1
|
Hatchett WJ, Brunetti M, Andersen K, Tandsæther MR, Lobmaier I, Lund-Iversen M, Lien-Dahl T, Micci F, Panagopoulos I. Genetic characterization of intramuscular myxomas. Pathol Oncol Res 2024; 30:1611553. [PMID: 38317844 PMCID: PMC10838995 DOI: 10.3389/pore.2024.1611553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024]
Abstract
Introduction: Intramuscular myxomas are benign tumors that are challenging to diagnose, especially on core needle biopsies. Acquired chromosomal aberrations and pathogenic variants in codon 201 or codon 227 in GNAS complex locus gene (GNAS) have been reported in these tumors. Here we present our genetic findings in a series of 22 intramuscular myxomas. Materials and methods: The tumors were investigated for the presence of acquired chromosomal aberrations using G-banding and karyotyping. Pathogenic variants in codon 201 or codon 227 of GNAS were assessed using direct cycle Sanger sequencing and Ion AmpliSeq Cancer Hotspot Panel v2 methodologies. Results: Eleven tumors carried chromosomal abnormalities. Six tumors had numerical, four had structural, and one had both numerical and structural chromosomal aberrations. Gains of chromosomes 7 and 8 were the most common abnormalities being found in five and four tumors respectively. Pathogenic variants in GNAS were detected in 19 myxomas (86%) with both methodologies. The detected pathogenic variants were p.R201H in nine cases (seven with abnormal and two with normal karyotypes), p.R201C in five cases, all with normal karyotypes, p.R201S in three cases (two with abnormal and one with normal karyotype), p.R201G in one case with a normal karyotype, and p.Q227E in one case with a normal karyotype. Conclusion: Firstly, our data indicate a possible association between chromosomal abnormalities and GNAS pathogenic variants in intramuscular myxomas. Secondly, the presence of the rare pathogenic variants R201S, p.R201G and p.Q227E in 26% (5 out of 19) of myxomas with GNAS pathogenic variants shows that methodologies designed to detect only the common "hotspot" of p.R201C and p.R201H will give false negative results. Finally, a comparison between Ion AmpliSeq Cancer Hotspot Panel v2 and direct cycle Sanger sequencing showed that direct cycle Sanger sequencing provides a quick, reliable, and relatively cheap method to detect GNAS pathogenic variants, matching even the most cutting-edge sequencing methods.
Collapse
Affiliation(s)
- William John Hatchett
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Marta Brunetti
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Kristin Andersen
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Maren Randi Tandsæther
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ingvild Lobmaier
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Marius Lund-Iversen
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Thomas Lien-Dahl
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Francesca Micci
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
2
|
Zouganelis GD, Tairis N. Low Throughput Direct Cycle Sequencing of Polymerase Chain Reaction (PCR) Products. Methods Mol Biol 2023; 2633:195-211. [PMID: 36853466 DOI: 10.1007/978-1-0716-3004-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Polymerase Chain Reaction (PCR) products have been traditionally characterized by cloning and cycle sequencing. However, when quick sequencing data are required, the cloning step may be omitted and PCR products can be sequenced directly. We describe here a sequencing protocol that involves the gold standard Big Dye chemistry in a low throughput format using one of the latest sequencing platforms the ABI Seqstudio. Our cycle sequencing protocol follows the following steps: (1) purification of the PCR product with a spin column-based kit; (2) quality & quantity assessment of the PCR product with the use of spectrophotometry & gel electrophoresis; (3) setup and amplification of the cycle sequencing reaction; (4) Capillary Electrophoresis; (5) Sequence Data Analysis.
Collapse
Affiliation(s)
- George D Zouganelis
- Human Sciences Research Centre, College of Science & Engineering, University of Derby, Derby, UK.
| | - Nikolaos Tairis
- Senior Forensic DNA Analyst & Technical Witness Expert (Greece), Augusta, GA, USA
| |
Collapse
|
3
|
Uddin SMK, Hossain MAM, Chowdhury ZZ, Johan MRB. Short targeting multiplex PCR assay to detect and discriminate beef, buffalo, chicken, duck, goat, sheep and pork DNA in food products. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:1273-1288. [PMID: 34077338 DOI: 10.1080/19440049.2021.1925748] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Food fraud is a global problem raising increased concerns during the past decades and food authenticity is now a burning issue. Beef, buffalo, chicken, duck, goat, sheep, and pork are heavily consumed meats bearing nutritional, economic and cultural/religious importance and are often found to be adulterated in raw and processed states. To authenticate these species, we developed and validated a highly specific multiplex (heptaplex) PCR assay targeting short length amplicons (73-263 bp) using seven pairs of species-specific primer sets targeting mitochondrial cytochrome b (cytb) and NADH dehydrogenase subunit 5 (ND5) genes. Specificity checking (in silico and in vitro) against 25 non-target species revealed no cross-species amplification. The developed multiplex assay was validated with various adulterated and heat-treated (boiled, microwaved and autoclaved) meatball products and were found to show high sensitivity and stability under all processing conditions. The assay was sensitive enough to detect 0.01-0.005 ng of DNA from raw meat and 0.5% (w/w) adulterated meat in mixed matrices. A market survey revealed mislabelling of 95% beef and 15% chicken products while pork products were found pure. Given some advantageous features including short sizes of amplicons, exceptional stability and superior sensitivity, the developed assay could be conveniently used for discriminatory detection of target species with a variety of raw meat as well as processed meat products undergoing extreme processing treatments.
Collapse
Affiliation(s)
- Syed Muhammad Kamal Uddin
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| | - M A Motalib Hossain
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| | - Zaira Zaman Chowdhury
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Rafie Bin Johan
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Molecular prevalence and phylogenetic analysis of human papillomavirus in normal cervical samples from northern Iran. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Hossain MAM, Uddin SMK, Sultana S, Bonny SQ, Khan MF, Chowdhury ZZ, Johan MR, Ali ME. Heptaplex Polymerase Chain Reaction Assay for the Simultaneous Detection of Beef, Buffalo, Chicken, Cat, Dog, Pork, and Fish in Raw and Heat-Treated Food Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8268-8278. [PMID: 31283221 DOI: 10.1021/acs.jafc.9b02518] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Species authentication of meat and fish products is crucial to safeguard public health, economic investment, and religious sanctity. We developed a heptaplex polymerase chain reaction assay targeting short amplicon length (73-198 bp) for the simultaneous detection and differentiation of cow, buffalo, chicken, cat, dog, pig, and fish species in raw and processed food using species-specific primers targeting mitochondrial cytb, ND5, and 16s rRNA genes. Assay validation of adulterated and various heat-treated meatball matrices showed excellent stability and sensitivity under all processing conditions. The detection limit was 0.01-0.001 ng of DNA under pure states and 0.5% meat in meatball products. Buffalo was detected in 86.7% (13 out of 15) of tested commercial beef products, while chicken, pork, and fish products were found to be pure. The developed assay was efficient enough to detect target species simultaneously, even in highly degraded and processed food products at reduced time.
Collapse
|
6
|
Allelic Dropout During Polymerase Chain Reaction due to G-Quadruplex Structures and DNA Methylation Is Widespread at Imprinted Human Loci. G3-GENES GENOMES GENETICS 2017; 7:1019-1025. [PMID: 28143949 PMCID: PMC5345703 DOI: 10.1534/g3.116.038687] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Loss of one allele during polymerase chain reaction (PCR) amplification of DNA, known as allelic dropout, can be caused by a variety of mechanisms. Allelic dropout during PCR may have profound implications for molecular diagnostic and research procedures that depend on PCR and assume biallelic amplification has occurred. Complete allelic dropout due to the combined effects of cytosine methylation and G-quadruplex formation was previously described for a differentially methylated region of the human imprinted gene, MEST. We now demonstrate that this parent-of-origin specific allelic dropout can potentially occur at several other genomic regions that display genomic imprinting and have propensity for G-quadruplex formation, including AIM1, BLCAP, DNMT1, PLAGL1, KCNQ1, and GRB10. These findings demonstrate that systematic allelic dropout during PCR is a general phenomenon for regions of the genome where differential allelic methylation and G-quadruplex motifs coincide, and suggest that great care must be taken to ensure biallelic amplification is occurring in such situations.
Collapse
|
7
|
Takei F, Nakatani K. The Chemistry of Polymerase Chain Reaction^|^mdash;Development of the PCR Method Using New Modified Primers^|^mdash;. J SYN ORG CHEM JPN 2014. [DOI: 10.5059/yukigoseikyokaishi.72.370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
|
9
|
Gabriel LAR, Traboulsi EI. Genetic diagnostic methods for inherited eye diseases. Middle East Afr J Ophthalmol 2011; 18:24-9. [PMID: 21572730 PMCID: PMC3085148 DOI: 10.4103/0974-9233.75881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Accurate molecular diagnosis of genetic eye diseases has proven to be of great importance because of the prognostic and therapeutic value of an accurate ascertainment of the underlying genetic mutation. Efforts continue in diagnostic laboratories to develop strategies that allow the discovery of responsible gene/mutations in the individual patient using the least number of assays and economizing on the expenses and time involved in the process. Once the ophthalmologist has made the best possible clinical diagnosis, blood samples are obtained for genetic testing. In this paper we will review the basic laboratory methods utilized to identify the chromosomal or mutational etiology of genetic diseases that affect the eye.
Collapse
Affiliation(s)
- Luis A R Gabriel
- Department of Pediatric Ophthalmology and Strabismus and the Center for Genetic Eye Diseases, Cole Eye Institute, Cleveland Clinic, Cleveland, USA
| | | |
Collapse
|
10
|
Polymerase Chain Reaction and Reverse Transcription-Polymerase Chain Reaction. MOLECULAR PATHOLOGY LIBRARY 2009. [DOI: 10.1007/978-0-387-89626-7_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
11
|
Allen TC, Cagle PT, Popper HH. Basic Concepts of Molecular Pathology. Arch Pathol Lab Med 2008; 132:1551-6. [DOI: 10.5858/2008-132-1551-bcomp] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2008] [Indexed: 11/06/2022]
Affiliation(s)
- Timothy Craig Allen
- From the Department of Pathology, The University of Texas Health Science Center at Tyler (Dr Allen); the Department of Pulmonary Pathology, The Methodist Hospital, Houston, Tex (Dr Cagle); and the Institute of Pathology, Medical University of Graz, Graz, Austria (Dr Popper)
| | - Philip T. Cagle
- From the Department of Pathology, The University of Texas Health Science Center at Tyler (Dr Allen); the Department of Pulmonary Pathology, The Methodist Hospital, Houston, Tex (Dr Cagle); and the Institute of Pathology, Medical University of Graz, Graz, Austria (Dr Popper)
| | - Helmut H. Popper
- From the Department of Pathology, The University of Texas Health Science Center at Tyler (Dr Allen); the Department of Pulmonary Pathology, The Methodist Hospital, Houston, Tex (Dr Cagle); and the Institute of Pathology, Medical University of Graz, Graz, Austria (Dr Popper)
| |
Collapse
|
12
|
Yager TD, Baron L, Batra R, Bouevitch A, Chan D, Chan K, Darasch S, Gilchrist R, Izmailov A, Lacroix JM, Marchelleta K, Renfrew J, Renfrew J, Rushlow D, Steinbach E, Ton C, Waterhouse P, Zaleski H, Dunn JM, Stevens J. High performance DNA sequencing, and the detection of mutations and polymorphisms, on the Clipper sequencer. Electrophoresis 1999; 20:1280-300. [PMID: 10380769 DOI: 10.1002/(sici)1522-2683(19990101)20:6<1280::aid-elps1280>3.0.co;2-#] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The Visible Genetics Clipper sequencer is a new platform for automated DNA sequencing which employs disposable MicroCel cassettes and 50 microm thick polyacrylamide gels. Two DNA ladders can be analyzed simultaneously in each of 16 lanes on a gel, after labeling with far-red absorbing dyes such as Cy5 and Cy5.5. This allows a simultaneous bidirectional sequencing of four templates. We have evaluated the Clipper sequencer, by cycle-sequencing of an M13 single-stranded DNA standard, and by coupled amplification and sequencing (CLIP) of reverse-transcribed human immunodeficiency virus (HIV-1) RNA standards and clinical patient samples. (i) Limitations of instrument. We have examined basic instrument parameters such as detector stability, background, digital sampling rate, and gain. With proper usage, the optical and electronic subsystems of the Clipper sequencer do not limit the data collection or sequence-determination processes. (ii) Limitations of gel performance. We have also examined the physics of DNA band separation on 50 microm thick MicroCel gels. We routinely obtain well-resolved sequence which can be base-called with 98.5% accuracy to position approximately 450 on an 11 cm gel, and to position approximately 900 on a 25 cm gel. Resolution on 5 and 11 cm gels ultimately is limited by a sharp decrease in spacing between adjacent bands, in the biased reptation separation regime. Fick's (thermal) diffusion appears to be of minor importance on 6 cm or 11 cm gels, but becomes an additional resolution-limiting factor on 25 cm gels. (iii) Limitations of enzymology. Template quality, primer nesting, choice of DNA polymerase, and choice between dye primers and dye terminators are key determinants of the ability to detect mutations and polymorphisms on the Clipper sequencer, as on other DNA sequencers. When CLIP is used with dye-labeled primers and a DNA polymerase of the F667Y, delta(5'--> 3' exo) class, we can routinely detect single-nucleotide mutations and polymorphisms over the 0.35-0.65 heterozygosity range. We present an example of detecting therapeutically relevant mutations in a clinical HIV-1 RNA isolate.
Collapse
Affiliation(s)
- T D Yager
- Visible Genetics, Toronto, ON, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ghimire SC, Egerton JR, Dhungyel OP, Joshi HD. Identification and characterisation of serogroup M among Nepalese isolates of Dichelobacter nodosus, the transmitting agent of footrot in small ruminants. Vet Microbiol 1998; 62:217-33. [PMID: 9791869 DOI: 10.1016/s0378-1135(98)00206-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
One thousand and sixty three isolates of Dichelobacter nodosus cultured between 1992 and 1996 from cases of footrot in sheep and goats of migratory flocks of Nepal were characterised by agglutination test using prototype antisera of the Australian classification system. Of those, sixty six isolates could not be classified into any of the nine serogroups (A-I). This study was therefore undertaken to characterise these isolates. It was established that they were agglutinated by antiserum against serotype M of an alternative classification system. The distinct antigenic character of these isolates was further confirmed by DNA sequence analysis of the gene for the fimbrial subunit protein of two of them. At a molecular level, these isolates were closer to the prototype of serogroup F, VCS 1017. However, when compared with VCS 1017, the number of amino acid substitutions (28) in the fimbrial protein of these isolates was similar to that expected between isolates of different serogroups. Because these isolates are antigenically similar to 'serotype' M, but meet all the criteria to be classified into an independent serogroup, it is proposed that these isolates together with isolates previously classified as serotype M be classified as 'serogroup M'.
Collapse
Affiliation(s)
- S C Ghimire
- Lumle Agricultural Research Centre, Pokhara, Nepal
| | | | | | | |
Collapse
|
14
|
Abstract
The analysis of molecular variation in parasites has important implications for studying gene function and organisation, taxonomy, phylogeny and population genetics. Polymerase chain reaction-based mutation scanning methods can have significant advantages over some currently used DNA approaches for the analysis of allelic and mutational sequence variation in parasites. The present report describes briefly the principles of some of these methods, examines some of their advantages and disadvantages, and indicates their potential for applications in parasitology.
Collapse
Affiliation(s)
- R B Gasser
- Department of Veterinary Science, University of Melbourne, Werribee, Victoria, Australia.
| |
Collapse
|
15
|
Abstract
Molecular variation is widespread in parasite populations, and its analysis has important implications for studying aspects relating to the function and organisation of genes, and the taxonomy, phylogeny and population genetics of parasites. This article reviews some PCR-based mutation scanning techniques that have advantages over currently used DNA methods for the analysis of genetic variation in parasites. The review is technical and describes briefly the principles of relevant techniques, examines some of their advantages and disadvantages and gives several examples for possible applications.
Collapse
Affiliation(s)
- R B Gasser
- Department of Veterinary Science, University of Melbourne, Werribee, Victoria, Australia.
| |
Collapse
|
16
|
Affiliation(s)
- M Ferrari
- I. R. C. C. S. H S. Raffaele, Department of Laboratory Medicine, Milan, Italy
| | | | | | | |
Collapse
|
17
|
Mackey LY, Winnepenninckx B, De Wachter R, Backeljau T, Emschermann P, Garey JR. 18S rRNA suggests that Entoprocta are protostomes, unrelated to Ectoprocta. J Mol Evol 1996; 42:552-9. [PMID: 8662007 DOI: 10.1007/bf02352285] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The Ento- and Ectoprocta are sometimes placed together in the Bryozoa, which have variously been regarded as proto- or deuterostomes. However, Entoprocta have also been allied to the pseudocoelomates, while Ectoprocta are often united with the Brachiopoda and Phoronida in the (super)phylum Lophophorata. Hence, the phylogenetic relationships of these taxa are still much debated. We determined complete 18S rRNA sequences of two entoprocts, an ectoproct, an inarticulate brachiopod, a phoronid, two annelids, and a platyhelminth. Phylogenetic analyses of these data show that (1) entoprocts and lophophorates have spiralian, protostomous affinities, (2) Ento- and Ectoprocta are not sister taxa, (3) phoronids and brachiopods form a monophyletic clade, and (4) neither Ectoprocta or Annelida appear to be monophyletic. Both deuterostomous and pseudocoelomate features may have arisen at least two times in evolutionary history. These results advocate a Spiralia-Radialia-based classification rather than one based on the Protostomia-Deuterostomia concept.
Collapse
Affiliation(s)
- L Y Mackey
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | | | | | | | | | | |
Collapse
|
18
|
Seto D, Weintraub BD. Rapid molecular diagnosis of mutations associated with generalized thyroid hormone resistance by PCR-coupled automated direct sequencing of genomic DNA: detection of two novel mutations. Hum Mutat 1996; 8:247-57. [PMID: 8889584 DOI: 10.1002/(sici)1098-1004(1996)8:3<247::aid-humu8>3.0.co;2-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Generalized thyroid hormone resistance (GTHR) is a syndrome characterized by tissue nonresponsiveness to thyroid hormones and by variable clinical phenotype manifestations. This syndrome has also been implicated as a predisposing factor in some cases of attention deficit-hyperactivity disorder (ADHD). GTHR results from single mutations in the gene encoding the thyroid hormone receptor. These mutations are clustered in two major sites surrounding the ligand-binding domain. Mutations in 10 previously described patients as well as in five new THR cases have been identified using PCR amplification of genomic DNA coupled with automated direct sequencing with commercially available "universal" fluorescent dye-labeled primers. This strategy allows for the accurate and automated base-calling of normal and mutated nucleotides at the same position in a heterozygote. The rapid molecular diagnostic protocol, from whole blood to DNA sequence data, takes approximately 15 hr, allowing for rapid, efficient, and unambiguous direct detection of the mutant alleles.
Collapse
Affiliation(s)
- D Seto
- Molecular and Cellular Endocrinology Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1758, USA
| | | |
Collapse
|
19
|
Affiliation(s)
- Z Ronai
- American Health Foundation, Molecular Carcinogenesis Program, Valhalla, NY 10595, USA
| | | |
Collapse
|
20
|
Abstract
The polymerase chain reaction (PCR) is a powerful core molecular biology technique, which when coupled to chain termination sequencing allows gene and DNA sequence information to be derived rapidly. A number of modifications to the basic PCR format have been developed in an attempt to increase amplification efficiency and the specificity of the reaction. We have applied the use of DNA-binding protein, gene 32 protein from bacteriophage T4 (T4gp32) to increase amplification efficiency with a number of diverse templates. In addition, we have found that using single-stranded DNA-binding protein (SSB) or recA protein in DNA sequencing reactions dramatically increases the resolution of sequencing runs. The use of DNA-binding proteins in amplification and sequencing may prove to be generally applicable in improving the yield and quality of a number of templates from various sources.
Collapse
Affiliation(s)
- R Rapley
- Div. of Biological Sciences, School of Natural and Environmental Sciences, Coventry University, UK
| |
Collapse
|
21
|
Affiliation(s)
- A Burt
- Department of Plant Biology, University of California, Berkeley 94720
| | | | | | | |
Collapse
|
22
|
Khorana S, Gagel RF, Cote GJ. Direct sequencing of PCR products in agarose gel slices. Nucleic Acids Res 1994; 22:3425-6. [PMID: 7915835 PMCID: PMC523740 DOI: 10.1093/nar/22.16.3425] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- S Khorana
- Section of Endocrinology, University of Texas M.D. Anderson Cancer Center, Houston 77030
| | | | | |
Collapse
|
23
|
Abstract
The task of identifying mutations in nucleic acid sequences is a vital component of research in mammalian genetics. With the advent of the polymerase chain reaction, several useful mutation detection techniques have evolved in recent years. The different methods have complementing strengths and a suitable procedure for virtually any experimental situation is now available.
Collapse
Affiliation(s)
- M Grompe
- Department of Molecular and Medical Genetics, Oregon Health Sciences University, Portland 97201
| |
Collapse
|
24
|
Frenkel K, Klein CB. Methods used for analyses of "environmentally" damaged nucleic acids. JOURNAL OF CHROMATOGRAPHY 1993; 618:289-314. [PMID: 8227261 DOI: 10.1016/0378-4347(93)80039-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In this review, we present various techniques, currently applied in many laboratories, which are useful in the detection of "environmentally"-induced damage to DNA. These techniques include: (a) chromatographic methods, which allow determination of chemical changes within DNA, be they formation of adducts with or oxidation of bases in DNA; (b) electrophoretic methods, which facilitate finding the site(s) in DNA where that chemical modification occurred; and (c) immunological assays, which help to detect DNA damage using externally produced antibodies that recognize the specific chemical changes in DNA or its fragments, as well as by detection of autoantibodies that develop in response to environmental exposures of animals and humans.
Collapse
Affiliation(s)
- K Frenkel
- Department of Environmental Medicine, New York University Medical Center, NY 10016-6451
| | | |
Collapse
|
25
|
Warburton PE, Willard HF. PCR amplification of tandemly repeated DNA: analysis of intra- and interchromosomal sequence variation and homologous unequal crossing-over in human alpha satellite DNA. Nucleic Acids Res 1992; 20:6033-42. [PMID: 1461735 PMCID: PMC334470 DOI: 10.1093/nar/20.22.6033] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Tandemly repeated DNA can comprise several percent of total genomic DNA in complex organisms and, in some instances, may play a role in chromosome structure or function. Alpha satellite DNA is the major family of tandemly repeated DNA found at the centromeres of all human and primate chromosomes. Each centromere is characterized by a large contiguous array of up to several thousand kb which can contain several thousand highly homogeneous repeat units. By using a novel application of the polymerase chain reaction (repPCR), we are able to amplify a representative sampling of multiple repetitive units simultaneously, allowing rapid analysis of chromosomal subsets. Direct sequence analysis of repPCR amplified alpha satellite from chromosomes 17 and X reveals positions of sequence heterogeneity as two bands at a single nucleotide position on a sequencing ladder. The use of TdT in the sequencing reactions greatly reduces the background associated with polymerase pauses and stops, allowing visualization of heterogeneous bases found in as little as 10% of the repeat units. Confirmation of these heterogeneous positions was obtained by comparison to the sequence of multiple individual cloned copies obtained both by PCR and non-PCR based methods. PCR amplification of alpha satellite can also reveal multiple repeat units which differ in size. Analysis of repPCR products from chromosome 17 and X allows rapid determination of the molecular basis of these repeat unit length variants, which appear to be a result of unequal crossing-over. The application of repPCR to the study of tandemly repeated DNA should allow in-depth analysis of intra- and interchromosomal variation and unequal crossing-over, thus providing insight into the biology and genetics of these large families of DNA.
Collapse
Affiliation(s)
- P E Warburton
- Department of Genetics, Stanford University, CA 94305
| | | |
Collapse
|
26
|
Hattori M, Yoshioka K, Sakaki Y. High-sensitive fluorescent DNA sequencing and its application for detection and mass-screening of point mutations. Electrophoresis 1992; 13:560-5. [PMID: 1451693 DOI: 10.1002/elps.11501301114] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We describe a rapid and sensitive DNA sequencing method for an automated fluorescent DNA sequencer (AFDS) and its application for detection of point mutations. The method is based on an improved cycle sequencing procedure in which only 10-50 fmol of template DNA is required. Furthermore, it is able to use crude DNA preparation as a template as well as the purified one. Thus, the improved method provided a simplified procedure for sequencing of various types of DNA, including cosmid DNA, in which purification steps were unnecessary. We also developed a novel system for detection of point mutations using AFDS. A set of four lanes is used for the parallel analysis of single-base profiles of four different samples, instead of for the four-base profile of a sample. The AFDS exhibits the base profiles of the samples with four different colors in the analyzed data, which enables us to identify a mutation as an additional peak with a color specific for the lane. The feasibility of our system was tested by analyzing polymerase chain reaction (PCR)-amplified genomic DNAs from four individuals including a carrier of a mutation of C to T. The mutation was clearly identified as an additional "T" peak of a color specific for the carrier. The mutation was also detectable even if 16 individuals including the carrier were simultaneously analyzed on a set of four lanes (four individual samples for each lane). Thus, the novel system is useful for simultaneous detection of mutations in a large number of individual samples.
Collapse
Affiliation(s)
- M Hattori
- Laboratory of Molecular Medicine, University of Tokyo, Japan
| | | | | |
Collapse
|