences, Center for Convergent Biomedicine, Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Lena M Seyfarth
- Department of Biological Sciences, Center for Convergent Biomedicine, Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Laura A Berkowitz
- Department of Biological Sciences, Center for Convergent Biomedicine, Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Kim A Caldwell
- Department of Biological Sciences, Center for Convergent Biomedicine, Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35487, USA
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Nathan Shock Center of Excellence for the Basic Biology of Aging, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Guy A Caldwell
- Department of Biological Sciences, Center for Convergent Biomedicine, Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35487, USA
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Nathan Shock Center of Excellence for the Basic Biology of Aging, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
15
|
Uhl S, Jang C, Frere JJ, Jordan TX, Simon AE, tenOever BR. ADAR1 Biology Can Hinder Effective Antiviral RNA Interference. J Virol 2023; 97:e0024523. [PMID: 37017521 PMCID: PMC10134826 DOI: 10.1128/jvi.00245-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/10/2023] [Indexed: 04/06/2023] Open
Abstract
Viruses constantly evolve and adapt to the antiviral defenses of their hosts. The biology of viral circumvention of these selective pressures can often be attributed to the acquisition of novel antagonistic gene products or by rapid genome change that prevents host recognition. To study viral evasion of RNA interference (RNAi)-based defenses, we established a robust antiviral system in mammalian cells using recombinant Sendai virus designed to be targeted by endogenous host microRNAs (miRNAs) with perfect complementarity. Using this system, we previously demonstrated the intrinsic ability of positive-strand RNA viruses to escape this selective pressure via homologous recombination, which was not observed in negative-strand RNA viruses. Here, we show that given extensive time, escape of miRNA-targeted Sendai virus was enabled by host adenosine deaminase acting on RNA 1 (ADAR1). Independent of the viral transcript targeted, ADAR1 editing resulted in disruption of the miRNA-silencing motif, suggesting an intolerance for extensive RNA-RNA interactions necessary for antiviral RNAi. This was further supported in Nicotiana benthamiana, where exogenous expression of ADAR1 interfered with endogenous RNAi. Together, these results suggest that ADAR1 diminishes the effectiveness of RNAi and may explain why it is absent in species that utilize this antiviral defense system. IMPORTANCE All life at the cellular level has the capacity to induce an antiviral response. Here, we examine the result of imposing the antiviral response of one branch of life onto another and find evidence for conflict. To determine the consequences of eliciting an RNAi-like defense in mammals, we applied this pressure to a recombinant Sendai virus in cell culture. We find that ADAR1, a host gene involved in regulation of the mammalian response to virus, prevented RNAi-mediated silencing and subsequently allowed for viral replication. In addition, the expression of ADAR1 in Nicotiana benthamiana, which lacks ADARs and has an endogenous RNAi system, suppresses gene silencing. These data indicate that ADAR1 is disruptive to RNAi biology and provide insight into the evolutionary relationship between ADARs and antiviral defenses in eukaryotic life.
Collapse
Affiliation(s)
- Skyler Uhl
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Microbiology | Medicine, New York University, New York, New York, USA
| | - Chanyong Jang
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland, USA
| | - Justin J. Frere
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Microbiology | Medicine, New York University, New York, New York, USA
| | - Tristan X. Jordan
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Anne E. Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland, USA
| | - Benjamin R. tenOever
- Department of Microbiology | Medicine, New York University, New York, New York, USA
| |
Collapse
|
16
|
RNA modifications: importance in immune cell biology and related diseases. Signal Transduct Target Ther 2022; 7:334. [PMID: 36138023 PMCID: PMC9499983 DOI: 10.1038/s41392-022-01175-9] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
RNA modifications have become hot topics recently. By influencing RNA processes, including generation, transportation, function, and metabolization, they act as critical regulators of cell biology. The immune cell abnormality in human diseases is also a research focus and progressing rapidly these years. Studies have demonstrated that RNA modifications participate in the multiple biological processes of immune cells, including development, differentiation, activation, migration, and polarization, thereby modulating the immune responses and are involved in some immune related diseases. In this review, we present existing knowledge of the biological functions and underlying mechanisms of RNA modifications, including N6-methyladenosine (m6A), 5-methylcytosine (m5C), N1-methyladenosine (m1A), N7-methylguanosine (m7G), N4-acetylcytosine (ac4C), pseudouridine (Ψ), uridylation, and adenosine-to-inosine (A-to-I) RNA editing, and summarize their critical roles in immune cell biology. Via regulating the biological processes of immune cells, RNA modifications can participate in the pathogenesis of immune related diseases, such as cancers, infection, inflammatory and autoimmune diseases. We further highlight the challenges and future directions based on the existing knowledge. All in all, this review will provide helpful knowledge as well as novel ideas for the researchers in this area.
Collapse
|
17
|
Erdmann EA, Abraham O, Hundley HA. Caenorhabditis elegans expressing a Vitellogenin::GFP fusion protein show reduced embryo content and brood size. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000532. [PMID: 35252801 PMCID: PMC8889445 DOI: 10.17912/micropub.biology.000532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 12/03/2022]
Abstract
Vitellogenin::GFP fusion proteins have been used in several studies of the synthesis, endocytosis, and function of yolk in Caenorhabditis elegans. Here we report that one commonly used transgenic strain harboring a vit-2::gfp fusion displays defects in reproduction that lead to a significantly decreased embryo content and brood size in adult worms.
Collapse
Affiliation(s)
| | - Olivia Abraham
- Medical Sciences Program, Indiana University School of Medicine- Bloomington, Bloomington, IN, USA
| | - Heather A. Hundley
- Medical Sciences Program, Indiana University School of Medicine- Bloomington, Bloomington, IN, USA,
Correspondence to: Heather A. Hundley ()
| |
Collapse
|
18
|
Bar Yaacov D. Functional analysis of ADARs in planarians supports a bilaterian ancestral role in suppressing double-stranded RNA-response. PLoS Pathog 2022; 18:e1010250. [PMID: 35041722 PMCID: PMC8797187 DOI: 10.1371/journal.ppat.1010250] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/28/2022] [Accepted: 01/06/2022] [Indexed: 11/18/2022] Open
Abstract
ADARs (adenosine deaminases acting on RNA) are known for their adenosine-to-inosine RNA editing activity, and most recently, for their role in preventing aberrant dsRNA-response by activation of dsRNA sensors (i.e., RIG-I-like receptor homologs). However, it is still unclear whether suppressing spurious dsRNA-response represents the ancestral role of ADARs in bilaterians. As a first step to address this question, we identified ADAR1 and ADAR2 homologs in the planarian Schmidtea mediterranea, which is evolutionarily distant from canonical lab models (e.g., flies and nematodes). Our results indicate that knockdown of either planarian adar1 or adar2 by RNA interference (RNAi) resulted in upregulation of dsRNA-response genes, including three planarian rig-I-like receptor (prlr) homologs. Furthermore, independent knockdown of adar1 and adar2 reduced the number of infected cells with a dsRNA virus, suggesting they suppress a bona fide anti-viral dsRNA-response activity. Knockdown of adar1 also resulted in lesion formation and animal lethality, thus attesting to its essentiality. Simultaneous knockdown of adar1 and prlr1 rescued adar1(RNAi)-dependent animal lethality and rescued the dsRNA-response, suggesting that it contributes to the deleterious effect of adar1 knockdown. Finally, we found that ADAR2, but not ADAR1, mediates mRNA editing in planarians, suggesting at least in part non-redundant activities for planarians ADARs. Our results underline the essential role of ADARs in suppressing activation of harmful dsRNA-response in planarians, thus supporting it as their ancestral role in bilaterians. Our work also set the stage to study further and better understand the regulatory mechanisms governing anti-viral dsRNA-responses from an evolutionary standpoint using planarians as a model. Today, more than ever, it is crucial to gain a deep understating of our anti-viral defenses. One of the ways to accomplish it is to study the principles governing anti-viral responses across various organisms. ADARs are a group of proteins that act on RNA molecules and alter their sequence compared to the genes that encode them (a process termed RNA editing). In recent years, ADARs have been shown to suppress abnormal anti-viral responses triggered by self-components of the cell (RNA encoded by the cell). Here, we show that the involvement of ADARs in anti-viral response regulation is conserved in planarians (free-living flatworms). We identified two ADAR proteins in planarians and showed that eliminating one (ADAR1) results in animal death and that an anti-viral response commenced in the absence of either ADAR1 or ADAR2. We further identified one of the proteins (PRLR1) that participate in initiating this anti-viral response in planarians, which its mammalian homolog (MDA5) serves a similar role. Thus, our work suggests that ADARs involvement in suppressing aberrant anti-viral response is an ancient evolutionary invention and is likely shared across multicellular organisms with bilateral symmetry.
Collapse
Affiliation(s)
- Dan Bar Yaacov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
19
|
Pennemann FL, Mussabekova A, Urban C, Stukalov A, Andersen LL, Grass V, Lavacca TM, Holze C, Oubraham L, Benamrouche Y, Girardi E, Boulos RE, Hartmann R, Superti-Furga G, Habjan M, Imler JL, Meignin C, Pichlmair A. Cross-species analysis of viral nucleic acid interacting proteins identifies TAOKs as innate immune regulators. Nat Commun 2021; 12:7009. [PMID: 34853303 PMCID: PMC8636641 DOI: 10.1038/s41467-021-27192-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 11/02/2021] [Indexed: 12/11/2022] Open
Abstract
The cell intrinsic antiviral response of multicellular organisms developed over millions of years and critically relies on the ability to sense and eliminate viral nucleic acids. Here we use an affinity proteomics approach in evolutionary distant species (human, mouse and fly) to identify proteins that are conserved in their ability to associate with diverse viral nucleic acids. This approach shows a core of orthologous proteins targeting viral genetic material and species-specific interactions. Functional characterization of the influence of 181 candidates on replication of 6 distinct viruses in human cells and flies identifies 128 nucleic acid binding proteins with an impact on virus growth. We identify the family of TAO kinases (TAOK1, -2 and -3) as dsRNA-interacting antiviral proteins and show their requirement for type-I interferon induction. Depletion of TAO kinases in mammals or flies leads to an impaired response to virus infection characterized by a reduced induction of interferon stimulated genes in mammals and impaired expression of srg1 and diedel in flies. Overall, our study shows a larger set of proteins able to mediate the interaction between viral genetic material and host factors than anticipated so far, attesting to the ancestral roots of innate immunity and to the lineage-specific pressures exerted by viruses.
Collapse
Affiliation(s)
- Friederike L Pennemann
- Technical University of Munich, School of Medicine, Institute of Virology, 81675, Munich, Germany
| | - Assel Mussabekova
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Christian Urban
- Technical University of Munich, School of Medicine, Institute of Virology, 81675, Munich, Germany
| | - Alexey Stukalov
- Technical University of Munich, School of Medicine, Institute of Virology, 81675, Munich, Germany
| | - Line Lykke Andersen
- Technical University of Munich, School of Medicine, Institute of Virology, 81675, Munich, Germany
| | - Vincent Grass
- Technical University of Munich, School of Medicine, Institute of Virology, 81675, Munich, Germany
| | - Teresa Maria Lavacca
- Technical University of Munich, School of Medicine, Institute of Virology, 81675, Munich, Germany
| | - Cathleen Holze
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Lila Oubraham
- Technical University of Munich, School of Medicine, Institute of Virology, 81675, Munich, Germany
| | - Yasmine Benamrouche
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Enrico Girardi
- CeMM - Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Rasha E Boulos
- Computer Science and Mathematics Department, School of Arts and Science, Lebanese American University, Byblos, Lebanon
| | - Rune Hartmann
- Aarhus University, Department of Molecular Biology and Genetics - Structural Biology, Aarhus, Denmark
| | - Giulio Superti-Furga
- CeMM - Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Matthias Habjan
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Jean-Luc Imler
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Carine Meignin
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Andreas Pichlmair
- Technical University of Munich, School of Medicine, Institute of Virology, 81675, Munich, Germany.
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried, 82152, Germany.
- German Center for Infection Research (DZIF), Munich partner site, Munich, Germany.
| |
Collapse
|
20
|
Yoshida T, Asano Y, Ui-Tei K. Modulation of MicroRNA Processing by Dicer via Its Associated dsRNA Binding Proteins. Noncoding RNA 2021; 7:57. [PMID: 34564319 PMCID: PMC8482068 DOI: 10.3390/ncrna7030057] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that are about 22 nucleotides in length. They regulate gene expression post-transcriptionally by guiding the effector protein Argonaute to its target mRNA in a sequence-dependent manner, causing the translational repression and destabilization of the target mRNAs. Both Drosha and Dicer, members of the RNase III family proteins, are essential components in the canonical miRNA biogenesis pathway. miRNA is transcribed into primary-miRNA (pri-miRNA) from genomic DNA. Drosha then cleaves the flanking regions of pri-miRNA into precursor-miRNA (pre-miRNA), while Dicer cleaves the loop region of the pre-miRNA to form a miRNA duplex. Although the role of Drosha and Dicer in miRNA maturation is well known, the modulation processes that are important for regulating the downstream gene network are not fully understood. In this review, we summarized and discussed current reports on miRNA biogenesis caused by Drosha and Dicer. We also discussed the modulation mechanisms regulated by double-stranded RNA binding proteins (dsRBPs) and the function and substrate specificity of dsRBPs, including the TAR RNA binding protein (TRBP) and the adenosine deaminase acting on RNA (ADAR).
Collapse
Affiliation(s)
| | | | - Kumiko Ui-Tei
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan; (T.Y.); (Y.A.)
| |
Collapse
|
21
|
Li D, Liu Y, Yi P, Zhu Z, Li W, Zhang QC, Li JB, Ou G. RNA editing restricts hyperactive ciliary kinases. Science 2021; 373:984-991. [PMID: 34446600 DOI: 10.1126/science.abd8971] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 04/01/2021] [Accepted: 07/16/2021] [Indexed: 12/17/2022]
Abstract
Protein kinase activity must be precisely regulated, but how a cell governs hyperactive kinases remains unclear. In this study, we generated a constitutively active mitogen-activated protein kinase DYF-5 (DYF-5CA) in Caenorhabditis elegans that disrupted sensory cilia. Genetic suppressor screens identified that mutations of ADR-2, an RNA adenosine deaminase, rescued ciliary phenotypes of dyf-5CA We found that dyf-5CA animals abnormally transcribed antisense RNAs that pair with dyf-5CA messenger RNA (mRNA) to form double-stranded RNA, recruiting ADR-2 to edit the region ectopically. RNA editing impaired dyf-5CA mRNA splicing, and the resultant intron retentions blocked DYF-5CA protein translation and activated nonsense-mediated dyf-5CA mRNA decay. The kinase RNA editing requires kinase hyperactivity. The similar RNA editing-dependent feedback regulation restricted the other ciliary kinases NEKL-4/NEK10 and DYF-18/CCRK, which suggests a widespread mechanism that underlies kinase regulation.
Collapse
Affiliation(s)
- Dongdong Li
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.,Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.,McGovern Institute for Brain Research, Tsinghua University, Beijing, China.,School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Yufan Liu
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.,Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.,McGovern Institute for Brain Research, Tsinghua University, Beijing, China.,School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Peishan Yi
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.,Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.,McGovern Institute for Brain Research, Tsinghua University, Beijing, China.,School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Zhiwen Zhu
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.,Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.,McGovern Institute for Brain Research, Tsinghua University, Beijing, China.,School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Wei Li
- School of Medicine, Tsinghua University, Beijing, China
| | - Qiangfeng Cliff Zhang
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.,Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.,MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| | - Jin Billy Li
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Guangshuo Ou
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China. .,Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.,McGovern Institute for Brain Research, Tsinghua University, Beijing, China.,School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| |
Collapse
|
22
|
Wahba L, Hansen L, Fire AZ. An essential role for the piRNA pathway in regulating the ribosomal RNA pool in C. elegans. Dev Cell 2021; 56:2295-2312.e6. [PMID: 34388368 PMCID: PMC8387450 DOI: 10.1016/j.devcel.2021.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/11/2021] [Accepted: 07/15/2021] [Indexed: 01/08/2023]
Abstract
Piwi-interacting RNAs (piRNAs) are RNA effectors with key roles in maintaining genome integrity and promoting fertility in metazoans. In Caenorhabditis elegans loss of piRNAs leads to a transgenerational sterility phenotype. The plethora of piRNAs and their ability to silence transcripts with imperfect complementarity have raised several (non-exclusive) models for the underlying drivers of sterility. Here, we report the extranuclear and transferable nature of the sterility driver, its suppression via mutations disrupting the endogenous RNAi and poly-uridylation machinery, and copy-number amplification at the ribosomal DNA locus. In piRNA-deficient animals, several small interfering RNA (siRNA) populations become increasingly overabundant in the generations preceding loss of germline function, including ribosomal siRNAs (risiRNAs). A concomitant increase in uridylated sense rRNA fragments suggests that poly-uridylation may potentiate RNAi-mediated gene silencing of rRNAs. We conclude that loss of the piRNA machinery allows for unchecked amplification of siRNA populations, originating from abundant highly structured RNAs, to deleterious levels.
Collapse
Affiliation(s)
- Lamia Wahba
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Loren Hansen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew Z Fire
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
23
|
Quin J, Sedmík J, Vukić D, Khan A, Keegan LP, O'Connell MA. ADAR RNA Modifications, the Epitranscriptome and Innate Immunity. Trends Biochem Sci 2021; 46:758-771. [PMID: 33736931 DOI: 10.1016/j.tibs.2021.02.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/28/2021] [Accepted: 02/18/2021] [Indexed: 12/22/2022]
Abstract
Modified bases act as marks on cellular RNAs so that they can be distinguished from foreign RNAs, reducing innate immune responses to endogenous RNA. In humans, mutations giving reduced levels of one base modification, adenosine-to-inosine deamination, cause a viral infection mimic syndrome, a congenital encephalitis with aberrant interferon induction. These Aicardi-Goutières syndrome 6 mutations affect adenosine deaminase acting on RNA 1 (ADAR1), which generates inosines in endogenous double-stranded (ds)RNA. The inosine base alters dsRNA structure to prevent aberrant activation of antiviral cytosolic helicase RIG-I-like receptors. We review how effects of inosines, ADARs, and other modified bases have been shown to be important in innate immunity and cancer.
Collapse
Affiliation(s)
- Jaclyn Quin
- Central European Institute of Technology, Masaryk University Brno, Kamenice 753/5, Pavilion A35, Brno CZ-62500, Czech Republic
| | - Jiří Sedmík
- Central European Institute of Technology, Masaryk University Brno, Kamenice 753/5, Pavilion A35, Brno CZ-62500, Czech Republic
| | - Dragana Vukić
- Central European Institute of Technology, Masaryk University Brno, Kamenice 753/5, Pavilion A35, Brno CZ-62500, Czech Republic
| | - Anzer Khan
- Central European Institute of Technology, Masaryk University Brno, Kamenice 753/5, Pavilion A35, Brno CZ-62500, Czech Republic
| | - Liam P Keegan
- Central European Institute of Technology, Masaryk University Brno, Kamenice 753/5, Pavilion A35, Brno CZ-62500, Czech Republic.
| | - Mary A O'Connell
- Central European Institute of Technology, Masaryk University Brno, Kamenice 753/5, Pavilion A35, Brno CZ-62500, Czech Republic.
| |
Collapse
|
24
|
Erdmann EA, Mahapatra A, Mukherjee P, Yang B, Hundley HA. To protect and modify double-stranded RNA - the critical roles of ADARs in development, immunity and oncogenesis. Crit Rev Biochem Mol Biol 2020; 56:54-87. [PMID: 33356612 DOI: 10.1080/10409238.2020.1856768] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adenosine deaminases that act on RNA (ADARs) are present in all animals and function to both bind double-stranded RNA (dsRNA) and catalyze the deamination of adenosine (A) to inosine (I). As inosine is a biological mimic of guanosine, deamination by ADARs changes the genetic information in the RNA sequence and is commonly referred to as RNA editing. Millions of A-to-I editing events have been reported for metazoan transcriptomes, indicating that RNA editing is a widespread mechanism used to generate molecular and phenotypic diversity. Loss of ADARs results in lethality in mice and behavioral phenotypes in worm and fly model systems. Furthermore, alterations in RNA editing occur in over 35 human pathologies, including several neurological disorders, metabolic diseases, and cancers. In this review, a basic introduction to ADAR structure and target recognition will be provided before summarizing how ADARs affect the fate of cellular RNAs and how researchers are using this knowledge to engineer ADARs for personalized medicine. In addition, we will highlight the important roles of ADARs and RNA editing in innate immunity and cancer biology.
Collapse
Affiliation(s)
- Emily A Erdmann
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | | - Priyanka Mukherjee
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN, USA
| | - Boyoon Yang
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Heather A Hundley
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN, USA
| |
Collapse
|
25
|
Rajendren S, Dhakal A, Vadlamani P, Townsend J, Deffit SN, Hundley HA. Profiling neural editomes reveals a molecular mechanism to regulate RNA editing during development. Genome Res 2020; 31:27-39. [PMID: 33355311 PMCID: PMC7849389 DOI: 10.1101/gr.267575.120] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/18/2020] [Indexed: 12/18/2022]
Abstract
Adenosine (A) to inosine (I) RNA editing contributes to transcript diversity and modulates gene expression in a dynamic, cell type–specific manner. During mammalian brain development, editing of specific adenosines increases, whereas the expression of A-to-I editing enzymes remains unchanged, suggesting molecular mechanisms that mediate spatiotemporal regulation of RNA editing exist. Herein, by using a combination of biochemical and genomic approaches, we uncover a molecular mechanism that regulates RNA editing in a neural- and development-specific manner. Comparing editomes during development led to the identification of neural transcripts that were edited only in one life stage. The stage-specific editing is largely regulated by differential gene expression during neural development. Proper expression of nearly one-third of the neurodevelopmentally regulated genes is dependent on adr-2, the sole A-to-I editing enzyme in C. elegans. However, we also identified a subset of neural transcripts that are edited and expressed throughout development. Despite a neural-specific down-regulation of adr-2 during development, the majority of these sites show increased editing in adult neural cells. Biochemical data suggest that ADR-1, a deaminase-deficient member of the adenosine deaminase acting on RNA (ADAR) family, is competing with ADR-2 for binding to specific transcripts early in development. Our data suggest a model in which during neural development, ADR-2 levels overcome ADR-1 repression, resulting in increased ADR-2 binding and editing of specific transcripts. Together, our findings reveal tissue- and development-specific regulation of RNA editing and identify a molecular mechanism that regulates ADAR substrate recognition and editing efficiency.
Collapse
Affiliation(s)
- Suba Rajendren
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | - Alfa Dhakal
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, Indiana 47405, USA
| | - Pranathi Vadlamani
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, Indiana 47405, USA
| | - Jack Townsend
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, Indiana 47405, USA
| | - Sarah N Deffit
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, Indiana 47405, USA
| | - Heather A Hundley
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, Indiana 47405, USA
| |
Collapse
|
26
|
Mao K, Breen P, Ruvkun G. Mitochondrial dysfunction induces RNA interference in C. elegans through a pathway homologous to the mammalian RIG-I antiviral response. PLoS Biol 2020; 18:e3000996. [PMID: 33264285 PMCID: PMC7735679 DOI: 10.1371/journal.pbio.3000996] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/14/2020] [Accepted: 11/09/2020] [Indexed: 12/27/2022] Open
Abstract
RNA interference (RNAi) is an antiviral pathway common to many eukaryotes that detects and cleaves foreign nucleic acids. In mammals, mitochondrially localized proteins such as mitochondrial antiviral signaling (MAVS), retinoic acid-inducible gene I (RIG-I), and melanoma differentiation-associated protein 5 (MDA5) mediate antiviral responses. Here, we report that mitochondrial dysfunction in Caenorhabditis elegans activates RNAi-directed silencing via induction of a pathway homologous to the mammalian RIG-I helicase viral response pathway. The induction of RNAi also requires the conserved RNA decapping enzyme EOL-1/DXO. The transcriptional induction of eol-1 requires DRH-1 as well as the mitochondrial unfolded protein response (UPRmt). Upon mitochondrial dysfunction, EOL-1 is concentrated into foci that depend on the transcription of mitochondrial RNAs that may form double-stranded RNA (dsRNA), as has been observed in mammalian antiviral responses. Enhanced RNAi triggered by mitochondrial dysfunction is necessary for the increase in longevity that is induced by mitochondrial dysfunction. Surveillance of mitochondrial dysfunction in the nematode Caenorhabditis elegans triggers the activation of an RNA interference pathway to mediate antiviral defense, in a manner homologous to the mammalian RIG-I helicase viral response pathway.
Collapse
Affiliation(s)
- Kai Mao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Peter Breen
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
27
|
Abstract
A diversity of gene regulatory mechanisms drives the changes in gene expression required for animal development. Here, we discuss the developmental roles of a class of gene regulatory factors composed of a core protein subunit of the Argonaute family and a 21-26-nucleotide RNA cofactor. These represent ancient regulatory complexes, originally evolved to repress genomic parasites such as transposons, viruses and retroviruses. However, over the course of evolution, small RNA-guided pathways have expanded and diversified, and they play multiple roles across all eukaryotes. Pertinent to this review, Argonaute and small RNA-mediated regulation has acquired numerous functions that affect all aspects of animal life. The regulatory function is provided by the Argonaute protein and its interactors, while the small RNA provides target specificity, guiding the Argonaute to a complementary RNA. C. elegans has 19 different, functional Argonautes, defining distinct yet interconnected pathways. Each Argonaute binds a relatively well-defined class of small RNA with distinct molecular properties. A broad classification of animal small RNA pathways distinguishes between two groups: (i) the microRNA pathway is involved in repressing relatively specific endogenous genes and (ii) the other small RNA pathways, which effectively act as a genomic immune system to primarily repress expression of foreign or "non-self" RNA while maintaining correct endogenous gene expression. microRNAs play prominent direct roles in all developmental stages, adult physiology and lifespan. The other small RNA pathways act primarily in the germline, but their impact extends far beyond, into embryogenesis and adult physiology, and even to subsequent generations. Here, we review the mechanisms and developmental functions of the diverse small RNA pathways of C. elegans.
Collapse
Affiliation(s)
| | - Luisa Cochella
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.
| |
Collapse
|
28
|
Arribere JA, Kuroyanagi H, Hundley HA. mRNA Editing, Processing and Quality Control in Caenorhabditis elegans. Genetics 2020; 215:531-568. [PMID: 32632025 PMCID: PMC7337075 DOI: 10.1534/genetics.119.301807] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 05/03/2020] [Indexed: 02/06/2023] Open
Abstract
While DNA serves as the blueprint of life, the distinct functions of each cell are determined by the dynamic expression of genes from the static genome. The amount and specific sequences of RNAs expressed in a given cell involves a number of regulated processes including RNA synthesis (transcription), processing, splicing, modification, polyadenylation, stability, translation, and degradation. As errors during mRNA production can create gene products that are deleterious to the organism, quality control mechanisms exist to survey and remove errors in mRNA expression and processing. Here, we will provide an overview of mRNA processing and quality control mechanisms that occur in Caenorhabditis elegans, with a focus on those that occur on protein-coding genes after transcription initiation. In addition, we will describe the genetic and technical approaches that have allowed studies in C. elegans to reveal important mechanistic insight into these processes.
Collapse
Affiliation(s)
| | - Hidehito Kuroyanagi
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan, and
| | - Heather A Hundley
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Indiana 47405
| |
Collapse
|
29
|
Ganem NS, Ben-Asher N, Manning AC, Deffit SN, Washburn MC, Wheeler EC, Yeo GW, Zgayer OBN, Mantsur E, Hundley HA, Lamm AT. Disruption in A-to-I Editing Levels Affects C. elegans Development More Than a Complete Lack of Editing. Cell Rep 2020; 27:1244-1253.e4. [PMID: 31018137 PMCID: PMC8139731 DOI: 10.1016/j.celrep.2019.03.095] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 09/25/2018] [Accepted: 03/26/2019] [Indexed: 11/25/2022] Open
Abstract
A-to-I RNA editing, catalyzed by ADAR proteins, is widespread in eukaryotic transcriptomes. Studies showed that, in C. elegans, ADR-2 can actively deaminate dsRNA, whereas ADR-1 cannot. Therefore, we set out to study the effect of each of the ADAR genes on the RNA editing process. We performed comprehensive phenotypic, transcriptomics, proteomics, and RNA binding screens on worms mutated in a single ADAR gene. We found that ADR-1 mutants exhibit more-severe phenotypes than ADR-2, and some of them are a result of non-editing functions of ADR-1. We also show that ADR-1 significantly binds edited genes and regulates mRNA expression, whereas the effect on protein levels is minor. In addition, ADR-1 primarily promotes editing by ADR-2 at the L4 stage of development. Our results suggest that ADR-1 has a significant role in the RNA editing process and in altering editing levels that affect RNA expression; loss of ADR-1 results in severe phenotypes.
Collapse
Affiliation(s)
- Nabeel S Ganem
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Noa Ben-Asher
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Aidan C Manning
- Medical Sciences Program, Indiana University, Bloomington, IN 47405, USA
| | - Sarah N Deffit
- Medical Sciences Program, Indiana University, Bloomington, IN 47405, USA
| | | | - Emily C Wheeler
- Department of Cellular and Molecular Medicine, Stem Cell Program and Institute for Genomic Medicine, University of California, San Diego, San Diego, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, Stem Cell Program and Institute for Genomic Medicine, University of California, San Diego, San Diego, CA, USA
| | - Orna Ben-Naim Zgayer
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Einav Mantsur
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Heather A Hundley
- Medical Sciences Program, Indiana University, Bloomington, IN 47405, USA
| | - Ayelet T Lamm
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| |
Collapse
|
30
|
Caenorhabditis elegans ADAR editing and the ERI-6/7/MOV10 RNAi pathway silence endogenous viral elements and LTR retrotransposons. Proc Natl Acad Sci U S A 2020; 117:5987-5996. [PMID: 32123111 PMCID: PMC7084138 DOI: 10.1073/pnas.1919028117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Silencing of transposable elements and viruses is critical for the maintenance of genome integrity, cellular homeostasis, and organismal health. Here we describe multiple factors that control different types of transposable elements, providing insight into how they are regulated. We also identify stress response pathways that are triggered upon misregulation of these transposable elements. The conservation of these factors and pathways in human suggests that our studies in Caenorhabditis elegans can provide general insight into the regulation of and response to transposable elements and viruses. Endogenous retroviruses and long terminal repeat (LTR) retrotransposons are mobile genetic elements that are closely related to retroviruses. Desilenced endogenous retroviruses are associated with human autoimmune disorders and neurodegenerative diseases. Caenorhabditis elegans and related Caenorhabditis spp. contain LTR retrotransposons and, as described here, numerous integrated viral genes including viral envelope genes that are part of LTR retrotransposons. We found that both LTR retrotransposons and endogenous viral elements are silenced by ADARs [adenosine deaminases acting on double-stranded RNA (dsRNA)] together with the endogenous RNA interference (RNAi) factor ERI-6/7, a homolog of MOV10 helicase, a retrotransposon and retrovirus restriction factor in human. siRNAs corresponding to integrated viral genes and LTR retrotransposons, but not to DNA transposons, are dependent on the ADARs and ERI-6/7. siRNAs corresponding to palindromic repeats are independent of the ADARs and ERI-6/7, and are in fact increased in adar- and eri-6/7–defective mutants because of an antiviral RNAi response to dsRNA. Silencing of LTR retrotransposons is dependent on downstream RNAi factors and P granule components but is independent of the viral sensor DRH-1/RIG-I and the nuclear Argonaute NRDE-3. The activation of retrotransposons in the ADAR- and ERI-6/7/MOV10–defective mutant is associated with the induction of the unfolded protein response (UPR), a common response to viral infection. The overlap between genes induced upon viral infection and infection with intracellular pathogens and genes coexpressed with retrotransposons suggests that there is a common response to different types of foreign elements that includes a response to proteotoxicity presumably caused by the burden of replicating pathogens and expressed retrotransposons.
Collapse
|
31
|
Barak M, Porath HT, Finkelstein G, Knisbacher BA, Buchumenski I, Roth SH, Levanon EY, Eisenberg E. Purifying selection of long dsRNA is the first line of defense against false activation of innate immunity. Genome Biol 2020; 21:26. [PMID: 32028986 PMCID: PMC7006430 DOI: 10.1186/s13059-020-1937-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Mobile elements comprise a large fraction of metazoan genomes. Accumulation of mobile elements is bound to produce multiple putative double-stranded RNA (dsRNA) structures within the transcriptome. These endogenous dsRNA structures resemble viral RNA and may trigger false activation of the innate immune response, leading to severe damage to the host cell. Adenosine to inosine (A-to-I) RNA editing is a common post-transcriptional modification, abundant within repetitive elements of all metazoans. It was recently shown that a key function of A-to-I RNA editing by ADAR1 is to suppress the immunogenic response by endogenous dsRNAs. RESULTS Here, we analyze the transcriptomes of dozens of species across the Metazoa and identify a strong genomic selection against endogenous dsRNAs, resulting in their purification from the canonical transcriptome. This purifying selection is especially strong for long and nearly perfect dsRNAs. These are almost absent from mRNAs, but not pre-mRNAs, supporting the notion of selection due to cytoplasmic processes. The few long and nearly perfect structures found in human transcripts are weakly expressed and often heavily edited. CONCLUSION Purifying selection of long dsRNA is an important defense mechanism against false activation of innate immunity. This newly identified principle governs the integration of mobile elements into the genome, a major driving force of genome evolution. Furthermore, we find that most ADAR1 activity is not required to prevent an immune response to endogenous dsRNAs. The critical targets of ADAR1 editing are, likely, to be found mostly in non-canonical transcripts.
Collapse
Affiliation(s)
- Michal Barak
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Hagit T Porath
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Gilad Finkelstein
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Binyamin A Knisbacher
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Ilana Buchumenski
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Shalom Hillel Roth
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel.
| | - Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
32
|
Abstract
Protection against microbial infection in eukaryotes is provided by diverse cellular and molecular mechanisms. Here, we present a comparative view of the antiviral activity of virus-derived small interfering RNAs in fungi, plants, invertebrates and mammals, detailing the mechanisms for their production, amplification and activity. We also highlight the recent discovery of viral PIWI-interacting RNAs in animals and a new role for mobile host and pathogen small RNAs in plant defence against eukaryotic pathogens. In turn, viruses that infect plants, insects and mammals, as well as eukaryotic pathogens of plants, have evolved specific virulence proteins that suppress RNA interference (RNAi). Together, these advances suggest that an antimicrobial function of the RNAi pathway is conserved across eukaryotic kingdoms.
Collapse
|
33
|
Abstract
Caenorhabditis elegans has long been a laboratory model organism with no known natural pathogens. In the past ten years, however, natural viruses have been isolated from wild-caught C. elegans (Orsay virus) and its relative Caenorhabditis briggsae (Santeuil virus, Le Blanc virus, and Melnik virus). All are RNA positive-sense viruses related to Nodaviridae; they infect intestinal cells and are horizontally transmitted. The Orsay virus capsid structure has been determined and the virus can be reconstituted by transgenesis of the host. Recent use of the Orsay virus has enabled researchers to identify evolutionarily conserved proviral and antiviral genes that function in nematodes and mammals. These pathways include endocytosis through SID-3 and WASP; a uridylyltransferase that destabilizes viral RNAs by uridylation of their 3′ end; ubiquitin protein modifications and turnover; and the RNA interference pathway, which recognizes and degrades viral RNA.
Collapse
Affiliation(s)
- Marie-Anne Félix
- Institute of Biology of the École Normale Supérieure, CNRS UMR8197, INSERM U1024, 75230 Paris CEDEX 05, France
| | - David Wang
- Departments of Molecular Microbiology and Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
| |
Collapse
|
34
|
Esse R, Gushchanskaia ES, Lord A, Grishok A. DOT1L complex suppresses transcription from enhancer elements and ectopic RNAi in Caenorhabditis elegans. RNA (NEW YORK, N.Y.) 2019; 25:1259-1273. [PMID: 31300558 PMCID: PMC6800474 DOI: 10.1261/rna.070292.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 07/10/2019] [Indexed: 05/14/2023]
Abstract
Methylation of histone H3 on lysine 79 (H3K79) by DOT1L is associated with actively transcribed genes. Earlier, we described that DOT-1.1, the Caenorhabditis elegans homolog of mammalian DOT1L, cooperates with the chromatin-binding protein ZFP-1 (AF10 homolog) to negatively modulate transcription of highly and widely expressed target genes. Also, the reduction of ZFP-1 levels has consistently been associated with lower efficiency of RNA interference (RNAi) triggered by exogenous double-stranded RNA (dsRNA), but the reason for this is not clear. Here, we demonstrate that the DOT1L complex suppresses transcription originating from enhancer elements and antisense transcription, thus potentiating the expression of enhancer-regulated genes. We also show that worms lacking H3K79 methylation do not survive, and this lethality is suppressed by a loss of caspase-3 or Dicer complex components that initiate gene silencing response to exogenous dsRNA. Our results suggest that ectopic elevation of endogenous dsRNA directly or indirectly resulting from global misregulation of transcription in DOT1L complex mutants may engage the Dicer complex and, therefore, limit the efficiency of exogenous RNAi.
Collapse
Affiliation(s)
- Ruben Esse
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | - Avery Lord
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Alla Grishok
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
- Genome Science Institute, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| |
Collapse
|
35
|
Winkenbach LP, Doser R, Reed KJ, Pasquinelli AE, Phillips CM, Claycomb JM. Todos Santos small RNA symposium. RNA Biol 2019; 16:1526-1530. [PMID: 31397621 DOI: 10.1080/15476286.2019.1649586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Worm biologists from the United States, Canada, and the United Kingdom gathered at the Colorado State University Todos Santos Center in Baja California Sur, Mexico, April 3-5, 2019 for the Todos Santos Small RNA Symposium. Meeting participants, many of whom were still recovering from the bomb cyclone that struck a large swath of North America just days earlier, were greeted by the warmth and sunshine that is nearly ubiquitous in the sleepy seaside town of Todos Santos. With only 24 speakers, the meeting had the sort of laid-back vibe you might expect amongst the palm trees and ocean breeze of the Pacific coast of Mexico. The meeting started with tracing the laboratory lineages of participants. Not surprisingly, the most common parental lineages represented at the meeting were Dr. Craig Mello, Dr. Gary Ruvkun, and Dr. Victor Ambros, whom, together with Dr. Andy Fire and Dr. David Baulcombe, pioneered the small RNA field. In sad irony, on the closing day of the meeting, participants were met with the news of Dr. Sydney Brenner's passing. By establishing the worm, Caenorhabditis elegans, as a model system Dr. Brenner paved the way for much of the research discussed here.
Collapse
Affiliation(s)
- Lindsay P Winkenbach
- Department of Biochemistry and Molecular Biology, Colorado State University , Fort Collins , CO , USA
| | - Rachel Doser
- Department of Biomedical Sciences, Colorado State University , Fort Collins , CO , USA
| | - Kailee J Reed
- Department of Biology, Colorado State University , Fort Collins , CO , USA.,Cell and Molecular Biology Program, Colorado State University , Fort Collins , CO , USA
| | - Amy E Pasquinelli
- Division of Biology, University of California , San Diego , CA , USA
| | - Carolyn M Phillips
- Department of Biological Sciences, University of Southern California , Los Angeles , CA , USA
| | - Julie M Claycomb
- Department of Molecular Genetics, University of Toronto , Toronto , ON , Canada
| |
Collapse
|
36
|
Rajendren S, Manning AC, Al-Awadi H, Yamada K, Takagi Y, Hundley HA. A protein-protein interaction underlies the molecular basis for substrate recognition by an adenosine-to-inosine RNA-editing enzyme. Nucleic Acids Res 2019; 46:9647-9659. [PMID: 30202880 PMCID: PMC6182170 DOI: 10.1093/nar/gky800] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/27/2018] [Indexed: 01/06/2023] Open
Abstract
Adenosine deaminases that act on RNA (ADARs) convert adenosine to inosine within double-stranded regions of RNA, resulting in increased transcriptomic diversity, as well as protection of cellular double-stranded RNA (dsRNA) from silencing and improper immune activation. The presence of dsRNA-binding domains (dsRBDs) in all ADARs suggests these domains are important for substrate recognition; however, the role of dsRBDs in vivo remains largely unknown. Herein, our studies indicate the Caenorhabditis elegans ADAR enzyme, ADR-2, has low affinity for dsRNA, but interacts with ADR-1, an editing-deficient member of the ADAR family, which has a 100-fold higher affinity for dsRNA. ADR-1 uses one dsRBD to physically interact with ADR-2 and a second dsRBD to bind to dsRNAs, thereby tethering ADR-2 to substrates. ADR-2 interacts with >1200 transcripts in vivo, and ADR-1 is required for 80% of these interactions. Our results identify a novel mode of substrate recognition for ADAR enzymes and indicate that protein-protein interactions can guide substrate recognition for RNA editors.
Collapse
Affiliation(s)
- Suba Rajendren
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Aidan C Manning
- Medical Sciences Program, Indiana University, Bloomington, IN 47405, USA
| | - Haider Al-Awadi
- Medical Sciences Program, Indiana University, Bloomington, IN 47405, USA
| | - Kentaro Yamada
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yuichiro Takagi
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Heather A Hundley
- Medical Sciences Program, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
37
|
Abstract
Long double-stranded RNAs (dsRNAs) are abundantly expressed in animals, in which they frequently occur in introns and 3' untranslated regions of mRNAs. Functions of long, cellular dsRNAs are poorly understood, although deficiencies in adenosine deaminases that act on RNA, or ADARs, promote their recognition as viral dsRNA and an aberrant immune response. Diverse dsRNA-binding proteins bind cellular dsRNAs, hinting at additional roles. Understanding these roles is facilitated by mapping the genomic locations that express dsRNA in various tissues and organisms. ADAR editing provides a signature of dsRNA structure in cellular transcripts. In this review, we detail approaches to map ADAR editing sites and dsRNAs genome-wide, with particular focus on high-throughput sequencing methods and considerations for their successful application to the detection of editing sites and dsRNAs.
Collapse
Affiliation(s)
- Daniel P Reich
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112
| | - Brenda L Bass
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
38
|
Demeter T, Vaskovicova M, Malik R, Horvat F, Pasulka J, Svobodova E, Flemr M, Svoboda P. Main constraints for RNAi induced by expressed long dsRNA in mouse cells. Life Sci Alliance 2019; 2:2/1/e201800289. [PMID: 30808654 PMCID: PMC6391682 DOI: 10.26508/lsa.201800289] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 12/13/2022] Open
Abstract
A systematic survey of dsRNA expression in mouse fibroblasts and embryonic stem cells shows main constraints for RNAi. RNAi activity depends on the initial Dicer cleavage of dsRNA, having implications for the evolution of mammalian RNAi functions. RNAi is the sequence-specific mRNA degradation guided by siRNAs produced from long dsRNA by RNase Dicer. Proteins executing RNAi are present in mammalian cells but rather sustain the microRNA pathway. Aiming for a systematic analysis of mammalian RNAi, we report here that the main bottleneck for RNAi efficiency is the production of functional siRNAs, which integrates Dicer activity, dsRNA structure, and siRNA targeting efficiency. Unexpectedly, increased expression of Dicer cofactors TARBP2 or PACT reduces RNAi but not microRNA function. Elimination of protein kinase R, a key dsRNA sensor in the interferon response, had minimal positive effects on RNAi activity in fibroblasts. Without high Dicer activity, RNAi can still occur when the initial Dicer cleavage of the substrate yields an efficient siRNA. Efficient mammalian RNAi may use substrates with some features of microRNA precursors, merging both pathways even more than previously suggested. Although optimized endogenous Dicer substrates mimicking miRNA features could evolve for endogenous regulations, the same principles would make antiviral RNAi inefficient as viruses would adapt to avoid efficacy.
Collapse
Affiliation(s)
- Tomas Demeter
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Michaela Vaskovicova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Radek Malik
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Filip Horvat
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic.,Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Josef Pasulka
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Eliska Svobodova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Matyas Flemr
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Petr Svoboda
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
39
|
Haas R, Ganem NS, Keshet A, Orlov A, Fishman A, Lamm AT. A-to-I RNA Editing Affects lncRNAs Expression after Heat Shock. Genes (Basel) 2018; 9:genes9120627. [PMID: 30551666 PMCID: PMC6315331 DOI: 10.3390/genes9120627] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/03/2018] [Accepted: 12/11/2018] [Indexed: 12/16/2022] Open
Abstract
Adenosine to inosine (A-to-I) RNA editing is a highly conserved regulatory process carried out by adenosine-deaminases (ADARs) on double-stranded RNA (dsRNAs). Although a considerable fraction of the transcriptome is edited, the function of most editing sites is unknown. Previous studies indicate changes in A-to-I RNA editing frequencies following exposure to several stress types. However, the overall effect of stress on the expression of ADAR targets is not fully understood. Here, we performed high-throughput RNA sequencing of wild-type and ADAR mutant Caenorhabditis elegans worms after heat-shock to analyze the effect of heat-shock stress on the expression pattern of genes. We found that ADAR regulation following heat-shock does not directly involve heat-shock related genes. Our analysis also revealed that long non-coding RNAs (lncRNAs) and pseudogenes, which have a tendency for secondary RNA structures, are enriched among upregulated genes following heat-shock in ADAR mutant worms. The same group of genes is downregulated in ADAR mutant worms under permissive conditions, which is likely, considering that A-to-I editing protects endogenous dsRNA from RNA-interference (RNAi). Therefore, temperature increases may destabilize dsRNA structures and protect them from RNAi degradation, despite the lack of ADAR function. These findings shed new light on the dynamics of gene expression under heat-shock in relation to ADAR function.
Collapse
Affiliation(s)
- Roni Haas
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| | - Nabeel S Ganem
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| | - Ayya Keshet
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| | - Angela Orlov
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| | - Alla Fishman
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| | - Ayelet T Lamm
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| |
Collapse
|
40
|
Reich DP, Bass BL. Inverted repeat structures are associated with essential and highly expressed genes on C. elegans autosome distal arms. RNA (NEW YORK, N.Y.) 2018; 24:1634-1646. [PMID: 30190375 PMCID: PMC6239182 DOI: 10.1261/rna.067405.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/30/2018] [Indexed: 06/08/2023]
Abstract
Complementary sequences in cellular transcripts base-pair to form double-stranded RNA (dsRNA) structures. Because transposon-derived repeats often give rise to self-complementary sequences, dsRNA structures are prevalent in eukaryotic genomes, typically occurring in gene introns and untranslated regions (UTRs). However, the regulatory impact of double-stranded structures within genes is not fully understood. We used three independent methods to define loci in Caenorhabditis elegans predicted to form dsRNA and correlated these structures with patterns of gene expression, gene essentiality, and genome organization. As previously observed, dsRNA loci are enriched on distal arms of C. elegans autosomes, where genes typically show less conservation and lower overall expression. In contrast, we find that dsRNAs are associated with essential genes on autosome arms, and dsRNA-associated genes exhibit higher-than-expected expression and histone modification patterns associated with transcriptional elongation. Genes with significant repetitive sequence content are also highly expressed, and, thus, observed gene expression trends may relate either to dsRNA structures or to repeat content. Our results raise the possibility that as-yet-undescribed mechanisms promote expression of loci that produce dsRNAs, despite their well-characterized roles in gene silencing.
Collapse
Affiliation(s)
- Daniel P Reich
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Brenda L Bass
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
41
|
Abstract
Adenosine deaminases that act on RNA (ADARs) convert adenosines (A) to inosines (I) in stretches of dsRNA. The biological purpose of these editing events for the vast majority of ADAR substrates is largely unknown. In this issue of Genes & Development, Reich and colleagues (pp. 271-282) demonstrate that in Caenorhabditis elegans, A-to-I editing in double-stranded regions of protein-coding transcripts protects these RNAs from targeting by the RNAi pathway. Disruption of this safeguard through loss of ADAR activity coupled with enhanced RNAi results in developmental abnormalities and profound changes in gene expression that suggest aberrant induction of an antiviral response. Thus, editing of cellular dsRNA by ADAR helps prevent host RNA silencing and inadvertent antiviral activity.
Collapse
Affiliation(s)
- Amy E Pasquinelli
- Division of Biology, University of California at San Diego, La Jolla, California 92093, USA
| |
Collapse
|