1
|
Han Y, Liu J, Zhang C, Sun M, Li X, Liu H, Li S, Zhu Y, Li R, Luo X, Zhao Y, Wu J. Relationship between the CUBN and the MIA3 gene copy number variation and growth traits in different cattle breeds. Anim Biotechnol 2025; 36:2450355. [PMID: 39873481 DOI: 10.1080/10495398.2025.2450355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/02/2025] [Indexed: 01/30/2025]
Abstract
Copy number variations (CNV) are important genetic variations. The endogenous factors cobalamin receptor (CUBN) and MIA SH3 domain ER-derived factor 3 (MIA3) are associated with bone/muscle development and intramuscular fat deposition. There have been no reports on the effects of CUBN and MIA3 CNVs on growth traits of Chinese cattle. This study aimed to determine the correlation between the CUBN and MIA3 CNVs and growth traits in Chinese cattle. qRT-PCR was used to detect the distribution of CUBN and MIA3 CNV and the expression levels of their mRNA, and correlation analysis was conducted between CNV and growth traits. The CUBN was differentially expressed in different breeds of cattle, and CUBN CNV correlated significantly with body height, hip height, body slanting length, and hip width of Grassland Red cattle (CYH); eye muscle area of Yanbian cattle (YB) and Yan Yellow cattle (YH). MIA3 showed no CNV in CYH and YB cattle, and only one deletion type occurred in YH cattle. CUBN and MIA3 mRNA have different expression patterns in different cattle breeds and tissues. In conclusion, CUBN CNV is correlated significantly with growth traits in Chinese cattle and is a novel molecular marker that could be exploited in cattle breeding.
Collapse
Affiliation(s)
- Yue Han
- Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, China
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Changchun, Jilin Province, China
- Jilin Province Beef Cattle Breeding Innovation Center, Changchun, Jilin Province, China
- Jilin Province Beef Cattle Performance Testing Station, Changchun, Jilin Province, China
- Jilin Province Beef Cattle Breeding and Breeding Technology Innovation Center, Changchun, Jilin Province, China
- Jilin Province International Joint Research Center for Meat and Grass Eating Livestock Production Technology, Changchun, Jilin Province, China
| | - Jiwei Liu
- Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, China
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Changchun, Jilin Province, China
- Jilin Province Beef Cattle Breeding Innovation Center, Changchun, Jilin Province, China
- Jilin Province Beef Cattle Performance Testing Station, Changchun, Jilin Province, China
- Jilin Province Beef Cattle Breeding and Breeding Technology Innovation Center, Changchun, Jilin Province, China
- Jilin Province International Joint Research Center for Meat and Grass Eating Livestock Production Technology, Changchun, Jilin Province, China
| | - Congcong Zhang
- Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, China
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Changchun, Jilin Province, China
- Jilin Province Beef Cattle Breeding Innovation Center, Changchun, Jilin Province, China
- Jilin Province Beef Cattle Performance Testing Station, Changchun, Jilin Province, China
- Jilin Province Beef Cattle Breeding and Breeding Technology Innovation Center, Changchun, Jilin Province, China
- Jilin Province International Joint Research Center for Meat and Grass Eating Livestock Production Technology, Changchun, Jilin Province, China
| | - Ming Sun
- Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, China
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Changchun, Jilin Province, China
- Jilin Province Beef Cattle Breeding Innovation Center, Changchun, Jilin Province, China
- Jilin Province Beef Cattle Performance Testing Station, Changchun, Jilin Province, China
- Jilin Province Beef Cattle Breeding and Breeding Technology Innovation Center, Changchun, Jilin Province, China
- Jilin Province International Joint Research Center for Meat and Grass Eating Livestock Production Technology, Changchun, Jilin Province, China
| | - Xuanyu Li
- Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, China
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Changchun, Jilin Province, China
- Jilin Province Beef Cattle Breeding Innovation Center, Changchun, Jilin Province, China
- Jilin Province Beef Cattle Performance Testing Station, Changchun, Jilin Province, China
- Jilin Province Beef Cattle Breeding and Breeding Technology Innovation Center, Changchun, Jilin Province, China
- Jilin Province International Joint Research Center for Meat and Grass Eating Livestock Production Technology, Changchun, Jilin Province, China
| | - Hongliang Liu
- Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, China
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Changchun, Jilin Province, China
- Jilin Province Beef Cattle Breeding Innovation Center, Changchun, Jilin Province, China
- Jilin Province Beef Cattle Performance Testing Station, Changchun, Jilin Province, China
- Jilin Province Beef Cattle Breeding and Breeding Technology Innovation Center, Changchun, Jilin Province, China
- Jilin Province International Joint Research Center for Meat and Grass Eating Livestock Production Technology, Changchun, Jilin Province, China
| | - Shengnan Li
- Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, China
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Changchun, Jilin Province, China
- Jilin Province Beef Cattle Breeding Innovation Center, Changchun, Jilin Province, China
- Jilin Province Beef Cattle Performance Testing Station, Changchun, Jilin Province, China
- Jilin Province Beef Cattle Breeding and Breeding Technology Innovation Center, Changchun, Jilin Province, China
- Jilin Province International Joint Research Center for Meat and Grass Eating Livestock Production Technology, Changchun, Jilin Province, China
| | - Yongchao Zhu
- Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, China
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Changchun, Jilin Province, China
- Jilin Province Beef Cattle Breeding Innovation Center, Changchun, Jilin Province, China
- Jilin Province Beef Cattle Performance Testing Station, Changchun, Jilin Province, China
- Jilin Province Beef Cattle Breeding and Breeding Technology Innovation Center, Changchun, Jilin Province, China
- Jilin Province International Joint Research Center for Meat and Grass Eating Livestock Production Technology, Changchun, Jilin Province, China
| | - Ruidong Li
- Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, China
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Changchun, Jilin Province, China
- Jilin Province Beef Cattle Breeding Innovation Center, Changchun, Jilin Province, China
- Jilin Province Beef Cattle Performance Testing Station, Changchun, Jilin Province, China
- Jilin Province Beef Cattle Breeding and Breeding Technology Innovation Center, Changchun, Jilin Province, China
- Jilin Province International Joint Research Center for Meat and Grass Eating Livestock Production Technology, Changchun, Jilin Province, China
| | - Xiaotong Luo
- Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, China
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Changchun, Jilin Province, China
- Jilin Province Beef Cattle Breeding Innovation Center, Changchun, Jilin Province, China
- Jilin Province Beef Cattle Performance Testing Station, Changchun, Jilin Province, China
- Jilin Province Beef Cattle Breeding and Breeding Technology Innovation Center, Changchun, Jilin Province, China
- Jilin Province International Joint Research Center for Meat and Grass Eating Livestock Production Technology, Changchun, Jilin Province, China
| | - Yumin Zhao
- Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, China
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Changchun, Jilin Province, China
- Jilin Province Beef Cattle Breeding Innovation Center, Changchun, Jilin Province, China
- Jilin Province Beef Cattle Performance Testing Station, Changchun, Jilin Province, China
- Jilin Province Beef Cattle Breeding and Breeding Technology Innovation Center, Changchun, Jilin Province, China
- Jilin Province International Joint Research Center for Meat and Grass Eating Livestock Production Technology, Changchun, Jilin Province, China
| | - Jian Wu
- Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, China
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Changchun, Jilin Province, China
- Jilin Province Beef Cattle Breeding Innovation Center, Changchun, Jilin Province, China
- Jilin Province Beef Cattle Performance Testing Station, Changchun, Jilin Province, China
- Jilin Province Beef Cattle Breeding and Breeding Technology Innovation Center, Changchun, Jilin Province, China
- Jilin Province International Joint Research Center for Meat and Grass Eating Livestock Production Technology, Changchun, Jilin Province, China
| |
Collapse
|
2
|
Gao Y, Yang L, Kuhn K, Li W, Zanton G, Bowman M, Zhao P, Zhou Y, Fang L, Cole JB, Rosen BD, Ma L, Li C, Baldwin RL, Van Tassell CP, Zhang Z, Smith TPL, Liu GE. Long read and preliminary pangenome analyses reveal breed-specific structural variations and novel sequences in Holstein and Jersey cattle. J Adv Res 2025:S2090-1232(25)00258-9. [PMID: 40258473 DOI: 10.1016/j.jare.2025.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 04/06/2025] [Accepted: 04/10/2025] [Indexed: 04/23/2025] Open
Abstract
INTRODUCTION Most SV studies in livestock rely on short-read sequencing, posing challenges in accurately characterizing large genomic variants due to their limited read length. OBJECTIVES Our goal is to reveal structural variation and novel sequences specific to Holstein and Jersey cattle breeds using long-read and pan-genome analyses. METHODS We sequenced 20 Holsteins and 8 Jersey cattle using PacBio HiFi to 20×, and integrated five read-based and one assembly-based SV caller to determine SVs. RESULTS We assembled the 28 genomes averaging 3.25 Gb with a contig N50 of 69.36 Mb and using the ARS-UCD1.2 reference, we acquired Holstein/Jersey SV catalogs with 74,068/54,689 events spanning 202/135 Mb (7.43 %/4.97 % of the genome). SVs were enriched in less conserved, non-coding, and non-regulatory regions. Comparing Holsteins with differing feed efficiency (FE), SVs unique to high FE were linked to energy metabolism and olfactory receptors, while those specific to low FE were associated with material transport. We constructed Holstein/Jersey pangenome graphs with 148,598/105,875 nodes and 208,891/147,990 edges, representing 47,028/37,137 biallelic and multi-allelic events, and 63.75/42.34 Mb of novel sequence. We observed SV count saturation with 20 Holsteins, while adding Jerseys significantly increased the SV count, highlighting breed-specific SV events. CONCLUSION Our long-read data and SV catalogs are valuable resources, revealing that the cattle genome is more complex than previously thought.
Collapse
Affiliation(s)
- Yahui Gao
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA.
| | - Liu Yang
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Kristen Kuhn
- USDA, ARS, U.S. Meat Animal Research Center (USMARC), Clay Center, NE, USA.
| | - Wenli Li
- US Dairy Forage Research Center, USDA-ARS, Madison, WI, USA.
| | - Geoffrey Zanton
- US Dairy Forage Research Center, USDA-ARS, Madison, WI, USA.
| | - Mary Bowman
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA.
| | - Pengju Zhao
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, China
| | - Yang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lingzhao Fang
- Quantitative Genetics and Genomics (QGG), Aarhus University, Aarhus, Denmark.
| | - John B Cole
- Council on Dairy Cattle Breeding, 4201 Northview Dr, Bowie, MD 20716, USA; Department of Animal Sciences, Donald Henry Barron Reproductive and Perinatal Biology Research Program, and the Genetics Institute, University of Florida, Gainesville, FL 32611-0910, USA; Department of Animal Science, North Carolina State University, Raleigh, NC 27695-7621, USA.
| | - Benjamin D Rosen
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA.
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA.
| | - Congjun Li
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA.
| | - Ransom L Baldwin
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA.
| | - Curtis P Van Tassell
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA.
| | - Zhe Zhang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Timothy P L Smith
- USDA, ARS, U.S. Meat Animal Research Center (USMARC), Clay Center, NE, USA.
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA.
| |
Collapse
|
3
|
Sukhija N, Kanaka KK, Ganguly I, Dixit S, Singh S, Goli RC, Rathi P, Nandini PB, Koloi S. Cataloging copy number variation regions and allied diversity in goat breeds spanning pan India. Mamm Genome 2025:10.1007/s00335-025-10122-2. [PMID: 40175574 DOI: 10.1007/s00335-025-10122-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 03/07/2025] [Indexed: 04/04/2025]
Abstract
Huge genetic diversity is evident among the diverse goat breeds in terms of production, reproduction, adaptability, growth, disease resistance and thermo-tolerance. This diversity is an outcome of both natural and artificial selection acting on the caprine genome over the years. A fine characterization of whole genome variation is now possible by employing Next Generation Sequencing (NGS) technologies. To explore underlying genetics, genome-wide analysis of genetic markers is the best resolution. The study strived to capture variation in terms of CNV/CNVRs among 11 Indian goat breeds. In this study, the first ever resequencing-based CNV/CNVR distribution of Indigenous goat breeds was delineated, providing a sizable addition to the prior caprine CNVRs reported. Different diversity metrics were analyzed using identified CNVR. Principal component analysis (PCA) showed separate clustering of Kanniadu (KAN) and Jharkhand Black (JB) from other breeds under the study, indicating their unique genetic profile as the former breeds were sampled from institutional farms. The admixture analysis and introgression revealed by f3 statistics suggested distinct genetic structuring of JB, KAN and TEL(Tellicherry) as compared to the rest of the studied populations. Apart from this, we also identified 32 selection signatures through VST (Variance-stabilizing transformation) method and key genes such as ZBTB7C, BHLHE22, AGT were found elucidating the genetic architecture of hot and cold adaptation in Indian goats. Information generated hereby in the form of 32,711 autosomal CNVRs and the custom scripts ( https://github.com/kkokay07/Climate-Variables-Analysis.git , https://github.com/chau-mau/SelectCNVR.git and https://github.com/chau-mau/CNVrecaller.git ) will be of relevance in further studies on copy number based genetics.
Collapse
Affiliation(s)
- Nidhi Sukhija
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
- ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - K K Kanaka
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
- ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Indrajit Ganguly
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India.
| | - Satpal Dixit
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
| | - Sanjeev Singh
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
| | - Rangasai Chandra Goli
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
- ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Pallavi Rathi
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
- ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - P B Nandini
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
- ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Subrata Koloi
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
- ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| |
Collapse
|
4
|
Wang Z, Pan D, Xie X, Zhong Z, Wang F, Xiao Q. Genome-wide detection of runs of homozygosity in Ding'an pigs revealed candidate genes relating to meat quality traits. BMC Genomics 2025; 26:316. [PMID: 40165050 PMCID: PMC11956453 DOI: 10.1186/s12864-025-11501-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/19/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Ding'an (DA) pig, a native Chinese breed, is renowned for its excellent meat quality, disease resistance, high reproductive performance, and adaptability. Its meat quality traits hold significant economic value. However, its conservation population has been declining due to the impact of commercialized breeds and African swine fever, which is not conducive to its development and utilization. RESULTS This study utilized whole-genome resequencing data from 15 DA pigs to reveal their genetic characteristics and current resource status. We analyzed the length, number, and distribution patterns of Runs of Homozygosity (ROH) in DA pigs, as well as high-frequency ROH regions. The results identified 23,208,098 single nucleotide polymorphisms (SNPs), 4,497,242 insertion and deletion (InDels), 13,622 copy number variation (CNVs), and 399,934 structure variation (SVs). Further analysis revealed relatively high genetic diversity and low inbreeding levels in DA pigs. Through functional gene enrichment analysis of high-frequency ROH regions, we identified multiple candidate genes associated with specific traits in DA pigs, including meat quality (ANKRD1, CPNE5, MYOM1), fat deposition (OBSCN, MAPK4, PNPLA1, PACSIN1, GRM4), and skeletal muscle development (LRPPRC, WNT9A). CONCLUSIONS This study conducted whole-genome sequencing and ROH analysis on DA pigs, revealing high genetic diversity and low inbreeding levels within the population. Through functional gene enrichment analysis of high-frequency ROH regions, we identified multiple candidate genes associated with meat quality, fat deposition, and skeletal muscle development. These findings not only enhance our understanding of the genetic mechanisms underlying the unique traits of DA pigs but also provide valuable insights for practical applications. Specifically, the identified candidate genes and genomic regions can guide conservation efforts to maintain genetic diversity and mitigate inbreeding risks. Meanwhile, these genetic insights can be integrated into breeding programs to improve meat quality and other economically important traits, thereby supporting the sustainable development and utilization of DA pigs.
Collapse
Affiliation(s)
- Ziyi Wang
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Deyou Pan
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Xinfeng Xie
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Ziqi Zhong
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Feng Wang
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Qian Xiao
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China.
| |
Collapse
|
5
|
Xu X, Jian Y, Huang L, Luo W, Wu B, Feng S, Zhou C, Zhang L. Characterization of avian β-defensin genes in Galliformes reveals widespread evolutionary diversification and distinct evolutionary relationships with infection risk. BMC Genomics 2025; 26:211. [PMID: 40033205 DOI: 10.1186/s12864-025-11390-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/20/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Avian β-defensins (AvBDs) represent a key family of antimicrobial host defense peptides in birds. Accumulating evidence suggests that the evolutionary trajectory of β-defensin genes is specific to the gene, timescale, and species involved, implying that species-specific ecological and life-history differences drive divergent selective pressures on these genes. However, their evolutionary dynamics, particularly the interactions with ecological factors and life-history traits, remain insufficiently explored. RESULTS Through a comprehensive survey of 25 species spanning all major clades of Galliformes, 354 AvBD genes were identified. Comparative sequence analysis, genomic organization, and phylogenetic studies collectively reveal significant evolutionary diversification characterized by gene duplication, pseudogenization, and gene loss across these species. Notably, chicken AvBD3 exhibits significant differences in its coding regions, while AvBD6 and AvBD7 appear to have copy number variations, with species-specific paralogs of AvBD6 being especially prominent. Moreover, positive selection was more frequently observed in recently diverged gene lineages compared to ancestral ones. Using 70 samples from eight galliform species, the study further identified the prevalence of species-specific amino acid alleles. Phylogenetic comparative analysis demonstrated that the evolution of nine AvBD genes (AvBD2, -4, -5, -8, -9, -10, -11, -12, and -14) is significantly associated with specific ecological factors and life-history characteristics. Additionally, the evolutionary rates of these genes showed distinct relationship with inferred infection risk, likely reflecting the multifunctionality of β-defensins and potential trade-offs between immune defense and other biological functions. CONCLUSIONS This cross-species identification and systematic evolutionary analysis of AvBDs in Galliformes deepen our understanding of the co-evolution of host defense peptides, offering valuable insights into their natural biology and evolution, and paving the way for future applications as alternatives to traditional antibiotics.
Collapse
Affiliation(s)
- Xiaoqin Xu
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong, 637000, P. R. China
- Sichuan Wildlife Rehabilitation and Breeding Research Center, China West Normal University, Nanchong, 637009, P. R. China
- Institute of Ecology, China West Normal University, Nanchong, 637009, P. R. China
| | - Yi Jian
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong, 637000, P. R. China
- Sichuan Wildlife Rehabilitation and Breeding Research Center, China West Normal University, Nanchong, 637009, P. R. China
- College of Life Science, China West Normal University, Nanchong, 637000, P. R. China
| | - Lijing Huang
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong, 637000, P. R. China
- Sichuan Wildlife Rehabilitation and Breeding Research Center, China West Normal University, Nanchong, 637009, P. R. China
- College of Life Science, China West Normal University, Nanchong, 637000, P. R. China
| | - Wei Luo
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong, 637000, P. R. China
- Sichuan Wildlife Rehabilitation and Breeding Research Center, China West Normal University, Nanchong, 637009, P. R. China
- College of Life Science, China West Normal University, Nanchong, 637000, P. R. China
| | - Bangyuan Wu
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong, 637000, P. R. China
- Sichuan Wildlife Rehabilitation and Breeding Research Center, China West Normal University, Nanchong, 637009, P. R. China
- College of Life Science, China West Normal University, Nanchong, 637000, P. R. China
| | - Shaohua Feng
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong, 637000, P. R. China
- Sichuan Wildlife Rehabilitation and Breeding Research Center, China West Normal University, Nanchong, 637009, P. R. China
- College of Life Science, China West Normal University, Nanchong, 637000, P. R. China
| | - Caiquan Zhou
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong, 637000, P. R. China
- Sichuan Wildlife Rehabilitation and Breeding Research Center, China West Normal University, Nanchong, 637009, P. R. China
- Institute of Ecology, China West Normal University, Nanchong, 637009, P. R. China
| | - Long Zhang
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong, 637000, P. R. China.
- Sichuan Wildlife Rehabilitation and Breeding Research Center, China West Normal University, Nanchong, 637009, P. R. China.
- Institute of Ecology, China West Normal University, Nanchong, 637009, P. R. China.
| |
Collapse
|
6
|
Vani S, Balasubramanyam D, Tirumurugaan KG, Gopinathan A, Karthickeyan SMK. Genome-wide copy number variation regions in indigenous (Bos indicus) cattle breeds of Tamil Nadu, India. Anim Biosci 2025; 38:395-407. [PMID: 39210813 PMCID: PMC11917407 DOI: 10.5713/ab.23.0525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/04/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE Identification of large scale structural polymorphisms (copy number variations [CNVs]) of more than 50 bp between the individuals of a species would help in knowing genetic diversity, phenotypic variability, adaptability to tropical environment and disease resistance. METHODS Read depth-based method implemented in CNVnator was used for calling copy number variant regions on sequenced data obtained from whole-genome sequencing from 15 pooled samples belonging to five draught cattle breeds of Tamil Nadu. RESULTS A total of 11,605 CNV regions (CNVRs) were observed covering a genome size of 18.63 percent. Among these, 11,459 were restricted to autosomes, consisting of 11,013 deletions, 353 duplications and 93 complex events. These CNVRs were annotated to 4,989 candidate genes. A total of 8,291 numbers of CNVRs were shared among the five cattle breeds as also supported by principal component analysis and STRUCTURE analyses and 1,172 CNVRs were breed-specific. Four out of five selected breed-specific CNVRs were validated using real-time polymerase chain reaction. Genes with CNVRs are related to milk production (BTN1A1, ABCA1, and LAP3), disease resistance (TLR4 and DNAH8), adaptability (SOD1, CAST, and SMARCAL1), growth (EGFR, NKAIN3), reproduction (BRWD1 and PDE6D), meat and carcass traits (MAP3K5 and NCAM1) and exterior (ATRN and MITF) traits. Gene enrichment analysis based on the gene list retrieved from the CNVRs disclosed over-represented terms (p<0.01) associated with milk fat production. NETWORK analysis had identified 13 putative candidate genes involved in milk fat percentage, milk fat yield, lactation persistency, milk yield, heat tolerance, calving ease, growth and conformation traits. CONCLUSION The genome-wide CNVRs identified in the present study produced genomewide partial CNV map in indigenous cattle breeds of Tamil Nadu.
Collapse
Affiliation(s)
- S Vani
- Department of Animal Genetics and Breeding, Tamil Nadu Veterinary and Animal Sciences University, Chennai 600 051, India
- Current address: Department of Animal Genetics and Breeding, College of Veterinary Science, Proddatur, Sri Venkateswara Veterinary University, Andhra Pradesh 516360, India
| | - D Balasubramanyam
- Department of Animal Genetics and Breeding, Tamil Nadu Veterinary and Animal Sciences University, Chennai 600 051, India
| | - K G Tirumurugaan
- Department of Animal Biotechnology, Tamil Nadu Veterinary and Animal Sciences University, Chennai 600 051, India
| | - A Gopinathan
- Department of Animal Genetics and Breeding, Tamil Nadu Veterinary and Animal Sciences University, Chennai 600 051, India
| | - S M K Karthickeyan
- Department of Animal Genetics and Breeding, Tamil Nadu Veterinary and Animal Sciences University, Chennai 600 051, India
| |
Collapse
|
7
|
Chen Y, Khan MZ, Wang X, Liang H, Ren W, Kou X, Liu X, Chen W, Peng Y, Wang C. Structural variations in livestock genomes and their associations with phenotypic traits: a review. Front Vet Sci 2024; 11:1416220. [PMID: 39600883 PMCID: PMC11588642 DOI: 10.3389/fvets.2024.1416220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Genomic structural variation (SV) refers to differences in gene sequences between individuals on a genomic scale. It is widely distributed in the genome, primarily in the form of insertions, deletions, duplications, inversions, and translocations. Due to its characterization by long segments and large coverage, SVs significantly impact the genetic characteristics and production performance of livestock, playing a crucial role in studying breed diversity, biological evolution, and disease correlation. Research on SVs contributes to an enhanced understanding of chromosome function and genetic characteristics and is important for understanding hereditary diseases mechanisms. In this article, we review the concept, classification, main formation mechanisms, detection methods, and advancement of research on SVs in the genomes of cattle, buffalo, equine, sheep, and goats, aiming to reveal the genetic basis of differences in phenotypic traits and adaptive genetic mechanisms through genomic research, which will provide a theoretical basis for better understanding and utilizing the genetic resources of herbivorous livestock.
Collapse
Affiliation(s)
| | - Muhammad Zahoor Khan
- College of Agronomy and Agricultural Engineering Liaocheng University, Liaocheng, China
| | | | | | | | | | | | | | - Yongdong Peng
- College of Agronomy and Agricultural Engineering Liaocheng University, Liaocheng, China
| | - Changfa Wang
- College of Agronomy and Agricultural Engineering Liaocheng University, Liaocheng, China
| |
Collapse
|
8
|
Cai H, Li X, Niu X, Li J, Lan X, Lei C, Huang Y, Xu H, Li M, Chen H. Copy number variations within fibroblast growth factor 13 gene influence growth traits and alternative splicing in cattle. Anim Biotechnol 2024; 35:2314104. [PMID: 38426908 DOI: 10.1080/10495398.2024.2314104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Previous researches revealed a copy number variation (CNV) region in the bovine fibroblast growth factor 13 (FGF13) gene. However, its effects remain unknown. This study detected the various copy number types in seven Chinese cattle breeds and analysed their population genetic characteristics and effects on growth traits and transcription levels. Copy number Loss was more frequent in Caoyuan Red cattle and Xianan cattle than in the other breeds. Association analysis between CNV and growth traits of Qinchuan indicated that the CNV was significantly related to chest depth, hip width and hucklebone width (P < 0.05). Additionally, the growth traits of individuals with copy number Loss were significantly inferior to those with copy number Gain or Median (P < 0.05). Besides, we found two splicing isoforms, AS1 and AS2, in FGF13 gene, which resulted from alternative 5' splicing sites of intron 1. These isoforms showed varied expression levels in various tissues. Moreover, CNV was significantly and negatively associated with the mRNA expression of AS1 (r = -0.525, P < 0.05). The CNVs in bovine FGF13 gene negatively regulated growth traits and gene transcription. These observations provide new insights into bovine FGF13 gene, delivering potentially useful information for future Chinese cattle breeding programs.
Collapse
Affiliation(s)
- Hanfang Cai
- College of Animal Science and Technology, Henan Agriculture University, Zhengzhou, China
| | - Xin Li
- College of Animal Science and Technology, Henan Agriculture University, Zhengzhou, China
| | - Xinran Niu
- College of Animal Science and Technology, Henan Agriculture University, Zhengzhou, China
| | - Jing Li
- Animal Health Supervision Institute of Biyang, Biyang, Henan, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yongzhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Huifen Xu
- College of Animal Science and Technology, Henan Agriculture University, Zhengzhou, China
| | - Ming Li
- College of Animal Science and Technology, Henan Agriculture University, Zhengzhou, China
| | - Hong Chen
- College of Animal Science, Xinjiang Agriculture University, Urumqi, China
| |
Collapse
|
9
|
Ben-Jemaa S, Boussaha M, Mandonnet N, Bardou P, Naves M. Uncovering structural variants in Creole cattle from Guadeloupe and their impact on environmental adaptation through whole genome sequencing. PLoS One 2024; 19:e0309411. [PMID: 39186744 PMCID: PMC11346954 DOI: 10.1371/journal.pone.0309411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
Structural variants play an important role in evolutionary processes. Besides, they constitute a large source of inter individual genetic variation that might represent a major factor in the aetiology of complex, multifactorial traits. Their importance in adaptation is becoming increasingly evident in literature. Yet, the characterization of the genomic landscape of structural variants in local breeds remains scarce to date. Herein, we investigate patterns and gene annotation of structural variants in the Creole cattle from Guadeloupe breed using whole genome sequences from 23 bulls representative of the population. In total, we detected 32821 ascertained SV defining 15258 regions, representing ~ 17% of the Creole cattle genome. Among these, 6639 regions have not been previously reported in the Database of Genomic Variants archive. Average number of structural variants detected per individual in the studied population is in the same order of magnitude of that observed in indicine populations and higher than that reported in taurine breeds. We observe an important within-individual variability where approximately half of the detected structural variants have low frequency (MAF < 0.25). Most of the detected structural variants (55%) occurred in intergenic regions. Genic structural variants overlapped with 7793 genes and the predicted effect of most of them is ranked as "modifier". Among the structural variants that were predicted to have a high functional impact on the protein, a 5.5 Kb in length, highly frequent deletion on chromosome 2, affects ALPI, a gene associated with the interaction between gut microbiota and host immune system. The 6639 newly identified structural variants regions include three deletions and three duplications shared by more than 80% of individuals that are significantly enriched for genes related to tRNA threonylcarbamoyladenosine metabolic process, important for temperature adaptation in thermophilic organisms, therefore suggesting a potential role in the thermotolerance of Creole cattle from Guadeloupe cattle to tropical climate. Overall, highly frequent structural variants that are specific to the Creole cattle population encompass olfactory receptor and immunity genes as well as genes involved in muscle tone, muscle development and contraction. Beyond mapping and characterizing structural variants in the Creole cattle from Guadeloupe breed, this study provides valuable information for a better understanding of the potential role of chromosomal rearrangements in adaptive traits in cattle.
Collapse
Affiliation(s)
- Slim Ben-Jemaa
- INRAE, ASSET, 97170, Petit-Bourg, France
- Institut National de la Recherche Agronomique de Tunisie, Laboratoire des Productions Animales et Fourragères, Université de Carthage, 2049, Ariana, Tunisia
| | - Mekki Boussaha
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | | | - Philippe Bardou
- GenPhySE, Université de Toulouse, INRA, Ecole Nationale Vétérinaire de Toulouse (ENVT), 31320, Castanet-Tolosan, France
- Sigenae, INRAE, 31320, Castanet-Tolosan, France
| | | |
Collapse
|
10
|
Lin D, Qiu Y, Zhou F, Li X, Deng S, Yang J, Chen Q, Cai G, Yang J, Wu Z, Zheng E. Genome-wide detection of multiple variants associated with teat number in French Yorkshire pigs. BMC Genomics 2024; 25:722. [PMID: 39054457 PMCID: PMC11271213 DOI: 10.1186/s12864-024-10611-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Teat number is a vital reproductive trait in sows, crucial for providing immunity and nutrition to piglets during lactation. However, "missing heritability" in Single Nucleotide Polymorphism (SNP)-based Genome-Wide Association Studies (GWAS) has led to an increasing focus on structural variations in the genetic analysis of complex biological traits. RESULTS In this study, we generated a comprehensive CNV map in a population of French Yorkshire pigs (n = 644) and identified 429 CNVRs. Notably, 44% (189 CNVRs) of these were detected for the first time. Subsequently, we conducted GWAS for teat number in the French Yorkshire pig population using both 80K chip and its imputed data, as well as a GWAS analysis based on CNV regions (CNVR). Interestingly, 80K chip GWAS identified two SNPs located on Sus scrofa chromosome 5 (SSC5) that were simultaneously associated with Total Teat Number (TTN), Left Teat Number (LTN), and Right Teat Number (RTN). The leading SNP (WU_10.2_5_76130558) explained 3.33%, 2.69%, and 2.67% of the phenotypic variance for TTN, LTN, and RTN, respectively. Moreover, through imputed GWAS, we successfully identified 30 genetic variants associated with TTN located within the 73.22 -73.30 Mb region on SSC5. The two SNPs identified in the 80K chip GWAS were also located in this region. In addition, CNVR-based GWAS revealed three significant CNVRs associated with TTN. Finally, through gene annotation, we pinpointed two candidate genes, TRIM66 and PRICKLE1, which are related to diverse processes such as breast cancer and abnormal vertebral development. CONCLUSIONS Our research provides an in-depth analysis of the complex genetic structure underlying teat number, contributing to the genetic enhancement of sows with improved reproductive performance and, ultimately, bolstering the economic benefits of swine production enterprises.
Collapse
Affiliation(s)
- Danyang Lin
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Yibin Qiu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Fuchen Zhou
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Xuehua Li
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Shaoxiong Deng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Jisheng Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Qiaoer Chen
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Zhongxin Breeding Technology Co., Ltd, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Zhongxin Breeding Technology Co., Ltd, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, 527300, China.
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
11
|
Boschiero C, Neupane M, Yang L, Schroeder SG, Tuo W, Ma L, Baldwin RL, Van Tassell CP, Liu GE. A Pilot Detection and Associate Study of Gene Presence-Absence Variation in Holstein Cattle. Animals (Basel) 2024; 14:1921. [PMID: 38998033 PMCID: PMC11240624 DOI: 10.3390/ani14131921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Presence-absence variations (PAVs) are important structural variations, wherein a genomic segment containing one or more genes is present in some individuals but absent in others. While PAVs have been extensively studied in plants, research in cattle remains limited. This study identified PAVs in 173 Holstein bulls using whole-genome sequencing data and assessed their associations with 46 economically important traits. Out of 28,772 cattle genes (from the longest transcripts), a total of 26,979 (93.77%) core genes were identified (present in all individuals), while variable genes included 928 softcore (present in 95-99% of individuals), 494 shell (present in 5-94%), and 371 cloud genes (present in <5%). Cloud genes were enriched in functions associated with hormonal and antimicrobial activities, while shell genes were enriched in immune functions. PAV-based genome-wide association studies identified associations between gene PAVs and 16 traits including milk, fat, and protein yields, as well as traits related to health and reproduction. Associations were found on multiple chromosomes, illustrating important associations on cattle chromosomes 7 and 15, involving olfactory receptor and immune-related genes, respectively. By examining the PAVs at the population level, the results of this research provided crucial insights into the genetic structures underlying the complex traits of Holstein cattle.
Collapse
Affiliation(s)
- Clarissa Boschiero
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Mahesh Neupane
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Liu Yang
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Steven G Schroeder
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Wenbin Tuo
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Ransom L Baldwin
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Curtis P Van Tassell
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| |
Collapse
|
12
|
Benfica LF, Brito LF, do Bem RD, de Oliveira LF, Mulim HA, Braga LG, Cyrillo JNSG, Bonilha SFM, Mercadante MEZ. Detection and characterization of copy number variation in three differentially-selected Nellore cattle populations. Front Genet 2024; 15:1377130. [PMID: 38694873 PMCID: PMC11061390 DOI: 10.3389/fgene.2024.1377130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/05/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction: Nellore cattle (Bos taurus indicus) is the main beef cattle breed raised in Brazil. This breed is well adapted to tropical conditions and, more recently, has experienced intensive genetic selection for multiple performance traits. Over the past 43 years, an experimental breeding program has been developed in the Institute of Animal Science (IZ, Sertaozinho, SP, Brazil), which resulted in three differentially-selected lines known as Nellore Control (NeC), Nellore Selection (NeS), and Nellore Traditional (NeT). The primary goal of this selection experiment was to determine the response to selection for yearling weight (YW) and residual feed intake (RFI) on Nellore cattle. The main objectives of this study were to: 1) identify copy number variation (CNVs) in Nellore cattle from three selection lines; 2) identify and characterize CNV regions (CNVR) on these three lines; and 3) perform functional enrichment analyses of the CNVR identified. Results: A total of 14,914 unique CNVs and 1,884 CNVRs were identified when considering all lines as a single population. The CNVRs were non-uniformly distributed across the chromosomes of the three selection lines included in the study. The NeT line had the highest number of CNVRs (n = 1,493), followed by the NeS (n = 823) and NeC (n = 482) lines. The CNVRs covered 23,449,890 bp (0.94%), 40,175,556 bp (1.61%), and 63,212,273 bp (2.54%) of the genome of the NeC, NeS, and NeT lines, respectively. Two CNVRs were commonly identified between the three lines, and six, two, and four exclusive regions were identified for NeC, NeS, and NeT, respectively. All the exclusive regions overlap with important genes, such as SMARCD3, SLC15A1, and MAPK1. Key biological processes associated with the candidate genes were identified, including pathways related to growth and metabolism. Conclusion: This study revealed large variability in CNVs and CNVRs across three Nellore lines differentially selected for YW and RFI. Gene annotation and gene ontology analyses of the exclusive CNVRs to each line revealed specific genes and biological processes involved in the expression of growth and feed efficiency traits. These findings contribute to the understanding of the genetic mechanisms underlying the phenotypic differences among the three Nellore selection lines.
Collapse
Affiliation(s)
- Lorena F. Benfica
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
- Department of Animal Science, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal, São Paulo, Brazil
| | - Luiz F. Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Ricardo D. do Bem
- Department of Animal Science, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal, São Paulo, Brazil
| | | | - Henrique A. Mulim
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Larissa G. Braga
- Department of Animal Science, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal, São Paulo, Brazil
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | | | - Sarah F. M. Bonilha
- Beef Cattle Research Center, Institute of Animal Science, Sertaozinho, São Paulo, Brazil
| | - Maria Eugenia Z. Mercadante
- Department of Animal Science, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal, São Paulo, Brazil
- Beef Cattle Research Center, Institute of Animal Science, Sertaozinho, São Paulo, Brazil
| |
Collapse
|
13
|
Benfica LF, Brito LF, do Bem RD, Mulim HA, Glessner J, Braga LG, Gloria LS, Cyrillo JNSG, Bonilha SFM, Mercadante MEZ. Genome-wide association study between copy number variation and feeding behavior, feed efficiency, and growth traits in Nellore cattle. BMC Genomics 2024; 25:54. [PMID: 38212678 PMCID: PMC10785391 DOI: 10.1186/s12864-024-09976-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Feeding costs represent the largest expenditures in beef production. Therefore, the animal efficiency in converting feed in high-quality protein for human consumption plays a major role in the environmental impact of the beef industry and in the beef producers' profitability. In this context, breeding animals for improved feed efficiency through genomic selection has been considered as a strategic practice in modern breeding programs around the world. Copy number variation (CNV) is a less-studied source of genetic variation that can contribute to phenotypic variability in complex traits. In this context, this study aimed to: (1) identify CNV and CNV regions (CNVRs) in the genome of Nellore cattle (Bos taurus indicus); (2) assess potential associations between the identified CNVR and weaning weight (W210), body weight measured at the time of selection (WSel), average daily gain (ADG), dry matter intake (DMI), residual feed intake (RFI), time spent at the feed bunk (TF), and frequency of visits to the feed bunk (FF); and, (3) perform functional enrichment analyses of the significant CNVR identified for each of the traits evaluated. RESULTS A total of 3,161 CNVs and 561 CNVRs ranging from 4,973 bp to 3,215,394 bp were identified. The CNVRs covered up to 99,221,894 bp (3.99%) of the Nellore autosomal genome. Seventeen CNVR were significantly associated with dry matter intake and feeding frequency (number of daily visits to the feed bunk). The functional annotation of the associated CNVRs revealed important candidate genes related to metabolism that may be associated with the phenotypic expression of the evaluated traits. Furthermore, Gene Ontology (GO) analyses revealed 19 enrichment processes associated with FF. CONCLUSIONS A total of 3,161 CNVs and 561 CNVRs were identified and characterized in a Nellore cattle population. Various CNVRs were significantly associated with DMI and FF, indicating that CNVs play an important role in key biological pathways and in the phenotypic expression of feeding behavior and growth traits in Nellore cattle.
Collapse
Affiliation(s)
- Lorena F Benfica
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA.
- Department of Animal Science, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal, SP, Brazil.
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA
| | - Ricardo D do Bem
- Department of Animal Science, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal, SP, Brazil
| | - Henrique A Mulim
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA
| | - Joseph Glessner
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Larissa G Braga
- Department of Animal Science, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal, SP, Brazil
| | - Leonardo S Gloria
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA
| | | | | | | |
Collapse
|
14
|
Liu X, Chen W, Huang B, Wang X, Peng Y, Zhang X, Chai W, Khan MZ, Wang C. Advancements in copy number variation screening in herbivorous livestock genomes and their association with phenotypic traits. Front Vet Sci 2024; 10:1334434. [PMID: 38274664 PMCID: PMC10808162 DOI: 10.3389/fvets.2023.1334434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Copy number variations (CNVs) have garnered increasing attention within the realm of genetics due to their prevalence in human, animal, and plant genomes. These structural genetic variations have demonstrated associations with a broad spectrum of phenotypic diversity, economic traits, environmental adaptations, epidemics, and other essential aspects of both plants and animals. Furthermore, CNVs exhibit extensive sequence variability and encompass a wide array of genomes. The advancement and maturity of microarray and sequencing technologies have catalyzed a surge in research endeavors pertaining to CNVs. This is particularly prominent in the context of livestock breeding, where molecular markers have gained prominence as a valuable tool in comparison to traditional breeding methods. In light of these developments, a contemporary and comprehensive review of existing studies on CNVs becomes imperative. This review serves the purpose of providing a brief elucidation of the fundamental concepts underlying CNVs, their mutational mechanisms, and the diverse array of detection methods employed to identify these structural variations within genomes. Furthermore, it seeks to systematically analyze the recent advancements and findings within the field of CNV research, specifically within the genomes of herbivorous livestock species, including cattle, sheep, horses, and donkeys. The review also highlighted the role of CNVs in shaping various phenotypic traits including growth traits, reproductive traits, pigmentation and disease resistance etc., in herbivorous livestock. The main goal of this review is to furnish readers with an up-to-date compilation of knowledge regarding CNVs in herbivorous livestock genomes. By integrating the latest research findings and insights, it is anticipated that this review will not only offer pertinent information but also stimulate future investigations into the realm of CNVs in livestock. In doing so, it endeavors to contribute to the enhancement of breeding strategies, genomic selection, and the overall improvement of herbivorous livestock production and resistance to diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding, Liaocheng University, Liaocheng, China
| |
Collapse
|
15
|
Wang Z, Zhong Z, Xie X, Wang F, Pan D, Wang Q, Pan Y, Xiao Q, Tan Z. Detection of Runs of Homozygosity and Identification of Candidate Genes in the Whole Genome of Tunchang Pigs. Animals (Basel) 2024; 14:201. [PMID: 38254370 PMCID: PMC10812771 DOI: 10.3390/ani14020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/23/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Tunchang pigs are an indigenous pig population in China known for their high tolerance to roughage, delicious meat, and fecundity. However, the number of Tunchang pigs has been declining due to the influence of commercial breeds and African swine fever, which could potentially lead to inbreeding. To assess the inbreeding level and the genetic basis of important traits in Tunchang pigs, our research investigated the patterns in "runs of homozygosity" (ROHs) using whole genome resequencing data from 32 Tunchang pigs. The study aimed to determine the length, number, coverage, and distribution model of ROHs in Tunchang pigs, as well as genomic regions with high ROH frequencies. The results of the study revealed that a total of 20,499,374 single-nucleotide polymorphisms (SNPs) and 1953 ROH fragments were recognized in 32 individuals. The ROH fragments in Tunchang pigs were predominantly short, ranging from 0.5 to 1 megabases (Mb) in length. Furthermore, the coverage of ROHs varied across chromosomes, with chromosome 3 having the highest coverage and chromosome 11 having the lowest coverage. The genetic diversity of Tunchang pigs was found to be relatively high based on the values of HE (expected heterozygosity), HO (observed heterozygosity), pi (nucleotide diversity), Ne (effective population size), and MAF (minor allele frequency). The average inbreeding coefficients of Tunchang pigs, as determined by three different methods (FHOM, FGRM, and FROH), were 0.019, 0.0138, and 0.0304, respectively. These values indicate that the level of inbreeding in Tunchang pigs is currently low. Additionally, the study identified a total of 13 ROH islands on all chromosomes, which in total contained 38,913 SNPs and 120 genes. These ROH islands included genes associated with economically important traits, including meat quality (GYS1, PHLPP1, SLC27A5, and CRTC1), growth and development (ANKS1A, TAF11, SPDEF, LHB, and PACSIN1), and environmental adaptation (SLC26A7). The findings of this research offer valuable perspectives on the present status of Tunchang pig resources and offer a reference for breeding conservation plans and the efficient utilization of Tunchang pigs in the future. By understanding the inbreeding level and genetic basis of important traits in Tunchang pigs, conservation efforts can be targeted towards maintaining genetic diversity and promoting the sustainable development of this indigenous pig population.
Collapse
Affiliation(s)
- Ziyi Wang
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Z.W.)
| | - Ziqi Zhong
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Z.W.)
| | - Xinfeng Xie
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Z.W.)
| | - Feifan Wang
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Z.W.)
| | - Deyou Pan
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Z.W.)
| | - Qishan Wang
- Hainan Yazhou Bay Seed Laboratory, Yongyou Industrial Park, Yazhou Bay Sci-Tech City, Sanya 572025, China
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Yuchun Pan
- Hainan Yazhou Bay Seed Laboratory, Yongyou Industrial Park, Yazhou Bay Sci-Tech City, Sanya 572025, China
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Qian Xiao
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Z.W.)
| | - Zhen Tan
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Z.W.)
| |
Collapse
|
16
|
Singh VK, Singh S, Nandhini PB, Bhatia AK, Dixit SP, Ganguly I. Comparative genomic diversity analysis of copy number variations (CNV) in indicine and taurine cattle thriving in Europe and Indian subcontinent. Anim Biotechnol 2023; 34:3483-3494. [PMID: 36592947 DOI: 10.1080/10495398.2022.2162910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Copy number variations (CNVs) include deletions, duplications, and insertions that are larger than 50 bp in size causing structural variation responsible for diversity, adaptation, and breed development. Indian cattle breeds are highly diverse from the taurine breeds. The pattern of CNVRs in 191 animals belonging to 39 cattle breeds (four Indicine and 35 Taurine) was studied based on Illumina 777K BovineHD chip data. The Indicine breeds revealed 2590 CNVs and 335 copy number variation regions (CNVRs) in autosomes. Out of the identified CNVs, 50 were found to be novel. Structure analysis revealed admixed nature of Siri. Neighbor joining tree from CNVR data showed that hot (Kankrej and Hallikar) and cold (Ladakhi and Siri) adapted cattle breeds clustered separately. CNVR of Indian and European breeds revealed that Balkan and Italian breeds of Podolian group are admixed with Indian cattle breeds corroborating indicine introgression (6.1-13.5%). CNVRs spanning the regions of olfactory receptors and immune system genes were identified. AMOVA revealed 9% variation among populations which is 2% greater than SNP based studies showing higher inclusion of variation by CNVR. Detailed analysis of CNVs/CNVRs in Indian cattle adapted to hot and cold climate, and their diversity among worldwide cattle is presented in this study.
Collapse
Affiliation(s)
- V K Singh
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, India
| | - S Singh
- Animal Genetics Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - P B Nandhini
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, India
| | - A K Bhatia
- Animal Genetic Resources Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - S P Dixit
- Animal Genetics Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - I Ganguly
- Animal Genetics Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| |
Collapse
|
17
|
Huang YZ, Shi QT, Shi SY, Yang P, Zhang ZJ, Lyu SJ, Chen FY, Xu JW, Liu X, Li Z, Ru B, Cai C, Xie J, Lei C, Chen H, Xu Z, Wang E. Association between copy number variation of SERPINA3-1 gene and growth traits in Chinese cattle. Anim Biotechnol 2023; 34:1524-1531. [PMID: 35209806 DOI: 10.1080/10495398.2022.2038183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 3 (SERPINA3) belongs to the serine protease inhibitor family A subtype, and contains 8 genes from SERPINA3-1 to SERPINA3-8. Although the regulatory effects of these 8 genes have been revealed one by one in recent years, the related effects of SERPINA3-1 gene on cattle growth is still unclear. This study used quantitative Real time PCR (qPCR) to detect the type of copy number variation (CNV) of SERPINA3-1 gene in a total of 542 Chinese cattle, and expression of SERPINA3-1 gene in different tissues of Qinchuan cattles (adult) on mRNA level. Then association analysis was conducted between the detection results and cattle growth traits. The results showed that the Duplication type in SERPINA3-1 gene performed better on the growth traits and the CNV was significantly correlated with multiple growth traits (p < 0.05). In addition, SERPINA3-1 gene has different expression conditions in different tissues, results showed that SERPINA3-1 gene has a low expression in muscle. In conclusion, we speculate that the SERPINA3-1 gene can be used as a molecular marker and the result of this study could be a basic material for candidate functional genes for beef cattle growth and development.
Collapse
Affiliation(s)
- Yong-Zhen Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qiao Ting Shi
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Shu-Yue Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Peng Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zi-Jing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Shi-Jie Lyu
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Fu-Ying Chen
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Jia-Wei Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xian Liu
- Henan Provincial Animal Husbandry General Station, Zhengzhou, China
| | - Zhiming Li
- Henan Provincial Animal Husbandry General Station, Zhengzhou, China
| | - Baorui Ru
- Henan Provincial Animal Husbandry General Station, Zhengzhou, China
| | - Cuicui Cai
- Guyuan Branch of Ningxia Academy of Agriculture and Forestry Sciences, Guyuan, China
| | - Jianliang Xie
- Guyuan Branch of Ningxia Academy of Agriculture and Forestry Sciences, Guyuan, China
| | - ChuZhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhaoxue Xu
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Eryao Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
18
|
Choudhury MP, Wang Z, Zhu M, Teng S, Yan J, Cao S, Yi G, Liu Y, Liao Y, Tang Z. Genome-Wide Detection of Copy Number Variations Associated with Miniature Features in Horses. Genes (Basel) 2023; 14:1934. [PMID: 37895283 PMCID: PMC10606273 DOI: 10.3390/genes14101934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Copy number variations (CNVs) are crucial structural genomic variants affecting complex traits in humans and livestock animals. The current study was designed to conduct a comprehensive comparative copy number variation analysis among three breeds, Debao (DB), Baise (BS), and Warmblood (WB), with a specific focus on identifying genomic regions associated with miniature features in horses. Using whole-genome next-generation resequencing data, we identified 18,974 CNVs across 31 autosomes. Among the breeds, we found 4279 breed-specific CNV regions (CNVRs). Baise, Debao, and Warmblood displayed 2978, 986, and 895 distinct CNVRs, respectively, with 202 CNVRs shared across all three breeds. After removing duplicates, we obtained 1545 CNVRs from 26 horse genomes. Functional annotation reveals enrichment in biological functions, including antigen processing, cell metabolism, olfactory conduction, and nervous system development. Debao horses have 970 genes overlapping with CNVRs, possibly causing their small size and mountainous adaptations. We also found that the genes GHR, SOX9, and SOX11 may be responsible for the miniature features of the Debao horse by analyzing their overlapping CNVRs. Overall, this study offers valuable insights into the widespread presence of CNVs in the horse genome. The findings contribute to mapping horse CNVs and advance research on unique miniature traits observed in the Debao horse.
Collapse
Affiliation(s)
- Md. Panir Choudhury
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 518124, China; (M.P.C.); (G.Y.); (Y.L.)
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Bangladesh Livestock Research Institute, Ministry of Fisheries and Livestock, Savar, Dhaka 1341, Bangladesh
| | - Zihao Wang
- Animal Husbandry Research Institute, Guangxi Vocational University of Agriculture, Nanning 530002,China; (Z.W.); (M.Z.); (S.T.); (J.Y.); (S.C.)
| | - Min Zhu
- Animal Husbandry Research Institute, Guangxi Vocational University of Agriculture, Nanning 530002,China; (Z.W.); (M.Z.); (S.T.); (J.Y.); (S.C.)
| | - Shaohua Teng
- Animal Husbandry Research Institute, Guangxi Vocational University of Agriculture, Nanning 530002,China; (Z.W.); (M.Z.); (S.T.); (J.Y.); (S.C.)
| | - Jing Yan
- Animal Husbandry Research Institute, Guangxi Vocational University of Agriculture, Nanning 530002,China; (Z.W.); (M.Z.); (S.T.); (J.Y.); (S.C.)
| | - Shuwei Cao
- Animal Husbandry Research Institute, Guangxi Vocational University of Agriculture, Nanning 530002,China; (Z.W.); (M.Z.); (S.T.); (J.Y.); (S.C.)
| | - Guoqiang Yi
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 518124, China; (M.P.C.); (G.Y.); (Y.L.)
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yuwen Liu
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 518124, China; (M.P.C.); (G.Y.); (Y.L.)
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yuying Liao
- Guangxi Veterinary Research Institute, Nanning 530001, China
| | - Zhonglin Tang
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 518124, China; (M.P.C.); (G.Y.); (Y.L.)
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| |
Collapse
|
19
|
Kooverjee BB, Soma P, van der Nest MA, Scholtz MM, Neser FWC. Copy Number Variation Discovery in South African Nguni-Sired and Bonsmara-Sired Crossbred Cattle. Animals (Basel) 2023; 13:2513. [PMID: 37570321 PMCID: PMC10417447 DOI: 10.3390/ani13152513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Crossbreeding forms part of Climate-Smart beef production and is one of the strategies to mitigate the effects of climate change. Two Nguni-sired and three Bonsmara-sired crossbred animals underwent whole genome sequencing. Following quality control and file preparation, the sequence data were investigated for genome-wide copy number variation (CNV) using the panelcn.MOPS tool. A total of 355 CNVs were identified in the crossbreds, of which 274 were unique in Bonsmara-sired crossbreds and 81 unique in the Nguni-sired crossbreds. Genes that differed in copy number in both crossbreds included genes related to growth (SCRN2, LOC109572916) and fertility-related factors (RPS28, LOC1098562432, LOC109570037). Genes that were present only in the Bonsmara-sired crossbreds included genes relating to lipid metabolism (MAF1), olfaction (LOC109569114), body size (HES7), immunity (LOC10957335, LOC109877039) and disease (DMBT1). Genes that were present only in the Nguni-sired crossbreds included genes relating to ketosis (HMBOX1) and amino acid transport (LOC109572916). Results of this study indicate that Nguni and Bonsmara cattle can be utilized in crossbreeding programs as they may enhance the presence of economically important traits associated with both breeds. This will produce crossbred animals that are good meat producers, grow faster, have high fertility, strong immunity and a better chance of producing in South Africa's harsh climate conditions. Ultimately, this study provides new genetic insights into the adaptability of Nguni and Bonsmara crossbred cattle.
Collapse
Affiliation(s)
| | - Pranisha Soma
- Animal Production, Agricultural Research Council, Pretoria 0062, South Africa;
| | - Magrieta A. van der Nest
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa;
| | - Michiel M. Scholtz
- Animal Production, Agricultural Research Council, Pretoria 0062, South Africa;
- Department of Animal Science, University of the Free State, Bloemfontein 9300, South Africa;
| | - Frederick W. C. Neser
- Department of Animal Science, University of the Free State, Bloemfontein 9300, South Africa;
| |
Collapse
|
20
|
Chen C, Zhu B, Tang X, Chen B, Liu M, Gao N, Li S, Gu J. Genome-Wide Assessment of Runs of Homozygosity by Whole-Genome Sequencing in Diverse Horse Breeds Worldwide. Genes (Basel) 2023; 14:1211. [PMID: 37372391 DOI: 10.3390/genes14061211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
In the genomes of diploid organisms, runs of homozygosity (ROH), consecutive segments of homozygosity, are extended. ROH can be applied to evaluate the inbreeding situation of individuals without pedigree data and to detect selective signatures via ROH islands. We sequenced and analyzed data derived from the whole-genome sequencing of 97 horses, investigated the distribution of genome-wide ROH patterns, and calculated ROH-based inbreeding coefficients for 16 representative horse varieties from around the world. Our findings indicated that both ancient and recent inbreeding occurrences had varying degrees of impact on various horse breeds. However, recent inbreeding events were uncommon, particularly among indigenous horse breeds. Consequently, the ROH-based genomic inbreeding coefficient could aid in monitoring the level of inbreeding. Using the Thoroughbred population as a case study, we discovered 24 ROH islands containing 72 candidate genes associated with artificial selection traits. We found that the candidate genes in Thoroughbreds were involved in neurotransmission (CHRNA6, PRKN, and GRM1), muscle development (ADAMTS15 and QKI), positive regulation of heart rate and heart contraction (HEY2 and TRDN), regulation of insulin secretion (CACNA1S, KCNMB2, and KCNMB3), and spermatogenesis (JAM3, PACRG, and SPATA6L). Our findings provide insight into horse breed characteristics and future breeding strategies.
Collapse
Affiliation(s)
- Chujie Chen
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Bo Zhu
- Novogene Bioinformatics Institute, Beijing 100015, China
| | - Xiangwei Tang
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Bin Chen
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Mei Liu
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Ning Gao
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Sheng Li
- Maxun Biotechnology Institute, Changsha 410024, China
| | - Jingjing Gu
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
21
|
Wijayanti D, Luo Y, Bai Y, Pan C, Qu L, Guo Z, Lan X. New insight into copy number variations of goat SMAD2 gene and their associations with litter size and semen quality. Theriogenology 2023; 206:114-122. [PMID: 37229957 DOI: 10.1016/j.theriogenology.2023.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
Copy number variations (CNV) contribute significantly to genetic variations. Numerous studies have shown that CNV affects phenotypic traits in livestock. The SMAD family member 2 (SMAD2) is a leading candidate gene in reproduction and has a crucial effect on litter size. Additionally, SMAD2 is also required for male reproduction and influences male germ cell development. However, there are no reports on investigating the effect of CNVs in the SMAD2 gene on reproductive traits in goat. Therefore, the goal of this study was to explore associations between CNV of the SMAD2 gene and litter size and semen quality in Shaanbei white cashmere (SBWC) goats. In this study, two CNVs within the SMAD2 were identified in 352 SBWC goats (50 males and 302 females). The association analysis revealed that only CNV2 was significantly associated with female goat first-born litter size (P = 3.59 × 10-4), male semen concentration (P < 0.01), ejaculation volume, live sperm count, and sperm deformity rate (P < 0.05). In terms of phenotypic performance, the individuals with loss genotypes outperformed those with other genotypes. CNV1 and CNV2 genotype combinations containing their dominant genotypes were also associated with goat litter size (P = 1.7 × 10-5), but no differences in semen quality were found. In summary, CNV2 of the SMAD2 gene is useful for molecular marker-assisted selection breeding, as it is associated with essential goat reproductive traits.
Collapse
Affiliation(s)
- Dwi Wijayanti
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China; Department of Animal Science, Perjuangan University of Tasikmalaya, Tasikmalaya, West Java, 46115, Indonesia.
| | - Yunyun Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Yangyang Bai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Lei Qu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, Shaanxi, 719000, PR China; Life Science Research Center, Yulin University, Yulin, Shaanxi, 719000, PR China.
| | - Zhengang Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China; Institute of Animal Husbandry and Veterinary Science of Bijie City, Guizhou, 551700, China.
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
22
|
Molecular Cytogenetics in Domestic Bovids: A Review. Animals (Basel) 2023; 13:ani13050944. [PMID: 36899801 PMCID: PMC10000107 DOI: 10.3390/ani13050944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The discovery of the Robertsonian translocation (rob) involving cattle chromosomes 1 and 29 and the demonstration of its deleterious effects on fertility focused the interest of many scientific groups on using chromosome banding techniques to reveal chromosome abnormalities and verify their effects on fertility in domestic animals. At the same time, comparative banding studies among various species of domestic or wild animals were found useful for delineating chromosome evolution among species. The advent of molecular cytogenetics, particularly the use of fluorescence in situ hybridization (FISH), has allowed a deeper investigation of the chromosomes of domestic animals through: (a) the physical mapping of specific DNA sequences on chromosome regions; (b) the use of specific chromosome markers for the identification of the chromosomes or chromosome regions involved in chromosome abnormalities, especially when poor banding patterns are produced; (c) better anchoring of radiation hybrid and genetic maps to specific chromosome regions; (d) better comparisons of related and unrelated species by comparative FISH mapping and/or Zoo-FISH techniques; (e) the study of meiotic segregation, especially by sperm-FISH, in some chromosome abnormalities; (f) better demonstration of conserved or lost DNA sequences in chromosome abnormalities; (g) the use of informatic and genomic reconstructions, in addition to CGH arrays, to predict conserved or lost chromosome regions in related species; and (h) the study of some chromosome abnormalities and genomic stability using PCR applications. This review summarizes the most important applications of molecular cytogenetics in domestic bovids, with an emphasis on FISH mapping applications.
Collapse
|
23
|
Fan S, Kong C, Chen Y, Zheng X, Zhou R, Zhang X, Wu X, Zhang W, Ding Y, Yin Z. Copy Number Variation Analysis Revealed the Evolutionary Difference between Chinese Indigenous Pigs and Asian Wild Boars. Genes (Basel) 2023; 14:472. [PMID: 36833399 PMCID: PMC9957247 DOI: 10.3390/genes14020472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Copy number variation (CNV) has been widely used to study the evolution of different species. We first discovered different CNVs in 24 Anqingliubai pigs and 6 Asian wild boars using next-generation sequencing at the whole-genome level with 10× depth to understand the relationship between genetic evolution and production traits in wild boars and domestic pigs. A total of 97,489 CNVs were identified and divided into 10,429 copy number variation regions (CNVRs), occupying 32.06% of the porcine genome. Chromosome 1 had the most CNVRs, and chromosome 18 had the least. Ninety-six CNVRs were selected using VST 1% based on the signatures of all CNVRs, and sixty-five genes were identified in the selected regions. These genes were strongly correlated with traits distinguishing groups by enrichment in Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways, such as growth (CD36), reproduction (CIT, RLN), detoxification (CYP3A29), and fatty acid metabolism (ELOVL6). The QTL overlapping regions were associated with meat traits, growth, and immunity, which was consistent with CNV analysis. Our findings increase the understanding of evolved genome structural variations between wild boars and domestic pigs, and provide new molecular biomarkers to guide breeding and the efficient use of available genetic resources.
Collapse
Affiliation(s)
- Shuhao Fan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chengcheng Kong
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230036, China
| | - Yige Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xianrui Zheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ren Zhou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiaodong Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xudong Wu
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Wei Zhang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Yueyun Ding
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
24
|
Peripolli E, Stafuzza NB, Machado MA, do Carmo Panetto JC, do Egito AA, Baldi F, da Silva MVGB. Assessment of copy number variants in three Brazilian locally adapted cattle breeds using whole-genome re-sequencing data. Anim Genet 2023; 54:254-270. [PMID: 36740987 DOI: 10.1111/age.13298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/13/2021] [Accepted: 01/13/2023] [Indexed: 02/07/2023]
Abstract
Further characterization of genetic structural variations should strongly focus on small and endangered local breeds given their role in unraveling genes and structural variants underlying selective pressures and phenotype variation. A comprehensive genome-wide assessment of copy number variations (CNVs) based on whole-genome re-sequencing data was performed on three Brazilian locally adapted cattle breeds (Caracu Caldeano, Crioulo Lageano, and Pantaneiro) using the ARS-UCD1.2 genome assembly. Data from 36 individuals with an average coverage depth of 14.07× per individual was used. A total of 24 945 CNVs were identified distributed among the breeds (Caracu Caldeano = 7285, Crioulo Lageano = 7297, and Pantaneiro = 10 363). Deletion events were 1.75-2.07-fold higher than duplications, and the total length of CNVs is composed mostly of a high number of segments between 10 and 30 kb. CNV regions (CNVRs) are not uniformly scattered throughout the genomes (n = 463), and 105 CNVRs were found overlapping among the studied breeds. Functional annotation of the CNVRs revealed variants with high consequence on protein sequence harboring relevant genes, in which we highlighted the BOLA-DQB, BOLA-DQA5, CD1A, β-defensins, PRG3, and ULBP21 genes. Enrichment analysis based on the gene list retrieved from the CNVRs disclosed over-represented terms (p < 0.01) strongly associated with immunity and cattle resilience to harsh environments. Additionally, QTL associated with body conformation and dairy-related traits were also unveiled within the CNVRs. These results provide better understanding of the selective forces shaping the genome of such cattle breeds and identify traces of natural selection pressures by which these populations have been exposed to challenging environmental conditions.
Collapse
Affiliation(s)
- Elisa Peripolli
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, Brazil
| | | | | | | | | | - Fernando Baldi
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, Brazil
| | | |
Collapse
|
25
|
Braga LG, Chud TCS, Watanabe RN, Savegnago RP, Sena TM, do Carmo AS, Machado MA, Panetto JCDC, da Silva MVGB, Munari DP. Identification of copy number variations in the genome of Dairy Gir cattle. PLoS One 2023; 18:e0284085. [PMID: 37036840 PMCID: PMC10085049 DOI: 10.1371/journal.pone.0284085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/23/2023] [Indexed: 04/11/2023] Open
Abstract
Studying structural variants that can control complex traits is relevant for dairy cattle production, especially for animals that are tolerant to breeding conditions in the tropics, such as the Dairy Gir cattle. This study identified and characterized high confidence copy number variation regions (CNVR) in the Gir breed genome. A total of 38 animals were whole-genome sequenced, and 566 individuals were genotyped with a high-density SNP panel, among which 36 animals had both sequencing and SNP genotyping data available. Two sets of high confidence CNVR were established: one based on common CNV identified in the studied population (CNVR_POP), and another with CNV identified in sires with both sequence and SNP genotyping data available (CNVR_ANI). We found 10 CNVR_POP and 45 CNVR_ANI, which covered 1.05 Mb and 4.4 Mb of the bovine genome, respectively. Merging these CNV sets for functional analysis resulted in 48 unique high confidence CNVR. The overlapping genes were previously related to embryonic mortality, environmental adaptation, evolutionary process, immune response, longevity, mammary gland, resistance to gastrointestinal parasites, and stimuli recognition, among others. Our results contribute to a better understanding of the Gir breed genome. Moreover, the CNV identified in this study can potentially affect genes related to complex traits, such as production, health, and reproduction.
Collapse
Affiliation(s)
- Larissa G Braga
- Departamento de Engenharia e Ciências Exatas, Universidade Estadual Paulista, Jaboticabal, São Paulo, Brazil
| | - Tatiane C S Chud
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - Rafael N Watanabe
- Departamento de Engenharia e Ciências Exatas, Universidade Estadual Paulista, Jaboticabal, São Paulo, Brazil
| | - Rodrigo P Savegnago
- Department of Animal Science, Michigan State University, East Lansing, Michigan, United States of America
| | - Thomaz M Sena
- Departamento de Engenharia e Ciências Exatas, Universidade Estadual Paulista, Jaboticabal, São Paulo, Brazil
| | - Adriana S do Carmo
- Departamento de Zootecnia, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | | | | | | | - Danísio P Munari
- Departamento de Engenharia e Ciências Exatas, Universidade Estadual Paulista, Jaboticabal, São Paulo, Brazil
| |
Collapse
|
26
|
Identification of Copy Number Variations in Four Horse Breed Populations in South Korea. Animals (Basel) 2022; 12:ani12243501. [PMID: 36552421 PMCID: PMC9774267 DOI: 10.3390/ani12243501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/21/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
In this study, genome-wide CNVs were identified using a total of 469 horses from four horse populations (Jeju horses, Thoroughbreds, Jeju riding horses, and Hanla horses). We detected a total of 843 CNVRs throughout all autosomes: 281, 30, 301, and 310 CNVRs for Jeju horses, Thoroughbreds, Jeju riding horses, and Hanla horses, respectively. Of the total CNVRs, copy number losses were found to be the most abundant (48.99%), while gains and mixed CNVRs accounted for 41.04% and 9.96% of the total CNVRs, respectively. The length of the CNVRs ranged from 0.39 kb to 2.8 Mb, while approximately 7.2% of the reference horse genome assembly was covered by the total CNVRs. By comparing the CNVRs among the populations, we found a significant portion of the CNVRs (30.13%) overlapped; the highest number of shared CNVRs was between Hanla horses and Jeju riding horses. When compared with the horse CNVRs of previous studies, 26.8% of CNVRs were found to be uniquely detected in this study. The CNVRs were not randomly distributed throughout the genome; in particular, the Equus caballus autosome (ECA) 7 comprised the largest proportion of its genome (16.3%), while ECA 24 comprised the smallest (0.7%). Furthermore, functional analysis was applied to CNVRs that overlapped with genes (genic-CNVRs); these overlapping areas may be potentially associated with the olfactory pathway and nervous system. A racing performance QTL was detected in a CNVR of Thoroughbreds, Jeju riding horses, and Hanla horses, and the CNVR value was mixed for three breeds.
Collapse
|
27
|
Zhang J, Nie C, Li X, Zhao X, Jia Y, Han J, Chen Y, Wang L, Lv X, Yang W, Li K, Zhang J, Ning Z, Bao H, Zhao C, Li J, Qu L. Comprehensive analysis of structural variants in chickens using PacBio sequencing. Front Genet 2022; 13:971588. [PMID: 36338955 PMCID: PMC9632285 DOI: 10.3389/fgene.2022.971588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Structural variants (SVs) are one of the main sources of genetic variants and have a greater impact on phenotype evolution, disease susceptibility, and environmental adaptations than single nucleotide polymorphisms (SNPs). However, SVs remain challenging to accurately type, with several detection methods showing different limitations. Here, we explored SVs from 10 different chickens using PacBio technology and detected 49,501 high-confidence SVs. The results showed that the PacBio long-read detected more SVs than Illumina short-read technology genomes owing to some SV sites on chromosomes, which are related to chicken growth and development. During chicken domestication, some SVs beneficial to the breed or without any effect on the genomic function of the breed were retained, whereas deleterious SVs were generally eliminated. This study could facilitate the analysis of the genetic characteristics of different chickens and provide a better understanding of their phenotypic characteristics at the SV level, based on the long-read sequencing method. This study enriches our knowledge of SVs in chickens and improves our understanding of chicken genomic diversity.
Collapse
Affiliation(s)
- Jinxin Zhang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Changsheng Nie
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xinghua Li
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiurong Zhao
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yaxiong Jia
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianlin Han
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Chen
- Beijing Municipal General Station of Animal Science, Beijing, China
| | - Liang Wang
- Beijing Municipal General Station of Animal Science, Beijing, China
| | - Xueze Lv
- Beijing Municipal General Station of Animal Science, Beijing, China
| | - Weifang Yang
- Beijing Municipal General Station of Animal Science, Beijing, China
| | - Kaiyang Li
- Beijing Municipal General Station of Animal Science, Beijing, China
| | - Jianwei Zhang
- Beijing Municipal General Station of Animal Science, Beijing, China
| | - Zhonghua Ning
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Haigang Bao
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chunjiang Zhao
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Junying Li
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lujiang Qu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Lujiang Qu,
| |
Collapse
|
28
|
Talenti A, Powell J, Wragg D, Chepkwony M, Fisch A, Ferreira BR, Mercadante MEZ, Santos IM, Ezeasor CK, Obishakin ET, Muhanguzi D, Amanyire W, Silwamba I, Muma JB, Mainda G, Kelly RF, Toye P, Connelley T, Prendergast J. Optical mapping compendium of structural variants across global cattle breeds. Sci Data 2022; 9:618. [PMID: 36229544 PMCID: PMC9561109 DOI: 10.1038/s41597-022-01684-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/04/2022] [Indexed: 11/30/2022] Open
Abstract
Structural variants (SV) have been linked to important bovine disease phenotypes, but due to the difficulty of their accurate detection with standard sequencing approaches, their role in shaping important traits across cattle breeds is largely unexplored. Optical mapping is an alternative approach for mapping SVs that has been shown to have higher sensitivity than DNA sequencing approaches. The aim of this project was to use optical mapping to develop a high-quality database of structural variation across cattle breeds from different geographical regions, to enable further study of SVs in cattle. To do this we generated 100X Bionano optical mapping data for 18 cattle of nine different ancestries, three continents and both cattle sub-species. In total we identified 13,457 SVs, of which 1,200 putatively overlap coding regions. This resource provides a high-quality set of optical mapping-based SV calls that can be used across studies, from validating DNA sequencing-based SV calls to prioritising candidate functional variants in genetic association studies and expanding our understanding of the role of SVs in cattle evolution. Measurement(s) | Optical Mapping | Technology Type(s) | Optical Mapping | Factor Type(s) | Structural variants | Sample Characteristic - Organism | Bos taurus | Sample Characteristic - Location | United Kingdom • Kenya • Zambia • Uganda • Brazil • Nigeria |
Collapse
Affiliation(s)
- A Talenti
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, United Kingdom.
| | - J Powell
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, United Kingdom
| | - D Wragg
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, United Kingdom.,Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, UK
| | - M Chepkwony
- The International Livestock Research Institute, PO Box 30709, Nairobi, Kenya.,Centre for Tropical Livestock Genetics and Health, ILRI Kenya, Nairobi, 30709-00100, Kenya
| | - A Fisch
- Ribeirão Preto College of Nursing, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - B R Ferreira
- Ribeirão Preto College of Nursing, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - M E Z Mercadante
- Institute of Animal Science, Agriculture Department of São Paulo Government, Sertãozinho, SP, 14.174-000, Brazil
| | - I M Santos
- Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - C K Ezeasor
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - E T Obishakin
- Biotechnology Division, National Veterinary Research Institute, Vom, Plateau State, Nigeria.,Biomedical Research Centre, Ghent University Global Campus, Songdo, Incheon, South Korea
| | - D Muhanguzi
- School of Biosecurity, Biotechnology and Laboratory Sciences (SBLS), College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P.O Box 7062, Kampala, Uganda
| | - W Amanyire
- School of Biosecurity, Biotechnology and Laboratory Sciences (SBLS), College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P.O Box 7062, Kampala, Uganda
| | - I Silwamba
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, P.O BOX 32379, Lusaka, Zambia.,Department of Laboratory and Diagnostics, Livestock Services Cooperative Society, P.O. BOX 32025, Lusaka, Zambia
| | - J B Muma
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, P.O BOX 32379, Lusaka, Zambia
| | - G Mainda
- Department of Veterinary Services, Ministry of Fisheries and Livestock, Central Veterinary Research Institute, P.O. Box 33980, Lusaka, Zambia
| | - R F Kelly
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, United Kingdom.,Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, UK
| | - P Toye
- The International Livestock Research Institute, PO Box 30709, Nairobi, Kenya
| | - T Connelley
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, United Kingdom. .,Centre for Tropical Livestock Genetics and Health, Easter Bush, Midlothian, EH25 9RG, UK.
| | - J Prendergast
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, United Kingdom. .,Centre for Tropical Livestock Genetics and Health, Easter Bush, Midlothian, EH25 9RG, UK.
| |
Collapse
|
29
|
The relationship between MUC19 copy number variation and growth traits of Chinese cattle. Gene 2022; 851:147010. [DOI: 10.1016/j.gene.2022.147010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 11/04/2022]
|
30
|
Kelly CJ, Chitko-McKown CG, Chuong EB. Ruminant-specific retrotransposons shape regulatory evolution of bovine immunity. Genome Res 2022; 32:1474-1486. [PMID: 35948370 PMCID: PMC9435751 DOI: 10.1101/gr.276241.121] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 05/05/2022] [Indexed: 02/03/2023]
Abstract
Cattle are an important livestock species, and mapping the genomic architecture of agriculturally relevant traits such as disease susceptibility is a major challenge in the bovine research community. Lineage-specific transposable elements (TEs) are increasingly recognized to contribute to gene regulatory evolution and variation, but this possibility has been largely unexplored in ruminant genomes. We conducted epigenomic profiling of the type II interferon (IFN) response in bovine cells and found thousands of ruminant-specific TEs including MER41_BT and Bov-A2 elements predicted to act as IFN-inducible enhancer elements. CRISPR knockout experiments in bovine cells established that critical immune factors including IFNAR2 and IL2RB are transcriptionally regulated by TE-derived enhancers. Finally, population genomic analysis of 38 individuals revealed that a subset of polymorphic TE insertions may function as enhancers in modern cattle. Our study reveals that lineage-specific TEs have shaped the evolution of ruminant IFN responses and potentially continue to contribute to immune gene regulatory differences across modern breeds and individuals. Together with previous work in human cells, our findings demonstrate that lineage-specific TEs have been independently co-opted to regulate IFN-inducible gene expression in multiple species, supporting TE co-option as a recurrent mechanism driving the evolution of IFN-inducible transcriptional networks.
Collapse
Affiliation(s)
- Conor J Kelly
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Carol G Chitko-McKown
- USDA, ARS, Roman L. Hruska US Meat Animal Research Center (MARC), Clay Center, Nebraska 68933, USA
| | - Edward B Chuong
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, USA
| |
Collapse
|
31
|
Zhou Y, Yang L, Han X, Han J, Hu Y, Li F, Xia H, Peng L, Boschiero C, Rosen BD, Bickhart DM, Zhang S, Guo A, Van Tassell CP, Smith TPL, Yang L, Liu GE. Assembly of a pangenome for global cattle reveals missing sequences and novel structural variations, providing new insights into their diversity and evolutionary history. Genome Res 2022; 32:1585-1601. [PMID: 35977842 PMCID: PMC9435747 DOI: 10.1101/gr.276550.122] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 07/21/2022] [Indexed: 02/03/2023]
Abstract
A cattle pangenome representation was created based on the genome sequences of 898 cattle representing 57 breeds. The pangenome identified 83 Mb of sequence not found in the cattle reference genome, representing 3.1% novel sequence compared with the 2.71-Gb reference. A catalog of structural variants developed from this cattle population identified 3.3 million deletions, 0.12 million inversions, and 0.18 million duplications. Estimates of breed ancestry and hybridization between cattle breeds using insertion/deletions as markers were similar to those produced by single nucleotide polymorphism-based analysis. Hundreds of deletions were observed to have stratification based on subspecies and breed. For example, an insertion of a Bov-tA1 repeat element was identified in the first intron of the APPL2 gene and correlated with cattle breed geographic distribution. This insertion falls within a segment overlapping predicted enhancer and promoter regions of the gene, and could affect important traits such as immune response, olfactory functions, cell proliferation, and glucose metabolism in muscle. The results indicate that pangenomes are a valuable resource for studying diversity and evolutionary history, and help to delineate how domestication, trait-based breeding, and adaptive introgression have shaped the cattle genome.
Collapse
Affiliation(s)
- Yang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Lv Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaotao Han
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiazheng Han
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Hu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Fan Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Han Xia
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Lingwei Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Clarissa Boschiero
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, Maryland 20705, USA
| | - Benjamin D Rosen
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, Maryland 20705, USA
| | - Derek M Bickhart
- Dairy Forage Research Center, ARS USDA, Madison, Wisconsin 53706, USA
| | - Shujun Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Curtis P Van Tassell
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, Maryland 20705, USA
| | - Timothy P L Smith
- U.S. Meat Animal Research Center, ARS USDA, Clay Center, Nebraska 68933, USA
| | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, Maryland 20705, USA
| |
Collapse
|
32
|
Identification and Characterization of Copy Number Variations Regions in West African Taurine Cattle. Animals (Basel) 2022; 12:ani12162130. [PMID: 36009719 PMCID: PMC9405125 DOI: 10.3390/ani12162130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
A total of 106 West African taurine cattle belonging to the Lagunaire breed of Benin (33), the N’Dama population of Burkina Faso (48), and N’Dama cattle sampled in Congo (25) were analyzed for Copy Number Variations (CNVs) using the BovineHDBeadChip of Illumina and two different CNV calling programs: PennCNV and QuantiSNP. Furthermore, 89 West African zebu samples (Bororo cattle of Mali and Zebu Peul sampled in Benin and Burkina Faso) were used as an outgroup to ensure that analyses reflect the taurine cattle genomic background. Analyses identified 307 taurine-specific CNV regions (CNVRs), covering about 56 Mb on all bovine autosomes. Gene annotation enrichment analysis identified a total of 840 candidate genes on 168 taurine-specific CNVRs. Three different statistically significant functional term annotation clusters (from ACt1 to ACt3) involved in the immune function were identified: ACt1 includes genes encoding lipocalins, proteins involved in the modulation of immune response and allergy; ACt2 includes genes encoding coding B-box-type zinc finger proteins and butyrophilins, involved in innate immune processes; and Act3 includes genes encoding lectin receptors, involved in the inflammatory responses to pathogens and B- and T-cell differentiation. The overlap between taurine-specific CNVRs and QTL regions associated with trypanotolerant response and tick-resistance was relatively low, suggesting that the mechanisms underlying such traits may not be determined by CNV alterations. However, four taurine-specific CNVRs overlapped with QTL regions associated with both traits on BTA23, therefore suggesting that CNV alterations in major histocompatibility complex (MHC) genes can partially explain the existence of genetic mechanisms shared between trypanotolerance and tick resistance in cattle. This research contributes to the understanding of the genomic features of West African taurine cattle.
Collapse
|
33
|
Rare and population-specific functional variation across pig lines. Genet Sel Evol 2022; 54:39. [PMID: 35659233 PMCID: PMC9164375 DOI: 10.1186/s12711-022-00732-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/17/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND It is expected that functional, mainly missense and loss-of-function (LOF), and regulatory variants are responsible for most phenotypic differences between breeds and genetic lines of livestock species that have undergone diverse selection histories. However, there is still limited knowledge about the existing missense and LOF variation in commercial livestock populations, in particular regarding population-specific variation and how it can affect applications such as across-breed genomic prediction. METHODS We re-sequenced the whole genome of 7848 individuals from nine commercial pig lines (average sequencing coverage: 4.1×) and imputed whole-genome genotypes for 440,610 pedigree-related individuals. The called variants were categorized according to predicted functional annotation (from LOF to intergenic) and prevalence level (number of lines in which the variant segregated; from private to widespread). Variants in each category were examined in terms of their distribution along the genome, alternative allele frequency, per-site Wright's fixation index (FST), individual load, and association to production traits. RESULTS Of the 46 million called variants, 28% were private (called in only one line) and 21% were widespread (called in all nine lines). Genomic regions with a low recombination rate were enriched with private variants. Low-prevalence variants (called in one or a few lines only) were enriched for lower allele frequencies, lower FST, and putatively functional and regulatory roles (including LOF and deleterious missense variants). On average, individuals carried fewer private deleterious missense alleles than expected compared to alleles with other predicted consequences. Only a small subset of the low-prevalence variants had intermediate allele frequencies and explained small fractions of phenotypic variance (up to 3.2%) of production traits. The significant low-prevalence variants had higher per-site FST than the non-significant ones. These associated low-prevalence variants were tagged by other more widespread variants in high linkage disequilibrium, including intergenic variants. CONCLUSIONS Most low-prevalence variants have low minor allele frequencies and only a small subset of low-prevalence variants contributed detectable fractions of phenotypic variance of production traits. Accounting for low-prevalence variants is therefore unlikely to noticeably benefit across-breed analyses, such as the prediction of genomic breeding values in a population using reference populations of a different genetic background.
Collapse
|
34
|
Guo Q, Huang L, Bai H, Wang Z, Bi Y, Chen G, Jiang Y, Chang G. Genome-Wide Association Study of Potential Meat Quality Trait Loci in Ducks. Genes (Basel) 2022; 13:986. [PMID: 35741748 PMCID: PMC9222319 DOI: 10.3390/genes13060986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022] Open
Abstract
With continuously increasing living standards and health requirements of consumers, meat quality is becoming an important consideration while buying meat products. To date, no genome-wide association study (GWAS) for copy number variants (CNVs) and single nucleotide polymorphisms (SNPs) has been conducted to reveal the genetic effects on meat quality in ducks. This study analyzed the phenotypic correlation and heritability of fat, water, collagen, and protein content of duck breast muscle. To identify the candidate variants for meat quality, we performed a GWAS using 273 ducks from an F2 population. The results of the SNP GWAS showed that the BARHL2, COPS7B, and CCDC50 genes were associated with fat content; BLM, WDR76, and EOMES with water content; CAMTA1, FGD5, GRM7, and RAPGEF5 with collagen production; and RIMS2, HNRNPU, and SPTBN1 with protein content. Additionally, 3, 7, 1, and 3 CNVs were associated with fat, water, collagen, and protein content, respectively, in duck breast muscle. The genes identified in this study can serve as markers for meat quality. Furthermore, our findings may help devise effective breeding plans and selection strategies to improve meat quality.
Collapse
Affiliation(s)
- Qixin Guo
- College of Animal Science, Technology of Yangzhou University, Yangzhou 225009, China; (Q.G.); (L.H.); (Z.W.); (Y.B.); (Y.J.)
| | - Lan Huang
- College of Animal Science, Technology of Yangzhou University, Yangzhou 225009, China; (Q.G.); (L.H.); (Z.W.); (Y.B.); (Y.J.)
| | - Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; (H.B.); (G.C.)
| | - Zhixiu Wang
- College of Animal Science, Technology of Yangzhou University, Yangzhou 225009, China; (Q.G.); (L.H.); (Z.W.); (Y.B.); (Y.J.)
| | - Yulin Bi
- College of Animal Science, Technology of Yangzhou University, Yangzhou 225009, China; (Q.G.); (L.H.); (Z.W.); (Y.B.); (Y.J.)
| | - Guohong Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; (H.B.); (G.C.)
| | - Yong Jiang
- College of Animal Science, Technology of Yangzhou University, Yangzhou 225009, China; (Q.G.); (L.H.); (Z.W.); (Y.B.); (Y.J.)
| | - Guobin Chang
- College of Animal Science, Technology of Yangzhou University, Yangzhou 225009, China; (Q.G.); (L.H.); (Z.W.); (Y.B.); (Y.J.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; (H.B.); (G.C.)
| |
Collapse
|
35
|
Taghizadeh S, Gholizadeh M, Rahimi-Mianji G, Moradi MH, Costilla R, Moore S, Di Gerlando R. Genome-wide identification of copy number variation and association with fat deposition in thin and fat-tailed sheep breeds. Sci Rep 2022; 12:8834. [PMID: 35614300 PMCID: PMC9132911 DOI: 10.1038/s41598-022-12778-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 05/10/2022] [Indexed: 12/12/2022] Open
Abstract
Copy number variants (CNVs) are a type of genetic polymorphism which contribute to phenotypic variation in several species, including livestock. In this study, we used genomic data of 192 animals from 3 Iranian sheep breeds including 96 Baluchi sheep and 47 Lori-Bakhtiari sheep as fat-tailed breeds and 47 Zel sheep as thin-tailed sheep breed genotyped with Illumina OvineSNP50K Beadchip arrays. Also, for association test, 70 samples of Valle del Belice sheep were added to the association test as thin-tailed sheep breed. PennCNV and CNVRuler software were, respectively, used to study the copy number variation and genomic association analyses. We detected 573 and 242 CNVs in the fat and thin tailed breeds, respectively. In terms of CNV regions (CNVRs), these represented 328 and 187 CNVRs that were within or overlapping with 790 known Ovine genes. The CNVRs covered approximately 73.85 Mb of the sheep genome with average length 146.88 kb, and corresponded to 2.6% of the autosomal genome sequence. Five CNVRs were randomly chosen for validation, of which 4 were experimentally confirmed using Real time qPCR. Functional enrichment analysis showed that genes harbouring CNVs in thin-tailed sheep were involved in the adaptive immune response, regulation of reactive oxygen species biosynthetic process and response to starvation. In fat-tailed breeds these genes were involved in cellular protein modification process, regulation of heart rate, intestinal absorption, olfactory receptor activity and ATP binding. Association test identified one copy gained CNVR on chromosomes 6 harbouring two protein-coding genes HGFAC and LRPAP1. Our findings provide information about genomic structural changes and their association to the interested traits including fat deposition and environmental compatibility in sheep.
Collapse
Affiliation(s)
- Shadan Taghizadeh
- Department of Animal Science, Faculty of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, P.O. Box - 578, Sari, Iran
| | - Mohsen Gholizadeh
- Department of Animal Science, Faculty of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, P.O. Box - 578, Sari, Iran.
| | - Ghodrat Rahimi-Mianji
- Department of Animal Science, Faculty of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, P.O. Box - 578, Sari, Iran
| | - Mohammad Hossein Moradi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran
| | - Roy Costilla
- Ruakura Research Centre, AgResearch, Hamilton, New Zealand
| | - Stephen Moore
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Australia
| | - Rosalia Di Gerlando
- Dipartimento Di Scienze Agrarie, Alimentari E Forestali, Università Degli Studi Di Palermo, Palermo, Italy
| |
Collapse
|
36
|
Yang L, Gao Y, Oswalt A, Fang L, Boschiero C, Neupane M, Sattler CG, Li CJ, Seroussi E, Xu L, Yang L, Li L, Zhang H, Rosen BD, Van Tassell CP, Zhou Y, Ma L, Liu GE. Towards the detection of copy number variation from single sperm sequencing in cattle. BMC Genomics 2022; 23:215. [PMID: 35300589 PMCID: PMC8928590 DOI: 10.1186/s12864-022-08441-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Copy number variation (CNV) has been routinely studied using bulk-cell sequencing. However, CNV is not well studied on the single-cell level except for humans and a few model organisms. RESULTS We sequenced 143 single sperms of two Holstein bulls, from which we predicted CNV events using 14 single sperms with deep sequencing. We then compared the CNV results derived from single sperms with the bulk-cell sequencing of one bull's family trio of diploid genomes. As a known CNV hotspot, segmental duplications were also predicted using the bovine ARS-UCD1.2 genome. Although the trio CNVs validated only some single sperm CNVs, they still showed a distal chromosomal distribution pattern and significant associations with segmental duplications and satellite repeats. CONCLUSION Our preliminary results pointed out future research directions and highlighted the importance of uniform whole genome amplification, deep sequence coverage, and dedicated software pipelines for CNV detection using single cell sequencing data.
Collapse
Affiliation(s)
- Liu Yang
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA.,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yahui Gao
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA.,Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Adam Oswalt
- Select Sires Inc, 11740 U.S. 42 North, Plain City, OH, 43064, USA
| | - Lingzhao Fang
- MRC Human Genetics Unit at the Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Clarissa Boschiero
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA
| | - Mahesh Neupane
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA
| | | | - Cong-Jun Li
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA
| | - Eyal Seroussi
- Agricultural Research Organization (ARO), Institute of Animal Science, HaMaccabim Road, P.O.B 15159, 7528809, Volcani CenterRishon LeTsiyon, Israel
| | - Lingyang Xu
- Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lv Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hongping Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Benjamin D Rosen
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA
| | - Curtis P Van Tassell
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA
| | - Yang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA.
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA.
| |
Collapse
|
37
|
Yang H, Yue B, Yang Y, Tang J, Yang S, Qi A, Qu K, Lan X, Lei C, Wei Z, Huang B, Chen H. Distribution of Copy Number Variation in SYT11 Gene and Its Association with Growth Conformation Traits in Chinese Cattle. BIOLOGY 2022; 11:biology11020223. [PMID: 35205089 PMCID: PMC8869484 DOI: 10.3390/biology11020223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 12/01/2022]
Abstract
Simple Summary It is known that many different breeds of cattle are widely distributed in China. However, due to a lengthy selection of draught direction, there are obvious shortcomings in Chinese cattle, such as less meat production, slow weight gain, poor meat quality, and a lack of specialized beef cattle breeds. Animal breeding heavily benefits from molecular technologies, among which molecular genetic markers were widely used to improve the economic traits of beef cattle. Because the copy number variation (CNV) involves a longer DNA sequence or even the entire functional gene, it may have a greater impact on the phenotype. Recent studies have indicated that CNVs are widespread in the Chinese cattle genome. By investigating the effects of CNVs on gene expression and cattle traits, we aim to find those genomic variations which could significantly affect cattle traits, and which could provide a basis for genetic selection and molecular breeding of local Chinese cattle. Abstract Currently, studies of the SYT11 gene mainly focus on neurological diseases such as schizophrenia and Parkinson’s disease. However, some studies have shown that the C2B domain of SYT11 can interact with RISC components and affect the gene regulation of miRNA, which is important for cell differentiation, proliferation, and apoptosis, and therefore has an impact on muscle growth and development in animals. The whole-genome resequencing data detected a CNV in the SYT11 gene, and this may affect cattle growth traits. In this study, CNV distribution of 672 individuals from four cattle breeds, Yunling, Pinan, Xianan, and Qinchuan, were detected by qPCR. The relationship between CNV, gene expression and growth traits was further investigated. The results showed that the proportion of multiple copy types was the largest in all cattle breeds, but there were some differences among different breeds. The normal type had higher gene expression than the abnormal copy type. The CNVs of the SYT11 gene were significantly correlated with body length, cannon circumference, chest depth, rump length, and forehead size of Yunling cattle, and was significantly correlated with the bodyweight of Xianan cattle, respectively. These data improve our understanding of the effects of CNV on cattle growth traits. Our results suggest that the CNV of SYT11 gene is a protentional molecular marker, which may be used to improve growth traits in Chinese cattle.
Collapse
Affiliation(s)
- Haiyan Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
| | - Binglin Yue
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
| | - Yu Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
| | - Jia Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
| | - Shuling Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
| | - Ao Qi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
| | - Kaixing Qu
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong 675000, China;
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
| | - Zehui Wei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
- Correspondence: (Z.W.); (B.H.); (H.C.)
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming 650212, China
- Correspondence: (Z.W.); (B.H.); (H.C.)
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Y.); (B.Y.); (Y.Y.); (J.T.); (S.Y.); (A.Q.); (X.L.); (C.L.)
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
- Correspondence: (Z.W.); (B.H.); (H.C.)
| |
Collapse
|
38
|
Identification of Copy Number Variations and Genetic Diversity in Italian Insular Sheep Breeds. Animals (Basel) 2022; 12:ani12020217. [PMID: 35049839 PMCID: PMC8773107 DOI: 10.3390/ani12020217] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 02/05/2023] Open
Abstract
Copy number variants (CNVs) are one of the major contributors to genetic diversity and phenotypic variation in livestock. The aim of this work is to identify CNVs and perform, for the first time, a CNV-based population genetics analysis with five Italian sheep breeds (Barbaresca, Comisana, Pinzirita, Sarda, and Valle del Belìce). We identified 10,207 CNVs with an average length of 1.81 Mb. The breeds showed similar mean numbers of CNVs, ranging from 20 (Sarda) to 27 (Comisana). A total of 365 CNV regions (CNVRs) were determined. The length of the CNVRs varied among breeds from 2.4 Mb to 124.1 Mb. The highest number of shared CNVRs was between Comisana and Pinzirita, and only one CNVR was shared among all breeds. Our results indicated that segregating CNVs expresses a certain degree of diversity across all breeds. Despite the low/moderate genetic differentiation among breeds, the different approaches used to disclose the genetic relationship showed that the five breeds tend to cluster in distinct groups, similar to the previous studies based on single-nucleotide polymorphism markers. Gene enrichment was described for the 37 CNVRs selected, considering the top 10%. Out of 181 total genes, 67 were uncharacterized loci. Gene Ontology analysis showed that several of these genes are involved in lipid metabolism, immune response, and the olfactory pathway. Our results corroborated previous studies and showed that CNVs represent valuable molecular resources for providing useful information for separating the population and could be further used to explore the function and evolutionary aspect of sheep genome.
Collapse
|
39
|
Zou Z, Zhuang J, Xia L, Li Y, Yin J, Mu Y. DCD-chip designed for the digital and ultraprecise quantification of copy number variation. Analyst 2022; 147:4371-4378. [DOI: 10.1039/d2an00982j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The progress of CNV detection in DCD-chip.
Collapse
Affiliation(s)
- Zheyu Zou
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, P. R. China
- College of Life Sciences, Zhejiang University, Hangzhou, P. R. China
| | - Jianjian Zhuang
- Department of Clinical pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, P. R. China
| | - Liping Xia
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, P. R. China
- College of Life Sciences, Zhejiang University, Hangzhou, P. R. China
| | - Ying Li
- Department of Public Health, School of Medicine, Zhejiang University, Hangzhou, P. R. China
| | - Juxin Yin
- School of information and Electrical Engineering, Zhejiang University City College, Hangzhou, Zhejiang Province, P. R. China
| | - Ying Mu
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|
40
|
Tang J, Shen X, Yang Y, Yang H, Qi A, Yang S, Qu K, Lan X, Huang B, Chen H. Two Different Copy Number Variations of the CLCN2 Gene in Chinese Cattle and Their Association with Growth Traits. Animals (Basel) 2021; 12:ani12010041. [PMID: 35011147 PMCID: PMC8749635 DOI: 10.3390/ani12010041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Copy number variation (CNV) can affect gene function and even individual phenotypic traits by changing the transcription and translation level of related genes, and it also plays an important role in species evolution. Chloride voltage-gated channel 2 (CLCN2) encodes a voltage-gated chloride channel (CLC-2), which has a wide organ distribution and is ubiquitously expressed. Based on previous studies, we hypothesize that CLCN2 could be a candidate gene involved in cell volume regulation, transepithelial transport and cell proliferation. This study aimed to explore CNVs in the CLCN2 gene and investigate its association with growth traits in four Chinese cattle breeds (Yunling cattle, Xianan cattle, Qinchuan cattle and Pinan cattle). We identified there are two copy number variation regions (CNV1: 3600 bp, including exon 2-11; CNV2: 4800 bp, including exon 21-22) of the CLCN2 gene. The statistical analysis showed that the CNV1 mutation in the YL cattle population was significantly associated with cannon circumference (p < 0.01). The CNV2 mutation in the XN cattle population had a significant effect on body slanting length, chest girth and body weight (p < 0.05). In the YL cattle, the association analysis of CLCN2 gene CNV1 and CNV2 combination with cannon circumference was significant (p < 0.01). Our results provide evidence that CNV1 and CNV2 in CLCN2 are associated with growth traits in two different cattle populations and could be used as candidate markers for cattle molecular breeding.
Collapse
Affiliation(s)
- Jia Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (J.T.); (X.S.); (Y.Y.); (H.Y.); (A.Q.); (S.Y.); (X.L.)
| | - Xuemei Shen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (J.T.); (X.S.); (Y.Y.); (H.Y.); (A.Q.); (S.Y.); (X.L.)
| | - Yu Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (J.T.); (X.S.); (Y.Y.); (H.Y.); (A.Q.); (S.Y.); (X.L.)
| | - Haiyan Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (J.T.); (X.S.); (Y.Y.); (H.Y.); (A.Q.); (S.Y.); (X.L.)
| | - Ao Qi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (J.T.); (X.S.); (Y.Y.); (H.Y.); (A.Q.); (S.Y.); (X.L.)
| | - Shuling Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (J.T.); (X.S.); (Y.Y.); (H.Y.); (A.Q.); (S.Y.); (X.L.)
| | - Kaixing Qu
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong 675000, China;
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (J.T.); (X.S.); (Y.Y.); (H.Y.); (A.Q.); (S.Y.); (X.L.)
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming 650212, China
- Correspondence: (H.C.); (B.H.)
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (J.T.); (X.S.); (Y.Y.); (H.Y.); (A.Q.); (S.Y.); (X.L.)
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
- Correspondence: (H.C.); (B.H.)
| |
Collapse
|
41
|
Wang Z, Guo Y, Liu S, Meng Q. Genome-Wide Assessment Characteristics of Genes Overlapping Copy Number Variation Regions in Duroc Purebred Population. Front Genet 2021; 12:753748. [PMID: 34721540 PMCID: PMC8552909 DOI: 10.3389/fgene.2021.753748] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/23/2021] [Indexed: 11/13/2022] Open
Abstract
Copy number variations (CNVs) are important structural variations that can cause significant phenotypic diversity. Reliable CNVs mapping can be achieved by identification of CNVs from different genetic backgrounds. Investigations on the characteristics of overlapping between CNV regions (CNVRs) and protein-coding genes (CNV genes) or miRNAs (CNV-miRNAs) can reveal the potential mechanisms of their regulation. In this study, we used 50 K SNP arrays to detect CNVs in Duroc purebred pig. A total number of 211 CNVRs were detected with a total length of 118.48 Mb, accounting for 5.23% of the autosomal genome sequence. Of these CNVRs, 32 were gains, 175 losses, and four contained both types (loss and gain within the same region). The CNVRs we detected were non-randomly distributed in the swine genome and were significantly enriched in the segmental duplication and gene density region. Additionally, these CNVRs were overlapping with 1,096 protein-coding genes (CNV-genes), and 39 miRNAs (CNV-miRNAs), respectively. The CNV-genes were enriched in terms of dosage-sensitive gene list. The expression of the CNV genes was significantly higher than that of the non-CNV genes in the adult Duroc prostate. Of all detected CNV genes, 22.99% genes were tissue-specific (TSI > 0.9). Strong negative selection had been underway in the CNV-genes as the ones that were located entirely within the loss CNVRs appeared to be evolving rapidly as determined by the median dN plus dS values. Non-CNV genes tended to be miRNA target than CNV-genes. Furthermore, CNV-miRNAs tended to target more genes compared to non-CNV-miRNAs, and a combination of two CNV-miRNAs preferentially synergistically regulated the same target genes. We also focused our efforts on examining CNV genes and CNV-miRNAs functions, which were also involved in the lipid metabolism, including DGAT1, DGAT2, MOGAT2, miR143, miR335, and miRLET7. Further molecular experiments and independent large studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Zhipeng Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Yuanyuan Guo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Shengwei Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Qingli Meng
- Beijing Breeding Swine Center, Beijing, China
| |
Collapse
|
42
|
Kava R, Peripolli E, Berton MP, Lemos M, Lobo RB, Stafuzza NB, Pereira AS, Baldi F. Genome-wide structural variations in Brazilian Senepol cattle, a tropically adapted taurine breed. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Zhang L, Xiao H, Huang J, Ouyang L, Li S, Tang Y. Identification and expression analysis of the β-defensin genes in the goat small intestine. Gene 2021; 801:145846. [PMID: 34274482 DOI: 10.1016/j.gene.2021.145846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/22/2021] [Accepted: 07/13/2021] [Indexed: 11/24/2022]
Abstract
Defensins represent a family of cysteine-rich peptides that have broad-spectrum antimicrobial activities and serve as a typical kind of effector molecule in the immunity. Ruminant species have a large number of β-defensins in the absence of α- and θ-defensins. It is well-known that the genomes of sheep and cattle harbor at least 43 and 57 β-defensin genes, respectively. However, the repertoire of the goat β-defensin gene family has not been fully elucidated. In this study, we identified a total of 50 β-defensins from the goat genome, including 48 functional genes and 2 pseudogenes. Cross-species genomic and evolutionary analyses showed that all of the β-defensins in goat chromosomes 8, 13 and 23 present one-to-one orthologous relationships to their sheep and cattle counterparts, whereas some β-defensin genes in goat chromosome 27 are goat-specific. Moreover, we observed that some duplicated genes in goat chromosome 27 may be derived from gene copy number variation, and the annotation of sheep and cattle β-defensins appears to be incomplete in the genome. Importantly, real-time PCR analysis showed that 17 β-defensins are expressed in the small intestine with abundant cBD1s expression. These findings significant increased our knowledge of ruminant β-defensin and provided useful information for genetic studies, as well as providing a foundation for future research exploring the role of defensins in the immune response.
Collapse
Affiliation(s)
- Long Zhang
- Jiangxi Academy of Agricultural Sciences, Nanchang 330200, Jiangxi, China; Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, Sichuan, China
| | - Haihong Xiao
- Jiangxi Academy of Agricultural Sciences, Nanchang 330200, Jiangxi, China
| | - Jian Huang
- Jiangxi Academy of Agricultural Sciences, Nanchang 330200, Jiangxi, China
| | - Linghua Ouyang
- Jiangxi Academy of Agricultural Sciences, Nanchang 330200, Jiangxi, China.
| | - Siming Li
- Jiangxi Academy of Agricultural Sciences, Nanchang 330200, Jiangxi, China
| | - Yanqiang Tang
- Jiangxi Academy of Agricultural Sciences, Nanchang 330200, Jiangxi, China
| |
Collapse
|
44
|
Upadhyay M, Derks MFL, Andersson G, Medugorac I, Groenen MAM, Crooijmans RPMA. Introgression contributes to distribution of structural variations in cattle. Genomics 2021; 113:3092-3102. [PMID: 34242710 DOI: 10.1016/j.ygeno.2021.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/24/2021] [Accepted: 07/03/2021] [Indexed: 11/19/2022]
Abstract
Structural variations (SVs) are an important source of phenotypic diversity in cattle. Here, 72 whole genome sequences representing taurine and zebu cattle were used to identify SVs. Applying multiple approaches, 16,738 SVs were identified. A comparison against the Database of Genomic Variants archives revealed that 1575 SVs were novel in our data. A novel duplication covering the entire GALNT15 gene, was observed only in N'Dama. A duplication, which was previously reported only in zebu and associated with navel length, was also observed in N'Dama. Investigation of a novel deletion located upstream of CAST13 gene and identified only in Italian cattle and zebu, revealed its introgressed origin in the former. Overall, our data highlights how the SVs distribution in cattle is also shaped by forces such as demographical differences and gene flow. The cattle SVs of this study and its meta-data can be visualized on an interactive genome browser at https://tinyurl.com/svCowArs.
Collapse
Affiliation(s)
- Maulik Upadhyay
- Animal Breeding and Genomics, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands; Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden; Population Genomics Group, Department of Veterinary Sciences, Ludwig-Maximilians-University Munich, 80539 Munich, Germany.
| | - Martijn F L Derks
- Animal Breeding and Genomics, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands.
| | - Göran Andersson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden.
| | - Ivica Medugorac
- Population Genomics Group, Department of Veterinary Sciences, Ludwig-Maximilians-University Munich, 80539 Munich, Germany.
| | - Martien A M Groenen
- Animal Breeding and Genomics, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands.
| | - Richard P M A Crooijmans
- Animal Breeding and Genomics, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands.
| |
Collapse
|
45
|
Chebii VJ, Mpolya EA, Muchadeyi FC, Domelevo Entfellner JB. Genomics of Adaptations in Ungulates. Animals (Basel) 2021; 11:1617. [PMID: 34072591 PMCID: PMC8230064 DOI: 10.3390/ani11061617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 11/16/2022] Open
Abstract
Ungulates are a group of hoofed animals that have long interacted with humans as essential sources of food, labor, clothing, and transportation. These consist of domesticated, feral, and wild species raised in a wide range of habitats and biomes. Given the diverse and extreme environments inhabited by ungulates, unique adaptive traits are fundamental for fitness. The documentation of genes that underlie their genomic signatures of selection is crucial in this regard. The increasing availability of advanced sequencing technologies has seen the rapid growth of ungulate genomic resources, which offers an exceptional opportunity to understand their adaptive evolution. Here, we summarize the current knowledge on evolutionary genetic signatures underlying the adaptations of ungulates to different habitats.
Collapse
Affiliation(s)
- Vivien J. Chebii
- School of Life Science and Bioengineering, Nelson Mandela Africa Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania;
- Biosciences Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709, Nairobi 00100, Kenya;
| | - Emmanuel A. Mpolya
- School of Life Science and Bioengineering, Nelson Mandela Africa Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania;
| | - Farai C. Muchadeyi
- Agricultural Research Council Biotechnology Platform (ARC-BTP), Private Bag X5, Onderstepoort 0110, South Africa;
| | - Jean-Baka Domelevo Entfellner
- Biosciences Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709, Nairobi 00100, Kenya;
| |
Collapse
|
46
|
Fang Y, Hao X, Xu Z, Sun H, Zhao Q, Cao R, Zhang Z, Ma P, Sun Y, Qi Z, Wei Q, Wang Q, Pan Y. Genome-Wide Detection of Runs of Homozygosity in Laiwu Pigs Revealed by Sequencing Data. Front Genet 2021; 12:629966. [PMID: 33995477 PMCID: PMC8116706 DOI: 10.3389/fgene.2021.629966] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
Laiwu pigs, distinguished by their high intramuscular fat of 7-9%, is an indigenous pig breed of China, and recent studies also found that Laiwu pigs showed high resistance to Porcine circovirus type 2. However, with the introduction of commercial varieties, the population of Laiwu pigs has declined, and some lineages have disappeared, which could result in inbreeding. Runs of homozygosity (ROH) can be used as a good measure of individual inbreeding status and is also normally used to detect selection signatures so as to map the candidate genes associated with economically important traits. In this study, we used data from Genotyping by Genome Reducing and Sequencing to investigate the number, length, coverage, and distribution patterns of ROH in 93 Chinese Laiwu pigs and identified genomic regions with a high ROH frequency. The average inbreeding coefficient calculated by pedigree was 0.021, whereas that estimated by all detected ROH segments was 0.133. Covering 13.4% of the whole genome, a total of 7,508 ROH segments longer than 1 Mb were detected, whose average length was 3.76 Mb, and short segments (1-5 Mb) dominated. For individuals, the coverage was in the range between 0.56 and 36.86%. For chromosomes, SSC6 had the largest number (n = 688), and the number of ROH in SSC12 was the lowest (n = 215). Thirteen ROH islands were detected in our study, and 86 genes were found within those regions. Some of these genes were correlated with economically important traits, such as meat quality (ECI1, LRP12, NDUFA4L2, GIL1, and LYZ), immunity capacity (IL23A, STAT2, STAT6, TBK1, IFNG, and ITH2), production (DCSTAMP, RDH16, and GDF11), and reproduction (ODF1 and CDK2). A total of six significant Gene Ontology terms and nine significant Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were identified, most of which were correlated with disease resistance and biosynthesis processes, and one KEGG pathway was related to lipid metabolism. In addition, we aligned all of the ROH islands to the pig quantitative trait loci (QTL) database and finally found eight QTL related to the intramuscular fat trait. These results may help us understand the characteristics of Laiwu pigs and provide insight for future breeding strategies.
Collapse
Affiliation(s)
- Yifei Fang
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyu Hao
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhong Xu
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Sun
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qingbo Zhao
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Cao
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhe Zhang
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Peipei Ma
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | - Qishan Wang
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yuchun Pan
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
47
|
Chen L, Pryce JE, Hayes BJ, Daetwyler HD. Investigating the Effect of Imputed Structural Variants from Whole-Genome Sequence on Genome-Wide Association and Genomic Prediction in Dairy Cattle. Animals (Basel) 2021; 11:ani11020541. [PMID: 33669735 PMCID: PMC7922624 DOI: 10.3390/ani11020541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Structural variants are large changes to the DNA sequences that differ from individual to individual. We discovered and quality-controlled a set of 24,908 structural variants and used a technique called imputation to infer them into 35,588 Holstein and Jersey cattle. We then investigated whether the structural variants affected key dairy cattle traits such as milk production, fertility and overall conformation. Structural variants explained generally less than 10 percent of the phenotypic variation in these traits. Four of the structural variants were significantly associated with dairy cattle production traits. However, the inclusion of the structural variants in the genomic prediction model did not increase genomic prediction accuracy. Abstract Structural variations (SVs) are large DNA segments of deletions, duplications, copy number variations, inversions and translocations in a re-sequenced genome compared to a reference genome. They have been found to be associated with several complex traits in dairy cattle and could potentially help to improve genomic prediction accuracy of dairy traits. Imputation of SVs was performed in individuals genotyped with single-nucleotide polymorphism (SNP) panels without the expense of sequencing them. In this study, we generated 24,908 high-quality SVs in a total of 478 whole-genome sequenced Holstein and Jersey cattle. We imputed 4489 SVs with R2 > 0.5 into 35,568 Holstein and Jersey dairy cattle with 578,999 SNPs with two pipelines, FImpute and Eagle2.3-Minimac3. Genome-wide association studies for production, fertility and overall type with these 4489 SVs revealed four significant SVs, of which two were highly linked to significant SNP. We also estimated the variance components for SNP and SV models for these traits using genomic best linear unbiased prediction (GBLUP). Furthermore, we assessed the effect on genomic prediction accuracy of adding SVs to GBLUP models. The estimated percentage of genetic variance captured by SVs for production traits was up to 4.57% for milk yield in bulls and 3.53% for protein yield in cows. Finally, no consistent increase in genomic prediction accuracy was observed when including SVs in GBLUP.
Collapse
Affiliation(s)
- Long Chen
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (L.C.); (J.E.P.); (B.J.H.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Jennie E. Pryce
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (L.C.); (J.E.P.); (B.J.H.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Ben J. Hayes
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (L.C.); (J.E.P.); (B.J.H.)
- Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, The University of Queensland, St. Lucia, QLD 4067, Australia
| | - Hans D. Daetwyler
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (L.C.); (J.E.P.); (B.J.H.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
- Correspondence:
| |
Collapse
|
48
|
Naji MM, Utsunomiya YT, Sölkner J, Rosen BD, Mészáros G. Investigation of ancestral alleles in the Bovinae subfamily. BMC Genomics 2021; 22:108. [PMID: 33557747 PMCID: PMC7871596 DOI: 10.1186/s12864-021-07412-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/27/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND In evolutionary theory, divergence and speciation can arise from long periods of reproductive isolation, genetic mutation, selection and environmental adaptation. After divergence, alleles can either persist in their initial state (ancestral allele - AA), co-exist or be replaced by a mutated state (derived alleles -DA). In this study, we aligned whole genome sequences of individuals from the Bovinae subfamily to the cattle reference genome (ARS.UCD-1.2) for defining ancestral alleles necessary for selection signatures study. RESULTS Accommodating independent divergent of each lineage from the initial ancestral state, AA were defined based on fixed alleles on at least two groups of yak, bison and gayal-gaur-banteng resulting in ~ 32.4 million variants. Using non-overlapping scanning windows of 10 Kb, we counted the AA observed within taurine and zebu cattle. We focused on the extreme points, regions with top 0. 1% (high count) and regions without any occurrence of AA (null count). High count regions preserved gene functions from ancestral states that are still beneficial in the current condition, while null counts regions were linked to mutated ones. For both cattle, high count regions were associated with basal lipid metabolism, essential for survival of various environmental pressures. Mutated regions were associated to productive traits in taurine, i.e. higher metabolism, cell development and behaviors and in immune response domain for zebu. CONCLUSIONS Our findings suggest that retaining and losing AA in some regions are varied and made it species-specific with possibility of overlapping as it depends on the selective pressure they had to experience.
Collapse
Affiliation(s)
- Maulana M. Naji
- University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Yuri T. Utsunomiya
- São Paulo State University (Unesp), School of Veterinary Medicine, Department of Production and Animal Health, Araçatuba, São Paulo Brazil
- International Atomic Energy Agency (IAEA) Collaborating Centre on Animal Genomics and Bioinformatics, Araçatuba, São Paulo Brazil
- AgroPartners Consulting. R. Floriano Peixoto, 120-Sala 43A-Centro, Araçatuba, SP 16010-220 Brazil
- Personal-PEC. R. Sebastiao Lima, 1336-Centro, Campo Grande, MS 79004-600 Brazil
| | - Johann Sölkner
- University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | | | - Gábor Mészáros
- University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
49
|
Huang Y, Li Y, Wang X, Yu J, Cai Y, Zheng Z, Li R, Zhang S, Chen N, Asadollahpour Nanaei H, Hanif Q, Chen Q, Fu W, Li C, Cao X, Zhou G, Liu S, He S, Li W, Chen Y, Chen H, Lei C, Liu M, Jiang Y. An atlas of CNV maps in cattle, goat and sheep. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1747-1764. [PMID: 33486588 DOI: 10.1007/s11427-020-1850-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/16/2020] [Indexed: 11/26/2022]
Abstract
Copy number variation (CNV) is the most prevalent type of genetic structural variation that has been recognized as an important source of phenotypic variation in humans, animals and plants. However, the mechanisms underlying the evolution of CNVs and their function in natural or artificial selection remain unknown. Here, we generated CNV region (CNVR) datasets which were diverged or shared among cattle, goat, and sheep, including 886 individuals from 171 diverse populations. Using 9 environmental factors for genome-wide association study (GWAS), we identified a series of candidate CNVRs, including genes relating to immunity, tick resistance, multi-drug resistance, and muscle development. The number of CNVRs shared between species is significantly higher than expected (P<0.00001), and these CNVRs may be more persist than the single nucleotide polymorphisms (SNPs) shared between species. We also identified genomic regions under long-term balancing selection and uncovered the potential diversity of the selected CNVRs close to the important functional genes. This study provides the evidence that balancing selection might be more common in mammals than previously considered, and might play an important role in the daily activities of these ruminant species.
Collapse
Affiliation(s)
- Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yunjia Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xihong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Jiantao Yu
- College of Information Engineering, Northwest A&F University, Yangling, 712100, China
| | - Yudong Cai
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Zhuqing Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Ran Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Shunjin Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Ningbo Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | | | - Quratulain Hanif
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, 577, Pakistan
- Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, 45650, Islamabad, Pakistan
| | - Qiuming Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Weiwei Fu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Chao Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiukai Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Guangxian Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Shudong Liu
- College of Information Engineering, Northwest A&F University, Yangling, 712100, China
| | - Sangang He
- Key Laboratory of Genetics Breeding and Reproduction of Grass feeding Livestock, Ministry of Agriculture, Biotechnology Research Institute, Xinjiang Academy of Animal Sciences, Urumqi, 830026, China
| | - Wenrong Li
- Key Laboratory of Genetics Breeding and Reproduction of Grass feeding Livestock, Ministry of Agriculture, Biotechnology Research Institute, Xinjiang Academy of Animal Sciences, Urumqi, 830026, China
| | - Yulin Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Mingjun Liu
- Key Laboratory of Genetics Breeding and Reproduction of Grass feeding Livestock, Ministry of Agriculture, Biotechnology Research Institute, Xinjiang Academy of Animal Sciences, Urumqi, 830026, China
| | - Yu Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
50
|
Berton MP, de Antunes Lemos MV, Seleguim Chud TC, Bonvino Stafuzza N, Kluska S, Amorim ST, Silva Ferlin Lopes L, Cravo Pereira AS, Bickhart D, Liu G, Galvão de Albuquerque L, Baldi F. Genome-wide association study between copy number variation regions and carcass- and meat-quality traits in Nellore cattle. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an20275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Context
Indicine breeds are the main source of beef products in tropical and subtropical regions. However, genetic improvement for carcass- and meat-quality traits in zebu cattle have been limited and genomics studies concerning structural variations that influence these traits are essential.
Aim
The aim of this study was to perform a genome-wide association study between copy number variation regions (CNVRs) and carcass- and meat quality-traits in Nellore cattle.
Methods
In total, 3794 animals, males and females included, were genotyped using a 777962 single-nucleotide polymorphism platform of BovineHD BeadChip (777k; Illumina Inc.). Of these, 1751 Nellore bulls were slaughtered at 24 months of age for further carcass beef analysis. The following traits were studied: beef tenderness, marbling, rib-eye area, backfat thickness and meat colour (lightness, redness and yellowness). The CNV detection was conducted through PennCNV software. The association analyses were performed using CNVRuler software.
Key results
Several identified genomic regions were linked to quantitative trait loci associated with fat deposition (FABP7) and lipid metabolism (PPARA; PLA2 family; BCHE), extracellular matrix (INS; COL10A1), contraction (SLC34A3; TRDN) and muscle development (CAPZP). The gene-enrichment analyses highlighted biological mechanisms directly related to the metabolism and synthesis of lipids and fatty acids.
Conclusions
The large number of potential candidate genes identified within the CNVRs, as well as the functions and pathways identified, should help better elucidate the genetic mechanisms involved in the expression of beef and carcass traits in Nellore cattle. Several CNVRs harboured genes that might have a functional impact to improve the beef and carcass traits.
Implications
The results obtained contribute to upgrade the sensorial and organoleptic attributes of Nellore cattle and make feasible the genetic improvement of carcass- and meat-quality traits.
Collapse
|