1
|
von Saucken VE, Windner SE, Armetta G, Baylies MK. Postsynaptic BMP signaling regulates myonuclear properties in Drosophila larval muscles. J Cell Biol 2025; 224:e202404052. [PMID: 39475469 PMCID: PMC11530350 DOI: 10.1083/jcb.202404052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/13/2024] [Accepted: 10/13/2024] [Indexed: 11/04/2024] Open
Abstract
The syncytial mammalian muscle fiber contains a heterogeneous population of (myo)nuclei. At the neuromuscular junction (NMJ), myonuclei have specialized positioning and gene expression. However, it remains unclear how myonuclei are recruited and what regulates myonuclear output at the NMJ. Here, we identify specific properties of myonuclei located near the Drosophila larval NMJ. These synaptic myonuclei have increased size in relation to their surrounding cytoplasmic domain (size scaling), increased DNA content (ploidy), and increased levels of transcription factor pMad, a readout for BMP signaling activity. Our genetic manipulations show that local BMP signaling affects muscle size, nuclear size, ploidy, and NMJ size and function. In support, RNA sequencing analysis reveals that pMad regulates genes involved in muscle growth, ploidy (i.e., E2f1), and neurotransmission. Our data suggest that muscle BMP signaling instructs synaptic myonuclear output that positively shapes the NMJ synapse. This study deepens our understanding of how myonuclear heterogeneity supports local signaling demands to fine tune cellular function and NMJ activity.
Collapse
Affiliation(s)
- Victoria E. von Saucken
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell-Rockefeller-Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
- Biochemistry, Cell and Developmental Biology, and Molecular Biology (BCMB) Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Stefanie E. Windner
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Giovanna Armetta
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mary K. Baylies
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
2
|
Li D, Jin T, Liu J, Lu C, Yang X, Zhang H, Bi L, Yan Y, Zhang L, Sang Y, Jin B, Bi X. Long noncoding RNA DREAMer bridges the DREAM complex and E2f1 to regulate endoreplication in Drosophila. SCIENCE ADVANCES 2024; 10:eadr4936. [PMID: 39514671 PMCID: PMC11546848 DOI: 10.1126/sciadv.adr4936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Rb/E2f and DREAM complexes play vital roles in regulating cell cycle progression. To date, how they coordinate their functions to regulate cell cycle-dependent gene expression is not clear. Here, we identified a long noncoding RNA (lncRNA), which we named DREAMer, that bridges the interaction between E2f1 and the dREAM complex to regulate endoreplication specifically in Drosophila salivary gland. We show that E2f1 directly stimulates DREAMer expression, whereas DREAMer mediates the repression of e2f1 transcription by modulating the recruitment of the dREAM complex to the e2f1 promoter via a direct interaction with the dREAM component E2f2. The depletion of DREAMer impairs dREAM binding, leading to derepression of e2f1 transcription, which ultimately increases E2f1 activity and promotes the endoreplication. Furthermore, the transcriptomic analysis revealed profound changes in cell cycle-related gene expression in DREAMerKO salivary glands. Together, our findings reveal an lncRNA-mediated link between the dREAM complex and E2f1, which regulates endoreplication during development.
Collapse
Affiliation(s)
- Dong Li
- School of Medicine, Nantong University, Nantong 226001, China
| | - Tianyu Jin
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Jun Liu
- School of Medicine, Nantong University, Nantong 226001, China
| | - Chunlin Lu
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Xianmei Yang
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Haiyan Zhang
- School of Medicine, Nantong University, Nantong 226001, China
| | - Limin Bi
- School of Medicine, Nantong University, Nantong 226001, China
| | - Yuhang Yan
- School of Medicine, Nantong University, Nantong 226001, China
| | - Lijiao Zhang
- School of Medicine, Nantong University, Nantong 226001, China
| | - Yan Sang
- Computer Technology Centre, Affiliated Hospital of Nantong University, School of Medicine, Nantong 226001, China
| | - Bilian Jin
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Xiaolin Bi
- School of Medicine, Nantong University, Nantong 226001, China
| |
Collapse
|
3
|
von Saucken VE, Windner SE, Baylies MK. Postsynaptic BMP signaling regulates myonuclear properties in Drosophila larval muscles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588944. [PMID: 38645063 PMCID: PMC11030338 DOI: 10.1101/2024.04.10.588944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The syncytial mammalian muscle fiber contains a heterogeneous population of (myo)nuclei. At the neuromuscular junction (NMJ), myonuclei have specialized positioning and gene expression. However, it remains unclear how myonuclei are recruited and what regulates myonuclear output at the NMJ. Here, we identify specific properties of myonuclei located near the Drosophila larval NMJ. These synaptic myonuclei have increased size in relation to their surrounding cytoplasmic domain (scaling), increased DNA content (ploidy), and increased levels of transcription factor pMad, a readout for BMP signaling activity. Our genetic manipulations show local BMP signaling affects muscle size, nuclear size, ploidy, and NMJ size and function. In support, RNA sequencing analysis reveals that pMad regulates genes involved in muscle growth, ploidy (i.e., E2f1), and neurotransmission. Our data suggest that muscle BMP signaling instructs synaptic myonuclear output that then positively shapes the NMJ synapse. This study deepens our understanding of how myonuclear heterogeneity supports local signaling demands to fine tune cellular function and NMJ activity.
Collapse
Affiliation(s)
- Victoria E. von Saucken
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
- Weill Cornell-Rockefeller-Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065 USA
- Biochemistry, Cell & Developmental Biology, and Molecular Biology (BCMB) Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065 USA
| | - Stefanie E. Windner
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
| | - Mary K. Baylies
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
| |
Collapse
|
4
|
Lee JY, Bhandare RR, Boddu SHS, Shaik AB, Saktivel LP, Gupta G, Negi P, Barakat M, Singh SK, Dua K, Chellappan DK. Molecular mechanisms underlying the regulation of tumour suppressor genes in lung cancer. Biomed Pharmacother 2024; 173:116275. [PMID: 38394846 DOI: 10.1016/j.biopha.2024.116275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Tumour suppressor genes play a cardinal role in the development of a large array of human cancers, including lung cancer, which is one of the most frequently diagnosed cancers worldwide. Therefore, extensive studies have been committed to deciphering the underlying mechanisms of alterations of tumour suppressor genes in governing tumourigenesis, as well as resistance to cancer therapies. In spite of the encouraging clinical outcomes demonstrated by lung cancer patients on initial treatment, the subsequent unresponsiveness to first-line treatments manifested by virtually all the patients is inherently a contentious issue. In light of the aforementioned concerns, this review compiles the current knowledge on the molecular mechanisms of some of the tumour suppressor genes implicated in lung cancer that are either frequently mutated and/or are located on the chromosomal arms having high LOH rates (1p, 3p, 9p, 10q, 13q, and 17p). Our study identifies specific genomic loci prone to LOH, revealing a recurrent pattern in lung cancer cases. These loci, including 3p14.2 (FHIT), 9p21.3 (p16INK4a), 10q23 (PTEN), 17p13 (TP53), exhibit a higher susceptibility to LOH due to environmental factors such as exposure to DNA-damaging agents (carcinogens in cigarette smoke) and genetic factors such as chromosomal instability, genetic mutations, DNA replication errors, and genetic predisposition. Furthermore, this review summarizes the current treatment landscape and advancements for lung cancers, including the challenges and endeavours to overcome it. This review envisages inspired researchers to embark on a journey of discovery to add to the list of what was known in hopes of prompting the development of effective therapeutic strategies for lung cancer.
Collapse
Affiliation(s)
- Jia Yee Lee
- School of Health Sciences, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Richie R Bhandare
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates.
| | - Sai H S Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates
| | - Afzal B Shaik
- St. Mary's College of Pharmacy, St. Mary's Group of Institutions Guntur, Affiliated to Jawaharlal Nehru Technological University Kakinada, Chebrolu, Guntur, Andhra Pradesh 522212, India; Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Lakshmana Prabu Saktivel
- Department of Pharmaceutical Technology, University College of Engineering (BIT Campus), Anna University, Tiruchirappalli 620024, India
| | - Gaurav Gupta
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates; School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan 302017, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University, PO Box 9, Solan, Himachal Pradesh 173229, India
| | - Muna Barakat
- Department of Clinical Pharmacy & Therapeutics, Applied Science Private University, Amman-11937, Jordan
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara 144411, India; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney 2007, Australia
| | - Kamal Dua
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia.
| |
Collapse
|
5
|
Matthew J, Vishwakarma V, Le TP, Agsunod RA, Chung S. Coordination of cell cycle and morphogenesis during organ formation. eLife 2024; 13:e95830. [PMID: 38275142 PMCID: PMC10869137 DOI: 10.7554/elife.95830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 01/21/2024] [Indexed: 01/27/2024] Open
Abstract
Organ formation requires precise regulation of cell cycle and morphogenetic events. Using the Drosophila embryonic salivary gland (SG) as a model, we uncover the role of the SP1/KLF transcription factor Huckebein (Hkb) in coordinating cell cycle regulation and morphogenesis. The hkb mutant SG exhibits defects in invagination positioning and organ size due to the abnormal death of SG cells. Normal SG development involves distal-to-proximal progression of endoreplication (endocycle), whereas hkb mutant SG cells undergo abnormal cell division, leading to cell death. Hkb represses the expression of key cell cycle and pro-apoptotic genes in the SG. Knockdown of cyclin E or cyclin-dependent kinase 1, or overexpression of fizzy-related rescues most of the morphogenetic defects observed in the hkb mutant SG. These results indicate that Hkb plays a critical role in controlling endoreplication by regulating the transcription of key cell cycle effectors to ensure proper organ formation.
Collapse
Affiliation(s)
- Jeffrey Matthew
- Department of Biological Sciences, Louisiana State UniversityBaton RougeUnited States
| | - Vishakha Vishwakarma
- Department of Biological Sciences, Louisiana State UniversityBaton RougeUnited States
| | - Thao Phuong Le
- Department of Biological Sciences, Louisiana State UniversityBaton RougeUnited States
| | - Ryan A Agsunod
- Department of Biological Sciences, Louisiana State UniversityBaton RougeUnited States
| | - SeYeon Chung
- Department of Biological Sciences, Louisiana State UniversityBaton RougeUnited States
| |
Collapse
|
6
|
Zappia M, Kwon YJ, Westacott A, Liseth I, Lee H, Islam ABMMK, Kim J, Frolov M. E2F regulation of the Phosphoglycerate kinase gene is functionally important in Drosophila development. Proc Natl Acad Sci U S A 2023; 120:e2220770120. [PMID: 37011211 PMCID: PMC10104548 DOI: 10.1073/pnas.2220770120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/03/2023] [Indexed: 04/05/2023] Open
Abstract
The canonical role of the transcription factor E2F is to control the expression of cell cycle genes by binding to the E2F sites in their promoters. However, the list of putative E2F target genes is extensive and includes many metabolic genes, yet the significance of E2F in controlling the expression of these genes remains largely unknown. Here, we used the CRISPR/Cas9 technology to introduce point mutations in the E2F sites upstream of five endogenous metabolic genes in Drosophila melanogaster. We found that the impact of these mutations on both the recruitment of E2F and the expression of the target genes varied, with the glycolytic gene, Phosphoglycerate kinase (Pgk), being mostly affected. The loss of E2F regulation on the Pgk gene led to a decrease in glycolytic flux, tricarboxylic acid cycle intermediates levels, adenosine triphosphate (ATP) content, and an abnormal mitochondrial morphology. Remarkably, chromatin accessibility was significantly reduced at multiple genomic regions in PgkΔE2F mutants. These regions contained hundreds of genes, including metabolic genes that were downregulated in PgkΔE2F mutants. Moreover, PgkΔE2F animals had shortened life span and exhibited defects in high-energy consuming organs, such as ovaries and muscles. Collectively, our results illustrate how the pleiotropic effects on metabolism, gene expression, and development in the PgkΔE2F animals underscore the importance of E2F regulation on a single E2F target, Pgk.
Collapse
Affiliation(s)
- Maria Paula Zappia
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| | - Yong-Jae Kwon
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| | - Anton Westacott
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| | - Isabel Liseth
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| | - Hyun Min Lee
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| | - Abul B. M. M. K. Islam
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka1000, Bangladesh
| | - Jiyeon Kim
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| | - Maxim V. Frolov
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| |
Collapse
|
7
|
Direct Effects of Mifepristone on Mice Embryogenesis: An In Vitro Evaluation by Single-Embryo RNA Sequencing Analysis. Biomedicines 2023; 11:biomedicines11030907. [PMID: 36979886 PMCID: PMC10046204 DOI: 10.3390/biomedicines11030907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
The clinical use of mifepristone for medical abortions has been established in 1987 in France and since 2000 in the United States. Mifepristone has a limited medical period that lasts <9 weeks of gestation, and the incidence of mifepristone treatment failure increases with gestation time. Mifepristone functions as an antagonist for progesterone and glucocorticoid receptors. Studies have confirmed that mifepristone treatments can directly contribute to endometrium disability by interfering with the endometrial receptivity of the embryo, thus causing decidual endometrial degeneration. However, whether mifepristone efficacy directly affects embryo survival and growth is still an open question. Some women choose to continue their pregnancy after mifepristone treatment fails, and some women express regret and seek medically unapproved mifepristone antagonization with high doses of progesterone. These unapproved treatments raise the potential risk of embryonic fatality and developmental anomalies. Accordingly, in the present study, we collected mouse blastocysts ex vivo and treated implanted blastocysts with mifepristone for 24 h. The embryos were further cultured to day 8 in vitro to finish their growth in the early somite stage, and the embryos were then collected for RNA sequencing (control n = 3, mifepristone n = 3). When we performed a gene set enrichment analysis, our data indicated that mifepristone treatment considerably altered the cellular pathways of embryos in terms of viability, proliferation, and development. The data indicated that mifepristone was involved in hallmark gene sets of protein secretion, mTORC1, fatty acid metabolism, IL-2-STAT5 signaling, adipogenesis, peroxisome, glycolysis, E2F targets, and heme metabolism. The data further revealed that mifepristone interfered with normal embryonic development. In sum, our data suggest that continuing a pregnancy after mifepristone treatment fails is inappropriate and infeasible. The results of our study reveal a high risk of fetus fatality and developmental problems when pregnancies are continued after mifepristone treatment fails.
Collapse
|
8
|
Du H, Ge R, Zhang L, Zhang J, Chen K, Li C. Transcriptome-wide identification of development related genes and pathways in Tribolium castaneum. Genomics 2023; 115:110551. [PMID: 36566947 DOI: 10.1016/j.ygeno.2022.110551] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/07/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
The growth and development in Tribolium castaneum were poorly understood at the transcriptome level. Currently, we identified 15,756, 9941 and 10,080 differentially expressed transcripts between late eggs VS early larvae, late larvae VS early pupae, and late pupae VS early adults of T. castaneum by RNA-seq, which was confirmed by qRT-PCR analysis on nine genes expression. Functional enrichment analysis indicated that DNA replication, cell cycle and insect hormone biosynthesis significantly enriched differentially expressed genes. The transcription of DNA replication and cell cycle genes decreased after hatching but increased after pupation. The juvenile hormone (JH) and ecdysteroid biosynthesis genes decreased after hatching, and the JH degradation genes were stimulated after pupation and eclosion while the ecdysteroid degradation gene CYP18A1 decreased after pupation. Silencing CYP18A1 elevated the titer of ecdysteroids and caused developmental arrest at the late larval stage. This study promotes the understanding of insect growth and development.
Collapse
Affiliation(s)
- Huanyu Du
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Runting Ge
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Ling Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Jiangyan Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Chengjun Li
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
9
|
Sainz de la Maza D, Hof-Michel S, Phillimore L, Bökel C, Amoyel M. Cell-cycle exit and stem cell differentiation are coupled through regulation of mitochondrial activity in the Drosophila testis. Cell Rep 2022; 39:110774. [PMID: 35545055 PMCID: PMC9350557 DOI: 10.1016/j.celrep.2022.110774] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 02/21/2022] [Accepted: 04/12/2022] [Indexed: 11/27/2022] Open
Abstract
Whereas stem and progenitor cells proliferate to maintain tissue homeostasis, fully differentiated cells exit the cell cycle. How cell identity and cell-cycle state are coordinated during differentiation is still poorly understood. The Drosophila testis niche supports germline stem cells and somatic cyst stem cells (CySCs). CySCs give rise to post-mitotic cyst cells, providing a tractable model to study the links between stem cell identity and proliferation. We show that, while cell-cycle progression is required for CySC self-renewal, the E2f1/Dp transcription factor is dispensable for self-renewal but instead must be silenced by the Drosophila retinoblastoma homolog, Rbf, to permit differentiation. Continued E2f1/Dp activity inhibits the expression of genes important for mitochondrial activity. Furthermore, promoting mitochondrial biogenesis rescues the differentiation of CySCs with ectopic E2f1/Dp activity but not their cell-cycle exit. In sum, E2f1/Dp coordinates cell-cycle progression with stem cell identity by regulating the metabolic state of CySCs. CycE is critical for CySC self-renewal E2f/Dp does not act in self-renewal but must be silenced for differentiation E2f/Dp inhibits increases in oxidative metabolism involved in normal differentiation Increased mitochondrial biogenesis rescues differentiation of E2f/Dp-active cells
Collapse
Affiliation(s)
- Diego Sainz de la Maza
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Silvana Hof-Michel
- Department of Developmental Genetics, Philipps University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Lee Phillimore
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Christian Bökel
- Department of Developmental Genetics, Philipps University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany.
| | - Marc Amoyel
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
10
|
Teo T, Kasirzadeh S, Albrecht H, Sykes MJ, Yang Y, Wang S. An Overview of CDK3 in Cancer: Clinical Significance and Pharmacological Implications. Pharmacol Res 2022; 180:106249. [DOI: 10.1016/j.phrs.2022.106249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022]
|
11
|
Altered Expression of RB and pRB in Tissue Arrays of Primary Breast Cancers and Matched Axillary Lymph Node Metastases. Breast J 2022; 2022:5221257. [PMID: 35711885 PMCID: PMC9187282 DOI: 10.1155/2022/5221257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 12/02/2022]
Abstract
Objectives The retinoblastoma (RB) pathway is crucial in the development and progression of many cancers. To better understand the biology of progressive breast cancer (BC), we examined protein expression of the RB pathway in primary BCs and matched axillary lymph node metastases (LM). Methods Immunohistochemistry was used to evaluate cyclin D1, CDK4/6, RB, phosphorylated RB (pRB), and E2F1 expression in tissue arrays containing cores of 50 primary BCs and matched LM. The number of positive tumor cells and staining intensity were scored. Results The proteins were localized in the nucleus, while CDK6 was detected in the cytoplasm and CDK4 was found in both. pRB and E2F1 showed higher expression in matched LM than in primary tumors. Expression of these proteins differed significantly by the percentage of positive tumor cells, while proteins in the proximal portion of the RB pathway showed no significant differences. The main path of alteration consisted of high pRB in primary BC, remaining pRB high in the majority of LM, variations occurring in fewer cases. All matched LM of the few primary tumors that had unaltered RB and pRB expression showed changes in RB or pRB expression. Conclusion Expression of pRB and E2F1 was significantly higher in LM than in primary BC. A majority of cancers with LM showed altered RB or pRB expression, suggesting that proteins downstream in the RB pathway play a critical role in metastatic BC and disease progression. So looking at the RB pathway could be an option for chemotherapy decisions in patients with only few LM.
Collapse
|
12
|
Zhang P, Katzaroff AJ, Buttitta LA, Ma Y, Jiang H, Nickerson DW, Øvrebø JI, Edgar BA. The Krüppel-like factor Cabut has cell cycle regulatory properties similar to E2F1. Proc Natl Acad Sci U S A 2021; 118:e2015675118. [PMID: 33558234 PMCID: PMC7896318 DOI: 10.1073/pnas.2015675118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Using a gain-of-function screen in Drosophila, we identified the Krüppel-like factor Cabut (Cbt) as a positive regulator of cell cycle gene expression and cell proliferation. Enforced cbt expression is sufficient to induce an extra cell division in the differentiating fly wing or eye, and also promotes intestinal stem cell divisions in the adult gut. Although inappropriate cell proliferation also results from forced expression of the E2f1 transcription factor or its target, Cyclin E, Cbt does not increase E2F1 or Cyclin E activity. Instead, Cbt regulates a large set of E2F1 target genes independently of E2F1, and our data suggest that Cbt acts via distinct binding sites in target gene promoters. Although Cbt was not required for cell proliferation during wing or eye development, Cbt is required for normal intestinal stem cell divisions in the midgut, which expresses E2F1 at relatively low levels. The E2F1-like functions of Cbt identify a distinct mechanism for cell cycle regulation that may be important in certain normal cell cycles, or in cells that cycle inappropriately, such as cancer cells.
Collapse
Affiliation(s)
- Peng Zhang
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
| | - Alexia J Katzaroff
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Laura A Buttitta
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Yiqin Ma
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
| | - Huaqi Jiang
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Derek W Nickerson
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Jan Inge Øvrebø
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
| | - Bruce A Edgar
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112;
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| |
Collapse
|
13
|
Mitra A, Raicu AM, Hickey SL, Pile LA, Arnosti DN. Soft repression: Subtle transcriptional regulation with global impact. Bioessays 2020; 43:e2000231. [PMID: 33215731 PMCID: PMC9068271 DOI: 10.1002/bies.202000231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/29/2022]
Abstract
Pleiotropically acting eukaryotic corepressors such as retinoblastoma and SIN3 have been found to physically interact with many widely expressed “housekeeping” genes. Evidence suggests that their roles at these loci are not to provide binary on/off switches, as is observed at many highly cell-type specific genes, but rather to serve as governors, directly modulating expression within certain bounds, while not shutting down gene expression. This sort of regulation is challenging to study, as the differential expression levels can be small. We hypothesize that depending on context, corepressors mediate “soft repression,” attenuating expression in a less dramatic but physiologically appropriate manner. Emerging data indicate that such regulation is a pervasive characteristic of most eukaryotic systems, and may reflect the mechanistic differences between repressor action at promoter and enhancer locations. Soft repression may represent an essential component of the cybernetic systems underlying metabolic adaptations, enabling modest but critical adjustments on a continual basis.
Collapse
Affiliation(s)
- Anindita Mitra
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Ana-Maria Raicu
- Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan, USA
| | - Stephanie L Hickey
- Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, Michigan, USA.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Lori A Pile
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - David N Arnosti
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
14
|
Bonnay F, Veloso A, Steinmann V, Köcher T, Abdusselamoglu MD, Bajaj S, Rivelles E, Landskron L, Esterbauer H, Zinzen RP, Knoblich JA. Oxidative Metabolism Drives Immortalization of Neural Stem Cells during Tumorigenesis. Cell 2020; 182:1490-1507.e19. [PMID: 32916131 DOI: 10.1016/j.cell.2020.07.039] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/24/2020] [Accepted: 07/28/2020] [Indexed: 01/04/2023]
Abstract
Metabolic reprogramming is a key feature of many cancers, but how and when it contributes to tumorigenesis remains unclear. Here we demonstrate that metabolic reprogramming induced by mitochondrial fusion can be rate-limiting for immortalization of tumor-initiating cells (TICs) and trigger their irreversible dedication to tumorigenesis. Using single-cell transcriptomics, we find that Drosophila brain tumors contain a rapidly dividing stem cell population defined by upregulation of oxidative phosphorylation (OxPhos). We combine targeted metabolomics and in vivo genetic screening to demonstrate that OxPhos is required for tumor cell immortalization but dispensable in neural stem cells (NSCs) giving rise to tumors. Employing an in vivo NADH/NAD+ sensor, we show that NSCs precisely increase OxPhos during immortalization. Blocking OxPhos or mitochondrial fusion stalls TICs in quiescence and prevents tumorigenesis through impaired NAD+ regeneration. Our work establishes a unique connection between cellular metabolism and immortalization of tumor-initiating cells.
Collapse
Affiliation(s)
- François Bonnay
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria
| | - Ana Veloso
- Systems Biology of Neurogenesis, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Victoria Steinmann
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria
| | - Thomas Köcher
- Vienna Biocenter Core Facilities (VBCF), 1030 Vienna, Austria
| | | | - Sunanjay Bajaj
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria
| | - Elisa Rivelles
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Lisa Landskron
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria
| | - Harald Esterbauer
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Robert P Zinzen
- Systems Biology of Neurogenesis, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Juergen A Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria.
| |
Collapse
|
15
|
Evolutionarily Conserved Roles for Apontic in Induction and Subsequent Decline of Cyclin E Expression. iScience 2020; 23:101369. [PMID: 32736066 PMCID: PMC7394757 DOI: 10.1016/j.isci.2020.101369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/24/2020] [Accepted: 07/11/2020] [Indexed: 11/24/2022] Open
Abstract
Cyclin E is a key factor for S phase entry, and deregulation of Cyclin E results in developmental defects and tumors. Therefore, proper cycling of Cyclin E is crucial for normal growth. Here we found that transcription factors Apontic (Apt) and E2f1 cooperate to induce cyclin E in Drosophila. Functional binding motifs of Apt and E2f1 are clustered in the first intron of Drosophila cyclin E and directly contribute to the cyclin E transcription. Knockout of apt and e2f1 together abolished Cyclin E expression. Furthermore, Apt up-regulates Retinoblastoma family protein 1 (Rbf1) for proper chromatin compaction, which is known to repress cyclin E. Notably, Apt-dependent up-regulation of Cyclin E and Rbf1 is evolutionarily conserved in mammalian cells. Our findings reveal a unique mechanism underlying the induction and subsequent decline of Cyclin E expression.
Collapse
|
16
|
Abstract
The transition between proliferating and quiescent states must be carefully regulated to ensure that cells divide to create the cells an organism needs only at the appropriate time and place. Cyclin-dependent kinases (CDKs) are critical for both transitioning cells from one cell cycle state to the next, and for regulating whether cells are proliferating or quiescent. CDKs are regulated by association with cognate cyclins, activating and inhibitory phosphorylation events, and proteins that bind to them and inhibit their activity. The substrates of these kinases, including the retinoblastoma protein, enforce the changes in cell cycle status. Single cell analysis has clarified that competition among factors that activate and inhibit CDK activity leads to the cell's decision to enter the cell cycle, a decision the cell makes before S phase. Signaling pathways that control the activity of CDKs regulate the transition between quiescence and proliferation in stem cells, including stem cells that generate muscle and neurons. © 2020 American Physiological Society. Compr Physiol 10:317-344, 2020.
Collapse
Affiliation(s)
- Hilary A Coller
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, USA.,Department of Biological Chemistry, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California, USA.,Molecular Biology Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
17
|
Liu B, Großhans J. The role of dNTP metabolites in control of the embryonic cell cycle. Cell Cycle 2019; 18:2817-2827. [PMID: 31544596 PMCID: PMC6791698 DOI: 10.1080/15384101.2019.1665948] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 01/06/2023] Open
Abstract
Deoxyribonucleotide metabolites (dNTPs) are the substrates for DNA synthesis. It has been proposed that their availability influences the progression of the cell cycle during development and pathological situations such as tumor growth. The mechanism has remained unclear for the link between cell cycle and dNTP levels beyond their role as substrates. Here, we review recent studies concerned with the dynamics of dNTP levels in early embryos and the role of DNA replication checkpoint as a sensor of dNTP levels.
Collapse
Affiliation(s)
- Boyang Liu
- Institut für Entwicklungsbiochemie, Universitätsmedizin, Georg-August-Universität, Göttingen, Germany
| | - Jörg Großhans
- Institut für Entwicklungsbiochemie, Universitätsmedizin, Georg-August-Universität, Göttingen, Germany
- Entwicklungsgenetik, Fachbereich Biologie, Philipps-Universität, Marburg, Germany
| |
Collapse
|
18
|
Burguete AS, Francis D, Rosa J, Ghabrial A. The regulation of cell size and branch complexity in the terminal cells of the Drosophila tracheal system. Dev Biol 2019; 451:79-85. [PMID: 30735663 DOI: 10.1016/j.ydbio.2019.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/28/2019] [Accepted: 02/04/2019] [Indexed: 12/11/2022]
Abstract
The terminal cells of the larval Drosophila tracheal system extend dozens of branched cellular processes, most of which become hollow intracellular tubes that support gas exchange with internal tissues. Previously, we undertook a forward genetic mosaic screen to uncover the pathways regulating terminal cell size, morphogenesis, and the generation and maintenance of new intracellular tubes. Our initial work identified several mutations affecting terminal cell size and branch number, and suggested that branch complexity and cell size are typically coupled but could be genetically separated. To deepen our understanding of these processes, we have further characterized and determined the molecular identities of mutations in the genes sprout, denuded and asthmatic, that had been implicated in our initial screen. Here we reveal the molecular identity of these genes and describe their function in the context of the TOR and Hippo pathways, which are widely appreciated to be key regulators of cell and organ size.
Collapse
Affiliation(s)
| | - Deanne Francis
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Jeffrey Rosa
- MCDB Department, UCLA, BSRB 450B 621 Charles E. Young Drive S., Los Angeles, CA 90095-1606, USA
| | - Amin Ghabrial
- Department of Pathology and Cell Biology, Columbia University Medical Center, 630 168th St, New York, NY 10032, USA.
| |
Collapse
|
19
|
An efficient and multiple target transgenic RNAi technique with low toxicity in Drosophila. Nat Commun 2018; 9:4160. [PMID: 30297884 PMCID: PMC6175926 DOI: 10.1038/s41467-018-06537-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 09/12/2018] [Indexed: 01/19/2023] Open
Abstract
Being relatively simple and practical, Drosophila transgenic RNAi is the technique of top priority choice to quickly study genes with pleiotropic functions. However, drawbacks have emerged over time, such as high level of false positive and negative results. To overcome these shortcomings and increase efficiency, specificity and versatility, we develop a next generation transgenic RNAi system. With this system, the leaky expression of the basal promoter is significantly reduced, as well as the heterozygous ratio of transgenic RNAi flies. In addition, it has been first achieved to precisely and efficiently modulate highly expressed genes. Furthermore, we increase versatility which can simultaneously knock down multiple genes in one step. A case illustration is provided of how this system can be used to study the synthetic developmental effect of histone acetyltransferases. Finally, we have generated a collection of transgenic RNAi lines for those genes that are highly homologous to human disease genes.
Collapse
|
20
|
Song F, Li D, Wang Y, Bi X. Drosophila Caliban mediates G1-S transition and ionizing radiation induced S phase checkpoint. Cell Cycle 2018; 17:2256-2267. [PMID: 30231800 DOI: 10.1080/15384101.2018.1524237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Cell cycle progression is precisely regulated by diverse extrinsic and intrinsic cellular factors. Understanding the underlying mechanisms of cell cycle regulation is essential to address how normal development and tissue homeostasis are achieved. Here, we present a novel cell cycle regulator Caliban (Clbn), the Drosophila ortholog of human Serologically defined colon cancer antigen 1 (SDCCAG1) gene. We show that ionizing radiation induces expression of clbn, and over-expression of clbn blocks G1-to-S cell cycle transition in Drosophila, while flies loss of clbn have defective S phase checkpoint in response to irradiation. Mechanistically, induced expression of clbn suppressed E2F1 activity and down-regulates the DNA replication and expression of its downstream target cyclin E, a key regulator of G1-to-S transition. Meanwhile, clbn over-expression leads to upregulation of the CDK inhibitor Dacapo (Dap), and upregulated Dap is decreased when e2f1 is over-expressed. Furthermore, expression of clbn is down-regulated in cells with e2f1 over-expression or rbf1 knockdown, indicating that Clbn and E2F1 act antagonistically in mediating G1-to-S transition. Thus we provide genetic evidence that Clbn works together with E2F1 in regulating cell cycle progression, and Clbn is required for S phase cell cycle checkpoint in response to DNA damage.
Collapse
Affiliation(s)
- Fanghua Song
- a Department of Biological Sciences, College of Basic Medical Sciences , Dalian Medical University , Dalian , China.,b Institute of Cancer Stem Cell, Cancer Center , Dalian Medical University , Dalian , China
| | - Dong Li
- a Department of Biological Sciences, College of Basic Medical Sciences , Dalian Medical University , Dalian , China.,b Institute of Cancer Stem Cell, Cancer Center , Dalian Medical University , Dalian , China
| | - Yajie Wang
- c Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences , Wuhan University , Wuhan , China
| | - Xiaolin Bi
- a Department of Biological Sciences, College of Basic Medical Sciences , Dalian Medical University , Dalian , China.,b Institute of Cancer Stem Cell, Cancer Center , Dalian Medical University , Dalian , China
| |
Collapse
|
21
|
Kim M, Tang JP, Moon NS. An alternatively spliced form affecting the Marked Box domain of Drosophila E2F1 is required for proper cell cycle regulation. PLoS Genet 2018; 14:e1007204. [PMID: 29420631 PMCID: PMC5821395 DOI: 10.1371/journal.pgen.1007204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 02/21/2018] [Accepted: 01/16/2018] [Indexed: 12/28/2022] Open
Abstract
Across metazoans, cell cycle progression is regulated by E2F family transcription factors that can function as either transcriptional activators or repressors. For decades, the Drosophila E2F family has been viewed as a streamlined RB/E2F network, consisting of one activator (dE2F1) and one repressor (dE2F2). Here, we report that an uncharacterized isoform of dE2F1, hereon called dE2F1b, plays an important function during development and is functionally distinct from the widely-studied dE2F1 isoform, dE2F1a. dE2F1b contains an additional exon that inserts 16 amino acids to the evolutionarily conserved Marked Box domain. Analysis of de2f1b-specific mutants generated via CRISPR/Cas9 indicates that dE2F1b is a critical regulator of the cell cycle during development. This is particularly evident in endocycling salivary glands in which a tight control of dE2F1 activity is required. Interestingly, close examination of mitotic tissues such as eye and wing imaginal discs suggests that dE2F1b plays a repressive function as cells exit from the cell cycle. We also provide evidence demonstrating that dE2F1b differentially interacts with RBF1 and alters the recruitment of RBF1 and dE2F1 to promoters. Collectively, our data suggest that dE2F1b is a novel member of the E2F family, revealing a previously unappreciated complexity in the Drosophila RB/E2F network.
Collapse
Affiliation(s)
- Minhee Kim
- Department of Biology, Developmental Biology Research Initiative, McGill University, Montreal, Quebec, Canada
| | - Jack P. Tang
- Department of Biology, Developmental Biology Research Initiative, McGill University, Montreal, Quebec, Canada
| | - Nam-Sung Moon
- Department of Biology, Developmental Biology Research Initiative, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
22
|
Pfister AS, Kühl M. Of Wnts and Ribosomes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 153:131-155. [PMID: 29389514 DOI: 10.1016/bs.pmbts.2017.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Wnt proteins are secreted glycoproteins that activate different intracellular signal transduction pathways. They regulate cell proliferation and are required for proper embryonic development. Misregulation of Wnt signaling can result in various diseases including cancer. In most circumstances, cell growth is essential for cell division and thus cell proliferation. Therefore, several reports have highlighted the key role of Wnt proteins for cell growth. Ribosomes represent the cellular protein synthesis machinery and cells need to be equipped with an appropriate number of ribosomes to allow cell growth. Recent findings suggest a role for Wnt proteins in regulating ribosome biogenesis and we here summarize these findings representing a previously unknown function of Wnt proteins. Understanding this role of Wnt signaling might open new avenues to slow down proliferation by drugs for instance in cancer therapy.
Collapse
Affiliation(s)
- Astrid S Pfister
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany.
| | - Michael Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| |
Collapse
|
23
|
Guarner A, Morris R, Korenjak M, Boukhali M, Zappia MP, Van Rechem C, Whetstine JR, Ramaswamy S, Zou L, Frolov MV, Haas W, Dyson NJ. E2F/DP Prevents Cell-Cycle Progression in Endocycling Fat Body Cells by Suppressing dATM Expression. Dev Cell 2017; 43:689-703.e5. [PMID: 29233476 PMCID: PMC5901703 DOI: 10.1016/j.devcel.2017.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/28/2017] [Accepted: 11/07/2017] [Indexed: 10/18/2022]
Abstract
To understand the consequences of the complete elimination of E2F regulation, we profiled the proteome of Drosophila dDP mutants that lack functional E2F/DP complexes. The results uncovered changes in the larval fat body, a differentiated tissue that grows via endocycles. We report an unexpected mechanism of E2F/DP action that promotes quiescence in this tissue. In the fat body, dE2F/dDP limits cell-cycle progression by suppressing DNA damage responses. Loss of dDP upregulates dATM, allowing cells to sense and repair DNA damage and increasing replication of loci that are normally under-replicated in wild-type tissues. Genetic experiments show that ectopic dATM is sufficient to promote DNA synthesis in wild-type fat body cells. Strikingly, reducing dATM levels in dDP-deficient fat bodies restores cell-cycle control, improves tissue morphology, and extends animal development. These results show that, in some cellular contexts, dE2F/dDP-dependent suppression of DNA damage signaling is key for cell-cycle control and needed for normal development.
Collapse
Affiliation(s)
- Ana Guarner
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13(th) Street, Charlestown, MA 02129, USA
| | - Robert Morris
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13(th) Street, Charlestown, MA 02129, USA
| | - Michael Korenjak
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13(th) Street, Charlestown, MA 02129, USA
| | - Myriam Boukhali
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13(th) Street, Charlestown, MA 02129, USA
| | - Maria Paula Zappia
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S Ashland Avenue, Chicago, IL 60607, USA
| | - Capucine Van Rechem
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13(th) Street, Charlestown, MA 02129, USA
| | - Johnathan R Whetstine
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13(th) Street, Charlestown, MA 02129, USA
| | - Sridhar Ramaswamy
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13(th) Street, Charlestown, MA 02129, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13(th) Street, Charlestown, MA 02129, USA
| | - Maxim V Frolov
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S Ashland Avenue, Chicago, IL 60607, USA
| | - Wilhelm Haas
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13(th) Street, Charlestown, MA 02129, USA
| | - Nicholas J Dyson
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13(th) Street, Charlestown, MA 02129, USA.
| |
Collapse
|
24
|
Hinnant TD, Alvarez AA, Ables ET. Temporal remodeling of the cell cycle accompanies differentiation in the Drosophila germline. Dev Biol 2017; 429:118-131. [PMID: 28711427 DOI: 10.1016/j.ydbio.2017.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/15/2017] [Accepted: 07/05/2017] [Indexed: 12/27/2022]
Abstract
Development of multicellular organisms relies upon the coordinated regulation of cellular differentiation and proliferation. Growing evidence suggests that some molecular regulatory pathways associated with the cell cycle machinery also dictate cell fate; however, it remains largely unclear how the cell cycle is remodeled in concert with cell differentiation. During Drosophila oogenesis, mature oocytes are created through a series of precisely controlled division and differentiation steps, originating from a single tissue-specific stem cell. Further, germline stem cells (GSCs) and their differentiating progeny remain in a predominantly linear arrangement as oogenesis proceeds. The ability to visualize the stepwise events of differentiation within the context of a single tissue make the Drosophila ovary an exceptional model for study of cell cycle remodeling. To describe how the cell cycle is remodeled in germ cells as they differentiate in situ, we used the Drosophila Fluorescence Ubiquitin-based Cell Cycle Indicator (Fly-FUCCI) system, in which degradable versions of GFP::E2f1 and RFP::CycB fluorescently label cells in each phase of the cell cycle. We found that the lengths of the G1, S, and G2 phases of the cell cycle change dramatically over the course of differentiation, and identified the 4/8-cell cyst as a key developmental transition state in which cells prepare for specialized cell cycles. Our data suggest that the transcriptional activator E2f1, which controls the transition from G1 to S phase, is a key regulator of mitotic divisions in the early germline. Our data support the model that E2f1 is necessary for proper GSC proliferation, self-renewal, and daughter cell development. In contrast, while E2f1 degradation by the Cullin 4 (Cul4)-containing ubiquitin E3 ligase (CRL4) is essential for developmental transitions in the early germline, our data do not support a role for E2f1 degradation as a mechanism to limit GSC proliferation or self-renewal. Taken together, these findings provide further insight into the regulation of cell proliferation and the acquisition of differentiated cell fate, with broad implications across developing tissues.
Collapse
Affiliation(s)
- Taylor D Hinnant
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Arturo A Alvarez
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Elizabeth T Ables
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
25
|
Genomic structure, expression pattern, and functional characterization of transcription factor E2F-2 from black tiger shrimp (Penaeus monodon). PLoS One 2017; 12:e0177420. [PMID: 28558060 PMCID: PMC5448752 DOI: 10.1371/journal.pone.0177420] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/26/2017] [Indexed: 01/10/2023] Open
Abstract
Transcription factor E2F-2 is a regulator of cell cycle. Researchers identified E2F-2 genes from yeasts to humans, but few reports investigated E2F-2 gene from black tiger shrimp. In the present study, we cloned E2F-2 gene from black tiger shrimp (Penaeus monodon). Full-length PmE2F-2 complementary DNA sequence measures 3,189 bp with an open reading frame of 1,371 bp. Complete PmE2F-2 genomic sequence (17,305 bp) of P. monodon contains nine exons, which are separated by eight introns. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that PmE2F-2 is highly expressed in hepatopancreas and ovaries of P. monodon. Highest PmE2F-2 expression levels were observed in stage III ovarian development of P. monodon. PmE2F-2 expression levels were significantly augmented in ovaries of P. monodon after 5-hydroxytryptamine injection and eyestalk ablation. RNA interference experiments were conducted to examine PmE2F-2, PmCDK2, and PmCyclin E expression profiles. PmE2F-2 was successfully knocked down in ovaries and hepatopancreas via double-stranded RNA (dsRNA)-E2F-2 injection. In the same organs, PmE2F-2 expression localization and level were investigated through in situ hybridization, which revealed consistent results with those of qRT-PCR. After dsRNA-E2F-2 injection, gonadosomatic index of shrimp was significantly lower than those following dsRNA-GFP and phosphate-buffered solution injections. Therefore, PmE2F-2 may be involved in ovarian maturation in P. monodon.
Collapse
|
26
|
Méndez-López LF, Davila-Velderrain J, Domínguez-Hüttinger E, Enríquez-Olguín C, Martínez-García JC, Alvarez-Buylla ER. Gene regulatory network underlying the immortalization of epithelial cells. BMC SYSTEMS BIOLOGY 2017; 11:24. [PMID: 28209158 PMCID: PMC5314717 DOI: 10.1186/s12918-017-0393-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 01/11/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Tumorigenic transformation of human epithelial cells in vitro has been described experimentally as the potential result of spontaneous immortalization. This process is characterized by a series of cell-state transitions, in which normal epithelial cells acquire first a senescent state which is later surpassed to attain a mesenchymal stem-like phenotype with a potentially tumorigenic behavior. In this paper we aim to provide a system-level mechanistic explanation to the emergence of these cell types, and to the time-ordered transition patterns that are common to neoplasias of epithelial origin. To this end, we first integrate published functional and well-curated molecular data of the components and interactions that have been found to be involved in such cell states and transitions into a network of 41 molecular components. We then reduce this initial network by removing simple mediators (i.e., linear pathways), and formalize the resulting regulatory core into logical rules that govern the dynamics of each of the network components as a function of the states of its regulators. RESULTS Computational dynamic analysis shows that our proposed Gene Regulatory Network model recovers exactly three attractors, each of them defined by a specific gene expression profile that corresponds to the epithelial, senescent, and mesenchymal stem-like cellular phenotypes, respectively. We show that although a mesenchymal stem-like state can be attained even under unperturbed physiological conditions, the likelihood of converging to this state is increased when pro-inflammatory conditions are simulated, providing a systems-level mechanistic explanation for the carcinogenic role of chronic inflammatory conditions observed in the clinic. We also found that the regulatory core yields an epigenetic landscape that restricts temporal patterns of progression between the steady states, such that recovered patterns resemble the time-ordered transitions observed during the spontaneous immortalization of epithelial cells, both in vivo and in vitro. CONCLUSION Our study strongly suggests that the in vitro tumorigenic transformation of epithelial cells, which strongly correlates with the patterns observed during the pathological progression of epithelial carcinogenesis in vivo, emerges from underlying regulatory networks involved in epithelial trans-differentiation during development.
Collapse
Affiliation(s)
- Luis Fernando Méndez-López
- Centro de Investigación y Desarrollo en Ciencias de la Salud (CIDICS), Universidad Autonoma de Nuevo Leon, A. P. 14-740, México, 07300 D.F México
| | | | - Elisa Domínguez-Hüttinger
- Instituto de Ecología, UNAM, Cd. Universitaria, México, 04510 D.F México
- Centro de Ciencias de la Complejidad, UNAM, Cd. Universitaria, México, 04510 D.F México
| | | | | | - Elena R. Alvarez-Buylla
- Instituto de Ecología, UNAM, Cd. Universitaria, México, 04510 D.F México
- Centro de Ciencias de la Complejidad, UNAM, Cd. Universitaria, México, 04510 D.F México
| |
Collapse
|
27
|
Kent LN, Bae S, Tsai SY, Tang X, Srivastava A, Koivisto C, Martin CK, Ridolfi E, Miller GC, Zorko SM, Plevris E, Hadjiyannis Y, Perez M, Nolan E, Kladney R, Westendorp B, de Bruin A, Fernandez S, Rosol TJ, Pohar KS, Pipas JM, Leone G. Dosage-dependent copy number gains in E2f1 and E2f3 drive hepatocellular carcinoma. J Clin Invest 2017; 127:830-842. [PMID: 28134624 DOI: 10.1172/jci87583] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 12/06/2016] [Indexed: 12/21/2022] Open
Abstract
Disruption of the retinoblastoma (RB) tumor suppressor pathway, either through genetic mutation of upstream regulatory components or mutation of RB1 itself, is believed to be a required event in cancer. However, genetic alterations in the RB-regulated E2F family of transcription factors are infrequent, casting doubt on a direct role for E2Fs in driving cancer. In this work, a mutation analysis of human cancer revealed subtle but impactful copy number gains in E2F1 and E2F3 in hepatocellular carcinoma (HCC). Using a series of loss- and gain-of-function alleles to dial E2F transcriptional output, we have shown that copy number gains in E2f1 or E2f3b resulted in dosage-dependent spontaneous HCC in mice without the involvement of additional organs. Conversely, germ-line loss of E2f1 or E2f3b, but not E2f3a, protected mice against HCC. Combinatorial mapping of chromatin occupancy and transcriptome profiling identified an E2F1- and E2F3B-driven transcriptional program that was associated with development and progression of HCC. These findings demonstrate a direct and cell-autonomous role for E2F activators in human cancer.
Collapse
|
28
|
Mohan A, Asakura A. CDK inhibitors for muscle stem cell differentiation and self-renewal. ACTA ACUST UNITED AC 2017; 6:65-74. [PMID: 28713664 DOI: 10.7600/jpfsm.6.65] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Regeneration of muscle is undertaken by muscle stem cell populations named satellite cells which are normally quiescent or at the G0 phase of the cell cycle. However, upon signals from damaged muscle, satellite cells lose their quiescence, and enter the G1 cell cycle phase to expand the population of satellite cell progenies termed myogenic precursor cells (MPCs). Eventually, MPCs stop their cell cycle and undergo terminal differentiation to form skeletal muscle fibers. Some MPCs retract to quiescent satellite cells as a self-renewal process. Therefore, cell cycle regulation, consisting of satellite cell activation, proliferation, differentiation and self-renewal, is the key event of muscle regeneration. In this review, we summarize up-to-date progress on research about cell cycle regulation of myogenic progenitor cells and muscle stem cells during embryonic myogenesis and adult muscle regeneration, aging, exercise and muscle diseases including muscular dystrophy and muscle fiber atrophy, especially focusing on cyclin-dependent kinase inhibitors (CDKIs).
Collapse
Affiliation(s)
- Amrudha Mohan
- Stem Cell Institute, Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, 2001 6th Street SE, MTRF 4-220, Minneapolis, MN 55455, USA
| | - Atsushi Asakura
- Stem Cell Institute, Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, 2001 6th Street SE, MTRF 4-220, Minneapolis, MN 55455, USA
| |
Collapse
|
29
|
Zhu W, Ye L, Zhang J, Yu P, Wang H, Ye Z, Tian J. PFK15, a Small Molecule Inhibitor of PFKFB3, Induces Cell Cycle Arrest, Apoptosis and Inhibits Invasion in Gastric Cancer. PLoS One 2016; 11:e0163768. [PMID: 27669567 PMCID: PMC5036843 DOI: 10.1371/journal.pone.0163768] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 09/14/2016] [Indexed: 01/15/2023] Open
Abstract
PFKFB3 (6-phosphofructo-2-kinase) synthesizes fructose 2,6-bisphosphate (F2,6P2), which is an allosteric activator of 6-phosphofructo-1-kinase (PFK-1), the rate-limiting enzyme of glycolysis. Overexpression of the PFKFB3 enzyme leads to high glycolytic metabolism, which is required for cancer cells to survive in the harsh tumor microenvironment. The objective of this study was to investigate the antitumor activity of PFK15 (1-(4-pyridinyl)-3-(2-quinolinyl)-2-propen-1-one), a small molecule inhibitor of PFKFB3, against gastric cancer and to explore its potential mechanisms. The effects of PFK15 on proliferation, apoptosis and cell cycle progression in gastric cancer cells were evaluated by cytotoxicity and apoptosis assays, flow cytometry, and western blotting. In addition, the invasion inhibition effects of PFK15 were measured by transwell invasion assay and western blot analysis, and a xenograft tumor model was used to verify the therapeutic effect of PFK15 in vivo. Results showed that PFK15 inhibited the proliferation, caused cell cycle arrest in G0/G1 phase by blocking the Cyclin-CDKs/Rb/E2F signaling pathway, and induced apoptosis through mitochondria in gastric cancer cells. Tumor volume and weight were also significantly reduced upon intraperitoneal injection with PFK15 at 25 mg/kg. In addition, PFK15 inhibited the invasion of gastric cancer cells by downregulating focal adhesion kinase (FAK) expression and upregulating E-cadherin expression. Taken together, our findings indicate that PFK15 is a promising anticancer drug for treating gastric cancer.
Collapse
Affiliation(s)
- Wei Zhu
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Liang Ye
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Non-clinical Research Department, Luye Pharma Group Ltd., Yantai, Shandong 264003, China
- School of Pharmaceutical Sciences and Institute of Material Medical, Binzhou Medical University, Yantai, Shandong 264005, China
| | - Jianzhao Zhang
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Non-clinical Research Department, Luye Pharma Group Ltd., Yantai, Shandong 264003, China
| | - Pengfei Yu
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Non-clinical Research Department, Luye Pharma Group Ltd., Yantai, Shandong 264003, China
| | - Hongbo Wang
- School of Pharmacy, Yantai University, Yantai, Shandong 264005, China
| | - Zuguang Ye
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
- * E-mail: (ZGY); (JWT)
| | - Jingwei Tian
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Non-clinical Research Department, Luye Pharma Group Ltd., Yantai, Shandong 264003, China
- School of Pharmacy, Yantai University, Yantai, Shandong 264005, China
- * E-mail: (ZGY); (JWT)
| |
Collapse
|
30
|
Schmitz NMR, Leibundgut K, Hirt A. Phosphorylation of the Retinoblastoma Protein in Childhood Acute Lymphoblastic Leukemia. Hematology 2016; 6:29-39. [DOI: 10.1080/10245332.2001.11746550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Nicole M. R. Schmitz
- Department of Clinical Research, Tiefemustrasse 120, 3004 Bern, University of Bern, Switzerland
- Department of Pediatrics, Inselspital 3010 Bern, University of Bern, Switzerland
| | - Kurt Leibundgut
- Department of Pediatrics, Inselspital 3010 Bern, University of Bern, Switzerland
| | - Andreas Hirt
- Department of Clinical Research, Tiefemustrasse 120, 3004 Bern, University of Bern, Switzerland
- Department of Pediatrics, Inselspital 3010 Bern, University of Bern, Switzerland
| |
Collapse
|
31
|
Sheng Z, Yu L, Zhang T, Pei X, Li X, Zhang Z, Du W. ESCRT-0 complex modulates Rbf-mutant cell survival by regulating Rhomboid endosomal trafficking and EGFR signaling. J Cell Sci 2016; 129:2075-84. [PMID: 27056762 DOI: 10.1242/jcs.182261] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 03/31/2016] [Indexed: 12/14/2022] Open
Abstract
The Rb tumor suppressor is conserved in Drosophila, and its inactivation can lead to cell proliferation or death depending on the specific cellular context. Therefore, identifying genes that affect the survival of Rb-mutant cells can potentially identify novel targets for therapeutic intervention in cancer. From a genetic screen in Drosophila, we identified synthetic lethal interactions between mutations of fly Rb (rbf) and the ESCRT-0 components stam and hrs We show that inactivation of ESCRT-0 sensitizes rbf-mutant cells to undergo apoptosis through inhibition of EGFR signaling and accumulation of Hid protein. Mutation of stam inhibits EGFR signaling upstream of secreted Spi and downstream of Rhomboid expression, and causes Rhomboid protein to accumulate in the abnormal endosomes labeled with both the early and late endosomal markers Rab5 and Rab7. These results reveal that ESCRT-0 mutants inhibit EGFR signaling by disrupting Rhomboid endosomal trafficking in the ligand-producing cells. Because ESCRT-0 also plays crucial roles in EGFR downregulation after ligand binding, this study provides new insights into how loss of ESCRT-0 function can either increase or decrease EGFR signaling.
Collapse
Affiliation(s)
- Zhentao Sheng
- Ben May Department for Cancer Research, University of Chicago, 929 E. 57th Street, Chicago, IL 60637, USA
| | - Lijia Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, People's Republic of China
| | - Tianyi Zhang
- Ben May Department for Cancer Research, University of Chicago, 929 E. 57th Street, Chicago, IL 60637, USA
| | - Xun Pei
- Ben May Department for Cancer Research, University of Chicago, 929 E. 57th Street, Chicago, IL 60637, USA
| | - Xuan Li
- Ben May Department for Cancer Research, University of Chicago, 929 E. 57th Street, Chicago, IL 60637, USA
| | - Zhihua Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, People's Republic of China
| | - Wei Du
- Ben May Department for Cancer Research, University of Chicago, 929 E. 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
32
|
Barron DA, Moberg K. Inverse regulation of two classic Hippo pathway target genes in Drosophila by the dimerization hub protein Ctp. Sci Rep 2016; 6:22726. [PMID: 26972460 PMCID: PMC4789802 DOI: 10.1038/srep22726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/17/2016] [Indexed: 12/21/2022] Open
Abstract
The LC8 family of small ~8 kD proteins are highly conserved and interact with multiple protein partners in eukaryotic cells. LC8-binding modulates target protein activity, often through induced dimerization via LC8:LC8 homodimers. Although many LC8-interactors have roles in signaling cascades, LC8’s role in developing epithelia is poorly understood. Using the Drosophila wing as a developmental model, we find that the LC8 family member Cut up (Ctp) is primarily required to promote epithelial growth, which correlates with effects on the pro-growth factor dMyc and two genes, diap1 and bantam, that are classic targets of the Hippo pathway coactivator Yorkie. Genetic tests confirm that Ctp supports Yorkie-driven tissue overgrowth and indicate that Ctp acts through Yorkie to control bantam (ban) and diap1 transcription. Quite unexpectedly however, Ctp loss has inverse effects on ban and diap1: it elevates ban expression but reduces diap1 expression. In both cases these transcriptional changes map to small segments of these promoters that recruit Yorkie. Although LC8 complexes with Yap1, a Yorkie homolog, in human cells, an orthologous interaction was not detected in Drosophila cells. Collectively these findings reveal that that Drosophila Ctp is a required regulator of Yorkie-target genes in vivo and suggest that Ctp may interact with a Hippo pathway protein(s) to exert inverse transcriptional effects on Yorkie-target genes.
Collapse
Affiliation(s)
- Daniel A Barron
- Department of Cell Biology, Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.,Department of Cell Biology, Medical Scientist MD/PhD Training Program, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kenneth Moberg
- Department of Cell Biology, Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
33
|
Bradley-Gill MR, Kim M, Feingold D, Yergeau C, Houde J, Moon NS. Alternate transcripts of the Drosophila "activator" E2F are necessary for maintenance of cell cycle exit during development. Dev Biol 2016; 411:195-206. [PMID: 26859702 DOI: 10.1016/j.ydbio.2016.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 02/05/2016] [Accepted: 02/05/2016] [Indexed: 11/15/2022]
Abstract
The E2F family of transcription factors are evolutionarily conserved regulators of the cell cycle that can be divided into two groups based on their ability to either activate or repress transcription. In Drosophila, there is only one "activator" E2F, dE2F1, which provides all of the pro-proliferative activity of E2F during development. Interestingly, the de2f1 gene can be transcribed from multiple promoters resulting in six alternate transcripts. In this study, we sought to investigate the biological significance of the alternate transcriptional start sites. We focused on the de2f1 promoter region where tissue and cell-type specific enhancer activities were observed at the larval stage. While a genomic deletion of this region, de2f1(ΔRA), decreased the overall expression level of dE2F1, flies developed normally with no obvious proliferation defects. However, a detailed analysis of the de2f1(ΔRA) mutant eye imaginal discs revealed that dE2F1 is needed for proper cell cycle exit. We discovered that dE2F1 expression during G1 arrest prior to the differentiation process of the developing eye is important for maintaining cell cycle arrest at a later stage of the eye development. Overall, our study suggests that specific alternate transcripts of "activator" E2F, dE2F1, may have a dual function on cell cycle progression and cannot simply be viewed as a pro-proliferative transcription factor.
Collapse
Affiliation(s)
- Mary-Rose Bradley-Gill
- Department of Biology, Developmental Biology Research Initiative, McGill University, Montreal, Quebec, Canada H3A 1B1
| | - Minhee Kim
- Department of Biology, Developmental Biology Research Initiative, McGill University, Montreal, Quebec, Canada H3A 1B1
| | - Daniel Feingold
- Department of Biology, Developmental Biology Research Initiative, McGill University, Montreal, Quebec, Canada H3A 1B1
| | - Christine Yergeau
- Department of Biology, Developmental Biology Research Initiative, McGill University, Montreal, Quebec, Canada H3A 1B1
| | - Josée Houde
- Department of Biology, Developmental Biology Research Initiative, McGill University, Montreal, Quebec, Canada H3A 1B1
| | - Nam-Sung Moon
- Department of Biology, Developmental Biology Research Initiative, McGill University, Montreal, Quebec, Canada H3A 1B1.
| |
Collapse
|
34
|
Zappia MP, Frolov MV. E2F function in muscle growth is necessary and sufficient for viability in Drosophila. Nat Commun 2016; 7:10509. [PMID: 26823289 PMCID: PMC4740182 DOI: 10.1038/ncomms10509] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/22/2015] [Indexed: 01/08/2023] Open
Abstract
The E2F transcription factor is a key cell cycle regulator. However, the inactivation of the entire E2F family in Drosophila is permissive throughout most of animal development until pupation when lethality occurs. Here we show that E2F function in the adult skeletal muscle is essential for animal viability since providing E2F function in muscles rescues the lethality of the whole-body E2F-deficient animals. Muscle-specific loss of E2F results in a significant reduction in muscle mass and thinner myofibrils. We demonstrate that E2F is dispensable for proliferation of muscle progenitor cells, but is required during late myogenesis to directly control the expression of a set of muscle-specific genes. Interestingly, E2f1 provides a major contribution to the regulation of myogenic function, while E2f2 appears to be less important. These findings identify a key function of E2F in skeletal muscle required for animal viability, and illustrate how the cell cycle regulator is repurposed in post-mitotic cells.
Collapse
Affiliation(s)
- Maria Paula Zappia
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S Ashland Avenue, Chicago, Illinois 60607, USA
| | - Maxim V. Frolov
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S Ashland Avenue, Chicago, Illinois 60607, USA
| |
Collapse
|
35
|
Qian W, Kang L, Zhang T, Meng M, Wang Y, Li Z, Xia Q, Cheng D. Ecdysone receptor (EcR) is involved in the transcription of cell cycle genes in the silkworm. Int J Mol Sci 2015; 16:3335-49. [PMID: 25654229 PMCID: PMC4346899 DOI: 10.3390/ijms16023335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/06/2015] [Accepted: 01/23/2015] [Indexed: 01/07/2023] Open
Abstract
EcR (ecdysone receptor)-mediated ecdysone signaling pathway contributes to regulate the transcription of genes involved in various processes during insect development. In this work, we detected the expression of EcR gene in silkworm ovary-derived BmN4 cells and found that EcR RNAi result in an alteration of cell shape, indicating that EcR may orchestrate cell cycle progression. EcR RNAi and EcR overexpression analysis revealed that in the cultured BmN4 cells, EcR respectively promoted and suppressed the transcription of E2F-1 and CycE, two genes controlling cell cycle progression. Further examination demonstrated that ecdysone application in BmN4 cells not only changed the transcription of these two cell cycle genes like that under EcR overexpression, but also induced cell cycle arrest at G2/M phase. In vivo analysis confirmed that E2F-1 expression was elevated in silk gland of silkworm larvae after ecdysone application, which is same as its response to ecdysone in BmN4 cells. However, ecdysone also promotes CycE transcription in silk gland, and this is converse with the observation in BmN4 cells. These results provide new insights into understanding the roles of EcR-mediated ecdysone signaling in the regulation of cell cycle.
Collapse
Affiliation(s)
- Wenliang Qian
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
| | - Lixia Kang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
| | - Tianlei Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
| | - Meng Meng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
| | - Yonghu Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
| | - Zhiqing Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
| | - Daojun Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
36
|
Amoyel M, Simons BD, Bach EA. Neutral competition of stem cells is skewed by proliferative changes downstream of Hh and Hpo. EMBO J 2014; 33:2295-313. [PMID: 25092766 PMCID: PMC4253521 DOI: 10.15252/embj.201387500] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Neutral competition, an emerging feature of stem cell homeostasis, posits that individual stem cells can be lost and replaced by their neighbors stochastically, resulting in chance dominance of a clone at the niche. A single stem cell with an oncogenic mutation could bias this process and clonally spread the mutation throughout the stem cell pool. The Drosophila testis provides an ideal system for testing this model. The niche supports two stem cell populations that compete for niche occupancy. Here, we show that cyst stem cells (CySCs) conform to the paradigm of neutral competition and that clonal deregulation of either the Hedgehog (Hh) or Hippo (Hpo) pathway allows a single CySC to colonize the niche. We find that the driving force behind such behavior is accelerated proliferation. Our results demonstrate that a single stem cell colonizes its niche through oncogenic mutation by co-opting an underlying homeostatic process.
Collapse
Affiliation(s)
- Marc Amoyel
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Benjamin D Simons
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK Wellcome Trust-CRUK Gurdon Institute, University of Cambridge, Cambridge, UK Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Erika A Bach
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA The Helen L. and Martin S. Kimmel Center for Stem Cell Biology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
37
|
Tsuda L, Lim YM. Regulatory system for the G1-arrest during neuronal development in Drosophila. Dev Growth Differ 2014; 56:358-67. [PMID: 24738783 DOI: 10.1111/dgd.12130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/04/2014] [Accepted: 03/04/2014] [Indexed: 01/25/2023]
Abstract
Neuronal network consists of many types of neuron and glial cells. This diversity is guaranteed by the constant cell proliferation of neuronal stem cells following stop cell cycle re-entry, which leads to differentiation during development. Neuronal differentiation occurs mainly at the specific cell cycle phase, the G1 phase. Therefore, cell cycle exit at the G1 phase is quite an important issue in understanding the process of neuronal cell development. Recent studies have revealed that aberrant S phase re-entry from the G1 phase often links cellular survival. In this review we discuss the different types of G1 arrest on the process of neuronal development in Drosophila. We also describe the issue that aberrant S phase entry often causes apoptosis, and the same mechanism might contribute to sensory organ defects, such as deafness.
Collapse
Affiliation(s)
- Leo Tsuda
- Animal Models of Aging, National Center for Geriatrics and Gerontology, Gengo, Obu, Aichi, Japan
| | | |
Collapse
|
38
|
Endocycles: a recurrent evolutionary innovation for post-mitotic cell growth. Nat Rev Mol Cell Biol 2014; 15:197-210. [PMID: 24556841 DOI: 10.1038/nrm3756] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In endoreplication cell cycles, known as endocycles, cells successively replicate their genomes without segregating chromosomes during mitosis and thereby become polyploid. Such cycles, for which there are many variants, are widespread in protozoa, plants and animals. Endocycling cells can achieve ploidies of >200,000 C (chromatin-value); this increase in genomic DNA content allows a higher genomic output, which can facilitate the construction of very large cells or enhance macromolecular secretion. These cells execute normal S phases, using a G1-S regulatory apparatus similar to the one used by mitotic cells, but their capability to segregate chromosomes has been suppressed, typically by downregulation of mitotic cyclin-dependent kinase activity. Endocycles probably evolved many times, and the various endocycle mechanisms found in nature highlight the versatility of the cell cycle control machinery.
Collapse
|
39
|
Liu JL, Zeng GZ, Liu XL, Liu YQ, Hu ZG, Liu Y, Tan NH, Zhou GB. Small compound bigelovin exerts inhibitory effects and triggers proteolysis of E2F1 in multiple myeloma cells. Cancer Sci 2013; 104:1697-704. [PMID: 24118350 DOI: 10.1111/cas.12295] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/16/2013] [Accepted: 09/22/2013] [Indexed: 12/30/2022] Open
Abstract
Multiple myeloma (MM) is a currently incurable blood cancer. Here we tested the effects of a small compound bigelovin on MM cells, and reported that it caused cell cycle arrest and subsequently induced apoptosis. Bigelovin triggered proteolysis of E2F1, which could be inhibited by caspase inhibitor. To investigate the clinical relevance, the expression of E2F1 in MM specimens was tested, and the results showed that E2F1 was overexpressed in 25-57% of MM patients and was associated with higher International Staging System (ISS) stage. These results suggest that E2F1 may be important for MM pathogenesis, and bigelovin could serve as a lead compound for the development of E2F1 inhibitor.
Collapse
Affiliation(s)
- Jing-Lei Liu
- Division of Molecular Carcinogenesis and Targeted Therapy for Cancer, Guangzhou Institutes of Biomedicine and Health & State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Science and Technology of China, Hefei, China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Kawamori A, Shimaji K, Yamaguchi M. Control of e2f1 and PCNA by Drosophila transcription factor DREF. Genesis 2013; 51:741-50. [PMID: 23907762 DOI: 10.1002/dvg.22419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 07/19/2013] [Accepted: 07/24/2013] [Indexed: 12/26/2022]
Abstract
DREF (DNA replication-related element-binding factor), a zinc finger type transcription factor required for proper cell cycle progression in both mitotic and endocycling cells, is a positive regulator of E2F1, an important transcription factor which regulates genes related to the S-phase of the cell cycle. DREF and E2F1 regulate similar sets of replication-related genes, including proliferating cell nuclear antigen (PCNA), and play roles in the G1 to S phase transition. However, the relationships between dref and e2f1 or PCNA during development are poorly understood. Here, we provided evidence for novel control of e2f1 and PCNA involving DREF in endocycling cells. Somatic clone analysis demonstrated that dref knockdown stabilized E2F1 expression at posttranscriptional levels in endocycling salivary gland cells. Similarly, PCNA expression was up-regulated in the endocycling salivary gland cells. Genetic interaction analysis indicated that the endoreplication defects are partly caused via possible enhancement of E2F1 activity. From these results and previous reports, we conclude that regulation of e2f1 and PCNA by DREF in vivo is complex and the regulation mechanism may differ with the tissue and/or positions in the tissue.
Collapse
Affiliation(s)
- Akihito Kawamori
- Department of Applied Biology and Insect Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto, Japan
| | | | | |
Collapse
|
41
|
Lim YM, Yamasaki Y, Tsuda L. Ebi alleviates excessive growth signaling through multiple epigenetic functions inDrosophila. Genes Cells 2013; 18:909-20. [DOI: 10.1111/gtc.12088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 06/14/2013] [Indexed: 12/30/2022]
Affiliation(s)
- Young-Mi Lim
- Animal Models of Aging; National Center for Geriatrics and Gerontology; Obu Aichi 474-8511 Japan
| | - Yasutoyo Yamasaki
- Animal Models of Aging; National Center for Geriatrics and Gerontology; Obu Aichi 474-8511 Japan
| | - Leo Tsuda
- Animal Models of Aging; National Center for Geriatrics and Gerontology; Obu Aichi 474-8511 Japan
| |
Collapse
|
42
|
Nicolay BN, Dyson NJ. The multiple connections between pRB and cell metabolism. Curr Opin Cell Biol 2013; 25:735-40. [PMID: 23916769 DOI: 10.1016/j.ceb.2013.07.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/12/2013] [Accepted: 07/15/2013] [Indexed: 02/03/2023]
Abstract
The pRB tumor suppressor is traditionally seen as an important regulator of the cell cycle. pRB represses the transcriptional activation of a diverse set of genes by the E2F transcription factors and prevents inappropriate S-phase entry. Advances in our understanding of pRB have documented roles that extend beyond the cell cycle and this review summarizes recent studies that link pRB to the control of cell metabolism. pRB has been shown to regulate glucose tolerance, mitogenesis, glutathione synthesis, and the expression of genes involved in central carbon metabolism. Several studies have demonstrated that pRB directly targets a set of genes that are crucial for nucleotide metabolism, and this seems likely to represent one of the ways by which pRB influences the G1/S-phase transition and S-phase progression.
Collapse
Affiliation(s)
- Brandon N Nicolay
- Laboratory of Molecular Oncology, Massachusetts General Hospital Cancer Center, Building 149, 13th Street, Charlestown, MA 02129, USA.
| | | |
Collapse
|
43
|
WT1 promotes cell proliferation in non-small cell lung cancer cell lines through up-regulating cyclin D1 and p-pRb in vitro and in vivo. PLoS One 2013; 8:e68837. [PMID: 23936312 PMCID: PMC3731304 DOI: 10.1371/journal.pone.0068837] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 06/04/2013] [Indexed: 12/12/2022] Open
Abstract
The Wilms’ tumor suppressor gene (WT1) has been identified as an oncogene in many malignant diseases such as leukaemia, breast cancer, mesothelioma and lung cancer. However, the role of WT1 in non-small-cell lung cancer (NSCLC) carcinogenesis remains unclear. In this study, we compared WT1 mRNA levels in NSCLC tissues with paired corresponding adjacent tissues and identified significantly higher expression in NSCLC specimens. Cell proliferation of three NSCLC cell lines positively correlated with WT1 expression; moreover, these associations were identified in both cell lines and a xenograft mouse model. Furthermore, we demonstrated that up-regulation of Cyclin D1 and the phosphorylated retinoblastoma protein (p-pRb) was mechanistically related to WT1 accelerating cells to S-phase. In conclusion, our findings demonstrated that WT1 is an oncogene and promotes NSCLC cell proliferation by up-regulating Cyclin D1 and p-pRb expression.
Collapse
|
44
|
Gordon GM, Zhang T, Zhao J, Du W. Deregulated G1-S control and energy stress contribute to the synthetic-lethal interactions between inactivation of RB and TSC1 or TSC2. J Cell Sci 2013; 126:2004-13. [PMID: 23447678 DOI: 10.1242/jcs.121301] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Synthetic lethality is a potential strategy for cancer treatment by specifically promoting the death of cancer cells with particular defects such as the loss of the RB (RB1) tumor suppressor. We previously showed that inactivation of both RB and TSC2 induces synergistic apoptosis during the development of Drosophila melanogaster and in cancer cells. However, the in vivo mechanism of this synthetic-lethal interaction is not clear. Here, we show that synergistic cell death in tissues that have lost the RB and TSC orthologs rbf and dtsc1/gig, respectively, or overexpress Rheb and dE2F1, are correlated with synergistic defects in G1-S control, which causes cells to accumulate DNA damage. Coexpression of the G1-S inhibitor Dap, but not the G2-M inhibitor dWee1, decreases DNA damage and reduces cell death. In addition, we show that rbf and dtsc1 mutant cells are under energy stress, are sensitive to decreased energy levels and depend on the cellular energy stress-response pathway for survival. Decreasing mitochondrial ATP synthesis by inactivating cova or abrogating the energy-stress response by removing the metabolic regulator LKB1 both enhance the elimination of cells lacking either rbf or dtsc1. These observations, in conjunction with the finding that deregulation of TORC1 induces activation of JNK, indicate that multiple cellular stresses are induced and contribute to the synthetic-lethal interactions between RB and TSC1/TSC2 inactivation. The insights gained from this study suggest new approaches for targeting RB-deficient cancers.
Collapse
Affiliation(s)
- Gabriel M Gordon
- Ben May Department for Cancer Research, The University of Chicago, 929 E. 57th Street, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
45
|
Ji JY, Miles WO, Korenjak M, Zheng Y, Dyson NJ. In vivo regulation of E2F1 by Polycomb group genes in Drosophila. G3 (BETHESDA, MD.) 2012; 2:1651-60. [PMID: 23275887 PMCID: PMC3516486 DOI: 10.1534/g3.112.004333] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 10/24/2012] [Indexed: 01/17/2023]
Abstract
The E2F transcription factors are important regulators of the cell cycle whose function is commonly misregulated in cancer. To identify novel regulators of E2F1 activity in vivo, we used Drosophila to conduct genetic screens. For this, we generated transgenic lines that allow the tissue-specific depletion of dE2F1 by RNAi. Expression of these transgenes using Gal4 drivers in the eyes and wings generated reliable and modifiable phenotypes. We then conducted genetic screens testing the capacity of Exelixis deficiencies to modify these E2F1-RNAi phenotypes. From these screens, we identified mutant alleles of Suppressor of zeste 2 [Su(z)2] and multiple Polycomb group genes as strong suppressors of the E2F1-RNA interference phenotypes. In validation of our genetic data, we find that depleting Su(z)2 in cultured Drosophila cells restores the cell-proliferation defects caused by reduction of dE2F1 by elevating the level of dE2f1. Furthermore, analyses of methylation status of histone H3 lysine 27 (H3K27me) from the published modENCODE data sets suggest that the genomic regions harboring dE2f1 gene and certain dE2f1 target genes display H3K27me during development and in several Drosophila cell lines. These in vivo observations suggest that the Polycomb group may regulate cell proliferation by repressing the transcription of dE2f1 and certain dE2F1 target genes. This mechanism may play an important role in coordinating cellular differentiation and proliferation during Drosophila development.
Collapse
Affiliation(s)
- Jun-Yuan Ji
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, Texas 77843-1114, USA.
| | | | | | | | | |
Collapse
|
46
|
Chen HZ, Ouseph MM, Li J, Pécot T, Chokshi V, Kent L, Bae S, Byrne M, Duran C, Comstock G, Trikha P, Mair M, Senapati S, Martin CK, Gandhi S, Wilson N, Liu B, Huang YW, Thompson JC, Raman S, Singh S, Leone M, Machiraju R, Huang K, Mo X, Fernandez S, Kalaszczynska I, Wolgemuth DJ, Sicinski P, Huang T, Jin V, Leone G. Canonical and atypical E2Fs regulate the mammalian endocycle. Nat Cell Biol 2012; 14:1192-202. [PMID: 23064266 PMCID: PMC3616487 DOI: 10.1038/ncb2595] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 09/03/2012] [Indexed: 02/06/2023]
Abstract
The endocycle is a variant cell cycle consisting of successive DNA synthesis and Gap phases that yield highly polyploid cells. Although essential for metazoan development, relatively little is known about its control or physiologic role in mammals. Using novel lineage-specific cre mice we identified two opposing arms of the E2F program, one driven by canonical transcription activation (E2F1, E2F2 and E2F3) and the other by atypical repression (E2F7 and E2F8), that converge on the regulation of endocycles in vivo. Ablation of canonical activators in the two endocycling tissues of mammals, trophoblast giant cells in the placenta and hepatocytes in the liver, augmented genome ploidy, whereas ablation of atypical repressors diminished ploidy. These two antagonistic arms coordinate the expression of a unique G2/M transcriptional program that is critical for mitosis, karyokinesis and cytokinesis. These results provide in vivo evidence for a direct role of E2F family members in regulating non-traditional cell cycles in mammals.
Collapse
Affiliation(s)
- Hui-Zi Chen
- Solid Tumor Biology Program, Department of Molecular Virology, Immunology and Medical Genetics, Department of Molecular Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Herr A, Longworth M, Ji JY, Korenjak M, Macalpine DM, Dyson NJ. Identification of E2F target genes that are rate limiting for dE2F1-dependent cell proliferation. Dev Dyn 2012; 241:1695-707. [PMID: 22972499 DOI: 10.1002/dvdy.23857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2012] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Microarray studies have shown that the E2F transcription factor influences the expression of many genes but it is unclear how many of these targets are important for E2F-mediated control of cell proliferation. RESULTS We assembled a collection of mutant alleles of 44 dE2F1-dependent genes and tested whether these could modify visible phenotypes caused by the tissue-specific depletion of dE2F1. More than half of the mutant alleles dominantly enhanced de2f1-dsRNA phenotypes suggesting that the in vivo functions of dE2F1 can be limited by the reduction in the level of expression of many different targets. Unexpectedly, several mutant alleles suppressed de2f1-dsRNA phenotypes. One of the strongest of these suppressors was Orc5. Depletion of ORC5 increased proliferation in cells with reduced dE2F1 and specifically elevated the expression of dE2F1-regulated genes. Importantly, these effects were independent of dE2F1 protein levels, suggesting that reducing the level of ORC5 did not interfere with the general targeting of dE2F1. CONCLUSIONS We propose that the interaction between ORC5 and dE2F1 may reflect a feedback mechanism between replication initiation proteins and dE2F1 that ensures that proliferating cells maintain a robust level of replication proteins for the next cell cycle.
Collapse
Affiliation(s)
- Anabel Herr
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Laboratory of Molecular Oncology, Charlestown, MA 02129, USA
| | | | | | | | | | | |
Collapse
|
48
|
RBF binding to both canonical E2F targets and noncanonical targets depends on functional dE2F/dDP complexes. Mol Cell Biol 2012; 32:4375-87. [PMID: 22927638 DOI: 10.1128/mcb.00536-12] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The retinoblastoma (RB) family of proteins regulate transcription. These proteins lack intrinsic DNA-binding activity but are recruited to specific genomic locations through interactions with sequence-specific DNA-binding factors. The best-known target of RB protein (pRB) is the E2F transcription factor; however, many other chromatin-associated proteins have been described that may allow RB family members to act at additional sites. To gain a perspective on the scale of E2F-dependent and E2F-independent functions, we generated genome-wide binding profiles of RBF1 and dE2F proteins in Drosophila larvae. RBF1 and dE2F2 associate with a large number of binding sites at genes with diverse biological functions. In contrast, dE2F1 was detected at a smaller set of promoters, suggesting that it overrides repression by RBF1/dE2F2 at a specific subset of targets. Approximately 15% of RBF1-bound regions lacked consensus E2F-binding motifs. To test whether RBF1 action at these sites is E2F independent, we examined dDP mutant larvae that lack any functional dE2F/dDP heterodimers. As measured by chromatin immunoprecipitation-microarray analysis (ChIP-chip), ChIP-quantitative PCR (qPCR), and cell fractionation, the stable association of RBF1 with chromatin was eliminated in dDP mutants. This requirement for dDP was seen at classic E2F-regulated promoters and at promoters that lacked canonical E2F-binding sites. These results suggest that E2F/DP complexes are essential for all genomic targeting of RBF1.
Collapse
|
49
|
Davidson JM, Duronio RJ. S phase-coupled E2f1 destruction ensures homeostasis in proliferating tissues. PLoS Genet 2012; 8:e1002831. [PMID: 22916021 PMCID: PMC3420931 DOI: 10.1371/journal.pgen.1002831] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 05/29/2012] [Indexed: 12/23/2022] Open
Abstract
Precise control of cell cycle regulators is critical for normal development and tissue homeostasis. E2F transcription factors are activated during G1 to drive the G1-S transition and are then inhibited during S phase by a variety of mechanisms. Here, we genetically manipulate the single Drosophila activator E2F (E2f1) to explore the developmental requirement for S phase–coupled E2F down-regulation. Expression of an E2f1 mutant that is not destroyed during S phase drives cell cycle progression and causes apoptosis. Interestingly, this apoptosis is not exclusively the result of inappropriate cell cycle progression, because a stable E2f1 mutant that cannot function as a transcription factor or drive cell cycle progression also triggers apoptosis. This observation suggests that the inappropriate presence of E2f1 protein during S phase can trigger apoptosis by mechanisms that are independent of E2F acting directly at target genes. The ability of S phase-stabilized E2f1 to trigger apoptosis requires an interaction between E2f1 and the Drosophila pRb homolog, Rbf1, and involves induction of the pro-apoptotic gene, hid. Simultaneously blocking E2f1 destruction during S phase and inhibiting the induction of apoptosis results in tissue overgrowth and lethality. We propose that inappropriate accumulation of E2f1 protein during S phase triggers the elimination of potentially hyperplastic cells via apoptosis in order to ensure normal development of rapidly proliferating tissues. Rapidly growing tissues provide an excellent opportunity to study the careful balance between cell proliferation and apoptosis needed for normal organ structure and function in developing organisms. We present evidence that a transcription factor critical for regulating progression of the Drosophila melanogaster cell cycle, E2f1, serves also as an indicator of normal tissue development. E2f1 activation during G1 phase of the cell cycle triggers entry into S phase. E2f1 activity is then rapidly inhibited during S phase by a mechanism that couples E2f1 proteolysis directly to DNA synthesis. Expression during larval development of an S phase-stabilized form of E2f1 results in apoptosis in rapidly proliferating adult wing precursor cells, even when this stabilized E2f1 protein is mutated such that it cannot induce transcription or cell cycle progression. Preventing the ability of S phase-stabilized E2f1 to induce apoptosis results in massive tissue overgrowth. We propose that aberrant E2f1 accumulation during S phase triggers apoptosis in order to remove potentially hyper-proliferative cells and to maintain homeostasis during tissue growth.
Collapse
Affiliation(s)
- Jean M. Davidson
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Robert J. Duronio
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Program in Molecular Biology and Biotechnology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
50
|
Sloan RS, Swanson CI, Gavilano L, Smith KN, Malek PY, Snow-Smith M, Duronio RJ, Key SCS. Characterization of null and hypomorphic alleles of the Drosophila l(2)dtl/cdt2 gene: Larval lethality and male fertility. Fly (Austin) 2012; 6:173-83. [PMID: 22722696 DOI: 10.4161/fly.20247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Drosophila lethal(2)denticleless (l(2)dtl) gene was originally reported as essential for embryogenesis and formation of the rows of tiny hairs on the larval ventral cuticle known as denticle belts. It is now well-established that l(2)dtl (also called cdt2) encodes a subunit of a Cullin 4-based E3 ubiquitin ligase complex that targets a number of key cell cycle regulatory proteins, including p21, Cdt1, E2F1 and Set8, to prevent replication defects and maintain cell cycle control. To investigate the role of l(2)dtl/cdt2 during development, we characterized existing l(2)dtl/cdt2 mutants and generated new deletion alleles, using P-element excision mutagenesis. Surprisingly, homozygous l(2)dtl/cdt2 mutant embryos developed beyond embryogenesis, had intact denticle belts, and lacked an observable embryonic replication defect. These mutants died during larval stages, affirming that loss of l(2)dtl/cdt2 function is lethal. Our data show that L(2)dtl/Cdt2 is maternally deposited, remains nuclear throughout the cell cycle, and has a previously unreported, elevated expression in the developing gonads. We also find that E2f1 regulates l(2)dtl/cdt2 expression during embryogenesis, possibly via several highly conserved putative E2f1 binding sites near the l(2)dtl/cdt2 promoter. Finally, hypomorphic allele combinations of the l(2)dtl/cdt2 gene result in a novel phenotype: viable, low-fertility males. We conclude that "denticleless" is a misnomer, but that l(2)dtl/cdt2 is an essential gene for Drosophila development.
Collapse
Affiliation(s)
- Roketa S Sloan
- Department of Biology, North Carolina Central University, Durham, NC USA
| | | | | | | | | | | | | | | |
Collapse
|