1
|
Errbii M, Gadau J, Becker K, Schrader L, Oettler J. Causes and consequences of a complex recombinational landscape in the ant Cardiocondyla obscurior. Genome Res 2024; 34:863-876. [PMID: 38839375 PMCID: PMC11293551 DOI: 10.1101/gr.278392.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
Eusocial Hymenoptera have the highest recombination rates among all multicellular animals studied so far, but it is unclear why this is and how this affects the biology of individual species. A high-resolution linkage map for the ant Cardiocondyla obscurior corroborates genome-wide high recombination rates reported for ants (8.1 cM/Mb). However, recombination is locally suppressed in regions that are enriched with TEs, that have strong haplotype divergence, or that show signatures of epistatic selection in C. obscurior The results do not support the hypotheses that high recombination rates are linked to phenotypic plasticity or to modulating selection efficiency. Instead, genetic diversity and the frequency of structural variants correlate positively with local recombination rates, potentially compensating for the low levels of genetic variation expected in haplodiploid social Hymenoptera with low effective population size. Ultimately, the data show that recombination contributes to within-population polymorphism and to the divergence of the lineages within C. obscurior.
Collapse
Affiliation(s)
- Mohammed Errbii
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
| | - Jürgen Gadau
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
| | - Kerstin Becker
- Cologne Center for Genomics (CCG), Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Lukas Schrader
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany;
| | - Jan Oettler
- Lehrstuhl für Zoologie/Evolutionsbiologie, University Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
2
|
Joseph J. Increased Positive Selection in Highly Recombining Genes Does not Necessarily Reflect an Evolutionary Advantage of Recombination. Mol Biol Evol 2024; 41:msae107. [PMID: 38829800 PMCID: PMC11173204 DOI: 10.1093/molbev/msae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/08/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024] Open
Abstract
It is commonly thought that the long-term advantage of meiotic recombination is to dissipate genetic linkage, allowing natural selection to act independently on different loci. It is thus theoretically expected that genes with higher recombination rates evolve under more effective selection. On the other hand, recombination is often associated with GC-biased gene conversion (gBGC), which theoretically interferes with selection by promoting the fixation of deleterious GC alleles. To test these predictions, several studies assessed whether selection was more effective in highly recombining genes (due to dissipation of genetic linkage) or less effective (due to gBGC), assuming a fixed distribution of fitness effects (DFE) for all genes. In this study, I directly derive the DFE from a gene's evolutionary history (shaped by mutation, selection, drift, and gBGC) under empirical fitness landscapes. I show that genes that have experienced high levels of gBGC are less fit and thus have more opportunities for beneficial mutations. Only a small decrease in the genome-wide intensity of gBGC leads to the fixation of these beneficial mutations, particularly in highly recombining genes. This results in increased positive selection in highly recombining genes that is not caused by more effective selection. Additionally, I show that the death of a recombination hotspot can lead to a higher dN/dS than its birth, but with substitution patterns biased towards AT, and only at selected positions. This shows that controlling for a substitution bias towards GC is therefore not sufficient to rule out the contribution of gBGC to signatures of accelerated evolution. Finally, although gBGC does not affect the fixation probability of GC-conservative mutations, I show that by altering the DFE, gBGC can also significantly affect nonsynonymous GC-conservative substitution patterns.
Collapse
Affiliation(s)
- Julien Joseph
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR 5558, Villeurbanne, France
| |
Collapse
|
3
|
Chase MA, Vilcot M, Mugal CF. The role of recombination dynamics in shaping signatures of direct and indirect selection across the Ficedula flycatcher genome †. Proc Biol Sci 2024; 291:20232382. [PMID: 38228173 DOI: 10.1098/rspb.2023.2382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/14/2023] [Indexed: 01/18/2024] Open
Abstract
Recombination is a central evolutionary process that reshuffles combinations of alleles along chromosomes, and consequently is expected to influence the efficacy of direct selection via Hill-Robertson interference. Additionally, the indirect effects of selection on neutral genetic diversity are expected to show a negative relationship with recombination rate, as background selection and genetic hitchhiking are stronger when recombination rate is low. However, owing to the limited availability of recombination rate estimates across divergent species, the impact of evolutionary changes in recombination rate on genomic signatures of selection remains largely unexplored. To address this question, we estimate recombination rate in two Ficedula flycatcher species, the taiga flycatcher (Ficedula albicilla) and collared flycatcher (Ficedula albicollis). We show that recombination rate is strongly correlated with signatures of indirect selection, and that evolutionary changes in recombination rate between species have observable impacts on this relationship. Conversely, signatures of direct selection on coding sequences show little to no relationship with recombination rate, even when restricted to genes where recombination rate is conserved between species. Thus, using measures of indirect and direct selection that bridge micro- and macro-evolutionary timescales, we demonstrate that the role of recombination rate and its dynamics varies for different signatures of selection.
Collapse
Affiliation(s)
- Madeline A Chase
- Department of Ecology and Genetics, Uppsala University, 75236 Uppsala, Sweden
- Swiss Ornithological Institute, 6204 Sempach, Switzerland
| | - Maurine Vilcot
- Department of Ecology and Genetics, Uppsala University, 75236 Uppsala, Sweden
- CEFE, University of Montpellier, CNRS, EPHE, IRD, 34293 Montpellier 5, France
| | - Carina F Mugal
- Department of Ecology and Genetics, Uppsala University, 75236 Uppsala, Sweden
- Laboratory of Biometry and Evolutionary Biology, University of Lyon 1, CNRS UMR 5558, 69622 Villeurbanne cedex, France
| |
Collapse
|
4
|
Ponnikas S, Sigeman H, Lundberg M, Hansson B. Extreme variation in recombination rate and genetic diversity along the Sylvioidea neo-sex chromosome. Mol Ecol 2022; 31:3566-3583. [PMID: 35578784 PMCID: PMC9327509 DOI: 10.1111/mec.16532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/13/2022] [Accepted: 05/04/2022] [Indexed: 12/03/2022]
Abstract
Recombination strongly impacts sequence evolution by affecting the extent of linkage and the efficiency of selection. Here, we study recombination over the Z chromosome in great reed warblers (Acrocephalus arundinaceus) using pedigree-based linkage mapping. This species has extended Z and W chromosomes ("neo-sex chromosomes") formed by a fusion between a part of chromosome 4A and the ancestral sex chromosomes, which provides a unique opportunity to assess recombination and sequence evolution in sex-linked regions of different ages. We assembled an 87.54 Mbp and 90.19 cM large Z with a small pseudoautosomal region (0.89 Mbp) at one end and the fused Chr4A-part at the other end of the chromosome. A prominent feature in our data was an extreme variation in male recombination rate along Z with high values at both chromosome ends, but an apparent lack of recombination over a substantial central section, covering 78% of the chromosome. The nonrecombining region showed a drastic loss of genetic diversity and accumulation of repeats compared to the recombining parts. Thus, our data emphasize a key role of recombination in affecting local levels of polymorphism. Nonetheless, the evolutionary rate of genes (dN/dS) did not differ between high and low recombining regions, suggesting that the efficiency of selection on protein-coding sequences can be maintained also at very low levels of recombination. Finally, the Chr4A-derived part showed a similar recombination rate as the part of the ancestral Z that did recombine, but its sequence characteristics reflected both its previous autosomal, and current Z-linked, recombination patterns.
Collapse
Affiliation(s)
- Suvi Ponnikas
- Department of BiologyLund UniversityLundSweden
- Ecology and Genetics Research UnitUniversity of OuluOuluFinland
| | | | | | | |
Collapse
|
5
|
Garcia JA, Lohmueller KE. Negative linkage disequilibrium between amino acid changing variants reveals interference among deleterious mutations in the human genome. PLoS Genet 2021; 17:e1009676. [PMID: 34319975 PMCID: PMC8351996 DOI: 10.1371/journal.pgen.1009676] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/09/2021] [Accepted: 06/22/2021] [Indexed: 11/18/2022] Open
Abstract
Evolutionary forces like Hill-Robertson interference and negative epistasis can lead to deleterious mutations being found on distinct haplotypes. However, the extent to which these forces depend on the selection and dominance coefficients of deleterious mutations and shape genome-wide patterns of linkage disequilibrium (LD) in natural populations with complex demographic histories has not been tested. In this study, we first used forward-in-time simulations to predict how negative selection impacts LD. Under models where deleterious mutations have additive effects on fitness, deleterious variants less than 10 kb apart tend to be carried on different haplotypes relative to pairs of synonymous SNPs. In contrast, for recessive mutations, there is no consistent ordering of how selection coefficients affect LD decay, due to the complex interplay of different evolutionary effects. We then examined empirical data of modern humans from the 1000 Genomes Project. LD between derived alleles at nonsynonymous SNPs is lower compared to pairs of derived synonymous variants, suggesting that nonsynonymous derived alleles tend to occur on different haplotypes more than synonymous variants. This result holds when controlling for potential confounding factors by matching SNPs for frequency in the sample (allele count), physical distance, magnitude of background selection, and genetic distance between pairs of variants. Lastly, we introduce a new statistic HR(j) which allows us to detect interference using unphased genotypes. Application of this approach to high-coverage human genome sequences confirms our finding that nonsynonymous derived alleles tend to be located on different haplotypes more often than are synonymous derived alleles. Our findings suggest that interference may play a pervasive role in shaping patterns of LD between deleterious variants in the human genome, and consequently influences genome-wide patterns of LD.
Collapse
Affiliation(s)
- Jesse A. Garcia
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, California, United States of America
| | - Kirk E. Lohmueller
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, California, United States of America
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, United States of America
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| |
Collapse
|
6
|
Yoshida K, Ravinet M, Makino T, Toyoda A, Kokita T, Mori S, Kitano J. Accumulation of Deleterious Mutations in Landlocked Threespine Stickleback Populations. Genome Biol Evol 2020; 12:479-492. [PMID: 32232440 PMCID: PMC7197494 DOI: 10.1093/gbe/evaa065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2020] [Indexed: 02/06/2023] Open
Abstract
Colonization of new habitats often reduces population sizes and may result in the accumulation of deleterious mutations by genetic drift. Compared with the genomic basis for adaptation to new environments, genome-wide analysis of deleterious mutations in isolated populations remains limited. In the present study, we investigated the accumulation of deleterious mutations in five endangered freshwater populations of threespine stickleback (Gasterosteus aculeatus) in the central part of the mainland of Japan. Using whole-genome resequencing data, we first conducted phylogenomic analysis and confirmed at least two independent freshwater colonization events in the central mainland from ancestral marine ecotypes. Next, analyses of single nucleotide polymorphisms showed a substantial reduction of heterozygosity in freshwater populations compared with marine populations. Reduction in heterozygosity was more apparent at the center of each chromosome than the peripheries and on X chromosomes compared with autosomes. Third, bioinformatic analysis of deleterious mutations showed increased accumulation of putatively deleterious mutations in the landlocked freshwater populations compared with marine populations. For the majority of populations examined, the frequencies of putatively deleterious mutations were higher on X chromosomes than on autosomes. The interpopulation comparison indicated that the majority of putatively deleterious mutations may have accumulated independently. Thus, whole-genome resequencing of endangered populations can help to estimate the accumulation of deleterious mutations and inform us of which populations are the most severely endangered. Furthermore, analysis of variation among chromosomes can give insights into whether any particular chromosomes are likely to accumulate deleterious mutations.
Collapse
Affiliation(s)
- Kohta Yoshida
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan.,Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Mark Ravinet
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan.,Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Norway.,School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Takashi Makino
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Tomoyuki Kokita
- Department of Marine Bioscience, Fukui Prefectural University, Obama, Fukui, Japan
| | - Seiichi Mori
- Biological Laboratories, Gifu-kyoritsu University, Ogaki, Gifu, Japan
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| |
Collapse
|
7
|
Castellano D, Eyre-Walker A, Munch K. Impact of Mutation Rate and Selection at Linked Sites on DNA Variation across the Genomes of Humans and Other Homininae. Genome Biol Evol 2020; 12:3550-3561. [PMID: 31596481 PMCID: PMC6944223 DOI: 10.1093/gbe/evz215] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2019] [Indexed: 12/23/2022] Open
Abstract
DNA diversity varies across the genome of many species. Variation in diversity across a genome might arise from regional variation in the mutation rate, variation in the intensity and mode of natural selection, and regional variation in the recombination rate. We show that both noncoding and nonsynonymous diversity are positively correlated to a measure of the mutation rate and the recombination rate and negatively correlated to the density of conserved sequences in 50 kb windows across the genomes of humans and nonhuman homininae. Interestingly, we find that although noncoding diversity is equally affected by these three genomic variables, nonsynonymous diversity is mostly dominated by the density of conserved sequences. The positive correlation between diversity and our measure of the mutation rate seems to be largely a direct consequence of regions with higher mutation rates having more diversity. However, the positive correlation with recombination rate and the negative correlation with the density of conserved sequences suggest that selection at linked sites also affect levels of diversity. This is supported by the observation that the ratio of the number of nonsynonymous to noncoding polymorphisms is negatively correlated to a measure of the effective population size across the genome. We show these patterns persist even when we restrict our analysis to GC-conservative mutations, demonstrating that the patterns are not driven by GC biased gene conversion. In conclusion, our comparative analyses describe how recombination rate, gene density, and mutation rate interact to produce the patterns of DNA diversity that we observe along the hominine genomes.
Collapse
Affiliation(s)
- David Castellano
- Bioinformatics Research Centre, Aarhus University, Denmark
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona, Spain
| | - Adam Eyre-Walker
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Kasper Munch
- Bioinformatics Research Centre, Aarhus University, Denmark
| |
Collapse
|
8
|
Jones JC, Wallberg A, Christmas MJ, Kapheim KM, Webster MT. Extreme Differences in Recombination Rate between the Genomes of a Solitary and a Social Bee. Mol Biol Evol 2019; 36:2277-2291. [DOI: 10.1093/molbev/msz130] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Abstract
Social insect genomes exhibit the highest rates of crossing over observed in plants and animals. The evolutionary causes of these extreme rates are unknown. Insight can be gained by comparing recombination rate variation across the genomes of related social and solitary insects. Here, we compare the genomic recombination landscape of the highly social honey bee, Apis mellifera, with the solitary alfalfa leafcutter bee, Megachile rotundata, by analyzing patterns of linkage disequilibrium in population-scale genome sequencing data. We infer that average recombination rates are extremely elevated in A. mellifera compared with M. rotundata. However, our results indicate that similar factors control the distribution of crossovers in the genomes of both species. Recombination rate is significantly reduced in coding regions in both species, with genes inferred to be germline methylated having particularly low rates. Genes with worker-biased patterns of expression in A. mellifera and their orthologs in M. rotundata have higher than average recombination rates in both species, suggesting that selection for higher diversity in genes involved in worker caste functions in social taxa is not the explanation for these elevated rates. Furthermore, we find no evidence that recombination has modulated the efficacy of selection among genes during bee evolution, which does not support the hypothesis that high recombination rates facilitated positive selection for new functions in social insects. Our results indicate that the evolution of sociality in insects likely entailed selection on modifiers that increased recombination rates genome wide, but that the genomic recombination landscape is determined by the same factors.
Collapse
Affiliation(s)
- Julia C Jones
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Andreas Wallberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Matthew J Christmas
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | - Matthew T Webster
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Exploiting selection at linked sites to infer the rate and strength of adaptation. Nat Ecol Evol 2019; 3:977-984. [PMID: 31061475 PMCID: PMC6693860 DOI: 10.1038/s41559-019-0890-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 03/28/2019] [Indexed: 12/18/2022]
Abstract
Genomic data encodes past evolutionary events and has the potential to reveal the strength, rate, and biological drivers of adaptation. However, jointly estimating adaptation rate (a) and adaptation strength remains challenging because evolutionary processes such as demography, linkage, and non-neutral polymorphism can confound inference. Here, we exploit the influence of background selection to reduce the fixation rate of weakly-beneficial alleles to jointly infer the strength and rate of adaptation. We develop an MK-based method (ABC-MK) to infer adaptation rate and strength, and estimate α = 0.135 in human protein-coding sequences, 72% of which is contributed by weakly-adaptive variants. We show that in this adaptation regime α is reduced ≈ 25% by linkage genome-wide. Moreover, we show that virus-interacting proteins (VIPs) undergo adaptation that is both stronger and nearly twice as frequent as the genome average (α = 0.224, 56% due to strongly-beneficial alleles). Our results suggest that while most adaptation in human proteins is weakly-beneficial, adaptation to viruses is often strongly-beneficial. Our method provides a robust framework for estimating adaptation rate and strength across species.
Collapse
|
10
|
Abstract
A major current molecular evolution challenge is to link comparative genomic patterns to species' biology and ecology. Breeding systems are pivotal because they affect many population genetic processes and thus genome evolution. We review theoretical predictions and empirical evidence about molecular evolutionary processes under three distinct breeding systems-outcrossing, selfing, and asexuality. Breeding systems may have a profound impact on genome evolution, including molecular evolutionary rates, base composition, genomic conflict, and possibly genome size. We present and discuss the similarities and differences between the effects of selfing and clonality. In reverse, comparative and population genomic data and approaches help revisiting old questions on the long-term evolution of breeding systems.
Collapse
Affiliation(s)
- Sylvain Glémin
- Institut des Sciences de l'Evolution, UMR5554, Université Montpellier II, Montpellier, France
| | - Clémentine M François
- Institut des Sciences de l'Evolution, UMR5554, Université Montpellier II, Montpellier, France
| | - Nicolas Galtier
- Institut des Sciences de l'Evolution, UMR5554, Université Montpellier II, Montpellier, France.
| |
Collapse
|
11
|
Corcoran P, Gossmann TI, Barton HJ, Slate J, Zeng K. Determinants of the Efficacy of Natural Selection on Coding and Noncoding Variability in Two Passerine Species. Genome Biol Evol 2018; 9:2987-3007. [PMID: 29045655 PMCID: PMC5714183 DOI: 10.1093/gbe/evx213] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2017] [Indexed: 02/06/2023] Open
Abstract
Population genetic theory predicts that selection should be more effective when the effective population size (Ne) is larger, and that the efficacy of selection should correlate positively with recombination rate. Here, we analyzed the genomes of ten great tits and ten zebra finches. Nucleotide diversity at 4-fold degenerate sites indicates that zebra finches have a 2.83-fold larger Ne. We obtained clear evidence that purifying selection is more effective in zebra finches. The proportion of substitutions at 0-fold degenerate sites fixed by positive selection (α) is high in both species (great tit 48%; zebra finch 64%) and is significantly higher in zebra finches. When α was estimated on GC-conservative changes (i.e., between A and T and between G and C), the estimates reduced in both species (great tit 22%; zebra finch 53%). A theoretical model presented herein suggests that failing to control for the effects of GC-biased gene conversion (gBGC) is potentially a contributor to the overestimation of α, and that this effect cannot be alleviated by first fitting a demographic model to neutral variants. We present the first estimates in birds for α in the untranslated regions, and found evidence for substantial adaptive changes. Finally, although purifying selection is stronger in high-recombination regions, we obtained mixed evidence for α increasing with recombination rate, especially after accounting for gBGC. These results highlight that it is important to consider the potential confounding effects of gBGC when quantifying selection and that our understanding of what determines the efficacy of selection is incomplete.
Collapse
Affiliation(s)
- Pádraic Corcoran
- Department of Animal and Plant Sciences, University of Sheffield, South Yorkshire, United Kingdom
| | - Toni I Gossmann
- Department of Animal and Plant Sciences, University of Sheffield, South Yorkshire, United Kingdom
| | - Henry J Barton
- Department of Animal and Plant Sciences, University of Sheffield, South Yorkshire, United Kingdom
| | | | - Jon Slate
- Department of Animal and Plant Sciences, University of Sheffield, South Yorkshire, United Kingdom
| | - Kai Zeng
- Department of Animal and Plant Sciences, University of Sheffield, South Yorkshire, United Kingdom
| |
Collapse
|
12
|
Connallon T, Hall MD. Genetic constraints on adaptation: a theoretical primer for the genomics era. Ann N Y Acad Sci 2018; 1422:65-87. [PMID: 29363779 DOI: 10.1111/nyas.13536] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/20/2017] [Accepted: 09/28/2017] [Indexed: 12/14/2022]
Abstract
Genetic constraints are features of inheritance systems that slow or prohibit adaptation. Several population genetic mechanisms of constraint have received sustained attention within the field since they were first articulated in the early 20th century. This attention is now reflected in a rich, and still growing, theoretical literature on the genetic limits to adaptive change. In turn, empirical research on constraints has seen a rapid expansion over the last two decades in response to changing interests of evolutionary biologists, along with new technologies, expanding data sets, and creative analytical approaches that blend mathematical modeling with genomics. Indeed, one of the most notable and exciting features of recent progress in genetic constraints is the close connection between theoretical and empirical research. In this review, we discuss five major population genetic contexts of genetic constraint: genetic dominance, pleiotropy, fitness trade-offs between types of individuals of a population, sign epistasis, and genetic linkage between loci. For each, we outline historical antecedents of the theory, specific contexts where constraints manifest, and their quantitative consequences for adaptation. From each of these theoretical foundations, we discuss recent empirical approaches for identifying and characterizing genetic constraints, each grounded and motivated by this theory, and outline promising areas for future work.
Collapse
Affiliation(s)
- Tim Connallon
- School of Biological Sciences, and Centre for Geometric Biology, Monash University, Clayton, Victoria, Australia
| | - Matthew D Hall
- School of Biological Sciences, and Centre for Geometric Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
13
|
Ravinet M, Faria R, Butlin RK, Galindo J, Bierne N, Rafajlović M, Noor MAF, Mehlig B, Westram AM. Interpreting the genomic landscape of speciation: a road map for finding barriers to gene flow. J Evol Biol 2017; 30:1450-1477. [DOI: 10.1111/jeb.13047] [Citation(s) in RCA: 306] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 12/14/2022]
Affiliation(s)
- M. Ravinet
- Centre for Ecological and Evolutionary Synthesis; University of Oslo; Oslo Norway
- National Institute of Genetics; Mishima Shizuoka Japan
| | - R. Faria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos; InBIO, Laboratório Associado; Universidade do Porto; Vairão Portugal
- Department of Experimental and Health Sciences; IBE, Institute of Evolutionary Biology (CSIC-UPF); Pompeu Fabra University; Barcelona Spain
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield UK
| | - R. K. Butlin
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield UK
- Department of Marine Sciences; Centre for Marine Evolutionary Biology; University of Gothenburg; Gothenburg Sweden
| | - J. Galindo
- Department of Biochemistry, Genetics and Immunology; University of Vigo; Vigo Spain
| | - N. Bierne
- CNRS; Université Montpellier; ISEM; Station Marine Sète France
| | - M. Rafajlović
- Department of Physics; University of Gothenburg; Gothenburg Sweden
| | | | - B. Mehlig
- Department of Physics; University of Gothenburg; Gothenburg Sweden
| | - A. M. Westram
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield UK
| |
Collapse
|
14
|
Mohlhenrich ER, Mueller RL. Genetic drift and mutational hazard in the evolution of salamander genomic gigantism. Evolution 2016; 70:2865-2878. [DOI: 10.1111/evo.13084] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 09/27/2016] [Accepted: 09/27/2016] [Indexed: 12/25/2022]
|
15
|
Brandvain Y, Wright SI. The Limits of Natural Selection in a Nonequilibrium World. Trends Genet 2016; 32:201-210. [PMID: 26874998 DOI: 10.1016/j.tig.2016.01.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/23/2015] [Accepted: 01/19/2016] [Indexed: 11/19/2022]
Abstract
Evolutionary theory predicts that factors such as a small population size or low recombination rate can limit the action of natural selection. The emerging field of comparative population genomics offers an opportunity to evaluate these hypotheses. However, classical theoretical predictions assume that populations are at demographic equilibrium. This assumption is likely to be violated in the very populations researchers use to evaluate selection's limits: populations that have experienced a recent shift in population size and/or effective recombination rates. Here we highlight theory and data analyses concerning limitations on the action of natural selection in nonequilibrial populations and argue that substantial care is needed to appropriately test whether species and populations show meaningful differences in selection efficacy. A move toward model-based inferences that explicitly incorporate nonequilibrium dynamics provides a promising approach to more accurately contrast selection efficacy across populations and interpret its significance.
Collapse
Affiliation(s)
- Yaniv Brandvain
- Department of Plant Biology, University of Minnesota, St Paul, MN 55108, USA
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada.
| |
Collapse
|
16
|
Kryukov GV, Bielski CM, Samocha K, Fromer M, Seepo S, Gentry C, Neale B, Garraway LA, Sweeney CJ, Taplin ME, Van Allen EM. Genetic Effect of Chemotherapy Exposure in Children of Testicular Cancer Survivors. Clin Cancer Res 2015; 22:2183-9. [PMID: 26631610 DOI: 10.1158/1078-0432.ccr-15-2317] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/09/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Cancer survivors express anxiety that chemotherapy exposure may lead to transmissible genetic damage in posttreatment children. Preclinical models suggest that chemotherapy exposure may result in considerable genomic alterations in postexposure progeny. Epidemiologic studies have not demonstrated a significant increase in congenital abnormalities in posttreatment children of cancer survivors, but the inherited genome-wide effect of chemotherapy exposure in humans is unknown. EXPERIMENTAL DESIGN Two testicular cancer survivors cured with chemotherapy who had children pre- and postexposure without sperm banking were identified. Familial germline whole genome sequencing (WGS) was performed for these families, and analytic methods were utilized to identify de novo alterations, including mutations, recombinations, and structural rearrangements in the pre- and postexposure offspring. RESULTS No increase in de novo germline mutations in postexposure children compared with their preexposure siblings was found. Furthermore, there were no increased short insertion/deletions, recombination frequency, or structural rearrangements in these postexposure children. CONCLUSIONS In two families of male cancer survivors, there was no transmissible genomic impact of significant mutagenic exposure in postexposure children. This study may provide possible reassuring evidence for patients undergoing chemotherapy who are unable to have pretreatment sperm cryopreservation. Expanded cohorts that utilize WGS to identify environmental exposure effects on the inherited genome may inform the generalizability of these results. Clin Cancer Res; 22(9); 2183-9. ©2015 AACR.
Collapse
Affiliation(s)
- Gregory V Kryukov
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts. Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Craig M Bielski
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Kaitlin Samocha
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts. Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Menachem Fromer
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts. Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts. Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York. Department of Psychiatry, Mount Sinai School of Medicine, New York, New York
| | - Sara Seepo
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Carleen Gentry
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Benjamin Neale
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts. Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Levi A Garraway
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Mary-Ellen Taplin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Eliezer M Van Allen
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| |
Collapse
|
17
|
Aggarwal DD, Rashkovetsky E, Michalak P, Cohen I, Ronin Y, Zhou D, Haddad GG, Korol AB. Experimental evolution of recombination and crossover interference in Drosophila caused by directional selection for stress-related traits. BMC Biol 2015; 13:101. [PMID: 26614097 PMCID: PMC4661966 DOI: 10.1186/s12915-015-0206-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 10/27/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Population genetics predicts that tight linkage between new and/or pre-existing beneficial and deleterious alleles should decrease the efficiency of natural selection in finite populations. By decoupling beneficial and deleterious alleles and facilitating the combination of beneficial alleles, recombination accelerates the formation of high-fitness genotypes. This may impose indirect selection for increased recombination. Despite the progress in theoretical understanding, interplay between recombination and selection remains a controversial issue in evolutionary biology. Even less satisfactory is the situation with crossover interference, which is a deviation of double-crossover frequency in a pair of adjacent intervals from the product of recombination rates in the two intervals expected on the assumption of crossover independence. Here, we report substantial changes in recombination and interference in three long-term directional selection experiments with Drosophila melanogaster: for desiccation (~50 generations), hypoxia, and hyperoxia tolerance (>200 generations each). RESULTS For all three experiments, we found a high interval-specific increase of recombination frequencies in selection lines (up to 40-50% per interval) compared to the control lines. We also discovered a profound effect of selection on interference as expressed by an increased frequency of double crossovers in selection lines. Our results show that changes in interference are not necessarily coupled with increased recombination. CONCLUSIONS Our results support the theoretical predictions that adaptation to a new environment can promote evolution toward higher recombination. Moreover, this is the first evidence of selection for different recombination-unrelated traits potentially leading, not only to evolution toward increased crossover rates, but also to changes in crossover interference, one of the fundamental features of recombination.
Collapse
Affiliation(s)
| | | | - Pawel Michalak
- Virginia Bioinformatics Institute, Virginia Tech, Washington Street, MC 0477, Blacksburg, VA, 24061-0477, USA
| | - Irit Cohen
- Institute of Evolution, University of Haifa, Haifa, 3498838, Israel
| | - Yefim Ronin
- Institute of Evolution, University of Haifa, Haifa, 3498838, Israel
| | - Dan Zhou
- University of California, San Diego, USA
| | - Gabriel G Haddad
- University of California, San Diego, USA
- Rady Children's Hospital, San Diego, USA
| | - Abraham B Korol
- Institute of Evolution, University of Haifa, Haifa, 3498838, Israel.
| |
Collapse
|
18
|
Edwards SV, Shultz AJ, Campbell-Staton SC. Next-generation sequencing and the expanding domain of phylogeography. FOLIA ZOOLOGICA 2015. [DOI: 10.25225/fozo.v64.i3.a2.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Scott V. Edwards
- Department of Organismic and Evolutionary Biology, and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, U.S.A.
| | - Allison J. Shultz
- Department of Organismic and Evolutionary Biology, and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, U.S.A.
| | - Shane C. Campbell-Staton
- Department of Organismic and Evolutionary Biology, and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, U.S.A.
| |
Collapse
|
19
|
Kryuchkova-Mostacci N, Robinson-Rechavi M. Tissue-Specific Evolution of Protein Coding Genes in Human and Mouse. PLoS One 2015; 10:e0131673. [PMID: 26121354 PMCID: PMC4488272 DOI: 10.1371/journal.pone.0131673] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/04/2015] [Indexed: 12/23/2022] Open
Abstract
Protein-coding genes evolve at different rates, and the influence of different parameters, from gene size to expression level, has been extensively studied. While in yeast gene expression level is the major causal factor of gene evolutionary rate, the situation is more complex in animals. Here we investigate these relations further, especially taking in account gene expression in different organs as well as indirect correlations between parameters. We used RNA-seq data from two large datasets, covering 22 mouse tissues and 27 human tissues. Over all tissues, evolutionary rate only correlates weakly with levels and breadth of expression. The strongest explanatory factors of purifying selection are GC content, expression in many developmental stages, and expression in brain tissues. While the main component of evolutionary rate is purifying selection, we also find tissue-specific patterns for sites under neutral evolution and for positive selection. We observe fast evolution of genes expressed in testis, but also in other tissues, notably liver, which are explained by weak purifying selection rather than by positive selection.
Collapse
Affiliation(s)
- Nadezda Kryuchkova-Mostacci
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
20
|
Gossmann TI, Santure AW, Sheldon BC, Slate J, Zeng K. Highly variable recombinational landscape modulates efficacy of natural selection in birds. Genome Biol Evol 2015; 6:2061-75. [PMID: 25062920 PMCID: PMC4231635 DOI: 10.1093/gbe/evu157] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Determining the rate of protein evolution and identifying the causes of its variation across the genome are powerful ways to understand forces that are important for genome evolution. By using a multitissue transcriptome data set from great tit (Parus major), we analyzed patterns of molecular evolution between two passerine birds, great tit and zebra finch (Taeniopygia guttata), using the chicken genome (Gallus gallus) as an outgroup. We investigated whether a special feature of avian genomes, the highly variable recombinational landscape, modulates the efficacy of natural selection through the effects of Hill-Robertson interference, which predicts that selection should be more effective in removing deleterious mutations and incorporating beneficial mutations in high-recombination regions than in low-recombination regions. In agreement with these predictions, genes located in low-recombination regions tend to have a high proportion of neutrally evolving sites and relaxed selective constraint on sites subject to purifying selection, whereas genes that show strong support for past episodes of positive selection appear disproportionally in high-recombination regions. There is also evidence that genes located in high-recombination regions tend to have higher gene expression specificity than those located in low-recombination regions. Furthermore, more compact genes (i.e., those with fewer/shorter introns or shorter proteins) evolve faster than less compact ones. In sum, our results demonstrate that transcriptome sequencing is a powerful method to answer fundamental questions about genome evolution in nonmodel organisms.
Collapse
Affiliation(s)
- Toni I Gossmann
- Department of Animal and Plant Sciences, University of Sheffield, United Kingdom
| | - Anna W Santure
- Department of Animal and Plant Sciences, University of Sheffield, United KingdomSchool of Biological Sciences, University of Auckland, New Zealand
| | - Ben C Sheldon
- Edward Grey Institute, Department of Zoology, University of Oxford, United Kingdom
| | - Jon Slate
- Department of Animal and Plant Sciences, University of Sheffield, United Kingdom
| | - Kai Zeng
- Department of Animal and Plant Sciences, University of Sheffield, United Kingdom
| |
Collapse
|
21
|
Hussin JG, Hodgkinson A, Idaghdour Y, Grenier JC, Goulet JP, Gbeha E, Hip-Ki E, Awadalla P. Recombination affects accumulation of damaging and disease-associated mutations in human populations. Nat Genet 2015; 47:400-4. [DOI: 10.1038/ng.3216] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 01/14/2015] [Indexed: 01/17/2023]
|
22
|
Lanfear R, Kokko H, Eyre-Walker A. Population size and the rate of evolution. Trends Ecol Evol 2013; 29:33-41. [PMID: 24148292 DOI: 10.1016/j.tree.2013.09.009] [Citation(s) in RCA: 252] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/04/2013] [Accepted: 09/16/2013] [Indexed: 11/28/2022]
Abstract
Does evolution proceed faster in larger or smaller populations? The relationship between effective population size (Ne) and the rate of evolution has consequences for our ability to understand and interpret genomic variation, and is central to many aspects of evolution and ecology. Many factors affect the relationship between Ne and the rate of evolution, and recent theoretical and empirical studies have shown some surprising and sometimes counterintuitive results. Some mechanisms tend to make the relationship positive, others negative, and they can act simultaneously. The relationship also depends on whether one is interested in the rate of neutral, adaptive, or deleterious evolution. Here, we synthesize theoretical and empirical approaches to understanding the relationship and highlight areas that remain poorly understood.
Collapse
Affiliation(s)
- Robert Lanfear
- Ecology Evolution and Genetics, Research School of Biology, Australian National University, Canberra, ACT, Australia; National Evolutionary Synthesis Center, Durham, NC, USA.
| | - Hanna Kokko
- Ecology Evolution and Genetics, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | | |
Collapse
|
23
|
Zhao M, Du J, Lin F, Tong C, Yu J, Huang S, Wang X, Liu S, Ma J. Shifts in the evolutionary rate and intensity of purifying selection between two Brassica genomes revealed by analyses of orthologous transposons and relics of a whole genome triplication. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:211-22. [PMID: 23869625 DOI: 10.1111/tpj.12291] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/28/2013] [Accepted: 07/04/2013] [Indexed: 05/23/2023]
Abstract
Recent sequencing of the Brassica rapa and Brassica oleracea genomes revealed extremely contrasting genomic features such as the abundance and distribution of transposable elements between the two genomes. However, whether and how these structural differentiations may have influenced the evolutionary rates of the two genomes since their split from a common ancestor are unknown. Here, we investigated and compared the rates of nucleotide substitution between two long terminal repeats (LTRs) of individual orthologous LTR-retrotransposons, the rates of synonymous and non-synonymous substitution among triplicated genes retained in both genomes from a shared whole genome triplication event, and the rates of genetic recombination estimated/deduced by the comparison of physical and genetic distances along chromosomes and ratios of solo LTRs to intact elements. Overall, LTR sequences and genic sequences showed more rapid nucleotide substitution in B. rapa than in B. oleracea. Synonymous substitution of triplicated genes retained from a shared whole genome triplication was detected at higher rates in B. rapa than in B. oleracea. Interestingly, non-synonymous substitution was observed at lower rates in the former than in the latter, indicating shifted densities of purifying selection between the two genomes. In addition to evolutionary asymmetry, orthologous genes differentially regulated and/or disrupted by transposable elements between the two genomes were also characterized. Our analyses suggest that local genomic and epigenomic features, such as recombination rates and chromatin dynamics reshaped by independent proliferation of transposable elements and elimination between the two genomes, are perhaps partially the causes and partially the outcomes of the observed inter-specific asymmetric evolution.
Collapse
Affiliation(s)
- Meixia Zhao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China; Department of Agronomy, Purdue University, West Lafayette, 47907, IN, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Genomic signatures of selection at linked sites: unifying the disparity among species. Nat Rev Genet 2013; 14:262-74. [PMID: 23478346 DOI: 10.1038/nrg3425] [Citation(s) in RCA: 328] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Population genetics theory supplies powerful predictions about how natural selection interacts with genetic linkage to sculpt the genomic landscape of nucleotide polymorphism. Both the spread of beneficial mutations and the removal of deleterious mutations act to depress polymorphism levels, especially in low-recombination regions. However, empiricists have documented extreme disparities among species. Here we characterize the dominant features that could drive differences in linked selection among species--including roles for selective sweeps being 'hard' or 'soft'--and the concealing effects of demography and confounding genomic variables. We advocate targeted studies of closely related species to unify our understanding of how selection and linkage interact to shape genome evolution.
Collapse
|
25
|
Farré M, Micheletti D, Ruiz-Herrera A. Recombination rates and genomic shuffling in human and chimpanzee--a new twist in the chromosomal speciation theory. Mol Biol Evol 2012. [PMID: 23204393 PMCID: PMC3603309 DOI: 10.1093/molbev/mss272] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A long-standing question in evolutionary biology concerns the effect of recombination in shaping the genomic architecture of organisms and, in particular, how this impacts the speciation process. Despite efforts employed in the last decade, the role of chromosomal reorganizations in the human-chimpanzee speciation process remains unresolved. Through whole-genome comparisons, we have analyzed the genome-wide impact of genomic shuffling in the distribution of human recombination rates during the human-chimpanzee speciation process. We have constructed a highly refined map of the reorganizations and evolutionary breakpoint regions in the human and chimpanzee genomes based on orthologous genes and genome sequence alignments. The analysis of the most recent human and chimpanzee recombination maps inferred from genome-wide single-nucleotide polymorphism data revealed that the standardized recombination rate was significantly lower in rearranged than in collinear chromosomes. In fact, rearranged chromosomes presented significantly lower recombination rates than chromosomes that have been maintained since the ancestor of great apes, and this was related with the lineage in which they become fixed. Importantly, inverted regions had lower recombination rates than collinear and noninverted regions, independently of the effect of centromeres. Our observations have implications for the chromosomal speciation theory, providing new evidences for the contribution of inversions in suppressing recombination in mammals.
Collapse
Affiliation(s)
- Marta Farré
- Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Campus UAB, Cerdanyola del Vallès, Barcelona, Spain
| | | | | |
Collapse
|
26
|
McGaugh SE, Heil CSS, Manzano-Winkler B, Loewe L, Goldstein S, Himmel TL, Noor MAF. Recombination modulates how selection affects linked sites in Drosophila. PLoS Biol 2012; 10:e1001422. [PMID: 23152720 PMCID: PMC3496668 DOI: 10.1371/journal.pbio.1001422] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 10/05/2012] [Indexed: 11/18/2022] Open
Abstract
Recombination rate in Drosophila species shapes the impact of selection in the genome and is positively correlated with nucleotide diversity. One of the most influential observations in molecular evolution has been a strong association between local recombination rate and nucleotide polymorphisms across the genome. This is interpreted as evidence for ubiquitous natural selection. The alternative explanation, that recombination is mutagenic, has been rejected by the absence of a similar association between local recombination rate and nucleotide divergence between species. However, many recent studies show that recombination rates are often very different even in closely related species, questioning whether an association between recombination rate and divergence between species has been tested satisfactorily. To circumvent this problem, we directly surveyed recombination across approximately 43% of the D. pseudoobscura physical genome in two separate recombination maps and 31% of the D. miranda physical genome, and we identified both global and local differences in recombination rate between these two closely related species. Using only regions with conserved recombination rates between and within species and accounting for multiple covariates, our data support the conclusion that recombination is positively related to diversity because recombination modulates Hill–Robertson effects in the genome and not because recombination is predominately mutagenic. Finally, we find evidence for dips in diversity around nonsynonymous substitutions. We infer that at least some of this reduction in diversity resulted from selective sweeps and examine these dips in the context of recombination rate. Individuals within a species differ in the DNA sequences of their genes. This sequence variation affects how well individuals survive or reproduce and is transmitted to their offspring. Genes near each other on individual chromosomes tend to be passed to offspring together—neighboring genes are unlikely to be separated by exchanges of genetic material derived from different parents during meiotic recombination. When genes are inherited together, however, the evolutionary forces acting on one gene can interfere with variation at its neighbors. Thus, variation at multiple genes can be lost if natural selection acts on one gene in close proximity. Recombination can prevent or reduce this loss of variation, but previous tests of this phenomenon failed to account for recombination rate differences between species. In this study, we show that some parts of the genome differ in recombination rate between two species of fruit fly, Drosophila pseudoobscura and D. miranda. Avoiding an assumption made in previous studies, we then examine sequence variation within and between fly species in those parts of the genome that have conserved recombination rates. Based on the results, we conclude that recombination indeed preserves variation within species that would otherwise have been eliminated by natural selection.
Collapse
Affiliation(s)
- Suzanne E McGaugh
- Biology Department, Duke University, Durham, North Carolina, United States of America.
| | | | | | | | | | | | | |
Collapse
|
27
|
Akashi H, Osada N, Ohta T. Weak selection and protein evolution. Genetics 2012; 192:15-31. [PMID: 22964835 PMCID: PMC3430532 DOI: 10.1534/genetics.112.140178] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 06/11/2012] [Indexed: 01/23/2023] Open
Abstract
The "nearly neutral" theory of molecular evolution proposes that many features of genomes arise from the interaction of three weak evolutionary forces: mutation, genetic drift, and natural selection acting at its limit of efficacy. Such forces generally have little impact on allele frequencies within populations from generation to generation but can have substantial effects on long-term evolution. The evolutionary dynamics of weakly selected mutations are highly sensitive to population size, and near neutrality was initially proposed as an adjustment to the neutral theory to account for general patterns in available protein and DNA variation data. Here, we review the motivation for the nearly neutral theory, discuss the structure of the model and its predictions, and evaluate current empirical support for interactions among weak evolutionary forces in protein evolution. Near neutrality may be a prevalent mode of evolution across a range of functional categories of mutations and taxa. However, multiple evolutionary mechanisms (including adaptive evolution, linked selection, changes in fitness-effect distributions, and weak selection) can often explain the same patterns of genome variation. Strong parameter sensitivity remains a limitation of the nearly neutral model, and we discuss concave fitness functions as a plausible underlying basis for weak selection.
Collapse
Affiliation(s)
- Hiroshi Akashi
- Division of Evolutionary Genetics, Department of Population Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.
| | | | | |
Collapse
|
28
|
Abstract
A major current molecular evolution challenge is to link comparative genomic patterns to species' biology and ecology. Breeding systems are pivotal because they affect many population genetic processes, and thus genome evolution. We review theoretical predictions and empirical evidence about molecular evolutionary processes under three distinct breeding systems-outcrossing, selfing, and asexuality. Breeding systems may have a profound impact on genome evolution, including molecular evolutionary rates, base composition, genomic conflict, and possibly genome size. However, while asexual species essentially conform to theoretical predictions, the situation is less simple in selfing species. We discuss the possible reasons to potentially explain this paradox. In reverse, comparative and population genomic data and approaches help revisiting old questions on the long-term evolution of breeding systems.
Collapse
|
29
|
Webster MT, Hurst LD. Direct and indirect consequences of meiotic recombination: implications for genome evolution. Trends Genet 2011; 28:101-9. [PMID: 22154475 DOI: 10.1016/j.tig.2011.11.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 11/08/2011] [Accepted: 11/09/2011] [Indexed: 12/23/2022]
Abstract
There is considerable variation within eukaryotic genomes in the local rate of crossing over. Why is this and what effect does it have on genome evolution? On the genome scale, it is known that by shuffling alleles, recombination increases the efficacy of selection. By contrast, the extent to which differences in the recombination rate modulate the efficacy of selection between genomic regions is unclear. Recombination also has direct consequences on the origin and fate of mutations: biased gene conversion and other forms of meiotic drive promote the fixation of mutations in a similar way to selection, and recombination itself may be mutagenic. Consideration of both the direct and indirect effects of recombination is necessary to understand why its rate is so variable and for correct interpretation of patterns of genome evolution.
Collapse
Affiliation(s)
- Matthew T Webster
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | | |
Collapse
|
30
|
Abstract
The effective population size (N(e)) is one of the most fundamental parameters in population genetics. It is thought to vary across the genome as a consequence of differences in the rate of recombination and the density of selected sites due to the processes of genetic hitchhiking and background selection. Although it is known that there is intragenomic variation in the effective population size in some species, it is not known whether this is widespread or how much variation in the effective population size there is. Here, we test whether the effective population size varies across the genome, between protein-coding genes, in 10 eukaryotic species by considering whether there is significant variation in neutral diversity, taking into account differences in the mutation rate between loci by using the divergence between species. In most species we find significant evidence of variation. We investigate whether the variation in N(e) is correlated to recombination rate and the density of selected sites in four species, for which these data are available. We find that N(e) is positively correlated to recombination rate in one species, Drosophila melanogaster, and negatively correlated to a measure of the density of selected sites in two others, humans and Arabidopsis thaliana. However, much of the variation remains unexplained. We use a hierarchical Bayesian analysis to quantify the amount of variation in the effective population size and show that it is quite modest in all species-most genes have an N(e) that is within a few fold of all other genes. Nonetheless we show that this modest variation in N(e) is sufficient to cause significant differences in the efficiency of natural selection across the genome, by demonstrating that the ratio of the number of nonsynonymous to synonymous polymorphisms is significantly correlated to synonymous diversity and estimates of N(e), even taking into account the obvious nonindependence between these measures.
Collapse
|
31
|
Slotte T, Bataillon T, Hansen TT, St Onge K, Wright SI, Schierup MH. Genomic determinants of protein evolution and polymorphism in Arabidopsis. Genome Biol Evol 2011; 3:1210-9. [PMID: 21926095 PMCID: PMC3296466 DOI: 10.1093/gbe/evr094] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Recent results from Drosophila suggest that positive selection has a substantial impact on genomic patterns of polymorphism and divergence. However, species with smaller population sizes and/or stronger population structure may not be expected to exhibit Drosophila-like patterns of sequence variation. We test this prediction and identify determinants of levels of polymorphism and rates of protein evolution using genomic data from Arabidopsis thaliana and the recently sequenced Arabidopsis lyrata genome. We find that, in contrast to Drosophila, there is no negative relationship between nonsynonymous divergence and silent polymorphism at any spatial scale examined. Instead, synonymous divergence is a major predictor of silent polymorphism, which suggests variation in mutation rate as the main determinant of silent variation. Variation in rates of protein divergence is mainly correlated with gene expression level and breadth, consistent with results for a broad range of taxa, and map-based estimates of recombination rate are only weakly correlated with nonsynonymous divergence. Variation in mutation rates and the strength of purifying selection seem to be major drivers of patterns of polymorphism and divergence in Arabidopsis. Nevertheless, a model allowing for varying negative and positive selection by functional gene category explains the data better than a homogeneous model, implying the action of positive selection on a subset of genes. Genes involved in disease resistance and abiotic stress display high proportions of adaptive substitution. Our results are important for a general understanding of the determinants of rates of protein evolution and the impact of selection on patterns of polymorphism and divergence.
Collapse
Affiliation(s)
- Tanja Slotte
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Sweden.
| | | | | | | | | | | |
Collapse
|
32
|
Andolfatto P, Wong KM, Bachtrog D. Effective population size and the efficacy of selection on the X chromosomes of two closely related Drosophila species. Genome Biol Evol 2010; 3:114-28. [PMID: 21173424 PMCID: PMC3038356 DOI: 10.1093/gbe/evq086] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The prevalence of natural selection relative to genetic drift is of central interest in evolutionary biology. Depending on the distribution of fitness effects of new mutations, the importance of these evolutionary forces may differ in species with different effective population sizes. Here, we survey population genetic variation at 105 orthologous X-linked protein coding regions in Drosophila melanogaster and its sister species D. simulans, two closely related species with distinct demographic histories. We observe significantly higher levels of polymorphism and evidence for stronger selection on codon usage bias in D. simulans, consistent with a larger historical effective population size on average for this species. Despite these differences, we estimate that <10% of newly arising nonsynonymous mutations have deleterious fitness effects in the nearly neutral range (i.e., −10 < Nes < 0) in both species. The inferred distributions of fitness effects and demographic models translate into surprisingly high estimates of the fraction of “adaptive” protein divergence in both species (∼85–90%). Despite evidence for different demographic histories, differences in population size have apparently played little role in the dynamics of protein evolution in these two species, and estimates of the adaptive fraction (α) of protein divergence in both species remain high even if we account for recent 10-fold growth. Furthermore, although several recent studies have noted strong signatures of recurrent adaptive protein evolution at genes involved in immunity, reproduction, sexual conflict, and intragenomic conflict, our finding of high levels of adaptive protein divergence at randomly chosen proteins (with respect to function) suggests that many other factors likely contribute to the adaptive protein divergence signature in Drosophila.
Collapse
Affiliation(s)
- Peter Andolfatto
- Department of Ecology and Evolutionary Biology and Lewis-Sigler Institute for Integrative Genomics, Princeton University, USA.
| | | | | |
Collapse
|
33
|
Ratnakumar A, Mousset S, Glémin S, Berglund J, Galtier N, Duret L, Webster MT. Detecting positive selection within genomes: the problem of biased gene conversion. Philos Trans R Soc Lond B Biol Sci 2010; 365:2571-80. [PMID: 20643747 DOI: 10.1098/rstb.2010.0007] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The identification of loci influenced by positive selection is a major goal of evolutionary genetics. A popular approach is to perform scans of alignments on a genome-wide scale in order to find regions evolving at accelerated rates on a particular branch of a phylogenetic tree. However, positive selection is not the only process that can lead to accelerated evolution. Notably, GC-biased gene conversion (gBGC) is a recombination-associated process that results in the biased fixation of G and C nucleotides. This process can potentially generate bursts of nucleotide substitutions within hotspots of meiotic recombination. Here, we analyse the results of a scan for positive selection on genes on branches across the primate phylogeny. We show that genes identified as targets of positive selection have a significant tendency to exhibit the genomic signature of gBGC. Using a maximum-likelihood framework, we estimate that more than 20 per cent of cases of significantly elevated non-synonymous to synonymous substitution rates ratio (d(N)/d(S)), particularly in shorter branches, could be due to gBGC. We demonstrate that in some cases, gBGC can lead to very high d(N)/d(S) (more than 2). Our results indicate that gBGC significantly affects the evolution of coding sequences in primates, often leading to patterns of evolution that can be mistaken for positive selection.
Collapse
Affiliation(s)
- Abhirami Ratnakumar
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 751 23 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
34
|
Clark AG, Wang X, Matise T. Contrasting methods of quantifying fine structure of human recombination. Annu Rev Genomics Hum Genet 2010; 11:45-64. [PMID: 20690817 DOI: 10.1146/annurev-genom-082908-150031] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There has been considerable excitement over the ability to construct linkage maps based only on genome-wide genotype data for single nucleotide polymorphic sites (SNPs) in a population sample. These maps, which are derived from estimates of linkage disequilibrium (LD), rely on population genetics theory to relate the decay of LD to the local rate of recombination, but other population processes also come into play. Here we contrast these LD maps to the classically derived, pedigree-based human recombination maps. The LD maps have a level of resolution greatly exceeding that of the pedigree maps, and at this fine scale, sperm typing allows a means of validation. While at a gross level both the pedigree maps and the sperm typing methods generally agree with LD maps, there are significant local differences between them, and the fact that these maps measure different genetic features should be remembered when using them for other genetic inferences.
Collapse
Affiliation(s)
- Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
35
|
Nam K, Mugal C, Nabholz B, Schielzeth H, Wolf JBW, Backström N, Künstner A, Balakrishnan CN, Heger A, Ponting CP, Clayton DF, Ellegren H. Molecular evolution of genes in avian genomes. Genome Biol 2010; 11:R68. [PMID: 20573239 PMCID: PMC2911116 DOI: 10.1186/gb-2010-11-6-r68] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 06/18/2010] [Accepted: 06/23/2010] [Indexed: 11/20/2022] Open
Abstract
Background Obtaining a draft genome sequence of the zebra finch (Taeniopygia guttata), the second bird genome to be sequenced, provides the necessary resource for whole-genome comparative analysis of gene sequence evolution in a non-mammalian vertebrate lineage. To analyze basic molecular evolutionary processes during avian evolution, and to contrast these with the situation in mammals, we aligned the protein-coding sequences of 8,384 1:1 orthologs of chicken, zebra finch, a lizard and three mammalian species. Results We found clear differences in the substitution rate at fourfold degenerate sites, being lowest in the ancestral bird lineage, intermediate in the chicken lineage and highest in the zebra finch lineage, possibly reflecting differences in generation time. We identified positively selected and/or rapidly evolving genes in avian lineages and found an over-representation of several functional classes, including anion transporter activity, calcium ion binding, cell adhesion and microtubule cytoskeleton. Conclusions Focusing specifically on genes of neurological interest and genes differentially expressed in the unique vocal control nuclei of the songbird brain, we find a number of positively selected genes, including synaptic receptors. We found no evidence that selection for beneficial alleles is more efficient in regions of high recombination; in fact, there was a weak yet significant negative correlation between ω and recombination rate, which is in the direction predicted by the Hill-Robertson effect if slightly deleterious mutations contribute to protein evolution. These findings set the stage for studies of functional genetics of avian genes.
Collapse
Affiliation(s)
- Kiwoong Nam
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, Uppsala, S-752 36, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hosid E, Yusim E, Grishkan I, Frenkel ZM, Wasser SP, Nevo E, Korol A. Microsatellite Diversity in Natural Populations of Ascomycetous Fungus, Emericella Nidulans, from Different Climatic-Edaphic Conditions in Israel. Isr J Ecol Evol 2010. [DOI: 10.1560/ijee.56.2.119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The genetic divergence of Israeli populations of the soil ascomycetous fungusEmericella nidulanswas studied on regional and local scales using fifteen microsatellite (SSR) markers. The study was performed in the framework of the "Evolution Canyon" research program at the Institute of Evolution, University of Haifa, in three "Evolution Canyons" (ECs): EC I (Mt. Carmel), EC II (western Upper Galilee), and EC III (the southern Negev desert). The first two canyons (EC I and EC II) are located in the northern part of Israel at a distance of 38 km apart; EC III is located southward at a distance of nearly 350 km from the northern ECs. In each canyon,E. nidulansstrains were isolated from opposite slopes and, in EC III, from the valley bottom. All three EC populations ofE. nidulanswere found to be genetically distinct. The estimated genetic divergences correspond to geographical distances and ecological differences between the three studied canyons. On a regional scale, simple sequence repeat (SSR) polymorphism tends to increase with severity of ecological conditions. In general, both environmental parameters (soil moisture and temperature) and genetic factors (predicted number of repeats in SSR markers, distance from marker to centromere, codon evolutionary chronologies, and hydrophobic vs. hydrophilic character of encoded amino acid) influenced genetic diversity ofE. nidulanspopulations.
Collapse
Affiliation(s)
- Elena Hosid
- Institute of Evolution, Department of Evolutionary and Environmental Biology, University of Haifa
| | - Eugenia Yusim
- Institute of Evolution, Department of Evolutionary and Environmental Biology, University of Haifa
| | - Isabella Grishkan
- Institute of Evolution, Department of Evolutionary and Environmental Biology, University of Haifa
| | - Zakharia M. Frenkel
- Institute of Evolution, Department of Evolutionary and Environmental Biology, University of Haifa
| | - Solomon P. Wasser
- Institute of Evolution, Department of Evolutionary and Environmental Biology, University of Haifa
| | - Eviatar Nevo
- Institute of Evolution, Department of Evolutionary and Environmental Biology, University of Haifa
| | - Abraham Korol
- Institute of Evolution, Department of Evolutionary and Environmental Biology, University of Haifa
| |
Collapse
|
37
|
Künstner A, Wolf JBW, Backström N, Whitney O, Balakrishnan CN, Day L, Edwards SV, Janes DE, Schlinger BA, Wilson RK, Jarvis ED, Warren WC, Ellegren H. Comparative genomics based on massive parallel transcriptome sequencing reveals patterns of substitution and selection across 10 bird species. Mol Ecol 2010; 19 Suppl 1:266-76. [PMID: 20331785 DOI: 10.1111/j.1365-294x.2009.04487.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Next-generation sequencing technology provides an attractive means to obtain large-scale sequence data necessary for comparative genomic analysis. To analyse the patterns of mutation rate variation and selection intensity across the avian genome, we performed brain transcriptome sequencing using Roche 454 technology of 10 different non-model avian species. Contigs from de novo assemblies were aligned to the two available avian reference genomes, chicken and zebra finch. In total, we identified 6499 different genes across all 10 species, with approximately 1000 genes found in each full run per species. We found evidence for a higher mutation rate of the Z chromosome than of autosomes (male-biased mutation) and a negative correlation between the neutral substitution rate (d(S)) and chromosome size. Analyses of the mean d(N)/d(S) ratio (omega) of genes across chromosomes supported the Hill-Robertson effect (the effect of selection at linked loci) and point at stochastic problems with omega as an independent measure of selection. Overall, this study demonstrates the usefulness of next-generation sequencing for obtaining genomic resources for comparative genomic analysis of non-model organisms.
Collapse
Affiliation(s)
- Axel Künstner
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Under the classical view, selection depends more or less directly on mutation: standing genetic variance is maintained by a balance between selection and mutation, and adaptation is fuelled by new favourable mutations. Recombination is favoured if it breaks negative associations among selected alleles, which interfere with adaptation. Such associations may be generated by negative epistasis, or by random drift (leading to the Hill-Robertson effect). Both deterministic and stochastic explanations depend primarily on the genomic mutation rate, U. This may be large enough to explain high recombination rates in some organisms, but seems unlikely to be so in general. Random drift is a more general source of negative linkage disequilibria, and can cause selection for recombination even in large populations, through the chance loss of new favourable mutations. The rate of species-wide substitutions is much too low to drive this mechanism, but local fluctuations in selection, combined with gene flow, may suffice. These arguments are illustrated by comparing the interaction between good and bad mutations at unlinked loci under the infinitesimal model.
Collapse
Affiliation(s)
- N H Barton
- Institute of Science and Technology, , Am Campus 1, A-3400 Klosterneuburg, Austria.
| |
Collapse
|
39
|
Marques-Bonet T, Ryder OA, Eichler EE. Sequencing primate genomes: what have we learned? Annu Rev Genomics Hum Genet 2009; 10:355-86. [PMID: 19630567 DOI: 10.1146/annurev.genom.9.081307.164420] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We summarize the progress in whole-genome sequencing and analyses of primate genomes. These emerging genome datasets have broadened our understanding of primate genome evolution revealing unexpected and complex patterns of evolutionary change. This includes the characterization of genome structural variation, episodic changes in the repeat landscape, differences in gene expression, new models regarding speciation, and the ephemeral nature of the recombination landscape. The functional characterization of genomic differences important in primate speciation and adaptation remains a significant challenge. Limited access to biological materials, the lack of detailed phenotypic data and the endangered status of many critical primate species have significantly attenuated research into the genetic basis of primate evolution. Next-generation sequencing technologies promise to greatly expand the number of available primate genome sequences; however, such draft genome sequences will likely miss critical genetic differences within complex genomic regions unless dedicated efforts are put forward to understand the full spectrum of genetic variation.
Collapse
Affiliation(s)
- Tomas Marques-Bonet
- Department of Genome Sciences, University of Washington and the Howard Hughes Medical Institute, Seattle, Washington 98105, USA.
| | | | | |
Collapse
|
40
|
Weber CC, Hurst LD. Protein rates of evolution are predicted by double-strand break events, independent of crossing-over rates. Genome Biol Evol 2009; 1:340-9. [PMID: 20333203 PMCID: PMC2817428 DOI: 10.1093/gbe/evp033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2009] [Indexed: 12/22/2022] Open
Abstract
Theory predicts that, owing to reduced Hill–Robertson interference, genomic regions with high crossing-over rates should experience more efficient selection. In Saccharomyces cerevisiae a negative correlation between the local recombination rate, assayed as meiotic double-strand breaks (DSBs), and the local rate of protein evolution has been considered consistent with such a model. Although DSBs are a prerequisite for crossing-over, they need not result in crossing-over. With recent high-resolution crossover data, we now return to this issue comparing two species of yeast. Strikingly, even allowing for crossover rates, both the rate of premeiotic DSBs and of noncrossover recombination events predict a gene's rate of evolution. This both questions the validity of prior analyses and strongly suggests that any correlation between crossover rates and rates of protein evolution could be owing to slow-evolving genes being prone to DSBs or a direct effect of DSBs on sequence evolution. To ask if classical theory of recombination has any relevance, we determine whether crossover rates predict rates of protein evolution, controlling for noncrossover DSB events, gene ontology (GO) class, gene expression, protein abundance, nucleotide content, and dispensability. We find that genes with high crossing-over rates have low rates of protein evolution after such control, although any correlation is weaker than that previously reported considering meiotic DSBs as a proxy. The data are consistent both with recombination enhancing the efficiency of purifying selection and, independently, with DSBs being associated with low rates of evolution.
Collapse
Affiliation(s)
- Claudia C Weber
- Department of Biology and Biochemistry, University of Bath, Bath, Somerset, UK
| | | |
Collapse
|
41
|
Schmidt J, Kirsch S, Rappold GA, Schempp W. Complex evolution of a Y-chromosomal double homeobox 4 (DUX4)-related gene family in hominoids. PLoS One 2009; 4:e5288. [PMID: 19404400 PMCID: PMC2671837 DOI: 10.1371/journal.pone.0005288] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 03/24/2009] [Indexed: 12/21/2022] Open
Abstract
The human Y chromosome carries four human Y-chromosomal euchromatin/heterochromatin transition regions, all of which are characterized by the presence of interchromosomal segmental duplications. The Yq11.1/Yq11.21 transition region harbours a peculiar segment composed of an imperfectly organized tandem-repeat structure encoding four members of the double homeobox (DUX) gene family. By comparative fluorescence in situ hybridization (FISH) analysis we have documented the primary appearance of Y-chromosomal DUX genes (DUXY) on the gibbon Y chromosome. The major amplification and dispersal of DUXY paralogs occurred after the gibbon and hominid lineages had diverged. Orthologous DUXY loci of human and chimpanzee show a highly similar structural organization. Sequence alignment survey, phylogenetic reconstruction and recombination detection analyses of human and chimpanzee DUXY genes revealed the existence of all copies in a common ancestor. Comparative analysis of the circumjacent beta-satellites indicated that DUXY genes and beta-satellites evolved in concert. However, evolutionary forces acting on DUXY genes may have induced amino acid sequence differences in the orthologous chimpanzee and human DUXY open reading frames (ORFs). The acquisition of complete ORFs in human copies might relate to evolutionary advantageous functions indicating neo-functionalization. We propose an evolutionary scenario in which an ancestral tandem array DUX gene cassette transposed to the hominoid Y chromosome followed by lineage-specific chromosomal rearrangements paved the way for a species-specific evolution of the Y-chromosomal members of a large highly diverged homeobox gene family.
Collapse
Affiliation(s)
- Julia Schmidt
- Institute of Human Genetics, University of Freiburg, Freiburg, Germany
| | - Stefan Kirsch
- Institute of Human Genetics, University of Freiburg, Freiburg, Germany
| | - Gudrun A. Rappold
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Werner Schempp
- Institute of Human Genetics, University of Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
42
|
Pervasive hitchhiking at coding and regulatory sites in humans. PLoS Genet 2009; 5:e1000336. [PMID: 19148272 PMCID: PMC2613029 DOI: 10.1371/journal.pgen.1000336] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 12/11/2008] [Indexed: 01/28/2023] Open
Abstract
Much effort and interest have focused on assessing the importance of natural selection, particularly positive natural selection, in shaping the human genome. Although scans for positive selection have identified candidate loci that may be associated with positive selection in humans, such scans do not indicate whether adaptation is frequent in general in humans. Studies based on the reasoning of the MacDonald-Kreitman test, which, in principle, can be used to evaluate the extent of positive selection, suggested that adaptation is detectable in the human genome but that it is less common than in Drosophila or Escherichia coli. Both positive and purifying natural selection at functional sites should affect levels and patterns of polymorphism at linked nonfunctional sites. Here, we search for these effects by analyzing patterns of neutral polymorphism in humans in relation to the rates of recombination, functional density, and functional divergence with chimpanzees. We find that the levels of neutral polymorphism are lower in the regions of lower recombination and in the regions of higher functional density or divergence. These correlations persist after controlling for the variation in GC content, density of simple repeats, selective constraint, mutation rate, and depth of sequencing coverage. We argue that these results are most plausibly explained by the effects of natural selection at functional sites -- either recurrent selective sweeps or background selection -- on the levels of linked neutral polymorphism. Natural selection at both coding and regulatory sites appears to affect linked neutral polymorphism, reducing neutral polymorphism by 6% genome-wide and by 11% in the gene-rich half of the human genome. These findings suggest that the effects of natural selection at linked sites cannot be ignored in the study of neutral human polymorphism.
Collapse
|
43
|
|
44
|
Abstract
The use of phylogenetic analysis to predict positive selection specific to human genes is complicated by the very close evolutionary relationship with our nearest extant primate relatives, chimpanzees. To assess the power and limitations inherent in use of maximum-likelihood (ML) analysis of codon substitution patterns in such recently diverged species, a series of simulations was performed to assess the impact of several parameters of the evolutionary model on prediction of human-specific positive selection, including branch length and d(N)/d(S) ratio. Parameters were varied across a range of values observed in alignments of 175 transcription factor (TF) genes that were sequenced in 12 primate species. The ML method largely lacks the power to detect positive selection that has occurred since the most recent common ancestor between humans and chimpanzees. An alternative null model was developed on the basis of gene-specific evaluation of the empirical distribution of ML results, using simulated neutrally evolving sequences. This empirical test provides greater sensitivity to detect lineage-specific positive selection in the context of recent evolutionary divergence.
Collapse
|