1
|
Mishra A, Jackson AE, Wang X, Kearns DB. The SinR·SlrR Heteromer Attenuates Transcription of a Long Operon of Flagellar Genes in Bacillus subtilis. J Mol Biol 2025; 437:169123. [PMID: 40187681 PMCID: PMC12077376 DOI: 10.1016/j.jmb.2025.169123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/07/2025]
Abstract
During growth, Bacillus subtilis differentiates into subpopulations of motile individuals and non-motile chains, associated with dispersal and biofilm formation, respectively. The two cell types are dictated by the activity of the alternative sigma factor SigD encoded as the penultimate gene of the 27-kb long fla/che flagellar operon. The frequency of SigD-ON motile cells is increased by the heteromeric transcription factor SwrA·DegU that activates the fla/che promoter. Conversely, the frequency of motile cells is decreased by the heteromeric transcription factor SinR·SlrR, but the mechanism and location of inhibition is poorly understood. Here, using ChIP-Seq analysis, we determine the binding sites of the SinR·SlrR heteromer on the genome. We identified two sites within the fla/che operon that were necessary and sufficient to attenuate transcript abundance by causing premature termination upstream of the gene that encodes SigD. Thus, cell motility and the transition to biofilm formation depend on the expression of a long operon governed by two opposing heteromeric transcription factors that operate at two different stages of the transcription cycle. More broadly, our study serves as a model for transcription factors that control transcriptional elongation and the regulation of long operons in bacteria.
Collapse
Affiliation(s)
- Ayushi Mishra
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | | - Xindan Wang
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Daniel B Kearns
- Department of Biology, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
2
|
Matavacas J, von Wachenfeldt C. Protein Homeostasis Impairment Alters Phenotypic Heterogeneity of Biofilm Communities. Mol Microbiol 2025. [PMID: 40243034 DOI: 10.1111/mmi.15366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025]
Abstract
Biofilms are highly organized, cooperating communities of microorganisms encased in a self-produced extracellular matrix, providing resilience against external stress such as antimicrobial agents and host defenses. A hallmark of biofilms is their phenotypic heterogeneity, which enhances the overall growth and survival of the community. In this study, we demonstrate that removing the dnaK and tig genes encoding the core molecular chaperones DnaK (Hsp70 homolog) and Trigger factor disrupted protein homeostasis in Bacillus subtilis and resulted in the formation of an extremely mucoid biofilm with aberrant architecture, compromised structural integrity, and altered phenotypic heterogeneity. These changes include a large reduction in the motile subpopulation and an overrepresentation of matrix producers and endospores. Overproduction of poly-γ-glutamic acid contributed crucially to the mucoid phenotype and aberrant biofilm architecture. Homeostasis impairment, triggered by elevated temperatures, in wild-type cells led to mucoid and aberrant biofilm phenotypes similar to those observed in strains lacking both dnaK and tig. Our findings show that disruption of protein homeostasis, whether due to the absence of molecular chaperones or because of environmental factors, severely changes biofilm features.
Collapse
Affiliation(s)
- Judith Matavacas
- The Microbiology Group, Department of Biology, Lund University, Lund, Sweden
| | | |
Collapse
|
3
|
He Y, Qin Y, Greenwich J, Balaban S, Darcera MVL, Gozzi K, Chai Y. A novel regulation on the developmental checkpoint protein Sda that controls sporulation and biofilm formation in Bacillus subtilis. J Bacteriol 2025; 207:e0021024. [PMID: 39932315 PMCID: PMC11925247 DOI: 10.1128/jb.00210-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/19/2024] [Indexed: 03/21/2025] Open
Abstract
Biofilm formation by Bacillus subtilis is triggered by an unusually simple environmental sensing mechanism. Certain serine codons, the four TCN codons (N for A, T, C, or G), in the gene for the biofilm repressor SinR caused lowered SinR translation and subsequent biofilm induction during transition from exponential to stationary growth. Global ribosome profiling showed that ribosomes pause when translating the four UCN (U for T on the mRNA) serine codons on mRNA, but not the two AGC/AGU serine codons. We proposed a serine codon hierarchy (AGC/AGT vs TCN) in that genes enriched in the TCN serine codons may experience reduced translation efficiency when serine is limited. In this study, we designed an algorithm to score all protein-coding genes in B. subtilis NCIB3610 based on the serine codon hierarchy. We generated a short list of 50 genes that could be subject to regulation by this novel mechanism. We further investigated one such gene from the list, sda, which encodes a developmental checkpoint protein regulating both sporulation and biofilm formation. We showed that synonymously switching the TCN serine codons to AGC in sda led to delayed biofilm formation and sporulation. This engineered strain also outgrew strains with other synonymously substituted sda alleles (TCN) in competition assays for biofilm formation and sporulation. Finally, we showed that the AGC serine codon substitutions in sda elevated the Sda protein levels. This serine codon hierarchy-based novel signaling mechanism could be exploited by bacteria in adapting to stationary phase and regulating important biological processes. IMPORTANCE Genome-wide ribosome profiling in Bacillus subtilis shows that under serine limitation, ribosomes pause on the four TCN (N for A, C, G, and T), but not AGC/AGT serine codons, during translation at a global scale. This serine codon hierarchy (AGC/T vs TCN) differentially influences the translation efficiency of genes enriched in certain serine codons. In this study, we designed an algorithm to score all 4,000+ genes in the B. subtilis genome and generated a list of 50 genes that could be subject to this novel serine codon hierarchy-mediated regulation. We further investigated one such gene, sda, encoding a developmental checkpoint protein. We show that sda and cell developments controlled by Sda are also regulated by this novel mechanism.
Collapse
Affiliation(s)
- Yinghao He
- Biology Department, Northeastern University, Boston, Massachusetts, USA
| | - Yuxuan Qin
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Samantha Balaban
- Biology Department, Northeastern University, Boston, Massachusetts, USA
| | | | - Kevin Gozzi
- The Rowland Institute at Harvard, Cambridge, Massachusetts, USA
| | - Yunrong Chai
- Biology Department, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Zhang J, Yang P, Zeng Q, Zhang Y, Zhao Y, Wang L, Li Y, Wang Z, Wang Q. Arginine kinase McsB and ClpC complex impairs the transition to biofilm formation in Bacillus subtilis. Microbiol Res 2025; 292:127979. [PMID: 39674004 DOI: 10.1016/j.micres.2024.127979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 12/16/2024]
Abstract
Robust biofilm formation on host niches facilitates beneficial Bacillus to promote plant growth and inhibit plant pathogens. Arginine kinase McsB is involved in bacterial development and stress reaction by phosphorylating proteins for degradation through a ClpC/ClpP protease. Conversely, cognate arginine phosphatase YwlE counteracts the process. Regulatory pathways of biofilm formation have been studied in Bacillus subtilis, of which Spo0A∼P is a master transcriptional regulator, which is transcriptionally activated by itself in biofilm formation. Previous studies have shown that Spo0A∼P transcript regulation controls biofilm formation, where MecA binds ClpC to inhibit Spo0A∼P-dependent transcription without triggering degradation. It remains unclear whether McsB and ClpC regulate biofilm formation together and share a similar non-proteolytic mechanism like MecA/ClpC complex. In this study, we characterized McsB and ClpC as negative regulators of biofilm formation and matrix gene eps expression. Our genetic and morphological evidence further indicates that McsB and ClpC inhibit eps expression by decreasing the spo0A and sinI expression, leading to the release of SinR, a known repressor of eps transcription. Given that the spo0A and sinI expression is transcriptionally activated by Spo0A∼P in biofilm formation, we next demonstrate that McsB interacts with Spo0A directly by bacterial two-hybrid system and Glutathione transferase pull-down experiments. Additionally, we present that McsB forms a complex with ClpC to dampen biofilm formation in vivo. Finally, we show that YwlE acts as a positive regulator of biofilm formation, counteracting the function of McsB. These findings suggest that McsB, ClpC, and YwlE play vital roles in the transition to biofilm formation in Bacillus subtilis, providing new insights into the regulatory mechanisms underlying biofilm development and sharing a similar non-proteolytic mechanism in biofilm formation as MecA/ClpC complex.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Panlei Yang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Qingchao Zeng
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yiwei Zhang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yanan Zhao
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Liwei Wang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yan Li
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhenshuo Wang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Qi Wang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Finn JP, Luzinski C, Burton BM. Differential expression of the yfj operon in a Bacillus subtilis biofilm. Appl Environ Microbiol 2024; 90:e0136224. [PMID: 39436054 PMCID: PMC11577775 DOI: 10.1128/aem.01362-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/29/2024] [Indexed: 10/23/2024] Open
Abstract
Type VII protein secretion systems play an important role in the survival and virulence of pathogens and in the competition among some microbes. Potential polymorphic toxin substrates of the type VII secretion system (T7SS) in Bacillus subtilis are important for competition in the context of biofilm communities. Within a biofilm, there is significant physiological heterogeneity as cells within the population take on differential cell fates. Which cells express and deploy the various T7SS substrates is still unknown. To identify which cells express at least one of the T7SS substrates, we investigated the yfj operon. The yfjABCDEF operon encodes at least one predicted T7SS substrate. Starting with an in silico analysis of the yfj operon promoter region, we identified potential regulatory sequences. Using a yfj promoter-reporter fusion, we then identified several regulators that impact expression of the operon, including a regulator of biofilm formation, DegU. In a degU deletion mutant, yfj expression is completely abolished. Mutation of predicted DegU binding sites also results in a significant reduction in yfj reporter levels. Further analysis of yfj regulation reveals that deletion of spo0A has the opposite effect of the degU deletion. Following the yfj reporter by microscopy of cells harvested from biofilms, we find that the yfj operon is expressed specifically in the subset of cells undergoing sporulation. Together, our results define cells entering sporulation as the subpopulation most likely to express products of the yfj operon in B. subtilis.IMPORTANCEDifferential expression of genes in a bacterial community allows for the division of labor among cells in the community. The toxin substrates of the type VII secretions system (T7SS) are known to be active in Bacillus subtilis biofilm communities. This work describes the expression of one of the T7SS-associated operons, the yfj operon, which encodes the YFJ toxin, in the sporulating subpopulation within a biofilm. The evidence that the YFJ toxin may be deployed specifically in cells at the early stages of sporulation provides a potential role for deployment of T7SS in community-associated activities, such as cannibalism.
Collapse
Affiliation(s)
- James P. Finn
- Microbiology Doctoral Training Program, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Cora Luzinski
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Briana M. Burton
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Wu R, Kong L, Liu F. Regulation of biofilm gene expression by DNA replication in Bacillus subtilis. J Cell Mol Med 2024; 28:e18481. [PMID: 38899542 PMCID: PMC11187747 DOI: 10.1111/jcmm.18481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Bacillus subtilis relies on biofilms for survival in harsh environments. Extracellular polymeric substance (EPS) is a crucial component of biofilms, yet the dynamics of EPS production in single cells remain elusive. To unveil the modulation of EPS synthesis, we built a minimal network model comprising the SinI-SinR-SlrR module, Spo0A, and EPS. Stochastic simulations revealed that antagonistic interplay between SinI and SinR enables EPS production in bursts. SlrR widens these bursts and increases their frequency by stabilizing SinR-SlrR complexes and depleting free SinR. DNA replication and chromosomal positioning of key genes dictate pulsatile changes in the slrR:sinR gene dosage ratio (gr) and Spo0A-P levels, each promoting EPS production in distinct phases of the cell cycle. As the cell cycle lengthens with nutrient stress, the duty cycle of gr pulsing decreases, whereas the amplitude of Spo0A-P pulses elevates. This coordinated response facilitates keeping a constant proportion of EPS-secreting cells within colonies across diverse nutrient conditions. Our results suggest that bacteria may 'encode' eps expression through strategic chromosomal organization. This work illuminates how stochastic protein interactions, gene copy number imbalance, and cell-cycle dynamics orchestrate EPS synthesis, offering a deeper understanding of biofilm formation.
Collapse
Affiliation(s)
- Renjie Wu
- National Laboratory of Solid State Microstructures, Department of Physics, Collaborative Innovation Center of Advanced Microstructures and Institute for Brain SciencesNanjing UniversityNanjingP. R. China
| | - Ling‐Xing Kong
- National Laboratory of Solid State Microstructures, Department of Physics, Collaborative Innovation Center of Advanced Microstructures and Institute for Brain SciencesNanjing UniversityNanjingP. R. China
| | - Feng Liu
- National Laboratory of Solid State Microstructures, Department of Physics, Collaborative Innovation Center of Advanced Microstructures and Institute for Brain SciencesNanjing UniversityNanjingP. R. China
| |
Collapse
|
7
|
Zhou C, Kong Y, Zhang N, Qin W, Li Y, Zhang H, Yang G, Lu F. Regulator DegU can remarkably influence alkaline protease AprE biosynthesis in Bacillus licheniformis 2709. Int J Biol Macromol 2024; 266:130818. [PMID: 38479659 DOI: 10.1016/j.ijbiomac.2024.130818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/23/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024]
Abstract
Alkaline protease AprE, produced by Bacillus licheniformis 2709 is an important edible hydrolase, which has potential applications in nutrient acquisition and medicine. The expression of AprE is finely regulated by a complex transcriptional regulation system. However, there is little study on transcriptional regulation mechanism of AprE biosynthesis in Bacillus licheniformis, which limits system engineering and further enhancement of AprE. Here, the severely depressed expression of aprE in degU and degS deletion mutants illustrated that the regulator DegU and its phosphorylation played a crucial part in AprE biosynthesis. Further electrophoretic mobility shift assay (EMSA) in vitro indicated that phosphorylated DegU can directly bind to the regulatory region though the DNase I foot-printing experiments failed to observe protected region. The plasmid-mediated overexpression of degU32 (Hy) obviously improved the yield of AprE by 41.6 % compared with the control strain, which demonstrated the importance of phosphorylation state of DegU on the transcription of aprE in vivo. In this study, the putative binding sequence of aprE (5'-TAAAT……AAAAT…….AACAT…TAAAA-3') located upstream -91 to -87 bp, -101 to -97 bp, -195 to -191 bp, -215 to -211 bp of the transcription start site (TSS) in B. licheniformis was computationally identified based on the DNA-binding sites of DegU in Bacillus subtilis. Overall, we systematically investigated the influence of the interplay between phosphorylated DegU and its cognate DNA sequence on expression of aprE, which not only contributes to the further AprE high-production in a genetically modified host in the future, but also significantly increases our understanding of the aprE transcription mechanism.
Collapse
Affiliation(s)
- Cuixia Zhou
- School of Biology and Brewing Engineering, Taishan University, Taian 271018, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China
| | - Ying Kong
- School of Biology and Brewing Engineering, Taishan University, Taian 271018, PR China
| | - Na Zhang
- School of Biology and Brewing Engineering, Taishan University, Taian 271018, PR China
| | - Weishuai Qin
- School of Biology and Brewing Engineering, Taishan University, Taian 271018, PR China
| | - Yanyan Li
- School of Biology and Brewing Engineering, Taishan University, Taian 271018, PR China
| | - Huitu Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China
| | - Guangcheng Yang
- School of Biology and Brewing Engineering, Taishan University, Taian 271018, PR China.
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China.
| |
Collapse
|
8
|
Dannenberg S, Penning J, Simm A, Klumpp S. The motility-matrix production switch in Bacillus subtilis-a modeling perspective. J Bacteriol 2024; 206:e0004723. [PMID: 38088582 PMCID: PMC10810213 DOI: 10.1128/jb.00047-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/09/2023] [Indexed: 01/26/2024] Open
Abstract
Phenotype switching can be triggered by external stimuli and by intrinsic stochasticity. Here, we focus on the motility-matrix production switch in Bacillus subtilis. We use modeling to describe the SinR-SlrR bistable switch and its regulation by SinI and to distinguish different sources of stochasticity. Our simulations indicate that intrinsic fluctuations in the synthesis of SinI are insufficient to drive spontaneous switching and suggest that switching is triggered by upstream noise from the Spo0A phosphorelay. IMPORTANCE The switch from motility to matrix production is the first step toward biofilm formation and, thus, to multicellular behavior in Bacillus subtilis. The transition is governed by a bistable switch based on the interplay of the regulators SinR and SlrR, while SinI transmits upstream signals to that switch. Quantitative modeling can be used to study the switching dynamics. Here, we build such a model step by step to describe the dynamics of the switch and its regulation and to study how spontaneous switching is triggered by upstream noise from the Spo0A phosphorelay.
Collapse
Affiliation(s)
- Simon Dannenberg
- University of Göttingen, Institute for the Dynamics of Complex Systems, Göttingen, Germany
| | - Jonas Penning
- University of Göttingen, Institute for the Dynamics of Complex Systems, Göttingen, Germany
| | - Alexander Simm
- University of Göttingen, Institute for the Dynamics of Complex Systems, Göttingen, Germany
| | - Stefan Klumpp
- University of Göttingen, Institute for the Dynamics of Complex Systems, Göttingen, Germany
| |
Collapse
|
9
|
McLaughlin M, Fiebig A, Crosson S. XRE transcription factors conserved in Caulobacter and φCbK modulate adhesin development and phage production. PLoS Genet 2023; 19:e1011048. [PMID: 37972151 PMCID: PMC10688885 DOI: 10.1371/journal.pgen.1011048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/30/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
The xenobiotic response element (XRE) family of transcription factors (TFs), which are commonly encoded by bacteria and bacteriophage, regulate diverse features of bacterial cell physiology and impact phage infection dynamics. Through a pangenome analysis of Caulobacter species isolated from soil and aquatic ecosystems, we uncovered an apparent radiation of a paralogous XRE TF gene cluster, several of which have established functions in the regulation of holdfast adhesin development and biofilm formation in C. crescentus. We further discovered related XRE TFs throughout the class Alphaproteobacteria and its phages, including the φCbK Caulophage, suggesting that members of this cluster impact host-phage interactions. Here we show that a closely related group of XRE transcription factors encoded by both C. crescentus and φCbK can physically interact and function to control the transcription of a common gene set, influencing processes including holdfast development and the production of φCbK virions. The φCbK-encoded XRE paralog, tgrL, is highly expressed at the earliest stages of infection and can directly inhibit transcription of host genes including hfiA, a potent holdfast inhibitor, and gafYZ, an activator of prophage-like gene transfer agents (GTAs). XRE proteins encoded from the C. crescentus chromosome also directly repress gafYZ transcription, revealing a functionally redundant set of host regulators that may protect against spurious production of GTA particles and inadvertent cell lysis. Deleting the C. crescentus XRE transcription factors reduced φCbK burst size, while overexpressing these host genes or φCbK tgrL rescued this burst defect. We conclude that this XRE TF gene cluster, shared by C. crescentus and φCbK, plays an important role in adhesion regulation under phage-free conditions, and influences host-phage dynamics during infection.
Collapse
Affiliation(s)
- Maeve McLaughlin
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
10
|
Burton AT, Pospíšilová D, Sudzinova P, Snider EV, Burrage AM, Krásný L, Kearns DB. The alternative sigma factor SigN of Bacillus subtilis is intrinsically toxic. J Bacteriol 2023; 205:e0011223. [PMID: 37728605 PMCID: PMC10601692 DOI: 10.1128/jb.00112-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/13/2023] [Indexed: 09/21/2023] Open
Abstract
Sigma factors bind and direct the RNA polymerase core to specific promoter sequences, and alternative sigma factors direct transcription of different regulons of genes. Here, we study the pBS32 plasmid-encoded sigma factor SigN of Bacillus subtilis to determine how it contributes to DNA damage-induced cell death. We find that SigN causes cell death when expressed at high levels and does so in the absence of its regulon suggesting it is intrinsically toxic. One way toxicity was relieved was by curing the pBS32 plasmid, which eliminated a positive feedback loop that led to SigN hyper-accumulation. Another way toxicity was relieved was through mutating the chromosomally encoded transcriptional repressor protein AbrB, thereby derepressing a potent antisense transcript that antagonized SigN expression. SigN efficiently competed with the vegetative sigma factor SigA in vitro, and SigN accumulation in the absence of positive feedback reduced SigA-dependent transcription suggesting that toxicity may be due to competitive inhibition of one or more essential transcripts. Why B. subtilis encodes a toxic sigma factor is unclear but SigN may function in host-inhibition during lytic conversion, as phage lysogen genes are also encoded on pBS32. IMPORTANCE Alternative sigma factors activate entire regulons of genes to improve viability in response to environmental stimuli. The pBS32 plasmid-encoded alternative sigma factor SigN of Bacillus subtilis however, is activated by the DNA damage response and leads to cellular demise. Here we find that SigN impairs viability by hyper-accumulating and outcompeting the vegetative sigma factor for the RNA polymerase core. Why B. subtilis retains a plasmid with a deleterious alternative sigma factor is unknown.
Collapse
Affiliation(s)
- Aisha T. Burton
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Debora Pospíšilová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská, Prague, Czechia
| | - Petra Sudzinova
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská, Prague, Czechia
| | | | - Andrew M. Burrage
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Libor Krásný
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská, Prague, Czechia
| | - Daniel B. Kearns
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
11
|
Yu YY, Zhang YY, Wang T, Huang TX, Tang SY, Jin Y, Mi DD, Zheng Y, Niu DD, Guo JH, Jiang CH. Kurstakin Triggers Multicellular Behaviors in Bacillus cereus AR156 and Enhances Disease Control Efficacy Against Rice Sheath Blight. PLANT DISEASE 2023:PDIS01220078RE. [PMID: 36205689 DOI: 10.1094/pdis-01-22-0078-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Kurstakin is the latest discovered family of lipopeptides secreted by Bacillus spp. In this study, the effects of kurstakin on the direct antagonism, multicellularity, and disease control ability of Bacillus cereus AR156 were explored. An insertion mutation in the nonribosomal peptide synthase responsible for kurstakin synthesis led to a significant reduction of antagonistic ability of AR156 against the plant-pathogenic fungi Rhizoctonia solani, Ascochyta citrullina, Fusarium graminearum, and F. oxysporum f. sp. cubense. The loss of kurstakin synthesis ability significantly impaired the swarming motility of AR156 and reduced biofilm formation and amyloid protein accumulation. Although the loss of kurstakin synthesis ability did not reduce the competitiveness of AR156 under laboratory conditions, the colonization and environmental adaptability of the mutant was significantly weaker than that of wild-type AR156 on rice leaves. The cell surface of wild-type AR156 colonizing the leaf surface was covered by a thick biofilm matrix under a scanning electron microscope, but not the mutant. The colonization ability on rice roots and control efficacy against rice sheath blight disease of the mutant were also impaired. Thus, kurstakin participates in the control of plant diseases by B. cereus AR156 through directly inhibiting the growth of pathogenic fungi and improving long-term environmental adaptability and colonization of AR156 on the host surface by triggering multicellularity. This study explored the multiple functions of kurstakin in plant disease control by B. cereus.
Collapse
Affiliation(s)
- Yi-Yang Yu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education; Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture; and Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Yi-Yuan Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education; Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture; and Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Ting Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education; Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture; and Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Tao-Xiang Huang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education; Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture; and Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Shu-Ya Tang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education; Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture; and Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Yu Jin
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education; Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture; and Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Dan-Dan Mi
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education; Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture; and Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Ying Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education; Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture; and Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Dong-Dong Niu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education; Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture; and Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Jian-Hua Guo
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education; Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture; and Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Chun-Hao Jiang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education; Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture; and Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| |
Collapse
|
12
|
Kantiwal U, Pandey J. Efficient Inhibition of Bacterial Biofilm Through Interference of Protein-Protein Interaction of Master Regulator Proteins: a Proof of Concept Study with SinR- SinI Complex of Bacillus subtilis. Appl Biochem Biotechnol 2023; 195:1947-1967. [PMID: 36401726 DOI: 10.1007/s12010-022-04231-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 11/21/2022]
Abstract
Biofilm-associated microbial growth is a major cause of environmental, industrial, and public health concern. Therefore, there is a pressing need to discover and develop efficient antibiofilm strategies. Regulatory proteins vital for biofilm formation might be ideal targets for developing novel antibiofilm therapeutics. Their activities often depend on protein-protein interactions. Therefore, such targets present unique opportunities and challenges to drug discovery. In Bacillus subtilis, a model organism for studying biofilms, SinR acts as the master regulator of the biofilm formation cascade. Under favourable growth conditions, it represses the epsA-O and tapA-sipW-tasA operons, which encode for essential structural components of biofilms. Under unfavourable growth conditions, SinI, an agonist protein, inactivates SinR by forming a heterotrimeric complex. This results in derepression of epsA-O and tapA-sipW-tasA operons and leads to the phenotypic switch from planktonic to biofilm-associated form. We hypothesized that inhibiting SinR-SinI interaction might warrant repression of epsA-O and tapA-sipW-tasA operons and inhibit biofilm formation. To evaluate this hypothesis, we carried out a drug repurposing study for identifying potential inhibitors of SinI. Cefoperazone and itraconazole were identified as potential inhibitors with virtual screening. The stability of their interaction with SinI was assessed in extended MD performed over 100 ns. Both cefoperazone and itraconazole showed stable interaction. In in vitro studies, cefoperazone hindered the interaction of purified recombinant SinI and SinR. In the whole cell-based biofilm inhibition assays also cefoperazone was found to efficiently inhibited biofilm formation. These results provide proof of concept for targeting protein-protein interaction of master regulators as potential target for discovery and development of antibiofilm therapeutics. We propose that similar drug repurposing studies targeting key regulators of biofilm formation cascade could be an efficient approach for discovering novel anti-biofilm therapeutics against priority pathogens.
Collapse
Affiliation(s)
- Usha Kantiwal
- Laboratory of Molecular Microbiology, Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, NH-8, Kishangarh, Ajmer, 305817, Rajasthan, India
| | - Janmejay Pandey
- Laboratory of Molecular Microbiology, Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, NH-8, Kishangarh, Ajmer, 305817, Rajasthan, India.
| |
Collapse
|
13
|
The Slowdown of Growth Rate Controls the Single-Cell Distribution of Biofilm Matrix Production via an SinI-SinR-SlrR Network. mSystems 2023; 8:e0062222. [PMID: 36786593 PMCID: PMC10134886 DOI: 10.1128/msystems.00622-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
In Bacillus subtilis, master regulator Spo0A controls several cell-differentiation pathways. Under moderate starvation, phosphorylated Spo0A (Spo0A~P) induces biofilm formation by indirectly activating genes controlling matrix production in a subpopulation of cells via an SinI-SinR-SlrR network. Under severe starvation, Spo0A~P induces sporulation by directly and indirectly regulating sporulation gene expression. However, what determines the heterogeneity of individual cell fates is not fully understood. In particular, it is still unclear why, despite being controlled by a single master regulator, biofilm matrix production and sporulation seem mutually exclusive on a single-cell level. In this work, with mathematical modeling, we showed that the fluctuations in the growth rate and the intrinsic noise amplified by the bistability in the SinI-SinR-SlrR network could explain the single-cell distribution of matrix production. Moreover, we predicted an incoherent feed-forward loop; the decrease in the cellular growth rate first activates matrix production by increasing in Spo0A phosphorylation level but then represses it via changing the relative concentrations of SinR and SlrR. Experimental data provide evidence to support model predictions. In particular, we demonstrate how the degree to which matrix production and sporulation appear mutually exclusive is affected by genetic perturbations. IMPORTANCE The mechanisms of cell-fate decisions are fundamental to our understanding of multicellular organisms and bacterial communities. However, even for the best-studied model systems we still lack a complete picture of how phenotypic heterogeneity of genetically identical cells is controlled. Here, using B. subtilis as a model system, we employ a combination of mathematical modeling and experiments to explain the population-level dynamics and single-cell level heterogeneity of matrix gene expression. The results demonstrate how the two cell fates, biofilm matrix production and sporulation, can appear mutually exclusive without explicitly inhibiting one another. Such a mechanism could be used in a wide range of other biological systems.
Collapse
|
14
|
Milton ME, Cavanagh J. The Biofilm Regulatory Network from Bacillus subtilis: A Structure-Function Analysis. J Mol Biol 2023; 435:167923. [PMID: 36535428 DOI: 10.1016/j.jmb.2022.167923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/02/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Bacterial biofilms are notorious for their ability to protect bacteria from environmental challenges, most importantly the action of antibiotics. Bacillus subtilis is an extensively studied model organism used to understand the process of biofilm formation. A complex network of principal regulatory proteins including Spo0A, AbrB, AbbA, Abh, SinR, SinI, SlrR, and RemA, work in concert to transition B. subtilis from the free-swimming planktonic state to the biofilm state. In this review, we explore, connect, and summarize decades worth of structural and biochemical studies that have elucidated this protein signaling network. Since structure dictates function, unraveling aspects of protein molecular mechanisms will allow us to devise ways to exploit critical features of the biofilm regulatory pathway, such as possible therapeutic intervention. This review pools our current knowledge base of B. subtilis biofilm regulatory proteins and highlights potential therapeutic intervention points.
Collapse
Affiliation(s)
- Morgan E Milton
- Department of Biochemistry and Molecular Biology, The Brody School of Medicine, East Carolina University, NC 27834, USA.
| | - John Cavanagh
- Department of Biochemistry and Molecular Biology, The Brody School of Medicine, East Carolina University, NC 27834, USA.
| |
Collapse
|
15
|
Morris RJ, Stevenson D, Sukhodub T, Stanley-Wall NR, MacPhee CE. Density and temperature controlled fluid extraction in a bacterial biofilm is determined by poly-γ-glutamic acid production. NPJ Biofilms Microbiomes 2022; 8:98. [PMID: 36528619 PMCID: PMC9759580 DOI: 10.1038/s41522-022-00361-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
A hallmark of microbial biofilms is the self-production of an extracellular molecular matrix that encases the resident cells. The matrix provides protection from the environment, while spatial heterogeneity of gene expression influences the structural morphology and colony spreading dynamics. Bacillus subtilis is a model bacterial system used to uncover the regulatory pathways and key building blocks required for biofilm growth and development. In this work, we report on the emergence of a highly active population of bacteria during the early stages of biofilm formation, facilitated by the extraction of fluid from the underlying agar substrate. We trace the origin of this fluid extraction to the production of poly-γ-glutamic acid (PGA). The flagella-dependent activity develops behind a moving front of fluid that propagates from the boundary of the biofilm towards the interior. The extent of fluid proliferation is controlled by the presence of extracellular polysaccharides (EPS). We also find that PGA production is positively correlated with higher temperatures, resulting in high-temperature mature biofilm morphologies that are distinct from the rugose colony biofilm architecture typically associated with B. subtilis. Although previous reports have suggested that PGA production does not play a major role in biofilm morphology in the undomesticated isolate NCIB 3610, our results suggest that this strain produces distinct biofilm matrices in response to environmental conditions.
Collapse
Affiliation(s)
- Ryan J. Morris
- grid.4305.20000 0004 1936 7988National Biofilms Innovation Centre, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD UK
| | - David Stevenson
- grid.8241.f0000 0004 0397 2876Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH UK
| | - Tetyana Sukhodub
- grid.8241.f0000 0004 0397 2876Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH UK
| | - Nicola R. Stanley-Wall
- grid.8241.f0000 0004 0397 2876Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH UK
| | - Cait E. MacPhee
- grid.4305.20000 0004 1936 7988National Biofilms Innovation Centre, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD UK
| |
Collapse
|
16
|
Response Regulator CD1688 Is a Negative Modulator of Sporulation in Clostridioides difficile. J Bacteriol 2022; 204:e0013022. [PMID: 35852332 PMCID: PMC9380558 DOI: 10.1128/jb.00130-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two-component signal transduction systems (TCSs), consisting of a sensor histidine kinase (HK) and a response regulator (RR), sense environmental stimuli and then modulate cellular responses, typically through changes in gene expression. Our previous work identified the DNA binding motif of CD1586, an RR implicated in Clostridioides difficile strain R20291 sporulation. To determine the role of this RR in the sporulation pathway in C. difficile, we generated a deletion strain of cd1688 in the historical 630 strain, the homolog of cd1586. The C. difficile Δcd1688 strain exhibited a hypersporulation phenotype, suggesting that CD1688 negatively regulates sporulation. Complementation of the C. difficile Δcd1688 strain restored sporulation. In contrast, a nonphosphorylatable copy of cd1688 did not restore sporulation to wild-type (WT) levels, indicating that CD1688 must be phosphorylated to properly modulate sporulation. Expression of the master regulator spo0A, the sporulation-specific sigma factors sigF, sigE, sigG, and sigK, and a signaling protein encoded by spoIIR was increased in the C. difficile Δcd1688 strain compared to WT. In line with the increased spoIIR expression, we detected an increase in mature SigE at an earlier time point, which arises from SpoIIR-mediated processing of pro-SigE. Taken together, our data suggest that CD1688 is a novel negative modulator of sporulation in C. difficile and contributes to mediating progression through the spore developmental pathway. These results add to our growing understanding of the complex regulatory events involved in C. difficile sporulation, insight that could be exploited for novel therapeutic development. IMPORTANCEClostridioides difficile causes severe gastrointestinal illness and is a leading cause of nosocomial infections in the United States. This pathogen produces metabolically dormant spores that are the major vehicle of transmission between hosts. The sporulation pathway involves an intricate regulatory network that controls a succession of morphological changes necessary to produce spores. The environmental signals inducing the sporulation pathway are not well understood in C. difficile. This work identified a response regulator, CD1688, that, when deleted, led to a hypersporulation phenotype, indicating that it typically acts to repress sporulation. Improving our understanding of the regulatory mechanisms modulating sporulation in C. difficile could provide novel strategies to eliminate or reduce spore production, thus decreasing transmission and disease relapse.
Collapse
|
17
|
Nordgaard M, Blake C, Maróti G, Hu G, Wang Y, Strube ML, Kovács ÁT. Experimental evolution of Bacillus subtilis on Arabidopsis thaliana roots reveals fast adaptation and improved root colonization. iScience 2022; 25:104406. [PMID: 35663012 PMCID: PMC9157203 DOI: 10.1016/j.isci.2022.104406] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/22/2022] [Accepted: 05/05/2022] [Indexed: 12/16/2022] Open
Abstract
Bacillus subtilis is known to promote plant growth and protect plants against disease. B. subtilis rapidly adapts to Arabidopsis thaliana root colonization, as evidenced by improved root colonizers already after 12 consecutive transfers between seedlings in a hydroponic setup. Re-sequencing of single evolved isolates and endpoint populations revealed mutations in genes related to different bacterial traits, in accordance with evolved isolates displaying increased root colonization associated with robust biofilm formation in response to the plant polysaccharide xylan and impaired motility. Interestingly, evolved isolates suffered a fitness disadvantage in a non-selective environment, demonstrating an evolutionary cost of adaptation to the plant root. Finally, increased root colonization by an evolved isolate was also demonstrated in the presence of resident soil microbes. Our findings highlight how a plant growth-promoting rhizobacterium rapidly adapts to an ecologically relevant environment and reveal evolutionary consequences that are fundamental to consider when evolving strains for biocontrol purposes. Bacillus subtilis shows fast adaptation to Arabidopsis thaliana roots in a hydroponic setup Evolved isolates exhibit robust biofilms in response to xylan and impaired motility Adaptation to A. thaliana roots is accompanied by an evolutionary cost An evolved isolate shows higher root colonization in the presence of soil bacteria
Collapse
Affiliation(s)
- Mathilde Nordgaard
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Christopher Blake
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Gergely Maróti
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network (ELKH), 6726 Szeged, Hungary
| | - Guohai Hu
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.,China National GeneBank, BGI-Shenzhen, 518120 Shenzhen, China
| | - Yue Wang
- China National GeneBank, BGI-Shenzhen, 518120 Shenzhen, China.,BGI-Beijing, BGI-Shenzhen, 100101 Beijing, China
| | - Mikael Lenz Strube
- Bacterial Ecophysiology and Biotechnology Group, DTU Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Ákos T Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
18
|
Comerci CJ, Gillman AL, Galera-Laporta L, Gutierrez E, Groisman A, Larkin JW, Garcia-Ojalvo J, Süel GM. Localized electrical stimulation triggers cell-type-specific proliferation in biofilms. Cell Syst 2022; 13:488-498.e4. [PMID: 35512710 PMCID: PMC9233089 DOI: 10.1016/j.cels.2022.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/20/2021] [Accepted: 04/11/2022] [Indexed: 01/18/2023]
Abstract
Biological systems ranging from bacteria to mammals utilize electrochemical signaling. Although artificial electrochemical signals have been utilized to characterize neural tissue responses, the effects of such stimuli on non-neural systems remain unclear. To pursue this question, we developed an experimental platform that combines a microfluidic chip with a multielectrode array (MiCMA) to enable localized electrochemical stimulation of bacterial biofilms. The device also allows for the simultaneous measurement of the physiological response within the biofilm with single-cell resolution. We find that the stimulation of an electrode locally changes the ratio of the two major cell types comprising Bacillus subtilis biofilms, namely motile and extracellular-matrix-producing cells. Specifically, stimulation promotes the proliferation of motile cells but not matrix cells, even though these two cell types are genetically identical and reside in the same microenvironment. Our work thus reveals that an electronic interface can selectively target bacterial cell types, enabling the control of biofilm composition and development.
Collapse
Affiliation(s)
- Colin J Comerci
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Alan L Gillman
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Leticia Galera-Laporta
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Edgar Gutierrez
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - Alex Groisman
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - Joseph W Larkin
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jordi Garcia-Ojalvo
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Gürol M Süel
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; San Diego Center for Systems Biology, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
19
|
Bavaharan A, Skilbeck C. Electrical signalling in prokaryotes and its convergence with quorum sensing in Bacillus. Bioessays 2022; 44:e2100193. [PMID: 35195292 DOI: 10.1002/bies.202100193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/15/2022]
Abstract
The importance of electrical signalling in bacteria is an emerging paradigm. Bacillus subtilis biofilms exhibit electrical communication that regulates metabolic activity and biofilm growth. Starving cells initiate oscillatory extracellular potassium signals that help even the distribution of nutrients within the biofilm and thus help regulate biofilm development. Quorum sensing also regulates biofilm growth and crucially there is convergence between electrical and quorum sensing signalling axes. This makes B. subtilis an interesting model for cell signalling research. SpoOF is predicted to act as a logic gate for signalling pathway convergence, raising interesting questions about the functional nature of this gate and the relative importance of these disparate signals on biofilm behaviour. How is an oscillating signal integrated with a quorum signal? The model presented offers rich opportunities for future experimental and theoretical modelling research. The importance of direct cell-to-cell electrical signalling in prokaryotes, so characteristic of multicellular eukaryotes, is also discussed.
Collapse
|
20
|
Bacillus subtilis Histidine Kinase KinC Activates Biofilm Formation by Controlling Heterogeneity of Single-Cell Responses. mBio 2022; 13:e0169421. [PMID: 35012345 PMCID: PMC8749435 DOI: 10.1128/mbio.01694-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Bacillus subtilis, biofilm and sporulation pathways are both controlled by a master regulator, Spo0A, which is activated by phosphorylation via a phosphorelay-a cascade of phosphotransfer reactions commencing with autophosphorylation of histidine kinases KinA, KinB, KinC, KinD, and KinE. However, it is unclear how the kinases, despite acting via the same regulator, Spo0A, differentially regulate downstream pathways, i.e., how KinA mainly activates sporulation genes and KinC mainly activates biofilm genes. In this work, we found that KinC also downregulates sporulation genes, suggesting that KinC has a negative effect on Spo0A activity. To explain this effect, with a mathematical model of the phosphorelay, we revealed that unlike KinA, which always activates Spo0A, KinC has distinct effects on Spo0A at different growth stages: during fast growth, KinC acts as a phosphate source and activates Spo0A, whereas during slow growth, KinC becomes a phosphate sink and contributes to decreasing Spo0A activity. However, under these conditions, KinC can still increase the population-mean biofilm matrix production activity. In a population, individual cells grow at different rates, and KinC would increase the Spo0A activity in the fast-growing cells but reduce the Spo0A activity in the slow-growing cells. This mechanism reduces single-cell heterogeneity of Spo0A activity, thereby increasing the fraction of cells that activate biofilm matrix production. Thus, KinC activates biofilm formation by controlling the fraction of cells activating biofilm gene expression. IMPORTANCE In many bacterial and eukaryotic systems, multiple cell fate decisions are activated by a single master regulator. Typically, the activities of the regulators are controlled posttranslationally in response to different environmental stimuli. The mechanisms underlying the ability of these regulators to control multiple outcomes are not understood in many systems. By investigating the regulation of Bacillus subtilis master regulator Spo0A, we show that sensor kinases can use a novel mechanism to control cell fate decisions. By acting as a phosphate source or sink, kinases can interact with one another and provide accurate regulation of the phosphorylation level. Moreover, this mechanism affects the cell-to-cell heterogeneity of the transcription factor activity and eventually determines the fraction of different cell types in the population. These results demonstrate the importance of intercellular heterogeneity for understanding the effects of genetic perturbations on cell fate decisions. Such effects can be applicable to a wide range of cellular systems.
Collapse
|
21
|
Structural and functional characterization of the bacterial biofilm activator RemA. Nat Commun 2021; 12:5707. [PMID: 34588455 PMCID: PMC8481266 DOI: 10.1038/s41467-021-26005-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/07/2021] [Indexed: 11/23/2022] Open
Abstract
Bacillus subtilis can form structurally complex biofilms on solid or liquid surfaces, which requires expression of genes for matrix production. The transcription of these genes is activated by regulatory protein RemA, which binds to poorly conserved, repetitive DNA regions but lacks obvious DNA-binding motifs or domains. Here, we present the structure of the RemA homologue from Geobacillus thermodenitrificans, showing a unique octameric ring with the potential to form a 16-meric superstructure. These results, together with further biochemical and in vivo characterization of B. subtilis RemA, suggests that the protein can wrap DNA around its ring-like structure through a LytTR-related domain. Biofilm formation in Bacillus subtilis requires expression of matrix production genes, which are upregulated by transcriptional activator RemA. Here, the authors show that RemA forms octameric rings with the potential to form a 16-meric superstructure, suggesting that the protein can wrap DNA through a LytTR-related domain.
Collapse
|
22
|
Unchaining mini Bacillus Strain PG10: Relief of FlgM-Mediated Repression of Autolysin Genes. Appl Environ Microbiol 2021; 87:e0112321. [PMID: 34232062 DOI: 10.1128/aem.01123-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell chaining in Bacillus subtilis is naturally observed in a subset of cells during exponential growth and during biofilm formation. However, the recently constructed large-scale genome-minimized B. subtilis strain PG10 displays a severe and permanent defect in cell separation, as it exclusively grows in the form of long filaments of nonseparated cells. In this study, we investigated the underlying mechanisms responsible for the incomplete cell division of PG10 by genomic and transcriptomic analyses. Repression of the SigD regulon, including the major autolysin gene lytF, was identified as the cause for the cell separation problem of PG10. It appeared that SigD-regulated genes are downregulated in PG10 due to the absence of the flagellar export apparatus, which normally is responsible for secretion of FlgM, the anti-sigma factor of SigD. Although mild negative effects on growth and cell morphology were observed, deletion of flgM could revert the aberrant cell-chaining phenotype and increased transformation efficiency. Interestingly, our work also demonstrates the occurrence of increased antisense transcription of slrR, a transcriptional repressor of autolysin genes, in PG10 and provides further understanding for this observation. In addition to revealing the molecular basis of the cell separation defect in PG10, our work provides novel targets for subsequent genome reduction efforts and future directions for further optimization of miniBacillus PG10. IMPORTANCE Reduction of the size of bacterial genomes is relevant for understanding the minimal requirements for cellular life as well as from a biotechnological point of view. Although the genome-minimized Bacillus subtilis strain PG10 displays several beneficial traits as a microbial cell factory compared to its parental strain, a defect at the final stage of cell division was introduced during the genome reduction process. By genetic and transcriptomic analyses, we identified the underlying reasons for the cell separation problem of PG10. In addition to enabling PG10 to grow in a way similar to that of B. subtilis wild-type strains, our work points toward subsequent targets for fine-tuning and further reduction of the genome of PG10. Moreover, solving the cell separation defect facilitates laboratory handling of PG10 by increasing the transformation efficiency, among other means. Overall, our work contributes to understanding and improving biotechnologically attractive minimal bacterial cell factories.
Collapse
|
23
|
Huang Q, Zhang Z, Liu Q, Liu F, Liu Y, Zhang J, Wang G. SpoVG is an important regulator of sporulation and affects biofilm formation by regulating Spo0A transcription in Bacillus cereus 0-9. BMC Microbiol 2021; 21:172. [PMID: 34102998 PMCID: PMC8186074 DOI: 10.1186/s12866-021-02239-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
Background Bacillus cereus 0–9, a Gram-positive, endospore-forming bacterium isolated from healthy wheat roots in our previous research, is considered to be an effective biocontrol strain against several soil-borne plant diseases. SpoVG, a regulator that is broadly conserved among many Gram-positive bacteria, may help this organism coordinate environmental growth and virulence to survive. This study aimed to explore the multiple functions of SpoVG in B. cereus 0–9. Methods The gene knockout strains were constructed by homologous recombination, and the sporulation process of B. cereus 0–9 and its mutants were observed by fluorescence staining method. We further determined the spore yields and biofilm formation abilities of test strains. Transcriptional fusion strains were constructed by overlapping PCR technique, and the promoter activity of the target gene was detected by measuring its fluorescence intensity. The biofilm production and colonial morphology of B. cereus 0–9 and its mutants were determined to study the functions of the target genes, and the transcription level of the target gene was determined by qRT-PCR. Results According to observation of the sporulation process of B. cereus 0–9 in germination medium, SpoVG is crucial for regulating sporulation stage V of B. cereus 0–9, which is identical to that of Bacillus subtilis but differs from that of Bacillus anthracis. In addition, SpoVG could influence biofilm formation of B. cereus 0–9. The transcription levels of two genes closely related to biofilm-formation, sipW and calY, were downregulated in a ΔspoVG mutant. The role of SpoVG in regulating biofilm formation was further explored by deleting the genes abrB and sinR in the ΔspoVG mutant, respectively, generating the double mutant strains ΔspoVGΔabrB and ΔspoVGΔsinR. The phenotypes of these double mutants were congruent with those of the single abrB and sinR deletion strains, respectively, which showed increased biofilm formation. This indicated that spoVG was located upstream of abrB and sinR in the regulatory pathway of B. cereus biofilm formation. Further, the results of qRT-PCR and the luminescence intensity of transcriptional fusion strains indicated that spoVG gene deletion could inhibit the transcription of Spo0A. Conclusions SpoVG, an important regulator in the sporulation of B. cereus, is located upstream of Spo0A and participates in regulation of biofilm formation of B. cereus 0–9 through regulating the transcription level of spo0A. Sporulation and biofilm formation are crucial mechanisms by which bacteria respond to adverse conditions. SpoVG is therefore an important regulator of Spo0A and is crucial for both sporulation and biofilm formation of B. cereus 0–9. This study provides a new insight into the regulatory mechanism of environmental adaptation in bacteria and a foundation for future studies on biofilm formation of B. cereus. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02239-6.
Collapse
Affiliation(s)
- Qiubin Huang
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China.,Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - Zhen Zhang
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China
| | - Qing Liu
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China
| | - Fengying Liu
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China.,Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - Yupeng Liu
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China.,Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - Juanmei Zhang
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China. .,School of Pharmaceutical, Henan Univeristy, Kaifeng, 475004, China.
| | - Gang Wang
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China. .,Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China.
| |
Collapse
|
24
|
Wu J, Li W, Zhao SG, Qian SH, Wang Z, Zhou MJ, Hu WS, Wang J, Hu LX, Liu Y, Xue ZL. Site-directed mutagenesis of the quorum-sensing transcriptional regulator SinR affects the biosynthesis of menaquinone in Bacillus subtilis. Microb Cell Fact 2021; 20:113. [PMID: 34098969 PMCID: PMC8183045 DOI: 10.1186/s12934-021-01603-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/31/2021] [Indexed: 01/02/2023] Open
Abstract
Background Menaquinone (MK-7) is a highly valuable vitamin K2 produced by Bacillus subtilis. Common static metabolic engineering approaches for promoting the production of MK-7 have been studied previously. However, these approaches caused an accumulation of toxic substances and reduced product yield. Hence, dynamic regulation by the quorum sensing (QS) system is a promising method for achieving a balance between product synthesis and cell growth. Results In this study, the QS transcriptional regulator SinR, which plays a significant role in biofilm formation and MK production simultaneously, was selected, and its site-directed mutants were constructed. Among these mutants, sinR knock out strain (KO-SinR) increased the biofilm biomass by 2.8-fold compared to the wild-type. SinRquad maximized the yield of MK-7 (102.56 ± 2.84 mg/L). To decipher the mechanism of how this mutant regulates MK-7 synthesis and to find additional potential regulators that enhance MK-7 synthesis, RNA-seq was used to analyze expression changes in the QS system, biofilm formation, and MK-7 synthesis pathway. The results showed that the expressions of tapA, tasA and epsE were up-regulated 9.79-, 0.95-, and 4.42-fold, respectively. Therefore, SinRquad formed more wrinkly and smoother biofilms than BS168. The upregulated expressions of glpF, glpk, and glpD in this biofilm morphology facilitated the flow of glycerol through the biofilm. In addition, NADH dehydrogenases especially sdhA, sdhB, sdhC and glpD, increased 1.01-, 3.93-, 1.87-, and 1.11-fold, respectively. The increased expression levels of NADH dehydrogenases indicated that more electrons were produced for the electron transport system. Electrical hyperpolarization stimulated the synthesis of the electron transport chain components, such as cytochrome c and MK, to ensure the efficiency of electron transfer. Wrinkly and smooth biofilms formed a network of interconnected channels with a low resistance to liquid flow, which was beneficial for the uptake of glycerol, and facilitated the metabolic flux of four modules of the MK-7 synthesis pathway. Conclusions In this study, we report for the first time that SinRquad has significant effects on MK-7 synthesis by forming wrinkly and smooth biofilms, upregulating the expression level of most NADH dehydrogenases, and providing higher membrane potential to stimulate the accumulation of the components in the electron transport system. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01603-5.
Collapse
Affiliation(s)
- Jing Wu
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Wei Li
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Shi-Guang Zhao
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China.,Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu, 241000, China
| | - Sen-He Qian
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China.,Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu, 241000, China
| | - Zhou Wang
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China.,Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu, 241000, China
| | - Meng-Jie Zhou
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Wen-Song Hu
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Jian Wang
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Liu-Xiu Hu
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China.,Wuhu Zhanghengchun Medicine CO., LTD, Wuhu, 241000, China
| | - Yan Liu
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China. .,Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu, 241000, China.
| | - Zheng-Lian Xue
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China. .,Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu, 241000, China.
| |
Collapse
|
25
|
Coburn PS, Miller FC, Enty MA, Land C, LaGrow AL, Mursalin MH, Callegan MC. The Bacillus virulome in endophthalmitis. MICROBIOLOGY-SGM 2021; 167. [PMID: 34032564 DOI: 10.1099/mic.0.001057] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bacillus cereus is recognized as a causative agent of gastrointestinal syndromes, but can also cause a devastating form of intraocular infection known as endophthalmitis. We have previously reported that the PlcR/PapR master virulence factor regulator system regulates intraocular virulence, and that the S-layer protein (SlpA) contributes to the severity of B. cereus endophthalmitis. To better understand the role of other B. cereus virulence genes in endophthalmitis, expression of a subset of factors was measured at the midpoint of disease progression in a murine model of endophthalmitis by RNA-Seq. Several cytolytic toxins were expressed at significantly higher levels in vivo than in BHI. The virulence regulators codY, gntR, and nprR were also expressed in vivo. However, at this timepoint, plcR/papR was not detectable, although we previously reported that a B. cereus mutant deficient in PlcR was attenuated in the eye. The motility-related genes fla, fliF, and motB, and the chemotaxis-related gene cheA were detected during infection. We have shown previously that motility and chemotaxis phenotypes are important in B. cereus endophthalmitis. The sodA2 variant of manganese superoxide dismutase was the most highly expressed gene in vivo. Expression of the surface layer protein gene, slpA, an activator of Toll-like receptors (TLR)-2 and -4, was also detected during infection, albeit at low levels. Genes expressed in a mouse model of Bacillus endophthalmitis might play crucial roles in the unique virulence of B. cereus endophthalmitis, and serve as candidates for novel therapies designed to attenuate the severity of this often blinding infection.
Collapse
Affiliation(s)
- Phillip S Coburn
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Frederick C Miller
- Department of Family and Preventive Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Morgan A Enty
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Craig Land
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Austin L LaGrow
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Md Huzzatul Mursalin
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Michelle C Callegan
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, USA.,Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.,Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
26
|
Jones JM, Grinberg I, Eldar A, Grossman AD. A mobile genetic element increases bacterial host fitness by manipulating development. eLife 2021; 10:65924. [PMID: 33655883 PMCID: PMC8032392 DOI: 10.7554/elife.65924] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/01/2021] [Indexed: 01/30/2023] Open
Abstract
Horizontal gene transfer is a major force in bacterial evolution. Mobile genetic elements are responsible for much of horizontal gene transfer and also carry beneficial cargo genes. Uncovering strategies used by mobile genetic elements to benefit host cells is crucial for understanding their stability and spread in populations. We describe a benefit that ICEBs1, an integrative and conjugative element of Bacillus subtilis, provides to its host cells. Activation of ICEBs1 conferred a frequency-dependent selective advantage to host cells during two different developmental processes: biofilm formation and sporulation. These benefits were due to inhibition of biofilm-associated gene expression and delayed sporulation by ICEBs1-containing cells, enabling them to exploit their neighbors and grow more prior to development. A single ICEBs1 gene, devI (formerly ydcO), was both necessary and sufficient for inhibition of development. Manipulation of host developmental programs allows ICEBs1 to increase host fitness, thereby increasing propagation of the element. Many bacteria can ‘have sex’ – that is, they can share their genetic information and trade off segments of DNA. While these mobile genetic elements can be parasites that use the resources of their host to make more of themselves, some carry useful genes which, for example, help bacteria to fight off antibiotics. Integrative and conjugative elements (or ICEs) are a type of mobile segments that normally stay inside the genetic information of their bacterial host but can sometimes replicate and be pumped out to another cell. ICEBs1 for instance, is an element found in the common soil bacterium Bacillus subtilis. Scientists know that ICEBs1 can rapidly spread in biofilms – the slimly, crowded communities where bacteria live tightly connected – but it is still unclear whether it helps or hinders its hosts. Using genetic manipulations and tracking the survival of different groups of cells, Jones et al. show that carrying ICEBs1 confers an advantage under many conditions. When B. subtilis forms biofilms, the presence of the devI gene in ICEBs1 helps the cells to delay the production of the costly mucus that keeps bacteria together, allowing the organisms to ‘cheat’ for a little while and benefit from the tight-knit community without contributing to it. As nutrients become scarce in biofilms, the gene also allows the bacteria to grow for longer before they start to form spores – the dormant bacterial form that can weather difficult conditions. Mobile elements can carry genes that make bacteria resistant to antibiotics, harmful to humans, or able to use new food sources; they could even be used to artificially introduce genes of interest in these cells. The work by Jones et al. helps to understand the way these elements influence the fate of their host, providing insight into how they could be harnessed for the benefit of human health.
Collapse
Affiliation(s)
- Joshua M Jones
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Ilana Grinberg
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Avigdor Eldar
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Alan D Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
27
|
Eckstein S, Brehm J, Seidel M, Lechtenfeld M, Heermann R. Two novel XRE-like transcriptional regulators control phenotypic heterogeneity in Photorhabdus luminescens cell populations. BMC Microbiol 2021; 21:63. [PMID: 33627070 PMCID: PMC7905540 DOI: 10.1186/s12866-021-02116-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/25/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The insect pathogenic bacterium Photorhabdus luminescens exists in two phenotypically different forms, designated as primary (1°) and secondary (2°) cells. Upon yet unknown environmental stimuli up to 50% of the 1° cells convert to 2° cells. Among others, one important difference between the phenotypic forms is that 2° cells are unable to live in symbiosis with their partner nematodes, and therefore are not able to re-associate with them. As 100% switching of 1° to 2° cells of the population would lead to a break-down of the bacteria's life cycle the switching process must be tightly controlled. However, the regulation mechanism of phenotypic switching is still puzzling. RESULTS Here we describe two novel XRE family transcriptional regulators, XreR1 and XreR2, that play a major role in the phenotypic switching process of P. luminescens. Deletion of xreR1 in 1° or xreR2 in 2° cells as well as insertion of extra copies of xreR1 into 2° or xreR2 into 1° cells, respectively, induced the opposite phenotype in either 1° or 2° cells. Furthermore, both regulators specifically bind to different promoter regions putatively fulfilling a positive autoregulation. We found initial evidence that XreR1 and XreR2 constitute an epigenetic switch, whereby XreR1 represses xreR2 expression and XreR2 self-reinforces its own gene by binding to XreR1. CONCLUSION Regulation of gene expression by the two novel XRE-type regulators XreR1 and XreR2 as well as their interplay represents a major regulatory process in phenotypic switching of P. luminescens. A fine-tuning balance between both regulators might therefore define the fate of single cells to convert from the 1° to the 2° phenotype.
Collapse
Affiliation(s)
- Simone Eckstein
- Johannes-Gutenberg-Universität Mainz, Institut für Molekulare Physiologie, Biozentrum II, Mikrobiologie und Weinforschung, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany.,Ludwig-Maximilians-Universität München, Biozentrum, Bereich Mikrobiologie, Martinsried, Germany
| | - Jannis Brehm
- Johannes-Gutenberg-Universität Mainz, Institut für Molekulare Physiologie, Biozentrum II, Mikrobiologie und Weinforschung, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Michael Seidel
- Ludwig-Maximilians-Universität München, Biozentrum, Bereich Mikrobiologie, Martinsried, Germany
| | - Mats Lechtenfeld
- Johannes-Gutenberg-Universität Mainz, Institut für Molekulare Physiologie, Biozentrum II, Mikrobiologie und Weinforschung, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Ralf Heermann
- Johannes-Gutenberg-Universität Mainz, Institut für Molekulare Physiologie, Biozentrum II, Mikrobiologie und Weinforschung, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany.
| |
Collapse
|
28
|
Blake C, Christensen MN, Kovács ÁT. Molecular Aspects of Plant Growth Promotion and Protection by Bacillus subtilis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:15-25. [PMID: 32986513 DOI: 10.1094/mpmi-08-20-0225-cr] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Bacillus subtilis is one of the most widely studied plant growth-promoting rhizobacteria. It is able to promote plant growth as well as control plant pathogens through diverse mechanisms, including the improvement of nutrient availability and alteration of phytohormone homeostasis as well as the production of antimicrobials and triggering induced systemic resistance, respectively. Even though its benefits for crop production have been recognized and studied extensively under laboratory conditions, the success of its application in fields varies immensely. It is widely accepted that agricultural application of B. subtilis often fails because the bacteria are not able to persist in the rhizosphere. Bacterial colonization of plant roots is a crucial step in the interaction between microbe and plant and seems, therefore, to be of great importance for its growth promotion and biocontrol effects. A successful root colonization depends thereby on both bacterial traits, motility and biofilm formation, as well as on a signal interplay with the plant. This review addresses current knowledge about plant-microbial interactions of the B. subtilis species, including the various mechanisms for supporting plant growth as well as the necessity for the establishment of the relationship.[Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Collapse
Affiliation(s)
- Christopher Blake
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Ákos T Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
29
|
Emerging Roles of Functional Bacterial Amyloids in Gene Regulation, Toxicity, and Immunomodulation. Microbiol Mol Biol Rev 2020; 85:85/1/e00062-20. [PMID: 33239434 DOI: 10.1128/mmbr.00062-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacteria often reside in multicellular communities, called biofilms, held together by an extracellular matrix. In many bacteria, the major proteinaceous component of the biofilm are amyloid fibers. Amyloids are highly stable and structured protein aggregates which were known mostly to be associated with neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's diseases. In recent years, microbial amyloids were identified also in other species and shown to play major roles in microbial physiology and virulence. For example, amyloid fibers assemble on the bacterial cell surface as a part of the extracellular matrix and are extremely important to the scaffolding and structural integrity of biofilms, which contribute to microbial resilience and resistance. Furthermore, microbial amyloids play fundamental nonscaffold roles that contribute to the development of biofilms underlying numerous persistent infections. Here, we review several nonscaffold roles of bacterial amyloid proteins, including bridging cells during collective migration, acting as regulators of cell fate, as toxins against other bacteria or against host immune cells, and as modulators of the hosts' immune system. These overall points on the complexity of the amyloid fold in encoding numerous activities, which offer approaches for the development of a novel repertoire of antivirulence therapeutics.
Collapse
|
30
|
Abstract
Clostridioides difficile is the leading cause of nosocomial infection and is the causative agent of antibiotic-associated diarrhea. The severity of the disease is directly associated with toxin production, and spores are responsible for the transmission and persistence of the organism. Previously, we characterized sin locus regulators SinR and SinR' (we renamed it SinI), where SinR is the regulator of toxin production and sporulation. The SinI regulator acts as its antagonist. In Bacillus subtilis, Spo0A, the master regulator of sporulation, controls SinR by regulating the expression of its antagonist, sinI However, the role of Spo0A in the expression of sinR and sinI in C. difficile had not yet been reported. In this study, we tested spo0A mutants in three different C. difficile strains, R20291, UK1, and JIR8094, to understand the role of Spo0A in sin locus expression. Western blot analysis revealed that spo0A mutants had increased SinR levels. Quantitative reverse transcription-PCR (qRT-PCR) analysis of its expression further supported these data. By carrying out genetic and biochemical assays, we show that Spo0A can bind to the upstream region of this locus to regulates its expression. This study provides vital information that Spo0A regulates the sin locus, which controls critical pathogenic traits such as sporulation, toxin production, and motility in C. difficile IMPORTANCE Clostridioides difficile is the leading cause of antibiotic-associated diarrheal disease in the United States. During infection, C. difficile spores germinate, and the vegetative bacterial cells produce toxins that damage host tissue. In C. difficile, the sin locus is known to regulate both sporulation and toxin production. In this study, we show that Spo0A, the master regulator of sporulation, controls sin locus expression. Results from our study suggest that Spo0A directly regulates the expression of this locus by binding to its upstream DNA region. This observation adds new detail to the gene regulatory network that connects sporulation and toxin production in this pathogen.
Collapse
|
31
|
Xu Z, Mandic-Mulec I, Zhang H, Liu Y, Sun X, Feng H, Xun W, Zhang N, Shen Q, Zhang R. Antibiotic Bacillomycin D Affects Iron Acquisition and Biofilm Formation in Bacillus velezensis through a Btr-Mediated FeuABC-Dependent Pathway. Cell Rep 2020; 29:1192-1202.e5. [PMID: 31665633 DOI: 10.1016/j.celrep.2019.09.061] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 05/31/2019] [Accepted: 09/19/2019] [Indexed: 02/06/2023] Open
Abstract
Bacillus spp. produce a wide range of secondary metabolites, including antibiotics, which have been well studied for their antibacterial properties but less so as signaling molecules. Previous results indicated that the lipopeptide bacillomycin D is a signal that promotes biofilm development of Bacillus velezensis SQR9. However, the mechanism behind this signaling is still unknown. Here, we show that bacillomycin D promotes biofilm development by promoting the acquisition of iron. Bacillomycin D promotes the transcription of the iron ABC transporter FeuABC by binding to its transcription factor, Btr. These actions increase intracellular iron concentration and activate the KinB-Spo0A-SinI-SinR-dependent synthesis of biofilm matrix components. We demonstrate that this strategy is beneficial for biofilm development and competition with the Pseudomonas fluorescens PF-5. Our results unravel an antibiotic-dependent signaling mechanism that links iron acquisition to biofilm development and ecological competition.
Collapse
Affiliation(s)
- Zhihui Xu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, Peoples R China
| | - Ines Mandic-Mulec
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Huihui Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, Peoples R China
| | - Yan Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, Peoples R China
| | - Xinli Sun
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, Peoples R China
| | - Haichao Feng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, Peoples R China
| | - Weibing Xun
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, Peoples R China
| | - Nan Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, Peoples R China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, Peoples R China
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, Peoples R China; Key Laboratory of Microbial Resource Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agriculture Sciences, Beijing, Peoples R China.
| |
Collapse
|
32
|
Abstract
The ancestral strain of Bacillus subtilis NCIB3610 (3610) bears a large, low-copy-number plasmid, called pBS32, that was lost during the domestication of laboratory strain derivatives. Selection against pBS32 may have been because it encodes a potent inhibitor of natural genetic competence (ComI), as laboratory strains were selected for high-frequency transformation. Previous studies have shown that pBS32 and its sibling, pLS32 in Bacillus subtilis subsp. natto, encode a replication initiation protein (RepN), a plasmid partitioning system (AlfAB), a biofilm inhibitor (RapP), and an alternative sigma factor (SigN) that can induce plasmid-mediated cell death in response to DNA damage. Here, we review the literature on pBS32/pLS32, the genes found on it, and their associated phenotypes.
Collapse
|
33
|
Liu YC, Han LL, Chen TY, Lu YB, Feng H. Characterization of a Protease Hyper-Productive Mutant of Bacillus pumilus by Comparative Genomic and Transcriptomic Analysis. Curr Microbiol 2020; 77:3612-3622. [PMID: 32749522 DOI: 10.1007/s00284-020-02154-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/28/2020] [Indexed: 01/06/2023]
Abstract
Bacillus pumilus BA06 has great potential for the production of alkaline proteases. To improve the protease yield, classical mutagenesis to combine the physical and chemical mutagens was performed to obtain a protease hyper-productive mutant SCU11. The full genome sequences of BA06 and SCU11 strains were assembled through DNA sequencing using the PacBio sequencing platform. By comparative genomics analysis, 147 SNPs and 15 InDels were found between these two genomes, which lead to alternation of coding sequence in 15 genes. Noticeable, the gene (kinA) encoding sporulation kinase A is interrupted by introducing a stop codon in its coding region in BA06. Interestedly, this gene is reversely corrected in SCU11. Furthermore, comparative transcriptome analysis revealed that kinA and two positive regulatory genes (DegU and Spo0A) were upregulated in transcription in SCU11. In terms of the transcriptional data, upregulation of a phosphorylation cascade starting with KinA may enhance Spo0A phosphorylation, and thus activate expression of the gene aprE (encoding major extracellular protease) through repression of AbrB (a repressor of aprE) and activation of SinI, an antagonist of SinR (a repressor of aprE). In addition, the other genes involved in various metabolic pathways, especially of membrane transport and sporulation, were altered in transcription between these two strains. Conclusively, our transcriptome data suggested that upregulation degU and spo0A, as well as kinA, may at least partially contribute to the high production of alkaline protease in SCU11.
Collapse
Affiliation(s)
- Yong-Cheng Liu
- College of Life Sciences, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China
| | - Lin-Li Han
- College of Life Sciences, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China
| | - Tian-Yu Chen
- College of Life Sciences, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China
| | - Yan-Bing Lu
- College of Life Sciences, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China
| | - Hong Feng
- College of Life Sciences, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China.
| |
Collapse
|
34
|
Špacapan M, Danevčič T, Štefanic P, Porter M, Stanley-Wall NR, Mandic-Mulec I. The ComX Quorum Sensing Peptide of Bacillus subtilis Affects Biofilm Formation Negatively and Sporulation Positively. Microorganisms 2020; 8:E1131. [PMID: 32727033 PMCID: PMC7463575 DOI: 10.3390/microorganisms8081131] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/08/2020] [Accepted: 07/22/2020] [Indexed: 01/01/2023] Open
Abstract
Quorum sensing (QS) is often required for the formation of bacterial biofilms and is a popular target of biofilm control strategies. Previous studies implicate the ComQXPA quorum sensing system of Bacillus subtilis as a promoter of biofilm formation. Here, we report that ComX signaling peptide deficient mutants form thicker and more robust pellicle biofilms that contain chains of cells. We confirm that ComX positively affects the transcriptional activity of the PepsA promoter, which controls the synthesis of the major matrix polysaccharide. In contrast, ComX negatively controls the PtapA promoter, which drives the production of TasA, a fibrous matrix protein. Overall, the biomass of the mutant biofilm lacking ComX accumulates more monosaccharide and protein content than the wild type. We conclude that this QS phenotype might be due to extended investment into growth rather than spore development. Consistent with this, the ComX deficient mutant shows a delayed activation of the pre-spore specific promoter, PspoIIQ, and a delayed, more synchronous commitment to sporulation. We conclude that ComX mediated early commitment to sporulation of the wild type slows down biofilm formation and modulates the coexistence of multiple biological states during the early stages of biofilm development.
Collapse
Affiliation(s)
- Mihael Špacapan
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, 1000 Ljubljana, Slovenia; (M.Š.); (T.D.); (P.Š.)
| | - Tjaša Danevčič
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, 1000 Ljubljana, Slovenia; (M.Š.); (T.D.); (P.Š.)
| | - Polonca Štefanic
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, 1000 Ljubljana, Slovenia; (M.Š.); (T.D.); (P.Š.)
| | - Michael Porter
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK; (M.P.); (N.R.S.-W.)
| | - Nicola R. Stanley-Wall
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK; (M.P.); (N.R.S.-W.)
| | - Ines Mandic-Mulec
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, 1000 Ljubljana, Slovenia; (M.Š.); (T.D.); (P.Š.)
| |
Collapse
|
35
|
Role of Glutamate Synthase in Biofilm Formation by Bacillus subtilis. J Bacteriol 2020; 202:JB.00120-20. [PMID: 32393519 DOI: 10.1128/jb.00120-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/04/2020] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis forms robust biofilms in the presence of large amounts of carbon sources, such as glycerol. However, little is known about the importance of the metabolic systems, or the relationship between metabolic systems and regulatory systems, involved in biofilm formation. Glutamate synthase, encoded by gltAB, is an enzyme that converts 2-ketoglutarate (a tricarboxylic acid [TCA] cycle intermediate) and glutamine into glutamate, which is a general amino group donor in metabolism. Here, we show that a ΔgltA mutant exhibited early arrest of biofilm formation in complex medium containing glycerol. This phenotype was not due to glutamate auxotrophy. Consistent with its biofilm formation phenotype, the ΔgltA mutant exhibited an early decrease in expression of the epsA and tapA operons, which are responsible for production of biofilm matrix polymers. This resulted from decreased activity of their regulator, Spo0A, as evidenced by reduced expression of other Spo0A-regulated genes in the ΔgltA mutant. The ΔgltA mutation prevented biofilm formation only in the presence of large amounts of glycerol. Moreover, limited expression of citrate synthase (but not other TCA enzymes) restored biofilm-forming ability to the ΔgltA mutant. These results indicate that the ΔgltA mutant accumulates an inhibitory intermediate (citrate) in the TCA cycle in the presence of large amounts of glycerol. The ΔgltA mutant formed biofilms when excess iron was added to the medium. Taken together, the data suggest that accumulation of citrate ions by the ΔgltA mutant causes iron shortage due to chelation, which prevents activation of Spo0A and causes defective biofilm formation.IMPORTANCE Bacillus subtilis, a model organism for bacterial biofilm formation, forms robust biofilms in a medium-dependent manner. Although the regulatory network that controls biofilm formation has been well studied, the importance of the underlying metabolic systems remains to be elucidated. The present study demonstrates that a metabolic disorder in a well-conserved metabolic system causes accumulation of an inhibitory metabolic intermediate that prevents activation of the system that regulates biofilm formation. These findings increase our understanding of the coordination between cellular metabolic status and the regulatory networks governing biofilm formation.
Collapse
|
36
|
Steinberg N, Keren-Paz A, Hou Q, Doron S, Yanuka-Golub K, Olender T, Hadar R, Rosenberg G, Jain R, Cámara-Almirón J, Romero D, van Teeffelen S, Kolodkin-Gal I. The extracellular matrix protein TasA is a developmental cue that maintains a motile subpopulation within Bacillus subtilis biofilms. Sci Signal 2020; 13:13/632/eaaw8905. [PMID: 32430292 DOI: 10.1126/scisignal.aaw8905] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In nature, bacteria form biofilms-differentiated multicellular communities attached to surfaces. Within these generally sessile biofilms, a subset of cells continues to express motility genes. We found that this subpopulation enabled Bacillus subtilis biofilms to expand on high-friction surfaces. The extracellular matrix (ECM) protein TasA was required for the expression of flagellar genes. In addition to its structural role as an adhesive fiber for cell attachment, TasA acted as a developmental signal stimulating a subset of biofilm cells to revert to a motile phenotype. Transcriptomic analysis revealed that TasA stimulated the expression of a specific subset of genes whose products promote motility and repress ECM production. Spontaneous suppressor mutations that restored motility in the absence of TasA revealed that activation of the biofilm-motility switch by the two-component system CssR/CssS antagonized the TasA-mediated reversion to motility in biofilm cells. Our results suggest that although mostly sessile, biofilms retain a degree of motility by actively maintaining a motile subpopulation.
Collapse
Affiliation(s)
- Nitai Steinberg
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.,Department of Microbiology, Institute Pasteur, Paris, France
| | - Alona Keren-Paz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Qihui Hou
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Shany Doron
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Keren Yanuka-Golub
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Hadar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Gili Rosenberg
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Rakeshkumar Jain
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Jesus Cámara-Almirón
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - Diego Romero
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | | | - Ilana Kolodkin-Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
37
|
Zhou C, Zhou H, Fang H, Ji Y, Wang H, Liu F, Zhang H, Lu F. Spo0A can efficiently enhance the expression of the alkaline protease gene aprE in Bacillus licheniformis by specifically binding to its regulatory region. Int J Biol Macromol 2020; 159:444-454. [PMID: 32437805 DOI: 10.1016/j.ijbiomac.2020.05.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023]
Abstract
The expression of enzymes in Bacillus licheniformis, such as the valuable extracellular alkaline protease AprE, is highly regulated by a complex transcriptional regulation mechanism. Here, we found that the transcript abundance of aprE varies >343-fold in response to the supply of nutrients or to environmental challenges. To identify the underlying regulatory mechanism, the core promoter of aprE and several important upstream regulatory regions outside the promoter were firstly confirmed by 5'-RACE and mutagenesis experiments. The specific proteins that bind to the identified sequences were subsequently captured by DNA pull-down experiments, which yielded the transcriptional factors (TFs) Spo0A, CggR, FruR, YhcZ, as well as fragments of functionally unassigned proteins. Further electrophoretic mobility shift assay (EMSA) and DNase I foot-printing experiments indicated that Spo0A can directly bind to the region from -92 to -118 nucleotides upstream of the transcription start site, and the deletion of this specific region drastically decreased the production of AprE. Taken together, these results indicated that the expression of aprE was mainly regulated by the interplay between Spo0A and its cognate DNA sequence, which was successfully applied to overproduce AprE in a genetically modified host harboring three aprE expression cassettes. The DNA binding proteins may serve to increase the efficiency of transcription by creating an additional binding site for RNA polymerase. The discovery of this mechanism significantly increases our understanding of the aprE transcription mechanism, which is of great importance for AprE overproduction.
Collapse
Affiliation(s)
- Cuixia Zhou
- Key laboratory of industrial fermentation microbiology, ministry of education, College of biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China; School of biology and brewing engineering, Taishan University, Taian 271018, PR China
| | - Huiying Zhou
- Key laboratory of industrial fermentation microbiology, ministry of education, College of biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China
| | - Honglei Fang
- Key laboratory of industrial fermentation microbiology, ministry of education, College of biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China
| | - Yizhi Ji
- Beijing Key Laboratory of Biomass Waste Resource Utilization, College of Biochemistry and Engineering, Beijing Union University, Beijing 100023, PR China
| | - Hongbin Wang
- Key laboratory of industrial fermentation microbiology, ministry of education, College of biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China
| | - Fufeng Liu
- Key laboratory of industrial fermentation microbiology, ministry of education, College of biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China
| | - Huitu Zhang
- Key laboratory of industrial fermentation microbiology, ministry of education, College of biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China.
| | - Fuping Lu
- Key laboratory of industrial fermentation microbiology, ministry of education, College of biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China.
| |
Collapse
|
38
|
Coburn PS, Miller FC, Enty MA, Land C, LaGrow AL, Mursalin MH, Callegan MC. Expression of Bacillus cereus Virulence-Related Genes in an Ocular Infection-Related Environment. Microorganisms 2020; 8:microorganisms8040607. [PMID: 32331252 PMCID: PMC7232466 DOI: 10.3390/microorganisms8040607] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 04/21/2020] [Indexed: 12/03/2022] Open
Abstract
Bacillus cereus produces many factors linked to pathogenesis and is recognized for causing gastrointestinal toxemia and infections. B. cereus also causes a fulminant and often blinding intraocular infection called endophthalmitis. We reported that the PlcR/PapR system regulates intraocular virulence, but the specific factors that contribute to B. cereus virulence in the eye remain elusive. Here, we compared gene expression in ex vivo vitreous humor with expression in Luria Bertani (LB) and Brain Heart Infusion (BHI) broth by RNA-Seq. The expression of several cytolytic toxins in vitreous was less than or similar to levels observed in BHI or LB. Regulators of virulence genes, including PlcR/PapR, were expressed in vitreous. PlcR/PapR was expressed at low levels, though we reported that PlcR-deficient B. cereus was attenuated in the eye. Chemotaxis and motility genes were expressed at similar levels in LB and BHI, but at low to undetectable levels in vitreous, although motility is an important phenotype for B. cereus in the eye. Superoxide dismutase, a potential inhibitor of neutrophil activity in the eye during infection, was the most highly expressed gene in vitreous. Genes previously reported to be important to intraocular virulence were expressed at low levels in vitreous under these conditions, possibly because in vivo cues are required for higher level expression. Genes expressed in vitreous may contribute to the unique virulence of B. cereus endophthalmitis, and future analysis of the B. cereus virulome in the eye will identify those expressed in vivo, which could potentially be targeted to arrest virulence.
Collapse
Affiliation(s)
- Phillip S. Coburn
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (M.A.E.); (C.L.); (A.L.L.); (M.C.C.)
- Correspondence:
| | - Frederick C. Miller
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Department of Family and Preventive Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Morgan A. Enty
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (M.A.E.); (C.L.); (A.L.L.); (M.C.C.)
| | - Craig Land
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (M.A.E.); (C.L.); (A.L.L.); (M.C.C.)
| | - Austin L. LaGrow
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (M.A.E.); (C.L.); (A.L.L.); (M.C.C.)
| | - Md Huzzatul Mursalin
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Michelle C. Callegan
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (M.A.E.); (C.L.); (A.L.L.); (M.C.C.)
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Dean McGee Eye Institute, Oklahoma City, OK 73104, USA
| |
Collapse
|
39
|
Biofilms Positively Contribute to Bacillus amyloliquefaciens 54-induced Drought Tolerance in Tomato Plants. Int J Mol Sci 2019; 20:ijms20246271. [PMID: 31842360 PMCID: PMC6940783 DOI: 10.3390/ijms20246271] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 12/31/2022] Open
Abstract
Drought stress is a major obstacle to agriculture. Although many studies have reported on plant drought tolerance achieved via genetic modification, application of plant growth-promoting rhizobacteria (PGPR) to achieve tolerance has rarely been studied. In this study, the ability of three isolates, including Bacillus amyloliquefaciens 54, from 30 potential PGPR to induce drought tolerance in tomato plants was examined via greenhouse screening. The results indicated that B. amyloliquefaciens 54 significantly enhanced drought tolerance by increasing survival rate, relative water content and root vigor. Coordinated changes were also observed in cellular defense responses, including decreased concentration of malondialdehyde and elevated concentration of antioxidant enzyme activities. Moreover, expression levels of stress-responsive genes, such as lea, tdi65, and ltpg2, increased in B. amyloliquefaciens 54-treated plants. In addition, B. amyloliquefaciens 54 induced stomatal closure through an abscisic acid-regulated pathway. Furthermore, we constructed biofilm formation mutants and determined the role of biofilm formation in B. amyloliquefaciens 54-induced drought tolerance. The results showed that biofilm-forming ability was positively correlated with plant root colonization. Moreover, plants inoculated with hyper-robust biofilm (ΔabrB and ΔywcC) mutants were better able to resist drought stress, while defective biofilm (ΔepsA-O and ΔtasA) mutants were more vulnerable to drought stress. Taken altogether, these results suggest that biofilm formation is crucial to B. amyloliquefaciens 54 root colonization and drought tolerance in tomato plants.
Collapse
|
40
|
Huang Z, Wu L, Li X, Ma L, Borriss R, Gao X. Zn(II) suppresses biofilm formation in Bacillus amyloliquefaciens by inactivation of the Mn(II) uptake. Environ Microbiol 2019; 22:1547-1558. [PMID: 31715659 DOI: 10.1111/1462-2920.14859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 11/29/2022]
Abstract
Biofilms are architecturally complex communities of microbial cells held together by a self-produced extracellular matrix. Considerable research has focused on the environmental signals that trigger or inhibit biofilm formation by affecting cellular signalling pathways; however, response to soil cues in plant-associated Bacillus has remained largely unaddressed. Therefore, we aimed to investigate the effect of Zn(II) ions in biofilm formation of Bacillus amyloliquefaciens FZB42. We demonstrated that the biofilm formation of B. amyloliquefaciens FZB42 was abolished by Zn(II) at non-deleterious concentrations. Moreover, Zn(II) blocked matrix exopolysaccharide and TasA accumulations. Furthermore, the presence of Zn(II) suppressed expression of the response regulator Spo0F but not of sensor histidine kinases KinA-D. Suppression of phosphorelay by excess Zn interferes with sinI induction under biofilm-inducing conditions, leading to repression of transcription of operons epsA-O and tapA-sigW-tasA. Addition of Zn(II) decreased the intracellular Mn(II) level by competing for binding to the solute-binding protein MntA during Mn(II) uptake. These results suggest that the metal ion Zn(II) has a negative effect on biofilm formation in the plant growth promoting and biocontrol bacterium B. amyloliquefaciens FZB42.
Collapse
Affiliation(s)
- Ziyang Huang
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, Ministry of Education, Nanjing, 210095, China
| | - Liming Wu
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, Ministry of Education, Nanjing, 210095, China
| | - Xi Li
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, Ministry of Education, Nanjing, 210095, China
| | - Liumin Ma
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, Ministry of Education, Nanjing, 210095, China
| | - Rainer Borriss
- Nord Reet UG, Greifswald, Germany.,Fachgebiet Phytomedizin, Institut für Agrar- und Gartenbauwissenschaften, Humboldt Universität, Berlin, Germany
| | - Xuewen Gao
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, Ministry of Education, Nanjing, 210095, China
| |
Collapse
|
41
|
Adusei-Danso F, Khaja FT, DeSantis M, Jeffrey PD, Dubnau E, Demeler B, Neiditch MB, Dubnau D. Structure-Function Studies of the Bacillus subtilis Ric Proteins Identify the Fe-S Cluster-Ligating Residues and Their Roles in Development and RNA Processing. mBio 2019; 10:e01841-19. [PMID: 31530674 PMCID: PMC6751060 DOI: 10.1128/mbio.01841-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/26/2019] [Indexed: 01/01/2023] Open
Abstract
In Bacillus subtilis, the RicA (YmcA), RicF (YlbF), and RicT (YaaT) proteins accelerate the phosphorylation of the transcription factor Spo0A, contributing to genetic competence, sporulation, and biofilm formation, and are also essential for the correct maturation of several protein-encoding and riboswitch RNAs. These proteins form a stable complex (RicAFT) that carries two [4Fe-4S]+2 clusters. We show here that the complex is a 1:1:1 heterotrimer, and we present the X-ray crystal structures of a RicAF heterotetramer and of a RicA dimer. We also demonstrate that one of the Fe-S clusters (cluster 1) is ligated by cysteine residues donated exclusively by RicT and can be retained when the RicT monomer is purified by itself. Cluster 2 is ligated by C167 from RicT, by C134 and C146 located near the C terminus of RicF, and by C141 at the C terminus of RicA. These findings imply the following novel arrangement: adjacent RicT residues C166 and 167 ligate clusters 1 and 2, respectively, while cluster 2 is ligated by cysteine residues from RicT, RicA, and RicF. Thus, the two clusters must lie close to one another and at the interface of the RicAFT protomers. We also show that the cluster-ligating cysteine residues, and therefore most likely both Fe-S clusters, are essential for cggR-gapA mRNA maturation, for the regulation of ricF transcript stability, and for several Ric-associated developmental phenotypes, including competence for transformation, biofilm formation, and sporulation. Finally, we present evidence that RicAFT, RicAF, and RicA and the RicT monomer may play distinct regulatory roles in vivoIMPORTANCE The RicA, RicF, and RicT proteins are widely conserved among the firmicute bacteria and play multiple roles in Bacillus subtilis Among the phenotypes associated with the inactivation of these proteins are the inability to be genetically transformed or to form biofilms, a decrease in sporulation frequency, and changes in the stability and maturation of multiple RNA species. Despite their importance, the molecular mechanisms of Ric protein activities have not been elucidated and the roles of the two iron-sulfur clusters on the complex of the three proteins are not understood. To unravel the mechanisms of Ric action, molecular characterization of the complex and of its constituent proteins is essential. This report represents a major step toward understanding the structures of the Ric proteins, the arrangement and roles of the Fe-S clusters, and the phenotypes associated with Ric mutations.
Collapse
Affiliation(s)
- Felix Adusei-Danso
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Faisal Tarique Khaja
- Public Health Research Center of New Jersey Medical School, Newark, New Jersey, USA
| | - Micaela DeSantis
- Public Health Research Center of New Jersey Medical School, Newark, New Jersey, USA
| | - Philip D Jeffrey
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Eugenie Dubnau
- Public Health Research Center of New Jersey Medical School, Newark, New Jersey, USA
| | - Borries Demeler
- Department of Chemistry & Biochemistry, The University of Lethbridge, Alberta, Canada
| | - Matthew B Neiditch
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - David Dubnau
- Public Health Research Center of New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
42
|
Milton ME, Draughn GL, Bobay BG, Stowe SD, Olson AL, Feldmann EA, Thompson RJ, Myers KH, Santoro MT, Kearns DB, Cavanagh J. The Solution Structures and Interaction of SinR and SinI: Elucidating the Mechanism of Action of the Master Regulator Switch for Biofilm Formation in Bacillus subtilis. J Mol Biol 2019; 432:343-357. [PMID: 31493408 DOI: 10.1016/j.jmb.2019.08.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/09/2019] [Accepted: 08/29/2019] [Indexed: 02/04/2023]
Abstract
Bacteria have developed numerous protection strategies to ensure survival in harsh environments, with perhaps the most robust method being the formation of a protective biofilm. In biofilms, bacterial cells are embedded within a matrix that is composed of a complex mixture of polysaccharides, proteins, and DNA. The gram-positive bacterium Bacillus subtilis has become a model organism for studying regulatory networks directing biofilm formation. The phenotypic transition from a planktonic to biofilm state is regulated by the activity of the transcriptional repressor, SinR, and its inactivation by its primary antagonist, SinI. In this work, we present the first full-length structural model of tetrameric SinR using a hybrid approach combining high-resolution solution nuclear magnetic resonance (NMR), chemical cross-linking, mass spectrometry, and molecular docking. We also present the solution NMR structure of the antagonist SinI dimer and probe the mechanism behind the SinR-SinI interaction using a combination of biochemical and biophysical techniques. As a result of these findings, we propose that SinI utilizes a residue replacement mechanism to block SinR multimerization, resulting in diminished DNA binding and concomitant decreased repressor activity. Finally, we provide an evidence-based mechanism that confirms how disruption of the SinR tetramer by SinI regulates gene expression.
Collapse
Affiliation(s)
- Morgan E Milton
- Department of Biochemistry and Molecular Biology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - G Logan Draughn
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Benjamin G Bobay
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA; Duke University NMR Center, Duke University, Durham, NC 27710, USA
| | - Sean D Stowe
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Andrew L Olson
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Erik A Feldmann
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Richele J Thompson
- Department of Biochemistry and Molecular Biology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Katherine H Myers
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Michael T Santoro
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Daniel B Kearns
- Department of Biology, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - John Cavanagh
- Department of Biochemistry and Molecular Biology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
43
|
Greenwich J, Reverdy A, Gozzi K, Di Cecco G, Tashjian T, Godoy-Carter V, Chai Y. A Decrease in Serine Levels during Growth Transition Triggers Biofilm Formation in Bacillus subtilis. J Bacteriol 2019; 201:e00155-19. [PMID: 31138626 PMCID: PMC6620397 DOI: 10.1128/jb.00155-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022] Open
Abstract
Biofilm development in Bacillus subtilis is regulated at multiple levels. While a number of known signals that trigger biofilm formation do so through the activation of one or more sensory histidine kinases, it was discovered that biofilm activation is also coordinated by sensing intracellular metabolic signals, including serine starvation. Serine starvation causes ribosomes to pause on specific serine codons, leading to a decrease in the translation rate of sinR, which encodes a master repressor for biofilm matrix genes and ultimately triggers biofilm induction. How serine levels change in different growth stages, how B. subtilis regulates intracellular serine levels, and how serine starvation triggers ribosomes to pause on selective serine codons remain unknown. Here, we show that serine levels decrease as cells enter stationary phase and that unlike most other amino acid biosynthesis genes, expression of serine biosynthesis genes decreases upon the transition into stationary phase. The deletion of the gene for a serine deaminase responsible for converting serine to pyruvate led to a delay in biofilm formation, further supporting the idea that serine levels are a critical intracellular signal for biofilm activation. Finally, we show that levels of all five serine tRNA isoacceptors are decreased in stationary phase compared with exponential phase. However, the three isoacceptors recognizing UCN serine codons are reduced to a much greater extent than the two that recognize AGC and AGU serine codons. Our findings provide evidence for a link between serine homeostasis and biofilm development in B. subtilisIMPORTANCE In Bacillus subtilis, biofilm formation is triggered in response to environmental and cellular signals. It was proposed that serine limitation acts as a proxy for nutrient status and triggers biofilm formation at the onset of biofilm entry through a novel signaling mechanism caused by global ribosome pausing on selective serine codons. In this study, we reveal that serine levels decrease at the biofilm entry due to catabolite control and a serine shunt mechanism. We also show that levels of five serine tRNA isoacceptors are differentially decreased in stationary phase compared with exponential phase; three isoacceptors recognizing UCN serine codons are reduced much more than the two recognizing AGC and AGU codons. This finding indicates a possible mechanism for selective ribosome pausing.
Collapse
Affiliation(s)
- Jennifer Greenwich
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Alicyn Reverdy
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Kevin Gozzi
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Grace Di Cecco
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Tommy Tashjian
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | | | - Yunrong Chai
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
44
|
Hochstrasser R, Kessler A, Sahr T, Simon S, Schell U, Gomez-Valero L, Buchrieser C, Hilbi H. The pleiotropic Legionella transcription factor LvbR links the Lqs and c-di-GMP regulatory networks to control biofilm architecture and virulence. Environ Microbiol 2019; 21:1035-1053. [PMID: 30623561 DOI: 10.1111/1462-2920.14523] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 01/05/2019] [Indexed: 11/29/2022]
Abstract
The causative agent of Legionnaires' disease, Legionella pneumophila, colonizes amoebae and biofilms in the environment. The opportunistic pathogen employs the Lqs (Legionella quorum sensing) system and the signalling molecule LAI-1 (Legionella autoinducer-1) to regulate virulence, motility, natural competence and expression of a 133 kb genomic "fitness island", including a putative novel regulator. Here, we show that the regulator termed LvbR is an LqsS-regulated transcription factor that binds to the promoter of lpg1056/hnox1 (encoding an inhibitor of the diguanylate cyclase Lpg1057), and thus, regulates proteins involved in c-di-GMP metabolism. LvbR determines biofilm architecture, since L. pneumophila lacking lvbR accumulates less sessile biomass and forms homogeneous mat-like structures, while the parental strain develops more compact bacterial aggregates. Comparative transcriptomics of sessile and planktonic ΔlvbR or ΔlqsR mutant strains revealed concerted (virulence, fitness island, metabolism) and reciprocally (motility) regulated genes in biofilm and broth respectively. Moreover, ΔlvbR is hyper-competent for DNA uptake, defective for phagocyte infection, outcompeted by the parental strain in amoebae co-infections and impaired for cell migration inhibition. Taken together, our results indicate that L. pneumophila LvbR is a novel pleiotropic transcription factor, which links the Lqs and c-di-GMP regulatory networks to control biofilm architecture and pathogen-host cell interactions.
Collapse
Affiliation(s)
- Ramon Hochstrasser
- Institute of Medical Microbiology, Faculty of Medicine, University of Zürich, Gloriastrasse 30, 8006 Zürich, Switzerland
| | - Aline Kessler
- Max von Pettenkofer Institute, Faculty of Medicine, Ludwig-Maximilians University, Pettenkoferstrasse 9a, 80336 Munich, Germany
| | - Tobias Sahr
- Institut Pasteur, Unité de Biologie des Bactéries Intracellulaires, 28 Rue du Dr Roux, 75724 Paris, France.,CNRS UMR 3525, 28 Rue du Dr Roux, 75724 Paris, France
| | - Sylvia Simon
- Institute of Medical Microbiology, Faculty of Medicine, University of Zürich, Gloriastrasse 30, 8006 Zürich, Switzerland
| | - Ursula Schell
- Max von Pettenkofer Institute, Faculty of Medicine, Ludwig-Maximilians University, Pettenkoferstrasse 9a, 80336 Munich, Germany
| | - Laura Gomez-Valero
- Institut Pasteur, Unité de Biologie des Bactéries Intracellulaires, 28 Rue du Dr Roux, 75724 Paris, France.,CNRS UMR 3525, 28 Rue du Dr Roux, 75724 Paris, France
| | - Carmen Buchrieser
- Institut Pasteur, Unité de Biologie des Bactéries Intracellulaires, 28 Rue du Dr Roux, 75724 Paris, France.,CNRS UMR 3525, 28 Rue du Dr Roux, 75724 Paris, France
| | - Hubert Hilbi
- Institute of Medical Microbiology, Faculty of Medicine, University of Zürich, Gloriastrasse 30, 8006 Zürich, Switzerland
| |
Collapse
|
45
|
Kalamara M, Spacapan M, Mandic‐Mulec I, Stanley‐Wall NR. Social behaviours by Bacillus subtilis: quorum sensing, kin discrimination and beyond. Mol Microbiol 2018; 110:863-878. [PMID: 30218468 PMCID: PMC6334282 DOI: 10.1111/mmi.14127] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/04/2018] [Accepted: 09/09/2018] [Indexed: 12/14/2022]
Abstract
Here, we review the multiple mechanisms that the Gram‐positive bacterium Bacillus subtilis uses to allow it to communicate between cells and establish community structures. The modes of action that are used are highly varied and include routes that sense pheromone levels during quorum sensing and control gene regulation, the intimate coupling of cells via nanotubes to share cytoplasmic contents, and long‐range electrical signalling to couple metabolic processes both within and between biofilms. We explore the ability of B. subtilis to detect ‘kin’ (and ‘cheater cells’) by looking at the mechanisms used to potentially ensure beneficial sharing (or limit exploitation) of extracellular ‘public goods’. Finally, reflecting on the array of methods that a single bacterium has at its disposal to ensure maximal benefit for its progeny, we highlight that a large future challenge will be integrating how these systems interact in mixed‐species communities.
Collapse
Affiliation(s)
- Margarita Kalamara
- Division of Molecular Microbiology, School of Life SciencesUniversity of DundeeDundeeDD15EHUK
| | - Mihael Spacapan
- Department of Food Science and Technology, Biotechnical FacultyUniversity of LjubljanaLjubljana1000Slovenia
| | - Ines Mandic‐Mulec
- Department of Food Science and Technology, Biotechnical FacultyUniversity of LjubljanaLjubljana1000Slovenia
| | - Nicola R. Stanley‐Wall
- Division of Molecular Microbiology, School of Life SciencesUniversity of DundeeDundeeDD15EHUK
| |
Collapse
|
46
|
Tanner AW, Carabetta VJ, Dubnau D. ClpC and MecA, components of a proteolytic machine, prevent Spo0A-P-dependent transcription without degradation. Mol Microbiol 2018; 108:178-186. [PMID: 29446505 PMCID: PMC5897911 DOI: 10.1111/mmi.13928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2018] [Indexed: 01/23/2023]
Abstract
In Bacillus subtilis, a proteolytic machine composed of MecA, ClpC and ClpP degrades the transcription factor ComK, controlling its accumulation during growth. MecA also inhibits sporulation and biofilm formation by down-regulating spoIIG and sinI, genes that are dependent for their transcription on the phosphorylated protein Spo0A-P. Additionally, MecA has been shown to interact in vitro with Spo0A. Although the inhibitory effect on transcription requires MecA's binding partner ClpC, inhibition is not accompanied by the degradation of Spo0A, pointing to a previously unsuspected regulatory mechanism involving these proteins. Here, we further investigate the MecA and ClpC effects on Spo0A-P-dependent transcription. We show that MecA inhibits the transcription of several Spo0A-P activated genes, but fails to de-repress several Spo0A-P repressed promoters. This demonstrates that MecA and ClpC do not act by preventing the binding of Spo0A-P to its target promoters. Consistent with this, MecA by itself has no effect in vitro on the transcription from PspoIIG while the addition of both MecA and ClpC has a strong inhibitory effect. A complex of MecA and ClpC likely binds to Spo0A-P on its target promoters, preventing the activation of transcription. Thus, components of a degradative machine have been harnessed to directly repress transcription.
Collapse
Affiliation(s)
- Andrew W. Tanner
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Valerie J. Carabetta
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - David Dubnau
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| |
Collapse
|
47
|
Abstract
Understanding the formation and structure of protective bacterial biofilms will help to design and identify antimicrobial strategies. Our experiments with the secreted major biofilm protein TasA characterize on a molecular level in vivo the transition of a folded protein into protease-resistant biofilm-stabilizing fibrils. Such conformational changes from a globular state into fibrillar structures are so far not seen for other biofilm-forming proteins. In this context, TasA can serve as a model system to study functional fibril formation from a globular state. Microorganisms form surface-attached communities, termed biofilms, which can serve as protection against host immune reactions or antibiotics. Bacillus subtilis biofilms contain TasA as major proteinaceous component in addition to exopolysaccharides. In stark contrast to the initially unfolded biofilm proteins of other bacteria, TasA is a soluble, stably folded monomer, whose structure we have determined by X-ray crystallography. Subsequently, we characterized in vitro different oligomeric forms of TasA by NMR, EM, X-ray diffraction, and analytical ultracentrifugation (AUC) experiments. However, by magic-angle spinning (MAS) NMR on live biofilms, a swift structural change toward only one of these forms, consisting of homogeneous and protease-resistant, β-sheet–rich fibrils, was observed in vivo. Thereby, we characterize a structural change from a globular state to a fibrillar form in a functional prokaryotic system on the molecular level.
Collapse
|
48
|
Fujita Y, Ogura M, Nii S, Hirooka K. Dual Regulation of Bacillus subtilis kinB Gene Encoding a Sporulation Trigger by SinR through Transcription Repression and Positive Stringent Transcription Control. Front Microbiol 2018; 8:2502. [PMID: 29321771 PMCID: PMC5733473 DOI: 10.3389/fmicb.2017.02502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/01/2017] [Indexed: 11/22/2022] Open
Abstract
It is known that transcription of kinB encoding a trigger for Bacillus subtilis sporulation is under repression by SinR, a master repressor of biofilm formation, and under positive stringent transcription control depending on the adenine species at the transcription initiation nucleotide (nt). Deletion and base substitution analyses of the kinB promoter (PkinB) region using lacZ fusions indicated that either a 5-nt deletion (Δ5, nt -61/-57, +1 is the transcription initiation nt) or the substitution of G at nt -45 with A (G-45A) relieved kinB repression. Thus, we found a pair of SinR-binding consensus sequences (GTTCTYT; Y is T or C) in an inverted orientation (SinR-1) between nt -57/-42, which is most likely a SinR-binding site for kinB repression. This relief from SinR repression likely requires SinI, an antagonist of SinR. Surprisingly, we found that SinR is essential for positive stringent transcription control of PkinB. Electrophoretic mobility shift assay (EMSA) analysis indicated that SinR bound not only to SinR-1 but also to SinR-2 (nt -29/-8) consisting of another pair of SinR consensus sequences in a tandem repeat arrangement; the two sequences partially overlap the ‘-35’ and ‘-10’ regions of PkinB. Introduction of base substitutions (T-27C C-26T) in the upstream consensus sequence of SinR-2 affected positive stringent transcription control of PkinB, suggesting that SinR binding to SinR-2 likely causes this positive control. EMSA also implied that RNA polymerase and SinR are possibly bound together to SinR-2 to form a transcription initiation complex for kinB transcription. Thus, it was suggested in this work that derepression of kinB from SinR repression by SinI induced by Spo0A∼P and occurrence of SinR-dependent positive stringent transcription control of kinB might induce effective sporulation cooperatively, implying an intimate interplay by stringent response, sporulation, and biofilm formation.
Collapse
Affiliation(s)
- Yasutaro Fujita
- Institute of Oceanic Research and Development, Tokai University, Shizuoka, Japan.,Department of Biotechnology, Faculty of Life Science and Biotechnology, Fukuyama University, Fukuyama, Japan
| | - Mitsuo Ogura
- Institute of Oceanic Research and Development, Tokai University, Shizuoka, Japan
| | - Satomi Nii
- Department of Biotechnology, Faculty of Life Science and Biotechnology, Fukuyama University, Fukuyama, Japan
| | - Kazutake Hirooka
- Department of Biotechnology, Faculty of Life Science and Biotechnology, Fukuyama University, Fukuyama, Japan
| |
Collapse
|
49
|
Washington TA, Smith JL, Grossman AD. Genetic networks controlled by the bacterial replication initiator and transcription factor DnaA in Bacillus subtilis. Mol Microbiol 2017; 106:109-128. [PMID: 28752667 DOI: 10.1111/mmi.13755] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2017] [Indexed: 12/21/2022]
Abstract
DnaA is the widely conserved bacterial AAA+ ATPase that functions as both the replication initiator and a transcription factor. In many organisms, DnaA controls expression of its own gene and likely several others during growth and in response to replication stress. To evaluate the effects of DnaA on gene expression, separate from its role in replication initiation, we analyzed changes in mRNA levels in Bacillus subtilis cells with and without dnaA, using engineered strains in which dnaA is not essential. We found that dnaA was required for many of the changes in gene expression in response to replication stress. We also found that dnaA indirectly affected expression of several regulons during growth, including those controlled by the transcription factors Spo0A, AbrB, PhoP, SinR, RemA, Rok and YvrH. These effects were largely mediated by the effects of DnaA on expression of sda. DnaA activates transcription of sda, and Sda inhibits histidine protein kinases required for activation of the transcription factor Spo0A. We also found that loss of dnaA caused a decrease in the development of genetic competence. Together, our results indicate that DnaA plays an important role in modulating cell physiology, separate from its role in replication initiation.
Collapse
Affiliation(s)
- Tracy A Washington
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Janet L Smith
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alan D Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
50
|
Xu S, Yang N, Zheng S, Yan F, Jiang C, Yu Y, Guo J, Chai Y, Chen Y. The spo0A-sinI-sinR Regulatory Circuit Plays an Essential Role in Biofilm Formation, Nematicidal Activities, and Plant Protection in Bacillus cereus AR156. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:603-619. [PMID: 28430084 DOI: 10.1094/mpmi-02-17-0042-r] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The rhizosphere bacterium Bacillus cereus AR156 is capable of forming biofilms, killing nematodes, and protecting plants. However, the underlying molecular mechanisms of these processes are not well understood. In this study, we found that the isogenic mutants ΔBcspo0A and ΔBcsinI have significantly reduced colonization and nematicidal activity in vitro and biological control efficacy on the tomato plant under greenhouse conditions. We further investigated the role of the spo0A-sinI-sinR regulatory circuit in biofilm formation, killing against nematodes, and biological control in AR156. Results from mutagenesis of those regulatory genes in AR156 and their heterologous expression in B. subtilis suggested that the spo0A-sinI-sinR genetic circuit is not only essential for biofilm formation and cell differentiation in AR156 but also able to functionally replace their counterparts in B. subtilis in a nearly indistinguishable fashion. Genome-wide transcriptional profiling in the wild type and the ΔBcspo0A and ΔBcsinI mutants further revealed hundreds of differentially expressed genes, likely positively regulated by both Spo0A and SinI (via SinR) in AR156. Among them, 29 genes are predicted to be directly controlled by SinR, whose counterpart in B. subtilis is a biofilm master repressor. Collectively, our studies demonstrated the essential role of the spo0A-sinI-sinR regulatory circuit in biofilm formation, cell differentiation, and bacteria-host interactions in B. cereus AR156.
Collapse
Affiliation(s)
- Sunde Xu
- 1 Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Nan Yang
- 1 Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shiyu Zheng
- 1 Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fang Yan
- 2 Department of Biology, Northeastern University, Boston 02115, U.S.A.; and
- 3 Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunhao Jiang
- 3 Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiyang Yu
- 2 Department of Biology, Northeastern University, Boston 02115, U.S.A.; and
- 3 Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianhua Guo
- 3 Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunrong Chai
- 2 Department of Biology, Northeastern University, Boston 02115, U.S.A.; and
| | - Yun Chen
- 1 Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|