1
|
Choquet K, Patop IL, Churchman LS. The regulation and function of post-transcriptional RNA splicing. Nat Rev Genet 2025; 26:378-394. [PMID: 40217094 DOI: 10.1038/s41576-025-00836-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2025] [Indexed: 05/23/2025]
Abstract
Eukaryotic RNA transcripts undergo extensive processing before becoming functional messenger RNAs, with splicing being a critical and highly regulated step that occurs both co-transcriptionally and post-transcriptionally. Recent analyses have revealed, with unprecedented spatial and temporal resolution, that up to 40% of mammalian introns are retained after transcription termination and are subsequently removed largely while transcripts remain chromatin-associated. Post-transcriptional splicing has emerged as a key layer of gene expression regulation during development, stress response and disease progression. The control of post-transcriptional splicing regulates protein production through delayed splicing and nuclear export, or nuclear retention and degradation of specific transcript isoforms. Here, we review current methodologies for detecting post-transcriptional splicing, discuss the mechanisms controlling the timing of splicing and examine how this temporal regulation affects gene expression programmes in healthy cells and in disease states.
Collapse
Affiliation(s)
- Karine Choquet
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Ines L Patop
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - L Stirling Churchman
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Choquet K, Chaumont LP, Bache S, Baxter-Koenigs AR, Churchman LS. Genetic regulation of nascent RNA maturation revealed by direct RNA nanopore sequencing. Genome Res 2025; 35:712-724. [PMID: 39952678 PMCID: PMC12047268 DOI: 10.1101/gr.279203.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/31/2024] [Indexed: 02/17/2025]
Abstract
Quantitative trait loci analyses have revealed an important role for genetic variants in regulating alternative splicing (AS) and alternative cleavage and polyadenylation (APA) in humans. Yet, these studies are generally performed with mature mRNA, so they report on the outcome rather than the processes of RNA maturation and thus may overlook how variants directly modulate pre-mRNA processing. The order in which the many introns of a human gene are removed can substantially influence AS, while nascent RNA polyadenylation can affect RNA stability and decay. However, how splicing order and poly(A) tail length are regulated by genetic variation has never been explored. Here, we used direct RNA nanopore sequencing to investigate allele-specific pre-mRNA maturation in 12 human lymphoblastoid cell lines. We find frequent splicing order differences between alleles and uncover significant single-nucleotide polymorphism (SNP)-splicing order associations in 17 genes. This includes SNPs located in or near splice sites as well as more distal intronic and exonic SNPs. Moreover, several genes showed allele-specific poly(A) tail lengths, many of which also have a skewed allelic abundance ratio. HLA class I transcripts, which encode proteins that play an essential role in antigen presentation, show the most allele-specific splicing orders, which frequently co-occur with allele-specific AS, APA, or poly(A) tail length differences. Together, our results expose new layers of genetic regulation of pre-mRNA maturation and highlight the power of long-read RNA sequencing for allele-specific analyses.
Collapse
Affiliation(s)
- Karine Choquet
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke J1E 4K8, Canada;
- Research Centre on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke J1H 2J7, Canada
| | - Louis-Philippe Chaumont
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke J1E 4K8, Canada
- Research Centre on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke J1H 2J7, Canada
| | - Simon Bache
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke J1E 4K8, Canada
- Research Centre on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke J1H 2J7, Canada
| | | | - L Stirling Churchman
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
3
|
Biayna J, Dumbović G. Decoding subcellular RNA localization one molecule at a time. Genome Biol 2025; 26:45. [PMID: 40033325 PMCID: PMC11874642 DOI: 10.1186/s13059-025-03507-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 02/13/2025] [Indexed: 03/05/2025] Open
Abstract
Eukaryotic cells are highly structured and composed of multiple membrane-bound and membraneless organelles. Subcellular RNA localization is a critical regulator of RNA function, influencing various biological processes. At any given moment, RNAs must accurately navigate the three-dimensional subcellular environment to ensure proper localization and function, governed by numerous factors, including splicing, RNA stability, modifications, and localizing sequences. Aberrant RNA localization can contribute to the development of numerous diseases. Here, we explore diverse RNA localization mechanisms and summarize advancements in methods for determining subcellular RNA localization, highlighting imaging techniques transforming our ability to study RNA dynamics at the single-molecule level.
Collapse
Affiliation(s)
- Josep Biayna
- Goethe University Frankfurt, Center for Molecular Medicine, Institute for Cardiovascular Regeneration, Frankfurt, Germany
| | - Gabrijela Dumbović
- Goethe University Frankfurt, Center for Molecular Medicine, Institute for Cardiovascular Regeneration, Frankfurt, Germany.
- Cardio-Pulmonary Institute (CPI), Goethe University, Frankfurt, Frankfurt, Germany.
- German Center of Cardiovascular Research (DZHK), Partner Site Rhein/Main, Frankfurt, Germany.
| |
Collapse
|
4
|
Mick S, Carroll C, Uriostegui-Arcos M, Fiszbein A. Hybrid exons evolved by coupling transcription initiation and splicing at the nucleotide level. Nucleic Acids Res 2025; 53:gkae1251. [PMID: 39739742 PMCID: PMC11797052 DOI: 10.1093/nar/gkae1251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/27/2024] [Accepted: 12/05/2024] [Indexed: 01/02/2025] Open
Abstract
Exons within transcripts are traditionally classified as first, internal or last exons, each governed by different regulatory mechanisms. We recently described the widespread usage of 'hybrid' exons that serve as terminal or internal exons in different transcripts. Here, we employ an interpretable deep learning pipeline to dissect the sequence features governing the co-regulation of transcription initiation and splicing in hybrid exons. Using ENCODE data from human tissues, we identified 80 000 hybrid first-internal exons. These exons often possess a relaxed chromatin state, allowing transcription initiation within the gene body. Interestingly, transcription start sites of hybrid exons are typically centered at the 3' splice site, suggesting tight coupling between splicing and transcription initiation. We identified two subcategories of hybrid exons: the majority resemble internal exons, maintaining strong 3' splice sites, while a minority show enrichment in promoter elements, resembling first exons. Diving into the evolution of their sequences, we found that human hybrid exons with orthologous first exons in other species usually gained 3' splice sites or whole exons upstream, while those with orthologous internal exons often gained promoter elements. Overall, our findings unveil the intricate regulatory landscape of hybrid exons and reveal stronger connections between transcription initiation and RNA splicing than previously acknowledged.
Collapse
Affiliation(s)
- Steven T Mick
- Biology Department, Boston University, 24 Cummington Ave., Boston, 02215, USA
| | - Christine L Carroll
- Biology Department, Boston University, 24 Cummington Ave., Boston, 02215, USA
| | | | - Ana Fiszbein
- Biology Department, Boston University, 24 Cummington Ave., Boston, 02215, USA
- Computing & Data Sciences, Boston University, 665 Commonwealth Ave., Boston, 02215, USA
| |
Collapse
|
5
|
Daoud A, Ben-Hur A. The role of chromatin state in intron retention: A case study in leveraging large scale deep learning models. PLoS Comput Biol 2025; 21:e1012755. [PMID: 39792954 PMCID: PMC11756788 DOI: 10.1371/journal.pcbi.1012755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 01/23/2025] [Accepted: 12/30/2024] [Indexed: 01/12/2025] Open
Abstract
Complex deep learning models trained on very large datasets have become key enabling tools for current research in natural language processing and computer vision. By providing pre-trained models that can be fine-tuned for specific applications, they enable researchers to create accurate models with minimal effort and computational resources. Large scale genomics deep learning models come in two flavors: the first are large language models of DNA sequences trained in a self-supervised fashion, similar to the corresponding natural language models; the second are supervised learning models that leverage large scale genomics datasets from ENCODE and other sources. We argue that these models are the equivalent of foundation models in natural language processing in their utility, as they encode within them chromatin state in its different aspects, providing useful representations that allow quick deployment of accurate models of gene regulation. We demonstrate this premise by leveraging the recently created Sei model to develop simple, interpretable models of intron retention, and demonstrate their advantage over models based on the DNA language model DNABERT-2. Our work also demonstrates the impact of chromatin state on the regulation of intron retention. Using representations learned by Sei, our model is able to discover the involvement of transcription factors and chromatin marks in regulating intron retention, providing better accuracy than a recently published custom model developed for this purpose.
Collapse
Affiliation(s)
- Ahmed Daoud
- Department of Computer Science, Colorado State University, Fort Collins, Colorado, United States of America
| | - Asa Ben-Hur
- Department of Computer Science, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
6
|
Marceca GP, Romano G, Acunzo M, Nigita G. ncRNA Editing: Functional Characterization and Computational Resources. Methods Mol Biol 2025; 2883:455-495. [PMID: 39702721 DOI: 10.1007/978-1-0716-4290-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Non-coding RNAs (ncRNAs) play crucial roles in gene expression regulation, translation, and disease development, including cancer. They are classified by size in short and long non-coding RNAs. This chapter focuses on the functional implications of adenosine-to-inosine (A-to-I) RNA editing in both short (e.g., miRNAs) and long ncRNAs. RNA editing dynamically alters the sequence and structure of primary transcripts, impacting ncRNA biogenesis and function. Notable findings include the role of miRNA editing in promoting glioblastoma invasiveness, characterizing RNA editing hotspots across cancers, and its implications in thyroid cancer and ischemia. This chapter also highlights bioinformatics resources and next-generation sequencing (NGS) technologies that enable comprehensive ncRNAome studies and genome-wide RNA editing detection. Dysregulation of RNA editing machinery has been linked to various human diseases, emphasizing the potential of RNA editing as a biomarker and therapeutic target. This overview integrates current knowledge and computational tools for studying ncRNA editing, providing insights into its biological significance and clinical applications.
Collapse
Affiliation(s)
| | - Giulia Romano
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Mario Acunzo
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
7
|
Yang S, Li D. The role of circRNA in breast cancer drug resistance. PeerJ 2024; 12:e18733. [PMID: 39713143 PMCID: PMC11662897 DOI: 10.7717/peerj.18733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024] Open
Abstract
Among women with cancer, breast cancer has surpassed lung cancer to become the most prevalent type of cancer globally. High-throughput sequencing of breast cancer tissues from many patients has revealed significant variations in circRNA expression across different types of breast cancer. Chemotherapy is currently a very important method for treating breast cancer; however, as the number of chemotherapy sessions increases and considering factors such as the patient's immune response, drug resistance has become a challenging issue in treating breast cancer. It is well known that drug resistance is associated with multiple factors, and different resistance mechanisms involve different roles of circRNA. This review consolidates literature from the past 5 years and addresses the shortcomings in the broad description of circRNA's role in breast cancer drug resistance. It categorizes and describes the drug resistance and its mechanisms in different types of breast cancer, as well as the roles of circRNA and signaling pathways in drug resistance.
Collapse
Affiliation(s)
- Shaofeng Yang
- Inner Mongolia Medical University Hospital, Hohhot, China
| | - Donghai Li
- Inner Mongolia Medical University Hospital, Hohhot, China
| |
Collapse
|
8
|
Feng P, Tian Y, Chen W. Inferring causal relationships among histone modifications in exon skipping event. Methods 2024; 232:89-95. [PMID: 39528091 DOI: 10.1016/j.ymeth.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
Alternative splicing is a crucial process of gene expression. Over 90% multi-exonic genes in human genome undergo alternative splicing. Although the splicing code has been proposed, it still couldn't satisfactorily explain the tissue-specific alternative splicing. Results of co-transcriptional RNA processing analysis demonstrated that, except for trans- and cis-acting elements, histone modifications also play a role in alternative splicing. In the present work, we analyzed the associations among 27 kinds of histone modifications in H1 human embryonic stem cell. In order to illustrate the casual relationships between histone modification and alternative splicing, we built the Bayesian network and validated its robustness by using cross validation test. In addition to the combinatorial patterns, distinct histone modification patterns were also observed in the alternative spliced exons and surrounding intron regions, indicating that histone modifications could substantially mark alternative splicing.
Collapse
Affiliation(s)
- Pengmian Feng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yuanfang Tian
- School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China
| | - Wei Chen
- School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China
| |
Collapse
|
9
|
Merens HE, Choquet K, Baxter-Koenigs AR, Churchman LS. Timing is everything: advances in quantifying splicing kinetics. Trends Cell Biol 2024; 34:968-981. [PMID: 38777664 DOI: 10.1016/j.tcb.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 05/25/2024]
Abstract
Splicing is a highly regulated process critical for proper pre-mRNA maturation and the maintenance of a healthy cellular environment. Splicing events are impacted by ongoing transcription, neighboring splicing events, and cis and trans regulatory factors on the respective pre-mRNA transcript. Within this complex regulatory environment, splicing kinetics have the potential to influence splicing outcomes but have historically been challenging to study in vivo. In this review, we highlight recent technological advancements that have enabled measurements of global splicing kinetics and of the variability of splicing kinetics at single introns. We demonstrate how identifying features that are correlated with splicing kinetics has increased our ability to form potential models for how splicing kinetics may be regulated in vivo.
Collapse
Affiliation(s)
- Hope E Merens
- Harvard University, Department of Genetics, Boston, MA, USA
| | - Karine Choquet
- University of Sherbrooke, Department of Biochemistry and Functional Genomics, Sherbrooke, Québec, Canada
| | | | | |
Collapse
|
10
|
Verstappe B, Scott CL. Implementing distinct spatial proteogenomic technologies: opportunities, challenges, and key considerations. Clin Exp Immunol 2024; 218:151-162. [PMID: 39133142 PMCID: PMC11482502 DOI: 10.1093/cei/uxae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/11/2024] [Accepted: 08/09/2024] [Indexed: 08/13/2024] Open
Abstract
Our ability to understand the cellular complexity of tissues has been revolutionized in recent years with significant advances in proteogenomic technologies including those enabling spatial analyses. This has led to numerous consortium efforts, such as the human cell atlas initiative which aims to profile all cells in the human body in healthy and diseased contexts. The availability of such information will subsequently lead to the identification of novel biomarkers of disease and of course therapeutic avenues. However, before such an atlas of any given healthy or diseased tissue can be generated, several factors should be considered including which specific techniques are optimal for the biological question at hand. In this review, we aim to highlight some of the considerations we believe to be important in the experimental design and analysis process, with the goal of helping to navigate the rapidly changing landscape of technologies available.
Collapse
Affiliation(s)
- Bram Verstappe
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium
| | - Charlotte L Scott
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Castletroy, Co. Limerick, Ireland
| |
Collapse
|
11
|
Carrocci TJ, Neugebauer KM. Emerging and re-emerging themes in co-transcriptional pre-mRNA splicing. Mol Cell 2024; 84:3656-3666. [PMID: 39366353 PMCID: PMC11463726 DOI: 10.1016/j.molcel.2024.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/08/2024] [Accepted: 08/30/2024] [Indexed: 10/06/2024]
Abstract
Proper gene expression requires the collaborative effort of multiple macromolecular machines to produce functional messenger RNA. As RNA polymerase II (RNA Pol II) transcribes DNA, the nascent pre-messenger RNA is heavily modified by other complexes such as 5' capping enzymes, the spliceosome, the cleavage, and polyadenylation machinery as well as RNA-modifying/editing enzymes. Recent evidence has demonstrated that pre-mRNA splicing and 3' end cleavage can occur on similar timescales as transcription and significantly cross-regulate. In this review, we discuss recent advances in co-transcriptional processing and how it contributes to gene regulation. We highlight how emerging areas-including coordinated splicing events, physical interactions between the RNA synthesis and modifying machinery, rapid and delayed splicing, and nuclear organization-impact mRNA isoforms. Coordination among RNA-processing choices yields radically different mRNA and protein products, foreshadowing the likely regulatory importance of co-transcriptional RNA folding and co-transcriptional modifications that have yet to be characterized in detail.
Collapse
Affiliation(s)
- Tucker J Carrocci
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
12
|
Gallardo-Dodd CJ, Kutter C. The regulatory landscape of interacting RNA and protein pools in cellular homeostasis and cancer. Hum Genomics 2024; 18:109. [PMID: 39334294 PMCID: PMC11437681 DOI: 10.1186/s40246-024-00678-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024] Open
Abstract
Biological systems encompass intricate networks governed by RNA-protein interactions that play pivotal roles in cellular functions. RNA and proteins constituting 1.1% and 18% of the mammalian cell weight, respectively, orchestrate vital processes from genome organization to translation. To date, disentangling the functional fraction of the human genome has presented a major challenge, particularly for noncoding regions, yet recent discoveries have started to unveil a host of regulatory functions for noncoding RNAs (ncRNAs). While ncRNAs exist at different sizes, structures, degrees of evolutionary conservation and abundances within the cell, they partake in diverse roles either alone or in combination. However, certain ncRNA subtypes, including those that have been described or remain to be discovered, are poorly characterized given their heterogeneous nature. RNA activity is in most cases coordinated through interactions with RNA-binding proteins (RBPs). Extensive efforts are being made to accurately reconstruct RNA-RBP regulatory networks, which have provided unprecedented insight into cellular physiology and human disease. In this review, we provide a comprehensive view of RNAs and RBPs, focusing on how their interactions generate functional signals in living cells, particularly in the context of post-transcriptional regulatory processes and cancer.
Collapse
Affiliation(s)
- Carlos J Gallardo-Dodd
- Department of Microbiology, Tumor, and Cell Biology, Science for Life Laboratory, Karolinska Institute, Solna, Sweden
| | - Claudia Kutter
- Department of Microbiology, Tumor, and Cell Biology, Science for Life Laboratory, Karolinska Institute, Solna, Sweden.
| |
Collapse
|
13
|
Qian Y, Ye Y, Zhang W, Wu Q. Npac Regulates Pre-mRNA Splicing in Mouse Embryonic Stem Cells. Int J Mol Sci 2024; 25:10396. [PMID: 39408725 PMCID: PMC11477393 DOI: 10.3390/ijms251910396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
As a reader of tri-methylated lysine 36 on histone H3 (H3K36me3), Npac has been shown to have a significant role in gene transcription elongation. However, its potential implication in RNA splicing remains unknown. Here, we characterized the phenotypes of Npac knockout in mES cells. We discovered that loss of Npac disrupts pluripotency and identity in mESCs. We also found that Npac is associated with many cellular activities, including cell proliferation, differentiation, and transcription regulation. Notably, we uncovered that Npac is associated with RNA splicing machinery. Furthermore, we found that Npac regulates alternative splicing through its interaction with the splicing factors, including Srsf1. Our research thus highlights the important role of Npac in maintaining ESC identity through the regulation of pre-mRNA splicing.
Collapse
Affiliation(s)
- Yiwei Qian
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China;
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Ying Ye
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou 215123, China
| | - Wensheng Zhang
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou 215123, China
| | - Qiang Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| |
Collapse
|
14
|
Jeon Y, Lu Y, Ferrari MM, Channagiri T, Xu P, Meers C, Zhang Y, Balachander S, Park VS, Marsili S, Pursell ZF, Jonoska N, Storici F. RNA-mediated double-strand break repair by end-joining mechanisms. Nat Commun 2024; 15:7935. [PMID: 39261460 PMCID: PMC11390984 DOI: 10.1038/s41467-024-51457-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 08/07/2024] [Indexed: 09/13/2024] Open
Abstract
Double-strand breaks (DSBs) in DNA are challenging to repair. Cells employ at least three DSB-repair mechanisms, with a preference for non-homologous end joining (NHEJ) over homologous recombination (HR) and microhomology-mediated end joining (MMEJ). While most eukaryotic DNA is transcribed into RNA, providing complementary genetic information, much remains unknown about the direct impact of RNA on DSB-repair outcomes and its role in DSB-repair via end joining. Here, we show that both sense and antisense-transcript RNAs impact DSB repair in a sequence-specific manner in wild-type human and yeast cells. Depending on its sequence complementarity with the broken DNA ends, a transcript RNA can promote repair of a DSB or a double-strand gap in its DNA gene via NHEJ or MMEJ, independently from DNA synthesis. The results demonstrate a role of transcript RNA in directing the way DSBs are repaired in DNA, suggesting that RNA may directly modulate genome stability and evolution.
Collapse
Affiliation(s)
- Youngkyu Jeon
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Molecular Targets Program, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Fredrick, MD, USA
| | - Yilin Lu
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Margherita Maria Ferrari
- Department of Mathematics and Statistics, University of South Florida, Tampa, FL, USA
- Department of Mathematics, University of Manitoba, Winnipeg, MB, Canada
| | - Tejasvi Channagiri
- Department of Mathematics and Statistics, University of South Florida, Tampa, FL, USA
| | - Penghao Xu
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Chance Meers
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Columbia University Irving Medical Center, New York, NY, USA
| | - Yiqi Zhang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Program for Lung and Vascular Biology, Section for Injury Repair and Regeneration Research, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sathya Balachander
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Emory University, Atlanta, GA, USA
| | - Vivian S Park
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University of Medicine, New Orleans, LA, USA
| | - Stefania Marsili
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Zachary F Pursell
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University of Medicine, New Orleans, LA, USA
| | - Nataša Jonoska
- Department of Mathematics and Statistics, University of South Florida, Tampa, FL, USA.
| | - Francesca Storici
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
15
|
Giudice J, Jiang H. Splicing regulation through biomolecular condensates and membraneless organelles. Nat Rev Mol Cell Biol 2024; 25:683-700. [PMID: 38773325 PMCID: PMC11843573 DOI: 10.1038/s41580-024-00739-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/23/2024]
Abstract
Biomolecular condensates, sometimes also known as membraneless organelles (MLOs), can form through weak multivalent intermolecular interactions of proteins and nucleic acids, a process often associated with liquid-liquid phase separation. Biomolecular condensates are emerging as sites and regulatory platforms of vital cellular functions, including transcription and RNA processing. In the first part of this Review, we comprehensively discuss how alternative splicing regulates the formation and properties of condensates, and conversely the roles of biomolecular condensates in splicing regulation. In the second part, we focus on the spatial connection between splicing regulation and nuclear MLOs such as transcriptional condensates, splicing condensates and nuclear speckles. We then discuss key studies showing how splicing regulation through biomolecular condensates is implicated in human pathologies such as neurodegenerative diseases, different types of cancer, developmental disorders and cardiomyopathies, and conclude with a discussion of outstanding questions pertaining to the roles of condensates and MLOs in splicing regulation and how to experimentally study them.
Collapse
Affiliation(s)
- Jimena Giudice
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- McAllister Heart Institute, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Hao Jiang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
16
|
Choquet K, Chaumont LP, Bache S, Baxter-Koenigs AR, Churchman LS. Genetic regulation of nascent RNA maturation revealed by direct RNA nanopore sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610338. [PMID: 39257732 PMCID: PMC11383983 DOI: 10.1101/2024.08.29.610338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Quantitative trait loci analyses have revealed an important role for genetic variants in regulating alternative splicing (AS) and alternative cleavage and polyadenylation (APA) in humans. Yet, these studies are generally performed with mature mRNA, so they report on the outcome rather than the processes of RNA maturation and thus may overlook how variants directly modulate pre-mRNA processing. The order in which the many introns of a human gene are removed can substantially influence AS, while nascent RNA polyadenylation can affect RNA stability and decay. However, how splicing order and poly(A) tail length are regulated by genetic variation has never been explored. Here, we used direct RNA nanopore sequencing to investigate allele-specific pre-mRNA maturation in 12 human lymphoblastoid cell lines. We found frequent splicing order differences between alleles and uncovered significant single nucleotide polymorphism (SNP)-splicing order associations in 17 genes. This included SNPs located in or near splice sites as well as more distal intronic and exonic SNPs. Moreover, several genes showed allele-specific poly(A) tail lengths, many of which also had a skewed allelic abundance ratio. HLA class I transcripts, which encode proteins that play an essential role in antigen presentation, showed the most allele-specific splicing orders, which frequently co-occurred with allele-specific AS, APA or poly(A) tail length differences. Together, our results expose new layers of genetic regulation of pre-mRNA maturation and highlight the power of long-read RNA sequencing for allele-specific analyses.
Collapse
Affiliation(s)
- Karine Choquet
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Canada
- Research Centre on Aging, CIUSSS de l’Estrie-CHUS, Sherbrooke, Canada
| | - Louis-Philippe Chaumont
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Canada
- Research Centre on Aging, CIUSSS de l’Estrie-CHUS, Sherbrooke, Canada
| | - Simon Bache
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Canada
- Research Centre on Aging, CIUSSS de l’Estrie-CHUS, Sherbrooke, Canada
| | | | | |
Collapse
|
17
|
Downie Ruiz Velasco A, Parsons A, Heatley M, Martin AG, Smart A, Shah N, Jopling C. MicroRNA biogenesis is broadly disrupted by inhibition of the splicing factor SF3B1. Nucleic Acids Res 2024; 52:9210-9229. [PMID: 38884273 PMCID: PMC11347158 DOI: 10.1093/nar/gkae505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/03/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024] Open
Abstract
In animals, microRNA (miRNA) biogenesis begins with cotranscriptional cleavage of the primary (pri-)miRNA by the Microprocessor complex. Cotranscriptional splicing has been shown to influence Microprocessor cleavage when miRNAs are hosted in introns of protein-coding pri-miRNAs, but the impact of splicing on production of miRNAs hosted in long non-coding (lnc)RNAs is largely unknown. Here, we investigated the role of splicing in the biogenesis of miR-122, an lncRNA-hosted, highly expressed, medically important, liver-specific miRNA. We found that splicing inhibition by the SF3B1 inhibitor pladienolide B (PlaB) led to strong and rapid reduction in transcription of endogenous, but not plasmid-encoded, pri-miR-122, resulting in reduced production of mature miR-122. To allow detection of rapid changes in miRNA biogenesis despite the high stability of mature miRNAs, we used SLAMseq to globally quantify the effects of short-term splicing inhibition on miRNA synthesis. We observed an overall decrease in biogenesis of mature miRNAs following PlaB treatment. Surprisingly, miRNAs hosted in exons and introns were similarly affected. Together, this study provides new insights into the emerging role of splicing in transcription, demonstrating novel biological importance in promotion of miR-122 biogenesis from an lncRNA, and shows that SF3B1 is important for global miRNA biogenesis.
Collapse
Affiliation(s)
| | - Aimee L Parsons
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Matthew C Heatley
- The Digital Research Service, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Athena R G Martin
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Alfredo D Smart
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Niraj Shah
- The Digital Research Service, University of Nottingham, Nottingham, NG7 2RD, UK
| | | |
Collapse
|
18
|
Refael T, Sudman M, Golan G, Pnueli L, Naik S, Preger-Ben Noon E, Henn A, Kaplan A, Melamed P. An i-motif-regulated enhancer, eRNA and adjacent lncRNA affect Lhb expression through distinct mechanisms in a sex-specific context. Cell Mol Life Sci 2024; 81:361. [PMID: 39158745 PMCID: PMC11335282 DOI: 10.1007/s00018-024-05398-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/21/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Genome-wide studies have demonstrated regulatory roles for diverse non-coding elements, but their precise and interrelated functions have often remained enigmatic. Addressing the need for mechanistic insight, we studied their roles in expression of Lhb which encodes the pituitary gonadotropic hormone that controls reproduction. We identified a bi-directional enhancer in gonadotrope-specific open chromatin, whose functional eRNA (eRNA2) supports permissive chromatin at the Lhb locus. The central untranscribed region of the enhancer contains an iMotif (iM), and is bound by Hmgb2 which stabilizes the iM and directs transcription specifically towards the functional eRNA2. A distinct downstream lncRNA, associated with an inducible G-quadruplex (G4) and iM, also facilitates Lhb expression, following its splicing in situ. GnRH activates Lhb transcription and increased levels of all three RNAs, eRNA2 showing the highest response, while estradiol, which inhibits Lhb, repressed levels of eRNA2 and the lncRNA. The levels of these regulatory RNAs and Lhb mRNA correlate highly in female mice, though strikingly not in males, suggesting a female-specific function. Our findings, which shed new light on the workings of non-coding elements and non-canonical DNA structures, reveal novel mechanisms regulating transcription which have implications not only in the central control of reproduction but also for other inducible genes.
Collapse
Affiliation(s)
- Tal Refael
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Maya Sudman
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Gil Golan
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Lilach Pnueli
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Sujay Naik
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, 3109601, Israel
| | - Ella Preger-Ben Noon
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, 3109601, Israel
| | - Arnon Henn
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ariel Kaplan
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Philippa Melamed
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
19
|
Bohrer C, Varon E, Peretz E, Reinitz G, Kinor N, Halle D, Nissan A, Shav-Tal Y. CCAT1 lncRNA is chromatin-retained and post-transcriptionally spliced. Histochem Cell Biol 2024; 162:91-107. [PMID: 38763947 PMCID: PMC11227459 DOI: 10.1007/s00418-024-02294-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
Super-enhancers are unique gene expression regulators widely involved in cancer development. Spread over large DNA segments, they tend to be found next to oncogenes. The super-enhancer c-MYC locus forms long-range chromatin looping with nearby genes, which brings the enhancer and the genes into proximity, to promote gene activation. The colon cancer-associated transcript 1 (CCAT1) gene, which is part of the MYC locus, transcribes a lncRNA that is overexpressed in colon cancer cells through activation by MYC. Comparing different types of cancer cell lines using RNA fluorescence in situ hybridization (RNA FISH), we detected very prominent CCAT1 expression in HeLa cells, observed as several large CCAT1 nuclear foci. We found that dozens of CCAT1 transcripts accumulate on the gene locus, in addition to active transcription occurring from the gene. The accumulating transcripts are released from the chromatin during cell division. Examination of CCAT1 lncRNA expression patterns on the single-RNA level showed that unspliced CCAT1 transcripts are released from the gene into the nucleoplasm. Most of these unspliced transcripts were observed in proximity to the active gene but were not associated with nuclear speckles in which unspliced RNAs usually accumulate. At larger distances from the gene, the CCAT1 transcripts appeared spliced, implying that most CCAT1 transcripts undergo post-transcriptional splicing in the zone of the active gene. Finally, we show that unspliced CCAT1 transcripts can be detected in the cytoplasm during splicing inhibition, which suggests that there are several CCAT1 variants, spliced and unspliced, that the cell can recognize as suitable for export.
Collapse
Affiliation(s)
- Chaya Bohrer
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Eli Varon
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Eldar Peretz
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Gita Reinitz
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Noa Kinor
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - David Halle
- Biochemistry Laboratory, Samson Assuta Ashdod University Hospital, Ashdod, Israel
| | - Aviram Nissan
- Ziv Medical Center, Safed, Israel
- Surgical Innovation Laboratory, The Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Yaron Shav-Tal
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|
20
|
Aslanzadeh M, Stanicek L, Tarbier M, Mármol-Sánchez E, Biryukova I, Friedländer M. Malat1 affects transcription and splicing through distinct pathways in mouse embryonic stem cells. NAR Genom Bioinform 2024; 6:lqae045. [PMID: 38711862 PMCID: PMC11071118 DOI: 10.1093/nargab/lqae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/14/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024] Open
Abstract
Malat1 is a long-noncoding RNA with critical roles in gene regulation and cancer metastasis, however its functional role in stem cells is largely unexplored. We here perform a nuclear knockdown of Malat1 in mouse embryonic stem cells, causing the de-regulation of 320 genes and aberrant splicing of 90 transcripts, some of which potentially affecting the translated protein sequence. We find evidence that Malat1 directly interacts with gene bodies and aberrantly spliced transcripts, and that it locates upstream of down-regulated genes at their putative enhancer regions, in agreement with functional genomics data. Consistent with this, we find these genes affected at both exon and intron levels, suggesting that they are transcriptionally regulated by Malat1. Besides, the down-regulated genes are regulated by specific transcription factors and bear both activating and repressive chromatin marks, suggesting that some of them might be regulated by bivalent promoters. We propose a model in which Malat1 facilitates the transcription of genes involved in chromatid dynamics and mitosis in one pathway, and affects the splicing of transcripts that are themselves involved in RNA processing in a distinct pathway. Lastly, we compare our findings with Malat1 perturbation studies performed in other cell systems and in vivo.
Collapse
Affiliation(s)
- Morteza Aslanzadeh
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Laura Stanicek
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Marcel Tarbier
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Solna, Sweden
| | - Emilio Mármol-Sánchez
- Science for Life Laboratory and Center for Palaeogenetics. Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Inna Biryukova
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Marc R Friedländer
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| |
Collapse
|
21
|
Zeinelabdeen Y, Abaza T, Yasser MB, Elemam NM, Youness RA. MIAT LncRNA: A multifunctional key player in non-oncological pathological conditions. Noncoding RNA Res 2024; 9:447-462. [PMID: 38511054 PMCID: PMC10950597 DOI: 10.1016/j.ncrna.2024.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/27/2023] [Accepted: 01/14/2024] [Indexed: 03/22/2024] Open
Abstract
The discovery of non-coding RNAs (ncRNAs) has unveiled a wide range of transcripts that do not encode proteins but play key roles in several cellular and molecular processes. Long noncoding RNAs (lncRNAs) are specific class of ncRNAs that are longer than 200 nucleotides and have gained significant attention due to their diverse mechanisms of action and potential involvement in various pathological conditions. In the current review, the authors focus on the role of lncRNAs, specifically highlighting the Myocardial Infarction Associated Transcript (MIAT), in non-oncological context. MIAT is a nuclear lncRNA that has been directly linked to myocardial infarction and is reported to control post-transcriptional processes as a competitive endogenous RNA (ceRNA) molecule. It interacts with microRNAs (miRNAs), thereby limiting the translation and expression of their respective target messenger RNA (mRNA) and regulating protein expression. Yet, MIAT has been implicated in other numerous pathological conditions such as other cardiovascular diseases, autoimmune disease, neurodegenerative diseases, metabolic diseases, and many others. In this review, the authors emphasize that MIAT exhibits distinct expression patterns and functions across different pathological conditions and is emerging as potential diagnostic, prognostic, and therapeutic agent. Additionally, the authors highlight the regulatory role of MIAT and shed light on the involvement of lncRNAs and specifically MIAT in various non-oncological pathological conditions.
Collapse
Affiliation(s)
- Yousra Zeinelabdeen
- Molecular Genetics Research Team, Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo, 11835, Egypt
- Faculty of Medical Sciences/UMCG, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, the Netherlands
| | - Tasneem Abaza
- Molecular Genetics Research Team, Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo, 11835, Egypt
- Biotechnology and Biomolecular Biochemistry Program, Faculty of Science, Cairo University, Cairo, Egypt
| | - Montaser Bellah Yasser
- Bioinformatics Group, Center for Informatics Sciences (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt
| | - Noha M. Elemam
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Rana A. Youness
- Molecular Genetics Research Team, Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo, 11835, Egypt
| |
Collapse
|
22
|
Abulfaraj AA, Alshareef SA. Concordant Gene Expression and Alternative Splicing Regulation under Abiotic Stresses in Arabidopsis. Genes (Basel) 2024; 15:675. [PMID: 38927612 PMCID: PMC11202685 DOI: 10.3390/genes15060675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
The current investigation endeavors to identify differentially expressed alternatively spliced (DAS) genes that exhibit concordant expression with splicing factors (SFs) under diverse multifactorial abiotic stress combinations in Arabidopsis seedlings. SFs serve as the post-transcriptional mechanism governing the spatiotemporal dynamics of gene expression. The different stresses encompass variations in salt concentration, heat, intensive light, and their combinations. Clusters demonstrating consistent expression profiles were surveyed to pinpoint DAS/SF gene pairs exhibiting concordant expression. Through rigorous selection criteria, which incorporate alignment with documented gene functionalities and expression patterns observed in this study, four members of the serine/arginine-rich (SR) gene family were delineated as SFs concordantly expressed with six DAS genes. These regulated SF genes encompass cactin, SR1-like, SR30, and SC35-like. The identified concordantly expressed DAS genes encode diverse proteins such as the 26.5 kDa heat shock protein, chaperone protein DnaJ, potassium channel GORK, calcium-binding EF hand family protein, DEAD-box RNA helicase, and 1-aminocyclopropane-1-carboxylate synthase 6. Among the concordantly expressed DAS/SF gene pairs, SR30/DEAD-box RNA helicase, and SC35-like/1-aminocyclopropane-1-carboxylate synthase 6 emerge as promising candidates, necessitating further examinations to ascertain whether these SFs orchestrate splicing of the respective DAS genes. This study contributes to a deeper comprehension of the varied responses of the splicing machinery to abiotic stresses. Leveraging these DAS/SF associations shows promise for elucidating avenues for augmenting breeding programs aimed at fortifying cultivated plants against heat and intensive light stresses.
Collapse
Affiliation(s)
- Aala A. Abulfaraj
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Sahar A. Alshareef
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21921, Saudi Arabia;
| |
Collapse
|
23
|
Sharma S, Fazal FM. Localization of RNAs to the mitochondria-mechanisms and functions. RNA (NEW YORK, N.Y.) 2024; 30:597-608. [PMID: 38448244 PMCID: PMC11098466 DOI: 10.1261/rna.079999.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
The mammalian mitochondrial proteome comprises over 1000 proteins, with the majority translated from nuclear-encoded messenger RNAs (mRNAs). Mounting evidence suggests many of these mRNAs are localized to the outer mitochondrial membrane (OMM) in a pre- or cotranslational state. Upon reaching the mitochondrial surface, these mRNAs are locally translated to produce proteins that are cotranslationally imported into mitochondria. Here, we summarize various mechanisms cells use to localize RNAs, including transfer RNAs (tRNAs), to the OMM and recent technological advancements in the field to study these processes. While most early studies in the field were carried out in yeast, recent studies reveal RNA localization to the OMM and their regulation in higher organisms. Various factors regulate this localization process, including RNA sequence elements, RNA-binding proteins (RBPs), cytoskeletal motors, and translation machinery. In this review, we also highlight the role of RNA structures and modifications in mitochondrial RNA localization and discuss how these features can alter the binding properties of RNAs. Finally, in addition to RNAs related to mitochondrial function, RNAs involved in other cellular processes can also localize to the OMM, including those implicated in the innate immune response and piRNA biogenesis. As impairment of messenger RNA (mRNA) localization and regulation compromise mitochondrial function, future studies will undoubtedly expand our understanding of how RNAs localize to the OMM and investigate the consequences of their mislocalization in disorders, particularly neurodegenerative diseases, muscular dystrophies, and cancers.
Collapse
Affiliation(s)
- Surbhi Sharma
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, USA
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, Texas 77030, USA
| | - Furqan M Fazal
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, USA
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
24
|
Coté A, O'Farrell A, Dardani I, Dunagin M, Coté C, Wan Y, Bayatpour S, Drexler HL, Alexander KA, Chen F, Wassie AT, Patel R, Pham K, Boyden ES, Berger S, Phillips-Cremins J, Churchman LS, Raj A. Post-transcriptional splicing can occur in a slow-moving zone around the gene. eLife 2024; 12:RP91357. [PMID: 38577979 PMCID: PMC10997330 DOI: 10.7554/elife.91357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
Splicing is the stepwise molecular process by which introns are removed from pre-mRNA and exons are joined together to form mature mRNA sequences. The ordering and spatial distribution of these steps remain controversial, with opposing models suggesting splicing occurs either during or after transcription. We used single-molecule RNA FISH, expansion microscopy, and live-cell imaging to reveal the spatiotemporal distribution of nascent transcripts in mammalian cells. At super-resolution levels, we found that pre-mRNA formed clouds around the transcription site. These clouds indicate the existence of a transcription-site-proximal zone through which RNA move more slowly than in the nucleoplasm. Full-length pre-mRNA undergo continuous splicing as they move through this zone following transcription, suggesting a model in which splicing can occur post-transcriptionally but still within the proximity of the transcription site, thus seeming co-transcriptional by most assays. These results may unify conflicting reports of co-transcriptional versus post-transcriptional splicing.
Collapse
Affiliation(s)
- Allison Coté
- Department of Bioengineering, University of PennsylvaniaPhiladelphiaUnited States
| | - Aoife O'Farrell
- Department of Bioengineering, University of PennsylvaniaPhiladelphiaUnited States
| | - Ian Dardani
- Department of Bioengineering, University of PennsylvaniaPhiladelphiaUnited States
| | - Margaret Dunagin
- Department of Bioengineering, University of PennsylvaniaPhiladelphiaUnited States
| | - Chris Coté
- Department of Bioengineering, University of PennsylvaniaPhiladelphiaUnited States
| | - Yihan Wan
- School of Life Sciences, Westlake UniversityHangzhouChina
| | - Sareh Bayatpour
- Department of Bioengineering, University of PennsylvaniaPhiladelphiaUnited States
| | - Heather L Drexler
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| | - Katherine A Alexander
- Department of Cell and Developmental Biology, Penn Institute of Epigenetics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Fei Chen
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - Asmamaw T Wassie
- Department of Cell and Molecular Biology, University of PennsylvaniaPhiladelphiaUnited States
| | - Rohan Patel
- Department of Bioengineering, University of PennsylvaniaPhiladelphiaUnited States
| | - Kenneth Pham
- Department of Cell and Molecular Biology, University of PennsylvaniaPhiladelphiaUnited States
| | - Edward S Boyden
- Departments of Biological Engineering and Brain and Cognitive Sciences, Media Lab and McGovern Institute, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Shelly Berger
- Department of Cell and Developmental Biology, Penn Institute of Epigenetics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | | | - L Stirling Churchman
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| | - Arjun Raj
- Department of Bioengineering, University of PennsylvaniaPhiladelphiaUnited States
- Department of Genetics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
25
|
Chen K, Zhou Y, Ding M, Wang Y, Ren Z, Yang Y. Self-supervised learning on millions of primary RNA sequences from 72 vertebrates improves sequence-based RNA splicing prediction. Brief Bioinform 2024; 25:bbae163. [PMID: 38605640 PMCID: PMC11009468 DOI: 10.1093/bib/bbae163] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/22/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
Language models pretrained by self-supervised learning (SSL) have been widely utilized to study protein sequences, while few models were developed for genomic sequences and were limited to single species. Due to the lack of genomes from different species, these models cannot effectively leverage evolutionary information. In this study, we have developed SpliceBERT, a language model pretrained on primary ribonucleic acids (RNA) sequences from 72 vertebrates by masked language modeling, and applied it to sequence-based modeling of RNA splicing. Pretraining SpliceBERT on diverse species enables effective identification of evolutionarily conserved elements. Meanwhile, the learned hidden states and attention weights can characterize the biological properties of splice sites. As a result, SpliceBERT was shown effective on several downstream tasks: zero-shot prediction of variant effects on splicing, prediction of branchpoints in humans, and cross-species prediction of splice sites. Our study highlighted the importance of pretraining genomic language models on a diverse range of species and suggested that SSL is a promising approach to enhance our understanding of the regulatory logic underlying genomic sequences.
Collapse
Affiliation(s)
- Ken Chen
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Yue Zhou
- Peng Cheng Laboratory, Shenzhen, China
| | - Maolin Ding
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Yu Wang
- Peng Cheng Laboratory, Shenzhen, China
| | | | - Yuedong Yang
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Machine Intelligence and Advanced Computing (Sun Yat-sen University), Ministry of Education, China
| |
Collapse
|
26
|
Romeo-Cardeillac C, Trovero MF, Radío S, Smircich P, Rodríguez-Casuriaga R, Geisinger A, Sotelo-Silveira J. Uncovering a multitude of stage-specific splice variants and putative protein isoforms generated along mouse spermatogenesis. BMC Genomics 2024; 25:295. [PMID: 38509455 PMCID: PMC10953240 DOI: 10.1186/s12864-024-10170-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Mammalian testis is a highly complex and heterogeneous tissue. This complexity, which mostly derives from spermatogenic cells, is reflected at the transcriptional level, with the largest number of tissue-specific genes and long noncoding RNAs (lncRNAs) compared to other tissues, and one of the highest rates of alternative splicing. Although it is known that adequate alternative-splicing patterns and stage-specific isoforms are critical for successful spermatogenesis, so far only a very limited number of reports have addressed a detailed study of alternative splicing and isoforms along the different spermatogenic stages. RESULTS In the present work, using highly purified stage-specific testicular cell populations, we detected 33,002 transcripts expressed throughout mouse spermatogenesis not annotated so far. These include both splice variants of already annotated genes, and of hitherto unannotated genes. Using conservative criteria, we uncovered 13,471 spermatogenic lncRNAs, which reflects the still incomplete annotation of lncRNAs. A distinctive feature of lncRNAs was their lower number of splice variants compared to protein-coding ones, adding to the conclusion that lncRNAs are, in general, less complex than mRNAs. Besides, we identified 2,794 unannotated transcripts with high coding potential (including some arising from yet unannotated genes), many of which encode unnoticed putative testis-specific proteins. Some of the most interesting coding splice variants were chosen, and validated through RT-PCR. Remarkably, the largest number of stage-specific unannotated transcripts are expressed during early meiotic prophase stages, whose study has been scarcely addressed in former transcriptomic analyses. CONCLUSIONS We detected a high number of yet unannotated genes and alternatively spliced transcripts along mouse spermatogenesis, hence showing that the transcriptomic diversity of the testis is considerably higher than previously reported. This is especially prominent for specific, underrepresented stages such as those of early meiotic prophase, and its unveiling may constitute a step towards the understanding of their key events.
Collapse
Affiliation(s)
- Carlos Romeo-Cardeillac
- Laboratory of Molecular Biology of Reproduction, Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11,600, Montevideo, Uruguay
- Department of Genomics, IIBCE, 11,600, Montevideo, Uruguay
| | - María Fernanda Trovero
- Laboratory of Molecular Biology of Reproduction, Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11,600, Montevideo, Uruguay
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Santiago Radío
- Department of Genomics, IIBCE, 11,600, Montevideo, Uruguay
| | - Pablo Smircich
- Department of Genomics, IIBCE, 11,600, Montevideo, Uruguay
| | - Rosana Rodríguez-Casuriaga
- Laboratory of Molecular Biology of Reproduction, Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11,600, Montevideo, Uruguay
| | - Adriana Geisinger
- Laboratory of Molecular Biology of Reproduction, Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11,600, Montevideo, Uruguay.
- Biochemistry-Molecular Biology, Facultad de Ciencias, Universidad de la República (UdelaR), 11,400, Montevideo, Uruguay.
| | - José Sotelo-Silveira
- Department of Genomics, IIBCE, 11,600, Montevideo, Uruguay.
- Department of Cell and Molecular Biology, Facultad de Ciencias, UdelaR, 11,400, Montevideo, Uruguay.
| |
Collapse
|
27
|
Huang Y, Li S, Tan Y, Xu C, Huang X, Yin Z. Identification and functional analysis of ovarian lncRNAs during different egg laying periods in Taihe Black-Bone Chickens. Front Physiol 2024; 15:1358682. [PMID: 38426211 PMCID: PMC10902129 DOI: 10.3389/fphys.2024.1358682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction: Long non-coding RNA (lncRNA) refers to a category of non-coding RNA molecules exceeding 200 nucleotides in length, which exerts a regulatory role in the context of ovarian development. There is a paucity of research examining the involvement of lncRNA in the regulation of ovary development in Taihe Black-Bone Chickens. In order to further investigate the egg laying regulation mechanisms of Taihe Black-Bone Chickens at different periods, transcriptome analysis was conducted on the ovarian tissues at different laying periods. Methods: This study randomly selected ovarian tissues from 12 chickens for RNA-seq. Four chickens were selected for each period, including the early laying period (102 days, Pre), the peak laying period (203 days, Peak), and the late laying period (394 days, Late). Based on our previous study of mRNA expression profiles in the same ovarian tissue, we identified three differentially expressed lncRNAs (DE lncRNAs) at different periods and searched for their cis- and trans-target genes to draw an lncRNA-mRNA network. Results and discussion: In three groups of ovarian tissues, we identified 136 DE lncRNAs, with 8 showing specific expression during the early laying period, 10 showing specific expression during the peak laying period, and 4 showing specific expression during the late laying period. The lncRNA-mRNA network revealed 16 pairs of lncRNA-target genes associated with 7 DE lncRNAs, and these 14 target genes were involved in the regulation of reproductive traits. Furthermore, these reproductive-related target genes were primarily associated with signaling pathways related to follicle and ovary development in Taihe Black-Bone Chickens, including cytokine-cytokine receptor interaction, TGF-beta signaling pathway, tyrosine metabolism, ECM-receptor interaction, focal adhesion, neuroactive ligand-receptor interaction, and cell adhesion molecules (CAMs). This study offers valuable insights for a comprehensive understanding of the influence of lncRNAs on poultry reproductive traits.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhaozheng Yin
- College of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
28
|
Dillingham CM, Cormaty H, Morgan EC, Tak AI, Esgdaille DE, Boutz PL, Sridharan R. KDM3A and KDM3B Maintain Naïve Pluripotency Through the Regulation of Alternative Splicing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.31.543088. [PMID: 37398291 PMCID: PMC10312572 DOI: 10.1101/2023.05.31.543088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Histone modifying enzymes play a central role in maintaining cell identity by establishing a conducive chromatin environment for lineage specific transcription factor activity. Pluripotent embryonic stem cell (ESC) identity is characterized by a lower abundance of gene repression associated histone modifications that enables rapid response to differentiation cues. The KDM3 family of histone demethylases removes the repressive histone H3 lysine 9 dimethylation (H3K9me2). Here we uncover a surprising role for the KDM3 proteins in the maintenance of the pluripotent state through post-transcriptional regulation. We find that KDM3A and KDM3B interact with RNA processing factors such as EFTUD2 and PRMT5. Acute selective degradation of the endogenous KDM3A and KDM3B proteins resulted in altered splicing independent of H3K9me2 status or catalytic activity. These splicing changes partially resemble the splicing pattern of the more blastocyst-like ground state of pluripotency and occurred in important chromatin and transcription factors such as Dnmt3b, Tbx3 and Tcf12. Our findings reveal non-canonical roles of histone demethylating enzymes in splicing to regulate cell identity.
Collapse
Affiliation(s)
- Caleb M Dillingham
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Harshini Cormaty
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ellen C Morgan
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Andrew I Tak
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Dakarai E Esgdaille
- Department of Biochemistry and Biophysics, Center for RNA Biology, Wilmot Cancer Center, University of Rochester School of Medicine and Dentistry
| | - Paul L Boutz
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry
| | - Rupa Sridharan
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53792, USA
| |
Collapse
|
29
|
Shen X, Chen C, Wang Y, Zheng W, Zheng J, Jones AE, Zhu B, Zhang H, Lyons C, Rijal A, Moley JA, Cao G, Liu K, Winn R, Dickinson A, Zhang K, Wang H. Role of histone variants H2BC1 and H2AZ.2 in H2AK119ub nucleosome organization and Polycomb gene silencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575234. [PMID: 38293106 PMCID: PMC10827191 DOI: 10.1101/2024.01.16.575234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Ubiquitination of histone H2A at lysine 119 residue (H2AK119ub) plays critical roles in a wide range of physiological processes, including Polycomb gene silencing 1,2 , replication 3-5 , DNA damage repair 6-10 , X inactivation 11,12 , and heterochromatin organization 13,14 . However, the underlying mechanism and structural basis of H2AK119ub remains largely elusive. In this study, we report that H2AK119ub nucleosomes have a unique composition, containing histone variants H2BC1 and H2AZ.2, and importantly, this composition is required for H2AK119ub and Polycomb gene silencing. Using the UAB domain of RSF1, we purified H2AK119ub nucleosomes to a sufficient amount and purity. Mass spectrometry analyses revealed that H2AK119ub nucleosomes contain the histone variants H2BC1 and H2AZ.2. A cryo-EM study resolved the structure of native H2AK119ub nucleosomes to a 2.6A resolution, confirming H2BC1 in one subgroup of H2AK119ub nucleosomes. Tandem GST-UAB pulldown, Flag-H2AZ.2, and HA-H2BC1 immunoprecipitation revealed that H2AK119ub nucleosomes could be separated into distinct subgroups, suggesting their composition heterogeneity and potential dynamic organization. Knockout or knockdown of H2BC1 or H2AZ.2 reduced cellular H2AK119ub levels, establishing H2BC1 and H2AZ.2 as critical determinants of H2AK119ub. Furthermore, genomic binding profiles of H2BC1 and H2AZ.2 overlapped significantly with H2AK119ub binding, with the most significant overlapping in the gene body and intergenic regions. Finally, assays in developing embryos reveal an interaction of H2AZ.2, H2BC1, and RING1A in vivo . Thus, this study revealed, for the first time, that the H2AK119ub nucleosome has a unique composition, and this composition is required for H2AK119ub and Polycomb gene silencing.
Collapse
|
30
|
Palazzo AF, Qiu Y, Kang YM. mRNA nuclear export: how mRNA identity features distinguish functional RNAs from junk transcripts. RNA Biol 2024; 21:1-12. [PMID: 38091265 PMCID: PMC10732640 DOI: 10.1080/15476286.2023.2293339] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
The division of the cellular space into nucleoplasm and cytoplasm promotes quality control mechanisms that prevent misprocessed mRNAs and junk RNAs from gaining access to the translational machinery. Here, we explore how properly processed mRNAs are distinguished from both misprocessed mRNAs and junk RNAs by the presence or absence of various 'identity features'.
Collapse
Affiliation(s)
| | - Yi Qiu
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Yoon Mo Kang
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Böğürcü-Seidel N, Ritschel N, Acker T, Németh A. Beyond ribosome biogenesis: noncoding nucleolar RNAs in physiology and tumor biology. Nucleus 2023; 14:2274655. [PMID: 37906621 PMCID: PMC10730139 DOI: 10.1080/19491034.2023.2274655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
The nucleolus, the largest subcompartment of the nucleus, stands out from the nucleoplasm due to its exceptionally high local RNA and low DNA concentrations. Within this central hub of nuclear RNA metabolism, ribosome biogenesis is the most prominent ribonucleoprotein (RNP) biogenesis process, critically determining the structure and function of the nucleolus. However, recent studies have shed light on other roles of the nucleolus, exploring the interplay with various noncoding RNAs that are not directly involved in ribosome synthesis. This review focuses on this intriguing topic and summarizes the techniques to study and the latest findings on nucleolar long noncoding RNAs (lncRNAs) as well as microRNAs (miRNAs) in the context of nucleolus biology beyond ribosome biogenesis. We particularly focus on the multifaceted roles of the nucleolus and noncoding RNAs in physiology and tumor biology.
Collapse
Affiliation(s)
| | - Nadja Ritschel
- Institute of Neuropathology, Justus Liebig University Giessen, Giessen, Germany
| | - Till Acker
- Institute of Neuropathology, Justus Liebig University Giessen, Giessen, Germany
| | - Attila Németh
- Institute of Neuropathology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
32
|
Monziani A, Ulitsky I. Noncoding snoRNA host genes are a distinct subclass of long noncoding RNAs. Trends Genet 2023; 39:908-923. [PMID: 37783604 DOI: 10.1016/j.tig.2023.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 10/04/2023]
Abstract
Mammalian genomes are pervasively transcribed into different noncoding (nc)RNA classes, each one with its own hallmarks and exceptions. Some of them are nested into each other, such as host genes for small nucleolar RNAs (snoRNAs), which were long believed to simply act as molecular containers strictly facilitating snoRNA biogenesis. However, recent findings show that noncoding snoRNA host genes (ncSNHGs) display features different from those of 'regular' long ncRNAs (lncRNAs) and, more importantly, they can exert independent and unrelated functions to those of the encoded snoRNAs. Here, we review and summarize past and recent evidence that ncSNHGs form a defined subclass among the plethora of lncRNAs, and discuss future research that can further elucidate their biological relevance.
Collapse
Affiliation(s)
- Alan Monziani
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Igor Ulitsky
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| |
Collapse
|
33
|
Dwivedi SL, Quiroz LF, Reddy ASN, Spillane C, Ortiz R. Alternative Splicing Variation: Accessing and Exploiting in Crop Improvement Programs. Int J Mol Sci 2023; 24:15205. [PMID: 37894886 PMCID: PMC10607462 DOI: 10.3390/ijms242015205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Alternative splicing (AS) is a gene regulatory mechanism modulating gene expression in multiple ways. AS is prevalent in all eukaryotes including plants. AS generates two or more mRNAs from the precursor mRNA (pre-mRNA) to regulate transcriptome complexity and proteome diversity. Advances in next-generation sequencing, omics technology, bioinformatics tools, and computational methods provide new opportunities to quantify and visualize AS-based quantitative trait variation associated with plant growth, development, reproduction, and stress tolerance. Domestication, polyploidization, and environmental perturbation may evolve novel splicing variants associated with agronomically beneficial traits. To date, pre-mRNAs from many genes are spliced into multiple transcripts that cause phenotypic variation for complex traits, both in model plant Arabidopsis and field crops. Cataloguing and exploiting such variation may provide new paths to enhance climate resilience, resource-use efficiency, productivity, and nutritional quality of staple food crops. This review provides insights into AS variation alongside a gene expression analysis to select for novel phenotypic diversity for use in breeding programs. AS contributes to heterosis, enhances plant symbiosis (mycorrhiza and rhizobium), and provides a mechanistic link between the core clock genes and diverse environmental clues.
Collapse
Affiliation(s)
| | - Luis Felipe Quiroz
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland
| | - Anireddy S N Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Charles Spillane
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23053 Alnarp, SE, Sweden
| |
Collapse
|
34
|
Margasyuk S, Kalinina M, Petrova M, Skvortsov D, Cao C, Pervouchine DD. RNA in situ conformation sequencing reveals novel long-range RNA structures with impact on splicing. RNA (NEW YORK, N.Y.) 2023; 29:1423-1436. [PMID: 37295923 PMCID: PMC10573301 DOI: 10.1261/rna.079508.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
Over recent years, long-range RNA structure has emerged as a factor that is fundamental to alternative splicing regulation. An increasing number of human disorders are now being associated with splicing defects; hence it is essential to develop methods that assess long-range RNA structure experimentally. RNA in situ conformation sequencing (RIC-seq) is a method that recapitulates RNA structure within physiological RNA-protein complexes. In this work, we juxtapose pairs of conserved complementary regions (PCCRs) that were predicted in silico with the results of RIC-seq experiments conducted in seven human cell lines. We show statistically that RIC-seq support of PCCRs correlates with their properties, such as equilibrium free energy, presence of compensatory substitutions, and occurrence of A-to-I RNA editing sites and forked eCLIP peaks. Exons enclosed in PCCRs that are supported by RIC-seq tend to have weaker splice sites and lower inclusion rates, which is indicative of post-transcriptional splicing regulation mediated by RNA structure. Based on these findings, we prioritize PCCRs according to their RIC-seq support and show, using antisense nucleotides and minigene mutagenesis, that PCCRs in two disease-associated human genes, PHF20L1 and CASK, and also PCCRs in their murine orthologs, impact alternative splicing. In sum, we demonstrate how RIC-seq experiments can be used to discover functional long-range RNA structures, and particularly those that regulate alternative splicing.
Collapse
Affiliation(s)
- Sergey Margasyuk
- Skolkovo Institute of Science and Technology, Moscow 143026, Russia
| | - Marina Kalinina
- Skolkovo Institute of Science and Technology, Moscow 143026, Russia
| | - Marina Petrova
- Skolkovo Institute of Science and Technology, Moscow 143026, Russia
| | - Dmitry Skvortsov
- Skolkovo Institute of Science and Technology, Moscow 143026, Russia
- Moscow State University, Faculty of Chemistry, Moscow 119991, Russia
| | - Changchang Cao
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | |
Collapse
|
35
|
Shenasa H, Bentley DL. Pre-mRNA splicing and its cotranscriptional connections. Trends Genet 2023; 39:672-685. [PMID: 37236814 PMCID: PMC10524715 DOI: 10.1016/j.tig.2023.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023]
Abstract
Transcription of eukaryotic genes by RNA polymerase II (Pol II) yields RNA precursors containing introns that must be spliced out and the flanking exons ligated together. Splicing is catalyzed by a dynamic ribonucleoprotein complex called the spliceosome. Recent evidence has shown that a large fraction of splicing occurs cotranscriptionally as the RNA chain is extruded from Pol II at speeds of up to 5 kb/minute. Splicing is more efficient when it is tethered to the transcription elongation complex, and this linkage permits functional coupling of splicing with transcription. We discuss recent progress that has uncovered a network of connections that link splicing to transcript elongation and other cotranscriptional RNA processing events.
Collapse
Affiliation(s)
- Hossein Shenasa
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - David L Bentley
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA.
| |
Collapse
|
36
|
Yin Y, Shen X. Noncoding RNA-chromatin association: Functions and mechanisms. FUNDAMENTAL RESEARCH 2023; 3:665-675. [PMID: 38933302 PMCID: PMC11197541 DOI: 10.1016/j.fmre.2023.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/12/2023] [Accepted: 03/23/2023] [Indexed: 06/28/2024] Open
Abstract
Pervasive transcription of the mammalian genome produces hundreds of thousands of noncoding RNAs (ncRNAs). Numerous studies have suggested that some of these ncRNAs regulate multiple cellular processes and play important roles in physiological and pathological processes. Notably, a large subset of ncRNAs is enriched on chromatin and participates in regulating gene expression and the dynamics of chromatin structure and status. In this review, we summarize recent advances in the functional study of chromatin-associated ncRNAs and mechanistic insights into how these ncRNAs associate with chromatin. We also discuss the potential future challenges which still need to be overcome in this field.
Collapse
Affiliation(s)
- Yafei Yin
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Xiaohua Shen
- Tsinghua-Peking Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
37
|
Choquet K, Baxter-Koenigs AR, Dülk SL, Smalec BM, Rouskin S, Churchman LS. Pre-mRNA splicing order is predetermined and maintains splicing fidelity across multi-intronic transcripts. Nat Struct Mol Biol 2023; 30:1064-1076. [PMID: 37443198 PMCID: PMC10653200 DOI: 10.1038/s41594-023-01035-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 06/13/2023] [Indexed: 07/15/2023]
Abstract
Combinatorially, intron excision within a given nascent transcript could proceed down any of thousands of paths, each of which would expose different dynamic landscapes of cis-elements and contribute to alternative splicing. In this study, we found that post-transcriptional multi-intron splicing order in human cells is largely predetermined, with most genes spliced in one or a few predominant orders. Strikingly, these orders were conserved across cell types and stages of motor neuron differentiation. Introns flanking alternatively spliced exons were frequently excised last, after their neighboring introns. Perturbations to the spliceosomal U2 snRNA altered the preferred splicing order of many genes, and these alterations were associated with the retention of other introns in the same transcript. In one gene, early removal of specific introns was sufficient to induce delayed excision of three proximal introns, and this delay was caused by two distinct cis-regulatory mechanisms. Together, our results demonstrate that multi-intron splicing order in human cells is predetermined, is influenced by a component of the spliceosome and ensures splicing fidelity across long pre-mRNAs.
Collapse
Affiliation(s)
- Karine Choquet
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | | | - Sarah-Luisa Dülk
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Brendan M Smalec
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Silvi Rouskin
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - L Stirling Churchman
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
38
|
Santus L, Sopena-Rios M, García-Pérez R, Lin AE, Adams GC, Barnes KG, Siddle KJ, Wohl S, Reverter F, Rinn JL, Bennett RS, Hensley LE, Sabeti PC, Melé M. Single-cell profiling of lncRNA expression during Ebola virus infection in rhesus macaques. Nat Commun 2023; 14:3866. [PMID: 37391481 PMCID: PMC10313701 DOI: 10.1038/s41467-023-39627-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 06/19/2023] [Indexed: 07/02/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in numerous biological processes and are pivotal mediators of the immune response, yet little is known about their properties at the single-cell level. Here, we generate a multi-tissue bulk RNAseq dataset from Ebola virus (EBOV) infected and not-infected rhesus macaques and identified 3979 novel lncRNAs. To profile lncRNA expression dynamics in immune circulating single-cells during EBOV infection, we design a metric, Upsilon, to estimate cell-type specificity. Our analysis reveals that lncRNAs are expressed in fewer cells than protein-coding genes, but they are not expressed at lower levels nor are they more cell-type specific when expressed in the same number of cells. In addition, we observe that lncRNAs exhibit similar changes in expression patterns to those of protein-coding genes during EBOV infection, and are often co-expressed with known immune regulators. A few lncRNAs change expression specifically upon EBOV entry in the cell. This study sheds light on the differential features of lncRNAs and protein-coding genes and paves the way for future single-cell lncRNA studies.
Collapse
Affiliation(s)
- Luisa Santus
- Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Catalonia, 08034, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Maria Sopena-Rios
- Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Catalonia, 08034, Spain
| | - Raquel García-Pérez
- Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Catalonia, 08034, Spain
| | - Aaron E Lin
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Harvard Program in Virology, Harvard Medical School, Boston, MA, 02115, USA
| | - Gordon C Adams
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Kayla G Barnes
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Katherine J Siddle
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Shirlee Wohl
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- The Scripps Research Institute, Department of Immunology and Microbiology, La Jolla, CA, USA
| | - Ferran Reverter
- Department of Genetics, Microbiology and Statistics University of Barcelona, Barcelona, Spain
| | - John L Rinn
- Department of Biochemistry, University of Colorado Boulder, Boulder, 80303, USA
| | - Richard S Bennett
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, 21702, USA
| | - Lisa E Hensley
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, 21702, USA.
| | - Pardis C Sabeti
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Harvard Program in Virology, Harvard Medical School, Boston, MA, 02115, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
| | - Marta Melé
- Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Catalonia, 08034, Spain.
| |
Collapse
|
39
|
Segal D, Dostie J. The Talented LncRNAs: Meshing into Transcriptional Regulatory Networks in Cancer. Cancers (Basel) 2023; 15:3433. [PMID: 37444543 DOI: 10.3390/cancers15133433] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
As a group of diseases characterized by uncontrollable cell growth, cancer is highly multifaceted in how it overrides checkpoints controlling proliferation. Amongst the regulators of these checkpoints, long non-coding RNAs (lncRNAs) can have key roles in why natural biological processes go haywire. LncRNAs represent a large class of regulatory transcripts that can localize anywhere in cells. They were found to affect gene expression on many levels from transcription to mRNA translation and even protein stability. LncRNA participation in such control mechanisms can depend on cell context, with given transcripts sometimes acting as oncogenes or tumor suppressors. Importantly, the tissue-specificity and low expression levels of lncRNAs make them attractive therapeutic targets or biomarkers. Here, we review the various cellular processes affected by lncRNAs and outline molecular strategies they use to control gene expression, particularly in cancer and in relation to transcription factors.
Collapse
Affiliation(s)
- Dana Segal
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada
| | - Josée Dostie
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada
| |
Collapse
|
40
|
Gohr A, Iñiguez LP, Torres-Méndez A, Bonnal S, Irimia M. Insplico: effective computational tool for studying splicing order of adjacent introns genome-wide with short and long RNA-seq reads. Nucleic Acids Res 2023; 51:e56. [PMID: 37026474 PMCID: PMC10250204 DOI: 10.1093/nar/gkad244] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/13/2023] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
Although splicing occurs largely co-transcriptionally, the order by which introns are removed does not necessarily follow the order in which they are transcribed. Whereas several genomic features are known to influence whether or not an intron is spliced before its downstream neighbor, multiple questions related to adjacent introns' splicing order (AISO) remain unanswered. Here, we present Insplico, the first standalone software for quantifying AISO that works with both short and long read sequencing technologies. We first demonstrate its applicability and effectiveness using simulated reads and by recapitulating previously reported AISO patterns, which unveiled overlooked biases associated with long read sequencing. We next show that AISO around individual exons is remarkably constant across cell and tissue types and even upon major spliceosomal disruption, and it is evolutionarily conserved between human and mouse brains. We also establish a set of universal features associated with AISO patterns across various animal and plant species. Finally, we used Insplico to investigate AISO in the context of tissue-specific exons, particularly focusing on SRRM4-dependent microexons. We found that the majority of such microexons have non-canonical AISO, in which the downstream intron is spliced first, and we suggest two potential modes of SRRM4 regulation of microexons related to their AISO and various splicing-related features. Insplico is available on gitlab.com/aghr/insplico.
Collapse
Affiliation(s)
- André Gohr
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luis P Iñiguez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Antonio Torres-Méndez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Sophie Bonnal
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|
41
|
Mehlferber MM, Kuyumcu-Martinez M, Miller CL, Sheynkman GM. Transcription factors and splice factors - interconnected regulators of stem cell differentiation. CURRENT STEM CELL REPORTS 2023; 9:31-41. [PMID: 38939410 PMCID: PMC11210451 DOI: 10.1007/s40778-023-00227-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2023] [Indexed: 06/29/2024]
Abstract
Purpose of review The underlying molecular mechanisms that direct stem cell differentiation into fully functional, mature cells remain an area of ongoing investigation. Cell state is the product of the combinatorial effect of individual factors operating within a coordinated regulatory network. Here, we discuss the contribution of both gene regulatory and splicing regulatory networks in defining stem cell fate during differentiation and the critical role of protein isoforms in this process. Recent findings We review recent experimental and computational approaches that characterize gene regulatory networks, splice regulatory networks, and the resulting transcriptome and proteome they mediate during differentiation. Such approaches include long-read RNA sequencing, which has demonstrated high-resolution profiling of mRNA isoforms, and Cas13-based CRISPR, which could make possible high-throughput isoform screening. Collectively, these developments enable systems-level profiling of factors contributing to cell state. Summary Overall, gene and splice regulatory networks are important in defining cell state. The emerging high-throughput systems-level approaches will characterize the gene regulatory network components necessary in driving stem cell differentiation.
Collapse
Affiliation(s)
- Madison M Mehlferber
- Department of Biochemistry and Molecular Genetics, University Virginia, Charlottesville, VA 22903
| | - Muge Kuyumcu-Martinez
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Fontaine Medical Office Building 1, 415 Ray C. Hunt Dr, Charlottesville, VA 22903
| | - Clint L Miller
- Department of Public Health Sciences, Department of Biochemistry and Molecular Genetics, and Department of Biomedical Engineering, University of Virginia, Multistory Building, West Complex, 1335 Lee St, Charlottesville, VA 22908, PO Box 800717, Charlottesville, Virginia 22908
| | - Gloria M Sheynkman
- Department of Molecular Physiology and Biological Physics, Center for Public Health Genomics, UVA Comprehensive Cancer Center, Department of Biochemistry and Molecular Genetics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22903
| |
Collapse
|
42
|
Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, Chen LL, Chen R, Dean C, Dinger ME, Fitzgerald KA, Gingeras TR, Guttman M, Hirose T, Huarte M, Johnson R, Kanduri C, Kapranov P, Lawrence JB, Lee JT, Mendell JT, Mercer TR, Moore KJ, Nakagawa S, Rinn JL, Spector DL, Ulitsky I, Wan Y, Wilusz JE, Wu M. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol 2023; 24:430-447. [PMID: 36596869 PMCID: PMC10213152 DOI: 10.1038/s41580-022-00566-8] [Citation(s) in RCA: 953] [Impact Index Per Article: 476.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 01/05/2023]
Abstract
Genes specifying long non-coding RNAs (lncRNAs) occupy a large fraction of the genomes of complex organisms. The term 'lncRNAs' encompasses RNA polymerase I (Pol I), Pol II and Pol III transcribed RNAs, and RNAs from processed introns. The various functions of lncRNAs and their many isoforms and interleaved relationships with other genes make lncRNA classification and annotation difficult. Most lncRNAs evolve more rapidly than protein-coding sequences, are cell type specific and regulate many aspects of cell differentiation and development and other physiological processes. Many lncRNAs associate with chromatin-modifying complexes, are transcribed from enhancers and nucleate phase separation of nuclear condensates and domains, indicating an intimate link between lncRNA expression and the spatial control of gene expression during development. lncRNAs also have important roles in the cytoplasm and beyond, including in the regulation of translation, metabolism and signalling. lncRNAs often have a modular structure and are rich in repeats, which are increasingly being shown to be relevant to their function. In this Consensus Statement, we address the definition and nomenclature of lncRNAs and their conservation, expression, phenotypic visibility, structure and functions. We also discuss research challenges and provide recommendations to advance the understanding of the roles of lncRNAs in development, cell biology and disease.
Collapse
Affiliation(s)
- John S Mattick
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, Australia.
- UNSW RNA Institute, UNSW, Sydney, NSW, Australia.
| | - Paulo P Amaral
- INSPER Institute of Education and Research, São Paulo, Brazil
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Human Technopole, Milan, Italy
| | - Susan Carpenter
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamics Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Ling-Ling Chen
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Runsheng Chen
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Caroline Dean
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, Australia
- UNSW RNA Institute, UNSW, Sydney, NSW, Australia
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Maite Huarte
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
- Institute of Health Research of Navarra, Pamplona, Spain
| | - Rory Johnson
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Philipp Kapranov
- Institute of Genomics, School of Medicine, Huaqiao University, Xiamen, China
| | - Jeanne B Lawrence
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Joshua T Mendell
- Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Timothy R Mercer
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Kathryn J Moore
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - John L Rinn
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, USA
| | - David L Spector
- Cold Spring Harbour Laboratory, Cold Spring Harbour, NY, USA
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yue Wan
- Laboratory of RNA Genomics and Structure, Genome Institute of Singapore, A*STAR, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Jeremy E Wilusz
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, USA
| | - Mian Wu
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
43
|
Chang J, Parent LJ. HIV-1 Gag colocalizes with euchromatin histone marks at the nuclear periphery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.24.529990. [PMID: 36865288 PMCID: PMC9980143 DOI: 10.1101/2023.02.24.529990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The retroviral Gag protein of human immunodeficiency virus type 1 (HIV-1) plays a central role in the selection of unspliced viral genomic RNA for packaging into new virions. Previously, we demonstrated that full-length HIV-1 Gag undergoes nuclear trafficking where it associates with unspliced viral RNA (vRNA) at transcription sites. To further explore the kinetics of HIV-1 Gag nuclear localization, we used biochemical and imaging techniques to examine the timing of HIV-1 entry into the nucleus. We also aimed to determine more precisely Gag's subnuclear distribution to test the hypothesis that Gag would be associated with euchromatin, the transcriptionally active region of the nucleus. We observed that HIV-1 Gag localized to the nucleus shortly after its synthesis in the cytoplasm, suggesting that nuclear trafficking was not strictly concentration-dependent. Furthermore, we found that HIV-1 Gag preferentially localized to the transcriptionally active euchromatin fraction compared to the heterochromatin-rich region in a latently-infected CD4+ T cell line (J-Lat 10.6) treated with latency-reversal agents. Interestingly, HIV-1 Gag was more closely associated with transcriptionally-active histone markers near the nuclear periphery, where the HIV-1 provirus was previously shown to integrate. Although the precise function of Gag's association with histones in transcriptionally-active chromatin remains uncertain, together with previous reports, this finding is consistent with a potential role for euchromatin-associated Gag molecules to select newly transcribed unspliced vRNA during the initial stage of virion assembly. Importance The traditional view of retroviral assembly posits that HIV-1 Gag selection of unspliced vRNA begins in the cytoplasm. However, our previous studies demonstrated that HIV-1 Gag enters the nucleus and binds to unspliced HIV-1 RNA at transcription sites, suggesting that genomic RNA selection may occur in the nucleus. In the present study, we observed nuclear entry of HIV-1 Gag and co-localization with unspliced viral RNA within 8 hours post-expression. In CD4+ T cells (J-Lat 10.6) treated with latency reversal agents, as well as a HeLa cell line stably expressing an inducible Rev-dependent provirus, we found that HIV-1 Gag preferentially localized with histone marks associated with enhancer and promoter regions of transcriptionally active euchromatin near the nuclear periphery, which favors HIV-1 proviral integration sites. These observations support the hypothesis that HIV-1 Gag hijacks euchromatin-associated histones to localize to active transcription sites, promoting capture of newly synthesized genomic RNA for packaging.
Collapse
|
44
|
Iannone C, Kainov Y, Zhuravskaya A, Hamid F, Nojima T, Makeyev EV. PTBP1-activated co-transcriptional splicing controls epigenetic status of pluripotent stem cells. Mol Cell 2023; 83:203-218.e9. [PMID: 36626906 DOI: 10.1016/j.molcel.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 11/15/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023]
Abstract
Many spliceosomal introns are excised from nascent transcripts emerging from RNA polymerase II (RNA Pol II). The extent of cell-type-specific regulation and possible functions of such co-transcriptional events remain poorly understood. We examined the role of the RNA-binding protein PTBP1 in this process using an acute depletion approach followed by the analysis of chromatin- and RNA Pol II-associated transcripts. We show that PTBP1 activates the co-transcriptional excision of hundreds of introns, a surprising effect given that this protein is known to promote intron retention. Importantly, some co-transcriptionally activated introns fail to complete their splicing without PTBP1. In a striking example, retention of a PTBP1-dependent intron triggers nonsense-mediated decay of transcripts encoding DNA methyltransferase DNMT3B. We provide evidence that this regulation facilitates the natural decline in DNMT3B levels in developing neurons and protects differentiation-specific genes from ectopic methylation. Thus, PTBP1-activated co-transcriptional splicing is a widespread phenomenon mediating epigenetic control of cellular identity.
Collapse
Affiliation(s)
- Camilla Iannone
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK
| | - Yaroslav Kainov
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK
| | - Anna Zhuravskaya
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK
| | - Fursham Hamid
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK
| | - Takayuki Nojima
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Eugene V Makeyev
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK.
| |
Collapse
|
45
|
Basu K, Dey A, Kiran M. Inefficient splicing of long non-coding RNAs is associated with higher transcript complexity in human and mouse. RNA Biol 2023; 20:563-572. [PMID: 37543950 PMCID: PMC10405767 DOI: 10.1080/15476286.2023.2242649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023] Open
Abstract
Recent reports show that long non-coding RNAs (lncRNAs) have inefficient splicing and fewer alternative splice variants than mRNAs. Here, we have explored the efficiency of lncRNAs and mRNAs in producing various splice variants, given the number of exons in humans and mice. Intriguingly, lncRNAs produce more splice variants per exon, referred to as Transcript Complexity, than mRNAs. Most lncRNA splice variants are the product of the alternative last exon and exon skipping. LncRNAs and mRNAs with higher transcript complexity have shorter intron lengths. Longer exon length and GC/AG at 5'/3' splice sites are associated with higher transcript complexity in lncRNAs. Lastly, our results indicate that inefficient splicing of lncRNAs may facilitate multiple introns splicing and, thus, more spliced products per exon.
Collapse
Affiliation(s)
- Koushiki Basu
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Anubha Dey
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Manjari Kiran
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
46
|
Zhang J, Lin X, Chen Y, Li T, Lee AC, Chow EY, Cho WC, Chan T. LAFITE Reveals the Complexity of Transcript Isoforms in Subcellular Fractions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203480. [PMID: 36461702 PMCID: PMC9875686 DOI: 10.1002/advs.202203480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/28/2022] [Indexed: 06/17/2023]
Abstract
Characterization of the subcellular distribution of RNA is essential for understanding the molecular basis of biological processes. Here, the subcellular nanopore direct RNA-sequencing (DRS) of four lung cancer cell lines (A549, H1975, H358, and HCC4006) is performed, coupled with a computational pipeline, Low-abundance Aware Full-length Isoform clusTEr (LAFITE), to comprehensively analyze the full-length cytoplasmic and nuclear transcriptome. Using additional DRS and orthogonal data sets, it is shown that LAFITE outperforms current methods for detecting full-length transcripts, particularly for low-abundance isoforms that are usually overlooked due to poor read coverage. Experimental validation of six novel isoforms exclusively identified by LAFITE further confirms the reliability of this pipeline. By applying LAFITE to subcellular DRS data, the complexity of the nuclear transcriptome is revealed in terms of isoform diversity, 3'-UTR usage, m6A modification patterns, and intron retention. Overall, LAFITE provides enhanced full-length isoform identification and enables a high-resolution view of the RNA landscape at the isoform level.
Collapse
Affiliation(s)
- Jizhou Zhang
- School of Life SciencesThe Chinese University of Hong KongShatinHong Kong SARChina
- State Key Laboratory of AgrobiotechnologyThe Chinese University of Hong KongShatinHong Kong SARChina
| | - Xiao Lin
- School of Life SciencesThe Chinese University of Hong KongShatinHong Kong SARChina
- State Key Laboratory of AgrobiotechnologyThe Chinese University of Hong KongShatinHong Kong SARChina
| | - Yuelong Chen
- School of Life SciencesThe Chinese University of Hong KongShatinHong Kong SARChina
| | - Tsz‐Ho Li
- School of Life SciencesThe Chinese University of Hong KongShatinHong Kong SARChina
- State Key Laboratory of AgrobiotechnologyThe Chinese University of Hong KongShatinHong Kong SARChina
| | - Alan Chun‐Kit Lee
- School of Life SciencesThe Chinese University of Hong KongShatinHong Kong SARChina
| | | | | | - Ting‐Fung Chan
- School of Life SciencesThe Chinese University of Hong KongShatinHong Kong SARChina
- State Key Laboratory of AgrobiotechnologyThe Chinese University of Hong KongShatinHong Kong SARChina
| |
Collapse
|
47
|
Alles J, Legnini I, Pacelli M, Rajewsky N. Rapid nuclear deadenylation of mammalian messenger RNA. iScience 2022; 26:105878. [PMID: 36691625 PMCID: PMC9860345 DOI: 10.1016/j.isci.2022.105878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/13/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Poly(A) tails protect RNAs from degradation and their deadenylation rates determine RNA stability. Although poly(A) tails are generated in the nucleus, deadenylation of tails has mostly been investigated within the cytoplasm. Here, we combined long-read sequencing with metabolic labeling, splicing inhibition and cell fractionation experiments to quantify, separately, the genesis and trimming of nuclear and cytoplasmic tails in vitro and in vivo. We present evidence for genome-wide, nuclear synthesis of tails longer than 200 nt, which are rapidly shortened after transcription. Our data suggests that rapid deadenylation is a nuclear process, and that different classes of transcripts and even transcript isoforms have distinct nuclear tail lengths. For example, many long-noncoding RNAs retain long poly(A) tails. Modeling deadenylation dynamics predicts nuclear deadenylation about 10 times faster than cytoplasmic deadenylation. In summary, our data suggests that nuclear deadenylation might be a key mechanism for regulating mRNA stability, abundance, and subcellular localization.
Collapse
Affiliation(s)
- Jonathan Alles
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Laboratory for Systems Biology of Gene Regulatory Elements, Hannoversche Str. 28, 10115 Berlin, Germany,Humboldt-Universität zu Berlin, Institute of Biology, Unter den Linden 6, 10099 Berlin, Germany
| | - Ivano Legnini
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Laboratory for Systems Biology of Gene Regulatory Elements, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Maddalena Pacelli
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Laboratory for Systems Biology of Gene Regulatory Elements, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Nikolaus Rajewsky
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Laboratory for Systems Biology of Gene Regulatory Elements, Hannoversche Str. 28, 10115 Berlin, Germany,Humboldt-Universität zu Berlin, Institute of Biology, Unter den Linden 6, 10099 Berlin, Germany,Corresponding author
| |
Collapse
|
48
|
Zeng Y, Fair BJ, Zeng H, Krishnamohan A, Hou Y, Hall JM, Ruthenburg AJ, Li YI, Staley JP. Profiling lariat intermediates reveals genetic determinants of early and late co-transcriptional splicing. Mol Cell 2022; 82:4681-4699.e8. [PMID: 36435176 PMCID: PMC10448999 DOI: 10.1016/j.molcel.2022.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 09/10/2022] [Accepted: 11/02/2022] [Indexed: 11/27/2022]
Abstract
Long introns with short exons in vertebrate genes are thought to require spliceosome assembly across exons (exon definition), rather than introns, thereby requiring transcription of an exon to splice an upstream intron. Here, we developed CoLa-seq (co-transcriptional lariat sequencing) to investigate the timing and determinants of co-transcriptional splicing genome wide. Unexpectedly, 90% of all introns, including long introns, can splice before transcription of a downstream exon, indicating that exon definition is not obligatory for most human introns. Still, splicing timing varies dramatically across introns, and various genetic elements determine this variation. Strong U2AF2 binding to the polypyrimidine tract predicts early splicing, explaining exon definition-independent splicing. Together, our findings question the essentiality of exon definition and reveal features beyond intron and exon length that are determinative for splicing timing.
Collapse
Affiliation(s)
- Yi Zeng
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Benjamin J Fair
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Huilin Zeng
- 855 Jefferson Ave. Redwood City, CA 94063, USA
| | - Aiswarya Krishnamohan
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Yichen Hou
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Johnathon M Hall
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Alexander J Ruthenburg
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA; Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Yang I Li
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA.
| | - Jonathan P Staley
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
49
|
Das S, Jones AE, Abrams JM. Generalized nuclear localization of retroelement transcripts. Mob DNA 2022; 13:30. [PMID: 36461093 PMCID: PMC9717504 DOI: 10.1186/s13100-022-00287-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/19/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND LINE-1s, Alus and SVAs are the only retrotransposition competent elements in humans. Their mobilization followed by insertional mutagenesis is often linked to disease. Apart from these rare integration events, accumulation of retrotransposition intermediates in the cytoplasm is potentially pathogenic due to induction of inflammatory response pathways. Although the retrotransposition of LINE-1 and Alu retroelements has been studied in considerable detail, there are mixed observations about the localization of their RNAs. RESULTS We undertook a comprehensive and unbiased approach to analyze retroelement RNA localization using common cell lines and publicly available datasets containing RNA-sequencing data from subcellular fractions. Using our customized analytic pipeline, we compared localization patterns of RNAs transcribed from retroelements and single-copy protein coding genes. Our results demonstrate a generalized characteristic pattern of retroelement RNA nuclear localization that is conserved across retroelement classes as well as evolutionarily young and ancient elements. Preferential nuclear enrichment of retroelement transcripts was consistently observed in cell lines, in vivo and across species. Moreover, retroelement RNA localization patterns were dynamic and subject to change during development, as seen in zebrafish embryos. CONCLUSION The pronounced nuclear localization of transcripts arising from ancient as well as de novo transcribed retroelements suggests that these transcripts are retained in the nucleus as opposed to being re-imported to the nucleus or degraded in the cytoplasm. This raises the possibility that there is adaptive value associated with this localization pattern to the host, the retroelements or possibly both.
Collapse
Affiliation(s)
- Simanti Das
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Amanda E Jones
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
50
|
Yamatani Y, Nakai K. Comprehensive comparison of gene expression diversity among a variety of human stem cells. NAR Genom Bioinform 2022; 4:lqac087. [PMID: 36458020 PMCID: PMC9706419 DOI: 10.1093/nargab/lqac087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 10/26/2022] [Accepted: 11/08/2022] [Indexed: 12/02/2022] Open
Abstract
Several factors, including tissue origins and culture conditions, affect the gene expression of undifferentiated stem cells. However, understanding the basic identity across different stem cells has not been pursued well despite its importance in stem cell biology. Thus, we aimed to rank the relative importance of multiple factors to gene expression profile among undifferentiated human stem cells by analyzing publicly available RNA-seq datasets. We first conducted batch effect correction to avoid undefined variance in the dataset as possible. Then, we highlighted the relative impact of biological and technical factors among undifferentiated stem cell types: a more influence on tissue origins in induced pluripotent stem cells than in other stem cell types; a stronger impact of culture condition in embryonic stem cells and somatic stem cell types, including mesenchymal stem cells and hematopoietic stem cells. In addition, we found that a characteristic gene module, enriched in histones, exhibits higher expression across different stem cell types that were annotated by specific culture conditions. This tendency was also observed in mouse stem cell RNA-seq data. Our findings would help to obtain general insights into stem cell quality, such as the balance of differentiation potentials that undifferentiated stem cells possess.
Collapse
Affiliation(s)
- Yukiyo Yamatani
- Department of Computational Biology and Medical Sciences, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Kenta Nakai
- Department of Computational Biology and Medical Sciences, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
- Human Genome Center, the Institute of Medical Science, the University of Tokyo, 4-6-1 Shirokanedai Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|