1
|
Calarco JA, Taylor SR, Miller DM. Detecting gene expression in Caenorhabditis elegans. Genetics 2025; 229:1-108. [PMID: 39693264 PMCID: PMC11979774 DOI: 10.1093/genetics/iyae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 09/30/2024] [Indexed: 12/20/2024] Open
Abstract
Reliable methods for detecting and analyzing gene expression are necessary tools for understanding development and investigating biological responses to genetic and environmental perturbation. With its fully sequenced genome, invariant cell lineage, transparent body, wiring diagram, detailed anatomy, and wide array of genetic tools, Caenorhabditis elegans is an exceptionally useful model organism for linking gene expression to cellular phenotypes. The development of new techniques in recent years has greatly expanded our ability to detect gene expression at high resolution. Here, we provide an overview of gene expression methods for C. elegans, including techniques for detecting transcripts and proteins in situ, bulk RNA sequencing of whole worms and specific tissues and cells, single-cell RNA sequencing, and high-throughput proteomics. We discuss important considerations for choosing among these techniques and provide an overview of publicly available online resources for gene expression data.
Collapse
Affiliation(s)
- John A Calarco
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada, M5S 3G5
| | - Seth R Taylor
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - David M Miller
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
- Neuroscience Program, Vanderbilt University, Nashville, TN 37240, USA
| |
Collapse
|
2
|
Kotagama K, McJunkin K. Recent advances in understanding microRNA function and regulation in C. elegans. Semin Cell Dev Biol 2024; 154:4-13. [PMID: 37055330 PMCID: PMC10564972 DOI: 10.1016/j.semcdb.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/15/2023]
Abstract
MicroRNAs (miRNAs) were first discovered in C. elegans as essential post-transcriptional regulators of gene expression. Since their initial discovery, miRNAs have been implicated in numerous areas of physiology and disease in all animals examined. In recent years, the C. elegans model continues to contribute important advances to all areas of miRNA research. Technological advances in tissue-specific miRNA profiling and genome editing have driven breakthroughs in understanding biological functions of miRNAs, mechanism of miRNA action, and regulation of miRNAs. In this review, we highlight these new C. elegans findings from the past five to seven years.
Collapse
Affiliation(s)
- Kasuen Kotagama
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases Intramural Research Program, Bethesda, MD 20892, USA
| | - Katherine McJunkin
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases Intramural Research Program, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
microRNAs: Critical Players during Helminth Infections. Microorganisms 2022; 11:microorganisms11010061. [PMID: 36677353 PMCID: PMC9861972 DOI: 10.3390/microorganisms11010061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
microRNAs (miRNAs) are a group of small non-coding RNAs that regulate gene expression post-transcriptionally through their interaction with the 3' untranslated regions (3' UTR) of target mRNAs, affecting their stability and/or translation. Therefore, miRNAs regulate biological processes such as signal transduction, cell death, autophagy, metabolism, development, cellular proliferation, and differentiation. Dysregulated expression of microRNAs is associated with infectious diseases, where miRNAs modulate important aspects of the parasite-host interaction. Helminths are parasitic worms that cause various neglected tropical diseases affecting millions worldwide. These parasites have sophisticated mechanisms that give them a surprising immunomodulatory capacity favoring parasite persistence and establishment of infection. In this review, we analyze miRNAs in infections caused by helminths, emphasizing their role in immune regulation and its implication in diagnosis, prognosis, and the development of therapeutic strategies.
Collapse
|
4
|
Berry CW, Olivares GH, Gallicchio L, Ramaswami G, Glavic A, Olguín P, Li JB, Fuller MT. Developmentally regulated alternate 3' end cleavage of nascent transcripts controls dynamic changes in protein expression in an adult stem cell lineage. Genes Dev 2022; 36:916-935. [PMID: 36175033 PMCID: PMC9575692 DOI: 10.1101/gad.349689.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/12/2022] [Indexed: 02/03/2023]
Abstract
Alternative polyadenylation (APA) generates transcript isoforms that differ in the position of the 3' cleavage site, resulting in the production of mRNA isoforms with different length 3' UTRs. Although widespread, the role of APA in the biology of cells, tissues, and organisms has been controversial. We identified >500 Drosophila genes that express mRNA isoforms with a long 3' UTR in proliferating spermatogonia but a short 3' UTR in differentiating spermatocytes due to APA. We show that the stage-specific choice of the 3' end cleavage site can be regulated by the arrangement of a canonical polyadenylation signal (PAS) near the distal cleavage site but a variant or no recognizable PAS near the proximal cleavage site. The emergence of transcripts with shorter 3' UTRs in differentiating cells correlated with changes in expression of the encoded proteins, either from off in spermatogonia to on in spermatocytes or vice versa. Polysome gradient fractionation revealed >250 genes where the long 3' UTR versus short 3' UTR mRNA isoforms migrated differently, consistent with dramatic stage-specific changes in translation state. Thus, the developmentally regulated choice of an alternative site at which to make the 3' end cut that terminates nascent transcripts can profoundly affect the suite of proteins expressed as cells advance through sequential steps in a differentiation lineage.
Collapse
Affiliation(s)
- Cameron W Berry
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Gonzalo H Olivares
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
- Center for Genome Regulation (CRG), Universidad de Chile, Santiago 7810000, Chile
- Drosophila Ring in Developmental Adaptations to Nutritional Stress (DRiDANS), Universidad de Chile, Santiago 7810000, Chile
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago 7810000, Chile
- Program of Human Genetics, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Escuela de Kinesiología, Facultad de Medicina y Ciencias de la Salud, Universidad Mayor, Huechuraba 8580745, Chile
- Center of Integrative Biology (CIB), Universidad Mayor, Huechuraba 8580745, Chile
| | - Lorenzo Gallicchio
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Gokul Ramaswami
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Alvaro Glavic
- Center for Genome Regulation (CRG), Universidad de Chile, Santiago 7810000, Chile
- Drosophila Ring in Developmental Adaptations to Nutritional Stress (DRiDANS), Universidad de Chile, Santiago 7810000, Chile
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago 7810000, Chile
| | - Patricio Olguín
- Drosophila Ring in Developmental Adaptations to Nutritional Stress (DRiDANS), Universidad de Chile, Santiago 7810000, Chile
- Program of Human Genetics, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Jin Billy Li
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Margaret T Fuller
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
5
|
Statzer C, Meng J, Venz R, Bland M, Robida-Stubbs S, Patel K, Petrovic D, Emsley R, Liu P, Morantte I, Haynes C, Mair WB, Longchamp A, Filipovic MR, Blackwell TK, Ewald CY. ATF-4 and hydrogen sulfide signalling mediate longevity in response to inhibition of translation or mTORC1. Nat Commun 2022; 13:967. [PMID: 35181679 PMCID: PMC8857226 DOI: 10.1038/s41467-022-28599-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/26/2022] [Indexed: 02/07/2023] Open
Abstract
Inhibition of the master growth regulator mTORC1 (mechanistic target of rapamycin complex 1) slows ageing across phyla, in part by reducing protein synthesis. Various stresses globally suppress protein synthesis through the integrated stress response (ISR), resulting in preferential translation of the transcription factor ATF-4. Here we show in C. elegans that inhibition of translation or mTORC1 increases ATF-4 expression, and that ATF-4 mediates longevity under these conditions independently of ISR signalling. ATF-4 promotes longevity by activating canonical anti-ageing mechanisms, but also by elevating expression of the transsulfuration enzyme CTH-2 to increase hydrogen sulfide (H2S) production. This H2S boost increases protein persulfidation, a protective modification of redox-reactive cysteines. The ATF-4/CTH-2/H2S pathway also mediates longevity and increased stress resistance from mTORC1 suppression. Increasing H2S levels, or enhancing mechanisms that H2S influences through persulfidation, may represent promising strategies for mobilising therapeutic benefits of the ISR, translation suppression, or mTORC1 inhibition.
Collapse
Affiliation(s)
- Cyril Statzer
- Eidgenössische Technische Hochschule Zürich, Department of Health Sciences and Technology, Institute of Translational Medicine, Schwerzenbach, Switzerland
| | - Jin Meng
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Joslin Diabetes Center, Research Division, Boston, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Richard Venz
- Eidgenössische Technische Hochschule Zürich, Department of Health Sciences and Technology, Institute of Translational Medicine, Schwerzenbach, Switzerland
| | - Monet Bland
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Joslin Diabetes Center, Research Division, Boston, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Stacey Robida-Stubbs
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Joslin Diabetes Center, Research Division, Boston, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Krina Patel
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Joslin Diabetes Center, Research Division, Boston, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Dunja Petrovic
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Raffaella Emsley
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Pengpeng Liu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ianessa Morantte
- Department of Genetics and Complex Diseases, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA, USA
| | - Cole Haynes
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - William B Mair
- Department of Genetics and Complex Diseases, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA, USA
| | - Alban Longchamp
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Milos R Filipovic
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - T Keith Blackwell
- Department of Genetics, Harvard Medical School, Boston, MA, USA. .,Joslin Diabetes Center, Research Division, Boston, MA, USA. .,Harvard Stem Cell Institute, Cambridge, MA, USA.
| | - Collin Y Ewald
- Eidgenössische Technische Hochschule Zürich, Department of Health Sciences and Technology, Institute of Translational Medicine, Schwerzenbach, Switzerland.
| |
Collapse
|
6
|
Lyu Y, Liufu Z, Xiao J, Tang T. A Rapid Evolving microRNA Cluster Rewires Its Target Regulatory Networks in Drosophila. Front Genet 2021; 12:760530. [PMID: 34777478 PMCID: PMC8581666 DOI: 10.3389/fgene.2021.760530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
New miRNAs are evolutionarily important but their functional evolution remains unclear. Here we report that the evolution of a microRNA cluster, mir-972C rewires its downstream regulatory networks in Drosophila. Genomic analysis reveals that mir-972C originated in the common ancestor of Drosophila where it comprises six old miRNAs. It has subsequently recruited six new members in the melanogaster subgroup after evolving for at least 50 million years. Both the young and the old mir-972C members evolved rapidly in seed and non-seed regions. Combining target prediction and cell transfection experiments, we found that the seed and non-seed changes in individual mir-972C members cause extensive target divergence among D. melanogaster, D. simulans, and D. virilis, consistent with the functional evolution of mir-972C reported recently. Intriguingly, the target pool of the cluster as a whole remains relatively conserved. Our results suggest that clustering of young and old miRNAs broadens the target repertoires by acquiring new targets without losing many old ones. This may facilitate the establishment of new miRNAs in existing regulatory networks.
Collapse
Affiliation(s)
- Yang Lyu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhongqi Liufu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Juan Xiao
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tian Tang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Parmar BS, Peeters MKR, Boonen K, Clark EC, Baggerman G, Menschaert G, Temmerman L. Identification of Non-Canonical Translation Products in C. elegans Using Tandem Mass Spectrometry. Front Genet 2021; 12:728900. [PMID: 34759956 PMCID: PMC8575065 DOI: 10.3389/fgene.2021.728900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/16/2021] [Indexed: 11/22/2022] Open
Abstract
Transcriptome and ribosome sequencing have revealed the existence of many non-canonical transcripts, mainly containing splice variants, ncRNA, sORFs and altORFs. However, identification and characterization of products that may be translated out of these remains a challenge. Addressing this, we here report on 552 non-canonical proteins and splice variants in the model organism C. elegans using tandem mass spectrometry. Aided by sequencing-based prediction, we generated a custom proteome database tailored to search for non-canonical translation products of C. elegans. Using this database, we mined available mass spectrometric resources of C. elegans, from which 51 novel, non-canonical proteins could be identified. Furthermore, we utilized diverse proteomic and peptidomic strategies to detect 40 novel non-canonical proteins in C. elegans by LC-TIMS-MS/MS, of which 6 were common with our meta-analysis of existing resources. Together, this permits us to provide a resource with detailed annotation of 467 splice variants and 85 novel proteins mapped onto UTRs, non-coding regions and alternative open reading frames of the C. elegans genome.
Collapse
Affiliation(s)
- Bhavesh S. Parmar
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Marlies K. R. Peeters
- Laboratory of Bioinformatics and Computational Genomics (BioBix), Department of Mathematical Modelling, Ghent University, Ghent, Belgium
| | - Kurt Boonen
- Centre for Proteomics (CFP), University of Antwerp, Antwerp, Belgium
| | - Ellie C. Clark
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Geert Baggerman
- Centre for Proteomics (CFP), University of Antwerp, Antwerp, Belgium
| | - Gerben Menschaert
- Laboratory of Bioinformatics and Computational Genomics (BioBix), Department of Mathematical Modelling, Ghent University, Ghent, Belgium
| | - Liesbet Temmerman
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
8
|
Chen Y, Liu M, Dong Z. Preferential Ribosome Loading on the Stress-Upregulated mRNA Pool Shapes the Selective Translation under Stress Conditions. PLANTS 2021; 10:plants10020304. [PMID: 33562590 PMCID: PMC7915710 DOI: 10.3390/plants10020304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 01/17/2023]
Abstract
The reprogramming of gene expression is one of the key responses to environmental stimuli, whereas changes in mRNA do not necessarily bring forth corresponding changes of the protein, which seems partially due to the stress-induced selective translation. To address this issue, we systematically compared the transcriptome and translatome using self-produced and publicly available datasets to decipher how and to what extent the coordination and discordance between transcription and translation came to be in response to wounding (self-produced), dark to light transition, heat, hypoxia, Pi starvation and the pathogen-associated molecular pattern (elf18) in Arabidopsis. We found that changes in total mRNAs (transcriptome) and ribosome-protected fragments (translatome) are highly correlated upon dark to light transition or heat stress. However, this close correlation was generally lost under other four stresses analyzed in this study, especially during immune response, which suggests that transcription and translation are differentially coordinated under distinct stress conditions. Moreover, Gene Ontology (GO) enrichment analysis showed that typical stress responsive genes were upregulated at both transcriptional and translational levels, while non-stress-specific responsive genes were changed solely at either level or downregulated at both levels. Taking wounding responsive genes for example, typical stress responsive genes are generally involved in functional categories related to dealing with the deleterious effects caused by the imposed wounding stress, such as response to wounding, response to water deprivation and response to jasmonic acid, whereas non-stress-specific responsive genes are often enriched in functional categories like S-glycoside biosynthetic process, photosynthesis and DNA-templated transcription. Collectively, our results revealed the differential as well as targeted coordination between transcriptome and translatome in response to diverse stresses, thus suggesting a potential model wherein preferential ribosome loading onto the stress-upregulated mRNA pool could be a pacing factor for selective translation.
Collapse
|
9
|
Shpilka T, Du Y, Yang Q, Melber A, Uma Naresh N, Lavelle J, Kim S, Liu P, Weidberg H, Li R, Yu J, Zhu LJ, Strittmatter L, Haynes CM. UPR mt scales mitochondrial network expansion with protein synthesis via mitochondrial import in Caenorhabditis elegans. Nat Commun 2021; 12:479. [PMID: 33473112 PMCID: PMC7817664 DOI: 10.1038/s41467-020-20784-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022] Open
Abstract
As organisms develop, individual cells generate mitochondria to fulfill physiological requirements. However, it remains unknown how mitochondrial network expansion is scaled to cell growth. The mitochondrial unfolded protein response (UPRmt) is a signaling pathway mediated by the transcription factor ATFS-1 which harbors a mitochondrial targeting sequence (MTS). Here, using the model organism Caenorhabditis elegans we demonstrate that ATFS-1 mediates an adaptable mitochondrial network expansion program that is active throughout normal development. Mitochondrial network expansion requires the relatively inefficient MTS in ATFS-1, which allows the transcription factor to be responsive to parameters that impact protein import capacity of the mitochondrial network. Increasing the strength of the ATFS-1 MTS impairs UPRmt activity by increasing accumulation within mitochondria. Manipulations of TORC1 activity increase or decrease ATFS-1 activity in a manner that correlates with protein synthesis. Lastly, expression of mitochondrial-targeted GFP is sufficient to expand the muscle cell mitochondrial network in an ATFS-1-dependent manner. We propose that mitochondrial network expansion during development is an emergent property of the synthesis of highly expressed mitochondrial proteins that exclude ATFS-1 from mitochondrial import, causing UPRmt activation. The mitochondrial network expands to accommodate cell growth, but how scaling occurs is unclear. Here, the authors show in C. elegans that ATFS-1 mitochondrial import is reduced when mitochondrial proteins are highly expressed, activating the unfolded protein response and causing expansion.
Collapse
Affiliation(s)
- Tomer Shpilka
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - YunGuang Du
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Qiyuan Yang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Andrew Melber
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Nandhitha Uma Naresh
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Joshua Lavelle
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Sookyung Kim
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Pengpeng Liu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Hilla Weidberg
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | - Rui Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Jun Yu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Lara Strittmatter
- Electron Microscopy Core, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Cole M Haynes
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
10
|
An ortholog of the Vasa intronic gene is required for small RNA-mediated translation repression in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 2019; 117:761-770. [PMID: 31871206 PMCID: PMC6955306 DOI: 10.1073/pnas.1908356117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Small RNAs (sRNAs) are a class of noncoding RNAs that regulate complementary mRNAs, by triggering translation repression and/or transcript decay, and influence multiple biological processes. In animals, land plants, and some protists like the alga Chlamydomonas, sRNAs can repress translation of polyribosome-associated mRNAs, without or with only minimal transcript destabilization. However, the precise silencing mechanism is poorly understood. We found that Chlamydomonas VIG1, a homolog of the Drosophila melanogaster Vasa intronic gene and a member of a widely conserved protein family in eukaryotes, is involved in this process. VIG1 appears to be an ancillary ribosomal constituent. Additionally, VIG1 copurifies with core components of sRNA effector complexes and plays a key role in the sRNA-mediated translation repression of polyribosomal transcripts. Small RNAs (sRNAs) associate with Argonaute (AGO) proteins in effector complexes, termed RNA-induced silencing complexes (RISCs), which regulate complementary transcripts by translation inhibition and/or RNA degradation. In the unicellular alga Chlamydomonas, several metazoans, and land plants, emerging evidence indicates that polyribosome-associated transcripts can be translationally repressed by RISCs without substantial messenger RNA (mRNA) destabilization. However, the mechanism of translation inhibition in a polyribosomal context is not understood. Here we show that Chlamydomonas VIG1, an ortholog of the Drosophila melanogaster Vasa intronic gene (VIG), is required for this process. VIG1 localizes predominantly in the cytosol and comigrates with monoribosomes and polyribosomes by sucrose density gradient sedimentation. A VIG1-deleted mutant shows hypersensitivity to the translation elongation inhibitor cycloheximide, suggesting that VIG1 may have a nonessential role in ribosome function/structure. Additionally, FLAG-tagged VIG1 copurifies with AGO3 and Dicer-like 3 (DCL3), consistent with it also being a component of the RISC. Indeed, VIG1 is necessary for the repression of sRNA-targeted transcripts at the translational level but is dispensable for cleavage-mediated RNA interference and for the association of the AGO3 effector with polyribosomes or target transcripts. Our results suggest that VIG1 is an ancillary ribosomal component and plays a role in sRNA-mediated translation repression of polyribosomal transcripts.
Collapse
|
11
|
Affiliation(s)
- Victor Ambros
- Program in Molecular Medicine, University of Massachusetts Medical School, UK
| |
Collapse
|
12
|
Perkins P, Mazzoni-Putman S, Stepanova A, Alonso J, Heber S. RiboStreamR: a web application for quality control, analysis, and visualization of Ribo-seq data. BMC Genomics 2019; 20:422. [PMID: 31167636 PMCID: PMC6551240 DOI: 10.1186/s12864-019-5700-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Ribo-seq is a popular technique for studying translation and its regulation. A Ribo-seq experiment produces a snap-shot of the location and abundance of actively translating ribosomes within a cell's transcriptome. In practice, Ribo-seq data analysis can be sensitive to quality issues such as read length variation, low read periodicities, and contaminations with ribosomal and transfer RNA. Various software tools for data preprocessing, quality assessment, analysis, and visualization of Ribo-seq data have been developed. However, many of these tools require considerable practical knowledge of software applications, and often multiple different tools have to be used in combination with each other. RESULTS We present riboStreamR, a comprehensive Ribo-seq quality control (QC) platform in the form of an R Shiny web application. RiboStreamR provides visualization and analysis tools for various Ribo-seq QC metrics, including read length distribution, read periodicity, and translational efficiency. Our platform is focused on providing a user-friendly experience, and includes various options for graphical customization, report generation, and anomaly detection within Ribo-seq datasets. CONCLUSIONS RiboStreamR takes advantage of the vast resources provided by the R and Bioconductor environments, and utilizes the Shiny R package to ensure a high level of usability. Our goal is to develop a tool which facilitates in-depth quality assessment of Ribo-seq data by providing reference datasets and automatically highlighting quality issues and anomalies within datasets.
Collapse
Affiliation(s)
- Patrick Perkins
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, 27607, USA
| | - Serina Mazzoni-Putman
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27607, USA
| | - Anna Stepanova
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27607, USA
| | - Jose Alonso
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27607, USA
| | - Steffen Heber
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, 27607, USA. .,Computer Science Department, North Carolina State University, Campus Box 8206, Raleigh, NC, 27695-8206, USA.
| |
Collapse
|
13
|
Tafrihi M, Hasheminasab E. MiRNAs: Biology, Biogenesis, their Web-based Tools, and Databases. Microrna 2019; 8:4-27. [PMID: 30147022 DOI: 10.2174/2211536607666180827111633] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 07/11/2018] [Accepted: 08/20/2018] [Indexed: 05/25/2023]
Abstract
INTRODUCTION MicroRNAs (miRNAs), which are evolutionarily conserved, and endogenous non-coding RNAs, participate in the post-transcriptional regulation of eukaryotic genes. The biogenesis of miRNAs occurs in the nucleus. Then, in the cytoplasm, they are assembled along with some proteins in a ribonucleoprotein complex called RISC. miRNA component of the RISC complex binds to the complementary sequence of mRNA target depending on the degree of complementarity, and leads to mRNA degradation and/or inhibition of protein synthesis. miRNAs have been found in eukaryotes and some viruses play a role in development, metabolism, cell proliferation, growth, differentiation, and death. OBJECTIVE A large number of miRNAs and their targets were identified by different experimental techniques and computational approaches. The principal aim of this paper is to gather information about some miRNA databases and web-based tools for better and quicker access to relevant data. RESULTS Accordingly, in this paper, we collected and introduced miRNA databases and some webbased tools that have been developed by various research groups. We have categorized them into different classes including databases for viral miRNAs, and plant miRNAs, miRNAs in human beings, mice and other vertebrates, miRNAs related to human diseases, and target prediction, and miRNA expression. Also, we have presented relevant statistical information about these databases.
Collapse
Affiliation(s)
- Majid Tafrihi
- Molecular & Cell Biology Research Lab. 2, Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Mazandaran, Iran
| | - Elham Hasheminasab
- Molecular & Cell Biology Research Lab. 2, Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Mazandaran, Iran
| |
Collapse
|
14
|
Active Ribosome Profiling with RiboLace. Cell Rep 2018; 25:1097-1108.e5. [DOI: 10.1016/j.celrep.2018.09.084] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/20/2018] [Accepted: 09/25/2018] [Indexed: 12/22/2022] Open
|
15
|
Recent Molecular Genetic Explorations of Caenorhabditis elegans MicroRNAs. Genetics 2018; 209:651-673. [PMID: 29967059 PMCID: PMC6028246 DOI: 10.1534/genetics.118.300291] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/30/2018] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs are small, noncoding RNAs that regulate gene expression at the post-transcriptional level in essentially all aspects of Caenorhabditis elegans biology. More than 140 genes that encode microRNAs in C. elegans regulate development, behavior, metabolism, and responses to physiological and environmental changes. Genetic analysis of C. elegans microRNA genes continues to enhance our fundamental understanding of how microRNAs are integrated into broader gene regulatory networks to control diverse biological processes, including growth, cell division, cell fate determination, behavior, longevity, and stress responses. As many of these microRNA sequences and the related processing machinery are conserved over nearly a billion years of animal phylogeny, the assignment of their functions via worm genetics may inform the functions of their orthologs in other animals, including humans. In vivo investigations are especially important for microRNAs because in silico extrapolation of their functions using mRNA target prediction programs can easily assign microRNAs to incorrect genetic pathways. At this mezzanine level of microRNA bioinformatic sophistication, genetic analysis continues to be the gold standard for pathway assignments.
Collapse
|
16
|
Wang H, McManus J, Kingsford C. Accurate Recovery of Ribosome Positions Reveals Slow Translation of Wobble-Pairing Codons in Yeast. J Comput Biol 2017; 24:486-500. [PMID: 27726445 PMCID: PMC5467134 DOI: 10.1089/cmb.2016.0147] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ribosome profiling quantitatively captures ribosome locations during translation. The resulting profiles of ribosome locations are widely used to study translational speed. However, an accurate estimation of the ribosome location depends on identifying the A-site from ribosome profiling reads, a problem that was previously unsolved. Here, we propose a novel method to estimate the ribosome A-site positions from high-coverage ribosome profiling reads. Our model allows more reads to be used, accurately explains the 3-nt periodicity of ribosome profiling reads from various lengths, and recovers consistent ribosome positions across different lengths. Our recovered ribosome positions are correctly highly skewed toward a single frame within a codon. They retain subcodon resolution and enable detection of off-frame translational events, such as frameshifts. Our method improves the correlation with other estimates of codon decoding time. Furthermore, the refined profiles show that yeast wobble-pairing codons are translated slower than their synonymous Watson-Crick-pairing codons. These results provide evidence that protein synthetic rate can be tuned by codon usage bias.
Collapse
Affiliation(s)
- Hao Wang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Joel McManus
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Carl Kingsford
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania
| |
Collapse
|
17
|
Borbolis F, Flessa CM, Roumelioti F, Diallinas G, Stravopodis DJ, Syntichaki P. Neuronal function of the mRNA decapping complex determines survival of Caenorhabditis elegans at high temperature through temporal regulation of heterochronic gene expression. Open Biol 2017; 7:160313. [PMID: 28250105 PMCID: PMC5376704 DOI: 10.1098/rsob.160313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/04/2017] [Indexed: 12/18/2022] Open
Abstract
In response to adverse environmental cues, Caenorhabditis elegans larvae can temporarily arrest development at the second moult and form dauers, a diapause stage that allows for long-term survival. This process is largely regulated by certain evolutionarily conserved signal transduction pathways, but it is also affected by miRNA-mediated post-transcriptional control of gene expression. The 5'-3' mRNA decay mechanism contributes to miRNA-mediated silencing of target mRNAs in many organisms but how it affects developmental decisions during normal or stress conditions is largely unknown. Here, we show that loss of the mRNA decapping complex activity acting in the 5'-3' mRNA decay pathway inhibits dauer formation at the stressful high temperature of 27.5°C, and instead promotes early developmental arrest. Our genetic data suggest that this arrest phenotype correlates with dysregulation of heterochronic gene expression and an aberrant stabilization of lin-14 mRNA at early larval stages. Restoration of neuronal dcap-1 activity was sufficient to rescue growth phenotypes of dcap-1 mutants at both high and normal temperatures, implying the involvement of common developmental timing mechanisms. Our work unveils the crucial role of 5'-3' mRNA degradation in proper regulation of heterochronic gene expression programmes, which proved to be essential for survival under stressful conditions.
Collapse
Affiliation(s)
- Fivos Borbolis
- Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, Athens 11527, Greece
- Faculty of Biology, School of Science, University of Athens, Athens, Greece
| | - Christina-Maria Flessa
- Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, Athens 11527, Greece
- Faculty of Biology, School of Science, University of Athens, Athens, Greece
| | - Fani Roumelioti
- Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, Athens 11527, Greece
- School of Medicine, University of Athens, Athens, Greece
| | - George Diallinas
- Faculty of Biology, School of Science, University of Athens, Athens, Greece
| | | | - Popi Syntichaki
- Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, Athens 11527, Greece
| |
Collapse
|
18
|
Fesler A, Xu X, Zheng X, Li X, Jiang J, Russo JJ, Ju J. Identification of miR-215 mediated targets/pathways via translational immunoprecipitation expression analysis (TrIP-chip). Oncotarget 2016; 6:24463-73. [PMID: 26287603 PMCID: PMC4695198 DOI: 10.18632/oncotarget.4425] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/31/2015] [Indexed: 01/28/2023] Open
Abstract
Steady state mRNA expression profiling can identify the majority of miRNA targets. However, some translationally repressed miRNA targets are missed and thus not considered for functional validation. Therefore, analysis of mRNA translation can enhance miRNA target identification for functional studies. We have applied a unique approach to identify miRNA targets in a small number of cells. Actively translating mRNAs are associated with polyribosomes and newly synthesized peptide chains are associated with molecular chaperones such as HSP70s. Affinity capture beads were used to capture HSP70 chaperones associated with polyribosome complexes. The isolated actively translating mRNAs were used for high throughput expression profiling analysis. miR-215 is an important miRNA in colorectal cancer and loss of miR-215 is significantly associated with prognosis of this disease. miR-215 suppresses the expression of several key targets. We utilized the affinity capture approach to isolate miR-215 mediated mRNA target transcripts. This approach provides a unique way to identify targets regulated by non-coding RNAs and RNA binding proteins from a small number of cells.
Collapse
Affiliation(s)
- Andrew Fesler
- Department of Pathology, Stony Brook University, School of Medicine, Stony Brook, NY, USA
| | - Xiao Xu
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xiao Zheng
- The Third Affiliated Hospital, Soochow University, China
| | - Xiaodong Li
- The Third Affiliated Hospital, Soochow University, China
| | - Jingting Jiang
- The Third Affiliated Hospital, Soochow University, China
| | - James J Russo
- Center for Genome Technology and Biomolecular Engineering, Department of Chemical Engineering, Columbia University, New York, NY, USA
| | - Jingfang Ju
- Department of Pathology, Stony Brook University, School of Medicine, Stony Brook, NY, USA
| |
Collapse
|
19
|
Diament A, Tuller T. Estimation of ribosome profiling performance and reproducibility at various levels of resolution. Biol Direct 2016; 11:24. [PMID: 27160013 PMCID: PMC4862193 DOI: 10.1186/s13062-016-0127-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/29/2016] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Ribosome profiling (or Ribo-seq) is currently the most popular methodology for studying translation; it has been employed in recent years to decipher various fundamental gene expression regulation aspects. The main promise of the approach is its ability to detect ribosome densities over an entire transcriptome in high resolution of single codons. Indeed, dozens of ribo-seq studies have included results related to local ribosome densities in different parts of the transcript; nevertheless, the performance of Ribo-seq has yet to be quantitatively evaluated and reported in a large-scale multi-organismal and multi-protocol study of currently available datasets. RESULTS Here we provide the first objective evaluation of Ribo-seq at the resolution of a single nucleotide(s) using clear, interpretable measures, based on the analysis of 15 experiments, 6 organisms, and a total of 612, 961 transcripts. Our major conclusion is that the ability to infer signals of ribosomal densities at nucleotide scale is considerably lower than previously thought, as signals at this level are not reproduced well in experimental replicates. In addition, we provide various quantitative measures that connect the expected error rate with Ribo-seq analysis resolution. CONCLUSIONS The analysis of Ribo-seq data at the resolution of codons and nucleotides provides a challenging task, calls for task-specific statistical methods and further protocol improvements. We believe that our results are important for every researcher studying translation and specifically for researchers analyzing data generated by the Ribo-seq approach. REVIEWERS This article was reviewed by Dmitrij Frishman, Eugene Koonin and Frank Eisenhaber.
Collapse
Affiliation(s)
- Alon Diament
- Biomedical Engineering Department, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Tamir Tuller
- Biomedical Engineering Department, Tel Aviv University, Tel Aviv-Yafo, Israel. .,The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo, Israel.
| |
Collapse
|
20
|
Tat TT, Maroney PA, Chamnongpol S, Coller J, Nilsen TW. Cotranslational microRNA mediated messenger RNA destabilization. eLife 2016; 5. [PMID: 27058298 PMCID: PMC4859803 DOI: 10.7554/elife.12880] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 04/07/2016] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs are small (22 nucleotide) regulatory molecules that play important roles in a wide variety of biological processes. These RNAs, which bind to targeted mRNAs via limited base pairing interactions, act to reduce protein production from those mRNAs. Considerable evidence indicates that miRNAs destabilize targeted mRNAs by recruiting enzymes that function in normal mRNA decay and mRNA degradation is widely thought to occur when mRNAs are in a ribosome free state. Nevertheless, when examined, miRNA targeted mRNAs are invariably found to be polysome associated; observations that appear to be at face value incompatible with a simple decay model. Here, we provide evidence that turnover of miRNA-targeted mRNAs occurs while they are being translated. Cotranslational mRNA degradation is initiated by decapping and proceeds 5’ to 3’ behind the last translating ribosome. These results provide an explanation for a long standing mystery in the miRNA field. DOI:http://dx.doi.org/10.7554/eLife.12880.001 DNA encodes instructions to make proteins. The DNA is first copied to make molecules of messenger ribonucleic acid (mRNA) that are then “translated” into proteins by large particles known as ribosomes. MicroRNAs are a type of very small RNA molecule that can reduce the amount of protein produced from mRNAs in animals and other eukaryotic organisms. However, the mechanism by which microRNAs achieve this has been unclear. Many groups of researchers have shown that microRNAs promote the degradation of particular mRNAs. Others have shown that the mRNAs that are targeted by microRNAs are generally bound to active ribosomes. Since the degradation of mRNAs is widely believed to occur away from the ribosomes, these two sets of observations have been considered to be incompatible with each other. Tat et al. set out to resolve this paradox by studying how microRNAs work in fruit fly cells. The experiments showed that microRNAs do indeed promote the degradation of the mRNAs they bind to and that these mRNAs are exclusively associated with active ribosomes. Furthermore, this process uses the same cellular machinery that is used for the normal destruction of mRNAs. MicroRNAs help to recruit this machinery to their target mRNAs and thereby enhance mRNA break down. Tat et al.’s findings provide an explanation for a longstanding puzzle in microRNA research. However, although this mechanism is widely used, it does not appear to apply to all mRNAs targeted by microRNAs, so a future challenge is to understand how these other mRNAs are broken down. DOI:http://dx.doi.org/10.7554/eLife.12880.002
Collapse
Affiliation(s)
- Trinh To Tat
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, United States
| | - Patricia A Maroney
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, United States
| | | | - Jeff Coller
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, United States
| | - Timothy W Nilsen
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, United States
| |
Collapse
|
21
|
Wang H, McManus J, Kingsford C. Accurate Recovery of Ribosome Positions Reveals Slow Translation of Wobble-Pairing Codons in Yeast. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-3-319-31957-5_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
22
|
Pelechano V, Wei W, Steinmetz LM. Genome-wide quantification of 5'-phosphorylated mRNA degradation intermediates for analysis of ribosome dynamics. Nat Protoc 2016; 11:359-76. [PMID: 26820793 DOI: 10.1038/nprot.2016.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Co-translational mRNA degradation is a widespread process in which 5'-3' exonucleolytic degradation follows the last translating ribosome, thus producing an in vivo ribosomal footprint that delimits the 5' position of the mRNA molecule within the ribosome. To study this degradation process and ribosome dynamics, we developed 5PSeq, which is a method that profiles the genome-wide abundance of mRNA degradation intermediates by virtue of their 5'-phosphorylated (5'P) ends. The approach involves targeted ligation of an oligonucleotide to the 5'P end of mRNA degradation intermediates, followed by depletion of rRNA molecules, reverse transcription of 5'P mRNAs and Illumina high-throughput sequencing. 5PSeq can identify translational pauses at rare codons that are often masked when using alternative methods. This approach can be applied to previously extracted RNA samples, and it is straightforward and does not require polyribosome purification or in vitro RNA footprinting. The protocol we describe here can be applied to Saccharomyces cerevisiae and potentially to other eukaryotic organisms. Three days are required to generate 5PSeq libraries.
Collapse
Affiliation(s)
- Vicent Pelechano
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Wu Wei
- Stanford Genome Technology Center, Palo Alto, California, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Lars M Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany.,Stanford Genome Technology Center, Palo Alto, California, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
23
|
Herrera RA, Kiontke K, Fitch DHA. Makorin ortholog LEP-2 regulates LIN-28 stability to promote the juvenile-to-adult transition in Caenorhabditis elegans. Development 2016; 143:799-809. [PMID: 26811380 DOI: 10.1242/dev.132738] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/16/2016] [Indexed: 12/27/2022]
Abstract
The heterochronic genes lin-28, let-7 and lin-41 regulate fundamental developmental transitions in animals, such as stemness versus differentiation and juvenile versus adult states. We identify a new heterochronic gene, lep-2, in Caenorhabditis elegans. Mutations in lep-2 cause a delay in the juvenile-to-adult transition, with adult males retaining pointed, juvenile tail tips, and displaying defective sexual behaviors. In both sexes, lep-2 mutants fail to cease molting or produce an adult cuticle. We find that LEP-2 post-translationally regulates LIN-28 by promoting LIN-28 protein degradation. lep-2 encodes the sole C. elegans ortholog of the Makorin (Mkrn) family of proteins. Like lin-28 and other heterochronic pathway members, vertebrate Mkrns are involved in developmental switches, including the timing of pubertal onset in humans. Based on shared roles, conservation and the interaction between lep-2 and lin-28 shown here, we propose that Mkrns, together with other heterochronic genes, constitute an evolutionarily ancient conserved module regulating switches in development.
Collapse
Affiliation(s)
| | - Karin Kiontke
- Department of Biology, New York University, New York, NY 10003, USA
| | - David H A Fitch
- Department of Biology, New York University, New York, NY 10003, USA Faculty of Arts and Sciences, New York University-Shanghai, Shanghai 200122, China
| |
Collapse
|
24
|
Yi YH, Ma TH, Lee LW, Chiou PT, Chen PH, Lee CM, Chu YD, Yu H, Hsiung KC, Tsai YT, Lee CC, Chang YS, Chan SP, Tan BCM, Lo SJ. A Genetic Cascade of let-7-ncl-1-fib-1 Modulates Nucleolar Size and rRNA Pool in Caenorhabditis elegans. PLoS Genet 2015; 11:e1005580. [PMID: 26492166 PMCID: PMC4619655 DOI: 10.1371/journal.pgen.1005580] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/15/2015] [Indexed: 11/20/2022] Open
Abstract
Ribosome biogenesis takes place in the nucleolus, the size of which is often coordinated with cell growth and development. However, how metazoans control nucleolar size remains largely unknown. Caenorhabditis elegans provides a good model to address this question owing to distinct tissue distribution of nucleolar sizes and a mutant, ncl-1, which exhibits larger nucleoli than wild-type worms. Here, through a series of loss-of-function analyses, we report that the nucleolar size is regulated by a circuitry composed of microRNA let-7, translation repressor NCL-1, and a major nucleolar pre-rRNA processing protein FIB-1/fibrillarin. In cooperation with RNA binding proteins PUF and NOS, NCL-1 suppressed the translation of FIB-1/fibrillarin, while let-7 targeted the 3’UTR of ncl-1 and inhibited its expression. Consequently, the abundance of FIB-1 is tightly controlled and correlated with the nucleolar size. Together, our findings highlight a novel genetic cascade by which post-transcriptional regulators interplay in developmental control of nucleolar size and function. Among the RNA/protein bodies within the nucleus, nucleoli are essential factories for ribosome production and assembly. The size and morphology of the nucleolus is thus a cytological manifestation of protein biosynthesis and is closely coordinated with cell biology and even malignancy. However, without membrane delimitation, the principles that define nucleoli size are poorly understood. Caenorhabditis elegans represents an ideal model to address this question owing to distinct tissue distribution of nucleolar sizes and a mutant, ncl-1, which exhibits larger-than-normal nucleoli. We report here a genetic cascade of microRNA let-7 and translation repressor NCL-1, which tightly controls abundance of FIB-1/fibrillarin. This network ultimately contributes to developmental control of nucleolar size and function.
Collapse
Affiliation(s)
- Yung-Hsiang Yi
- Molecular Medicine Research Center, Chang Gung University, TaoYuan, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, TaoYuan, Taiwan
| | - Tian-Hsiang Ma
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, TaoYuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, TaoYuan, Taiwan
| | - Li-Wei Lee
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, TaoYuan, Taiwan
| | - Pey-Tsyr Chiou
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, TaoYuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, TaoYuan, Taiwan
| | - Po-Hsiang Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, TaoYuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, TaoYuan, Taiwan
| | - Ching-Ming Lee
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, TaoYuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, TaoYuan, Taiwan
| | - Yu-De Chu
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsiang Yu
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, TaoYuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, TaoYuan, Taiwan
| | - Kuei-Ching Hsiung
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, TaoYuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, TaoYuan, Taiwan
| | - Yi-Tzang Tsai
- Molecular Medicine Research Center, Chang Gung University, TaoYuan, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, TaoYuan, Taiwan
| | - Chi-Chang Lee
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, TaoYuan, Taiwan
| | - Yu-Sun Chang
- Molecular Medicine Research Center, Chang Gung University, TaoYuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, TaoYuan, Taiwan
| | - Shih-Peng Chan
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
- * E-mail: (SPC); (BCMT); (SJL)
| | - Bertrand Chin-Ming Tan
- Molecular Medicine Research Center, Chang Gung University, TaoYuan, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, TaoYuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, TaoYuan, Taiwan
- * E-mail: (SPC); (BCMT); (SJL)
| | - Szecheng J. Lo
- Molecular Medicine Research Center, Chang Gung University, TaoYuan, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, TaoYuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, TaoYuan, Taiwan
- * E-mail: (SPC); (BCMT); (SJL)
| |
Collapse
|
25
|
Xie SQ, Nie P, Wang Y, Wang H, Li H, Yang Z, Liu Y, Ren J, Xie Z. RPFdb: a database for genome wide information of translated mRNA generated from ribosome profiling. Nucleic Acids Res 2015; 44:D254-8. [PMID: 26433228 PMCID: PMC4702944 DOI: 10.1093/nar/gkv972] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/15/2015] [Indexed: 12/25/2022] Open
Abstract
Translational control is crucial in the regulation of gene expression and deregulation of translation is associated with a wide range of cancers and human diseases. Ribosome profiling is a technique that provides genome wide information of mRNA in translation based on deep sequencing of ribosome protected mRNA fragments (RPF). RPFdb is a comprehensive resource for hosting, analyzing and visualizing RPF data, available at www.rpfdb.org or http://sysbio.sysu.edu.cn/rpfdb/index.html. The current version of database contains 777 samples from 82 studies in 8 species, processed and reanalyzed by a unified pipeline. There are two ways to query the database: by keywords of studies or by genes. The outputs are presented in three levels. (i) Study level: including meta information of studies and reprocessed data for gene expression of translated mRNAs; (ii) Sample level: including global perspective of translated mRNA and a list of the most translated mRNA of each sample from a study; (iii) Gene level: including normalized sequence counts of translated mRNA on different genomic location of a gene from multiple samples and studies. To explore rich information provided by RPF, RPFdb also provides a genome browser to query and visualize context-specific translated mRNA. Overall our database provides a simple way to search, analyze, compare, visualize and download RPF data sets.
Collapse
Affiliation(s)
- Shang-Qian Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China Scientific Center for Precision Medicine, Sun Yat-sen University, Guangzhou 510000, China
| | - Peng Nie
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Yan Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Hongwei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Hongyu Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Zhilong Yang
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jian Ren
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Zhi Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China Scientific Center for Precision Medicine, Sun Yat-sen University, Guangzhou 510000, China
| |
Collapse
|
26
|
Abstract
BACKGROUND During protein synthesis, the nascent peptide chain emerges from the ribosome through the ribosomal exit tunnel. Biochemical interactions between the nascent peptide and the tunnel may stall the ribosome movement and thus affect the expression level of the protein being synthesized. Earlier studies focused on one model organism (S. cerevisiae), have suggested that certain amino acid sequences may be responsible for ribosome stalling; however, the stalling effect at the individual amino acid level across many organisms has not yet been quantified. RESULTS By analyzing multiple ribosome profiling datasets from different organisms (including prokaryotes and eukaryotes), we report for the first time the organism-specific amino acids that significantly lead to ribosome stalling. We show that the identity of the stalling amino acids vary across the tree of life. In agreement with previous studies, we observed a remarkable stalling signal of proline and arginine in S. cerevisiae. In addition, our analysis supports the conjecture that the stalling effect of positively charged amino acids is not universal and that in certain conditions, negative charge may also induce ribosome stalling. Finally, we show that the beginning part of the tunnel tends to undergo more interactions with the translated amino acids than other positions along the tunnel. CONCLUSIONS The reported results support the conjecture that the ribosomal exit tunnel interacts with various amino acids and that the nature of these interactions varies among different organisms. Our findings should contribute towards better understanding of transcript and proteomic evolution and translation elongation regulation.
Collapse
Affiliation(s)
- Renana Sabi
- Department of Biomedical Engineering, Tel Aviv University (TAU), Tel Aviv, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel Aviv University (TAU), Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel-Aviv University (TAU), Tel-Aviv, Israel
| |
Collapse
|
27
|
Subasic D, Brümmer A, Wu Y, Pinto SM, Imig J, Keller M, Jovanovic M, Lightfoot HL, Nasso S, Goetze S, Brunner E, Hall J, Aebersold R, Zavolan M, Hengartner MO. Cooperative target mRNA destabilization and translation inhibition by miR-58 microRNA family in C. elegans. Genome Res 2015; 25:1680-91. [PMID: 26232411 PMCID: PMC4617964 DOI: 10.1101/gr.183160.114] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 07/27/2015] [Indexed: 12/19/2022]
Abstract
In animals, microRNAs frequently form families with related sequences. The functional relevance of miRNA families and the relative contribution of family members to target repression have remained, however, largely unexplored. Here, we used the Caenorhabditis elegans miR-58 miRNA family, composed primarily of the four highly abundant members miR-58.1, miR-80, miR-81, and miR-82, as a model to investigate the redundancy of miRNA family members and their impact on target expression in an in vivo setting. We found that miR-58 family members repress largely overlapping sets of targets in a predominantly additive fashion. Progressive deletions of miR-58 family members lead to cumulative up-regulation of target protein and RNA levels. Phenotypic defects could only be observed in the family quadruple mutant, which also showed the strongest change in target protein levels. Interestingly, although the seed sequences of miR-80 and miR-58.1 differ in a single nucleotide, predicted canonical miR-80 targets were efficiently up-regulated in the mir-58.1 single mutant, indicating functional redundancy of distinct members of this miRNA family. At the aggregate level, target binding leads mainly to mRNA degradation, although we also observed some degree of translational inhibition, particularly in the single miR-58 family mutants. These results provide a framework for understanding how miRNA family members interact to regulate target mRNAs.
Collapse
Affiliation(s)
- Deni Subasic
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland; Molecular Life Sciences PhD Program, Swiss Federal Institute of Technology and University of Zurich, 8057 Zurich, Switzerland
| | - Anneke Brümmer
- Biozentrum, University of Basel, 4056 Basel, Switzerland; Department of Integrative Biology and Physiology, University of California, Los Angeles, California 90095, USA
| | - Yibo Wu
- Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Sérgio Morgado Pinto
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland; Graduate Program in Areas of Basic and Applied Biology (GABBA), University of Porto, 4099-002 Porto, Portugal
| | - Jochen Imig
- Institute of Pharmaceutical Chemistry, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Martin Keller
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland; Molecular Life Sciences PhD Program, Swiss Federal Institute of Technology and University of Zurich, 8057 Zurich, Switzerland
| | - Marko Jovanovic
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Helen Louise Lightfoot
- Institute of Pharmaceutical Chemistry, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Sara Nasso
- Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Sandra Goetze
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland; Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Erich Brunner
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Jonathan Hall
- Institute of Pharmaceutical Chemistry, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland; Faculty of Science, University of Zurich, 8057 Zurich, Switzerland
| | | | - Michael O Hengartner
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
28
|
Nachtigall PG, Dias MC, Carvalho RF, Martins C, Pinhal D. MicroRNA-499 expression distinctively correlates to target genes sox6 and rod1 profiles to resolve the skeletal muscle phenotype in Nile tilapia. PLoS One 2015; 10:e0119804. [PMID: 25793727 PMCID: PMC4368118 DOI: 10.1371/journal.pone.0119804] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 02/02/2015] [Indexed: 11/22/2022] Open
Abstract
A class of small non-coding RNAs, the microRNAs (miRNAs), has been shown to be essential for the regulation of specific cell pathways, including skeletal muscle development, maintenance and homeostasis in vertebrates. However, the relative contribution of miRNAs for determining the red and white muscle cell phenotypes is far from being fully comprehended. To better characterize the role of miRNA in skeletal muscle cell biology, we investigated muscle-specific miRNA (myomiR) signatures in Nile tilapia fish. Quantitative (RT-qPCR) and spatial (FISH) expression analyses revealed a highly differential expression (forty-four-fold) of miR-499 in red skeletal muscle compared to white skeletal muscle, whereas the remaining known myomiRs were equally expressed in both muscle cell types. Detailed examination of the miR-499 targets through bioinformatics led us to the sox6 and rod1 genes, which had low expression in red muscle cells according to RT-qPCR, FISH, and protein immunofluorescence profiling experiments. Interestingly, we verified that the high expression of miR-499 perfectly correlates with a low expression of sox6 and rod1 target genes, as verified by a distinctive predominance of mRNA destabilization and protein translational decay to these genes, respectively. Through a genome-wide comparative analysis of SOX6 and ROD1 protein domains and through an in silico gene regulatory network, we also demonstrate that both proteins are essentially similar in vertebrate genomes, suggesting their gene regulatory network may also be widely conserved. Overall, our data shed light on the potential regulation of targets by miR-499 associated with the slow-twitch muscle fiber type phenotype. Additionally the results provide novel insights into the evolutionary dynamics of miRNA and target genes enrolled in a putative constrained molecular pathway in the skeletal muscle cells of vertebrates.
Collapse
Affiliation(s)
- Pedro G. Nachtigall
- Department of Genetics, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, 18618-970, Brazil
| | - Marcos C. Dias
- Department of Morphology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, 18618-970, Brazil
- Health Sciences Institute, Federal University of Mato Grosso (UFMT), Sinop, Mato Grosso, 78550-000, Brazil
| | - Robson F. Carvalho
- Department of Morphology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, 18618-970, Brazil
| | - Cesar Martins
- Department of Morphology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, 18618-970, Brazil
| | - Danillo Pinhal
- Department of Genetics, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, 18618-970, Brazil
| |
Collapse
|
29
|
Lima SA, Pasquinelli AE. Identification of miRNAs and their targets in C. elegans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:431-50. [PMID: 25201113 DOI: 10.1007/978-1-4939-1221-6_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that direct posttranscriptional regulation of specific target genes. Since their discovery in Caenorhabditis elegans, they have been associated with the control of virtually all biological processes and are known to play major roles in development and cellular homeostasis. Yet the biological roles of most miRNAs remain to be fully known. Furthermore, the precise rules by which miRNAs recognize their targets and mediate gene silencing are still unclear. Systematic identification of miRNAs and of the RNAs they regulate is essential to close these knowledge gaps. Studies in C. elegans have been instrumental not only in the discovery phase of miRNA biology but also in the elucidation of mechanisms regulating miRNA expression, target recognition and regulation. This chapter highlights some of the main challenges still present in the field, while introducing the major studies and methods used to find miRNAs and their targets in the worm.
Collapse
Affiliation(s)
- Sarah Azoubel Lima
- Division of Biology, University of California, San Diego, La Jolla, CA, 92093-0349, USA
| | | |
Collapse
|
30
|
Mean of the typical decoding rates: a new translation efficiency index based on the analysis of ribosome profiling data. G3-GENES GENOMES GENETICS 2014; 5:73-80. [PMID: 25452418 PMCID: PMC4291471 DOI: 10.1534/g3.114.015099] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Gene translation modeling and prediction is a fundamental problem that has numerous biomedical implementations. In this work we present a novel, user-friendly tool/index for calculating the mean of the typical decoding rates that enables predicting translation elongation efficiency of protein coding genes for different tissue types, developmental stages, and experimental conditions. The suggested translation efficiency index is based on the analysis of the organism’s ribosome profiling data. This index could be used for example to predict changes in translation elongation efficiency of lowly expressed genes that usually have relatively low and/or biased ribosomal densities and protein levels measurements, or can be used for example for predicting translation efficiency of new genetically engineered genes. We demonstrate the usability of this index via the analysis of six organisms in different tissues and developmental stages. Distributable cross platform application and guideline are available for download at: http://www.cs.tau.ac.il/~tamirtul/MTDR/MTDR_Install.html
Collapse
|
31
|
Abstract
Background Codon decoding time is a fundamental property of mRNA translation believed to affect the abundance, function, and properties of proteins. Recently, a novel experimental technology--ribosome profiling--was developed to measure the density, and thus the speed, of ribosomes at codon resolution. Specifically, this method is based on next-generation sequencing, which theoretically can provide footprint counts that correspond to the probability of observing a ribosome in this position for each nucleotide in each transcript. Results In this study, we report for the first time various novel properties of the distribution of codon footprint counts in five organisms, based on large-scale analysis of ribosomal profiling data. We show that codons have distinctive footprint count distributions. These tend to be preserved along the inner part of the ORF, but differ at the 5' and 3' ends of the ORF, suggesting that the translation-elongation stage actually includes three biophysical sub-steps. In addition, we study various basic properties of the codon footprint count distributions and show that some of them correlate with the abundance of the tRNA molecule types recognizing them. Conclusions Our approach emphasizes the advantages of analyzing ribosome profiling and similar types of data via a comparative genomic codon-distribution-centric view. Thus, our methods can be used in future studies related to translation and even transcription elongation.
Collapse
|
32
|
Abstract
The possible effect of transfer ribonucleic acid (tRNA) concentrations on codons decoding time is a fundamental biomedical research question; however, due to a large number of variables affecting this process and the non-direct relation between them, a conclusive answer to this question has eluded so far researchers in the field. In this study, we perform a novel analysis of the ribosome profiling data of four organisms which enables ranking the decoding times of different codons while filtering translational phenomena such as experimental biases, extreme ribosomal pauses and ribosome traffic jams. Based on this filtering, we show for the first time that there is a significant correlation between tRNA concentrations and the codons estimated decoding time both in prokaryotes and in eukaryotes in natural conditions (−0.38 to −0.66, all P values <0.006); in addition, we show that when considering tRNA concentrations, codons decoding times are not correlated with aminoacyl-tRNA levels. The reported results support the conjecture that translation efficiency is directly influenced by the tRNA levels in the cell. Thus, they should help to understand the evolution of synonymous aspects of coding sequences via the adaptation of their codons to the tRNA pool.
Collapse
Affiliation(s)
- Alexandra Dana
- Department of Biomedical Engineering, Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
33
|
Stoeckius M, Grün D, Kirchner M, Ayoub S, Torti F, Piano F, Herzog M, Selbach M, Rajewsky N. Global characterization of the oocyte-to-embryo transition in Caenorhabditis elegans uncovers a novel mRNA clearance mechanism. EMBO J 2014; 33:1751-66. [PMID: 24957527 DOI: 10.15252/embj.201488769] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The oocyte-to-embryo transition (OET) is thought to be mainly driven by post-transcriptional gene regulation. However, expression of both RNAs and proteins during the OET has not been comprehensively assayed. Furthermore, specific molecular mechanisms that regulate gene expression during OET are largely unknown. Here, we quantify and analyze transcriptome-wide, expression of mRNAs and thousands of proteins in Caenorhabditis elegans oocytes, 1-cell, and 2-cell embryos. This represents a first comprehensive gene expression atlas during the OET in animals. We discovered a first wave of degradation in which thousands of mRNAs are cleared shortly after fertilization. Sequence analysis revealed a statistically highly significant presence of a polyC motif in the 3' untranslated regions of most of these degraded mRNAs. Transgenic reporter assays demonstrated that this polyC motif is required and sufficient for mRNA degradation after fertilization. We show that orthologs of human polyC-binding protein specifically bind this motif. Our data suggest a mechanism in which the polyC motif and binding partners direct degradation of maternal mRNAs. Our data also indicate that endogenous siRNAs but not miRNAs promote mRNA clearance during the OET.
Collapse
Affiliation(s)
- Marlon Stoeckius
- Systems Biology of Gene Regulatory Elements, Max Delbrück Center Berlin, Berlin, Germany
| | - Dominic Grün
- Systems Biology of Gene Regulatory Elements, Max Delbrück Center Berlin, Berlin, Germany
| | - Marieluise Kirchner
- Cell Signalling and Mass Spectrometry, Max Delbrück Center Berlin, Berlin, Germany
| | - Salah Ayoub
- Systems Biology of Gene Regulatory Elements, Max Delbrück Center Berlin, Berlin, Germany
| | - Francesca Torti
- Systems Biology of Gene Regulatory Elements, Max Delbrück Center Berlin, Berlin, Germany
| | - Fabio Piano
- Center for Genomics and Systems Biology, Department of Biology New York University, New York, NY, USA Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Margareta Herzog
- Systems Biology of Gene Regulatory Elements, Max Delbrück Center Berlin, Berlin, Germany
| | - Matthias Selbach
- Cell Signalling and Mass Spectrometry, Max Delbrück Center Berlin, Berlin, Germany
| | - Nikolaus Rajewsky
- Systems Biology of Gene Regulatory Elements, Max Delbrück Center Berlin, Berlin, Germany
| |
Collapse
|
34
|
Ribosome profiling reveals sequence-independent post-initiation pausing as a signature of translation. Cell Res 2014; 24:842-51. [PMID: 24903108 DOI: 10.1038/cr.2014.74] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/30/2014] [Accepted: 04/24/2014] [Indexed: 02/07/2023] Open
Abstract
The journey of a newly synthesized polypeptide starts in the peptidyltransferase center of the ribosome, from where it traverses the exit tunnel. The interior of the ribosome exit tunnel is neither straight nor smooth. How the ribosome dynamics in vivo is influenced by the exit tunnel is poorly understood. Genome-wide ribosome profiling in mammalian cells reveals elevated ribosome density at the start codon and surprisingly the downstream 5th codon position as well. We found that the highly focused ribosomal pausing shortly after initiation is attributed to the geometry of the exit tunnel, as deletion of the loop region from ribosome protein L4 diminishes translational pausing at the 5th codon position. Unexpectedly, the ribosome variant undergoes translational abandonment shortly after initiation, suggesting that there exists an obligatory step between initiation and elongation commitment. We propose that the post-initiation pausing of ribosomes represents an inherent signature of the translation machinery to ensure productive translation.
Collapse
|
35
|
Bansal A, Kwon ES, Conte D, Liu H, Gilchrist MJ, MacNeil LT, Tissenbaum HA. Transcriptional regulation of Caenorhabditis elegans FOXO/DAF-16 modulates lifespan. LONGEVITY & HEALTHSPAN 2014; 3:5. [PMID: 24834345 PMCID: PMC4022319 DOI: 10.1186/2046-2395-3-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 04/04/2014] [Indexed: 12/30/2022]
Abstract
BACKGROUND Insulin/IGF-1 signaling plays a central role in longevity across phylogeny. In C. elegans, the forkhead box O (FOXO) transcription factor, DAF-16, is the primary target of insulin/IGF-1 signaling, and multiple isoforms of DAF-16 (a, b, and d/f) modulate lifespan, metabolism, dauer formation, and stress resistance. Thus far, across phylogeny modulation of mammalian FOXOs and DAF-16 have focused on post-translational regulation with little focus on transcriptional regulation. In C. elegans, we have previously shown that DAF-16d/f cooperates with DAF-16a to promote longevity. In this study, we generated transgenic strains expressing near-endogenous levels of either daf-16a or daf-16d/f, and examined temporal expression of the isoforms to further define how these isoforms contribute to lifespan regulation. RESULTS Here, we show that DAF-16a is sensitive both to changes in gene dosage and to alterations in the level of insulin/IGF-1 signaling. Interestingly, we find that as worms age, the intestinal expression of daf-16d/f but not daf-16a is dramatically upregulated at the level of transcription. Preventing this transcriptional upregulation shortens lifespan, indicating that transcriptional regulation of daf-16d/f promotes longevity. In an RNAi screen of transcriptional regulators, we identify elt-2 (GATA transcription factor) and swsn-1 (core subunit of SWI/SNF complex) as key modulators of daf-16d/f gene expression. ELT-2 and another GATA factor, ELT-4, promote longevity via both DAF-16a and DAF-16d/f while the components of SWI/SNF complex promote longevity specifically via DAF-16d/f. CONCLUSIONS Our findings indicate that transcriptional control of C. elegans FOXO/daf-16 is an essential regulatory event. Considering the conservation of FOXO across species, our findings identify a new layer of FOXO regulation as a potential determinant of mammalian longevity and age-related diseases such as cancer and diabetes.
Collapse
Affiliation(s)
- Ankita Bansal
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Eun-Soo Kwon
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA.,Laboratory of Cell Signaling, Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 306-809, Korea
| | - Darryl Conte
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA.,Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Haibo Liu
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Michael J Gilchrist
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, UK
| | - Lesley T MacNeil
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Heidi A Tissenbaum
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA.,Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
36
|
Van Damme P, Gawron D, Van Criekinge W, Menschaert G. N-terminal proteomics and ribosome profiling provide a comprehensive view of the alternative translation initiation landscape in mice and men. Mol Cell Proteomics 2014; 13:1245-61. [PMID: 24623590 DOI: 10.1074/mcp.m113.036442] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Usage of presumed 5'UTR or downstream in-frame AUG codons, next to non-AUG codons as translation start codons contributes to the diversity of a proteome as protein isoforms harboring different N-terminal extensions or truncations can serve different functions. Recent ribosome profiling data revealed a highly underestimated occurrence of database nonannotated, and thus alternative translation initiation sites (aTIS), at the mRNA level. N-terminomics data in addition showed that in higher eukaryotes around 20% of all identified protein N termini point to such aTIS, to incorrect assignments of the translation start codon, translation initiation at near-cognate start codons, or to alternative splicing. We here report on more than 1700 unique alternative protein N termini identified at the proteome level in human and murine cellular proteomes. Customized databases, created using the translation initiation mapping obtained from ribosome profiling data, additionally demonstrate the use of initiator methionine decoded near-cognate start codons besides the existence of N-terminal extended protein variants at the level of the proteome. Various newly identified aTIS were confirmed by mutagenesis, and meta-analyses demonstrated that aTIS reside in strong Kozak-like motifs and are conserved among eukaryotes, hinting to a possible biological impact. Finally, TargetP analysis predicted that the usage of aTIS often results in altered subcellular localization patterns, providing a mechanism for functional diversification.
Collapse
Affiliation(s)
- Petra Van Damme
- Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium
| | | | | | | |
Collapse
|
37
|
Ribosome profiling: new views of translation, from single codons to genome scale. Nat Rev Genet 2014; 15:205-13. [PMID: 24468696 DOI: 10.1038/nrg3645] [Citation(s) in RCA: 435] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Genome-wide analyses of gene expression have so far focused on the abundance of mRNA species as measured either by microarray or, more recently, by RNA sequencing. However, neither approach provides information on protein synthesis, which is the true end point of gene expression. Ribosome profiling is an emerging technique that uses deep sequencing to monitor in vivo translation. Studies using ribosome profiling have already provided new insights into the identity and the amount of proteins that are produced by cells, as well as detailed views into the mechanism of protein synthesis itself.
Collapse
|
38
|
Ahmed R, Chang Z, Younis AE, Langnick C, Li N, Chen W, Brattig N, Dieterich C. Conserved miRNAs are candidate post-transcriptional regulators of developmental arrest in free-living and parasitic nematodes. Genome Biol Evol 2013; 5:1246-60. [PMID: 23729632 PMCID: PMC3730342 DOI: 10.1093/gbe/evt086] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Animal development is complex yet surprisingly robust. Animals may develop alternative phenotypes conditional on environmental changes. Under unfavorable conditions, Caenorhabditis elegans larvae enter the dauer stage, a developmentally arrested, long-lived, and stress-resistant state. Dauer larvae of free-living nematodes and infective larvae of parasitic nematodes share many traits including a conserved endocrine signaling module (DA/DAF-12), which is essential for the formation of dauer and infective larvae. We speculated that conserved post-transcriptional regulatory mechanism might also be involved in executing the dauer and infective larvae fate. We used an unbiased sequencing strategy to characterize the microRNA (miRNA) gene complement in C. elegans, Pristionchus pacificus, and Strongyloides ratti. Our study raised the number of described miRNA genes to 257 for C. elegans, tripled the known gene set for P. pacificus to 362 miRNAs, and is the first to describe miRNAs in a Strongyloides parasite. Moreover, we found a limited core set of 24 conserved miRNA families in all three species. Interestingly, our estimated expression fold changes between dauer versus nondauer stages and infective larvae versus free-living stages reveal that despite the speed of miRNA gene set evolution in nematodes, homologous gene families with conserved “dauer-infective” expression signatures are present. These findings suggest that common post-transcriptional regulatory mechanisms are at work and that the same miRNA families play important roles in developmental arrest and long-term survival in free-living and parasitic nematodes.
Collapse
Affiliation(s)
- Rina Ahmed
- Max Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Michel AM, Fox G, M Kiran A, De Bo C, O'Connor PBF, Heaphy SM, Mullan JPA, Donohue CA, Higgins DG, Baranov PV. GWIPS-viz: development of a ribo-seq genome browser. Nucleic Acids Res 2013; 42:D859-64. [PMID: 24185699 PMCID: PMC3965066 DOI: 10.1093/nar/gkt1035] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We describe the development of GWIPS-viz (http://gwips.ucc.ie), an online genome browser for viewing ribosome profiling data. Ribosome profiling (ribo-seq) is a recently developed technique that provides genome-wide information on protein synthesis (GWIPS) in vivo. It is based on the deep sequencing of ribosome-protected messenger RNA (mRNA) fragments, which allows the ribosome density along all mRNA transcripts present in the cell to be quantified. Since its inception, ribo-seq has been carried out in a number of eukaryotic and prokaryotic organisms. Owing to the increasing interest in ribo-seq, there is a pertinent demand for a dedicated ribo-seq genome browser. GWIPS-viz is based on The University of California Santa Cruz (UCSC) Genome Browser. Ribo-seq tracks, coupled with mRNA-seq tracks, are currently available for several genomes: human, mouse, zebrafish, nematode, yeast, bacteria (Escherichia coli K12, Bacillus subtilis), human cytomegalovirus and bacteriophage lambda. Our objective is to continue incorporating published ribo-seq data sets so that the wider community can readily view ribosome profiling information from multiple studies without the need to carry out computational processing.
Collapse
Affiliation(s)
- Audrey M Michel
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland, School of Medicine & Medical Science, Conway Institute, University College Dublin, Dublin 4, Ireland and Howest, University College West Flanders, Rijselstraat 5, 8200 Bruges, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Stadler M, Fire A. Conserved translatome remodeling in nematode species executing a shared developmental transition. PLoS Genet 2013; 9:e1003739. [PMID: 24098135 PMCID: PMC3789828 DOI: 10.1371/journal.pgen.1003739] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/09/2013] [Indexed: 11/19/2022] Open
Abstract
Nematodes of the genus Caenorhabditis enter a developmental diapause state after hatching in the absence of food. To better understand the relative contributions of distinct regulatory modalities to gene expression changes associated with this developmental transition, we characterized genome-wide changes in mRNA abundance and translational efficiency associated with L1 diapause exit in four species using ribosome profiling and mRNA-seq. We found a strong tendency for translational regulation and mRNA abundance processes to act synergistically, together effecting a dramatic remodeling of the gene expression program. While gene-specific differences were observed between species, overall translational dynamics were broadly and functionally conserved. A striking, conserved feature of the response was strong translational suppression of ribosomal protein production during L1 diapause, followed by activation upon resumed development. On a global scale, ribosome footprint abundance changes showed greater similarity between species than changes in mRNA abundance, illustrating a substantial and genome-wide contribution of translational regulation to evolutionary maintenance of stable gene expression.
Collapse
Affiliation(s)
- Michael Stadler
- Department of Genetics, Stanford University, Stanford, California, United States of America
- Department of Pathology, Stanford University, Stanford, California, United States of America
| | - Andrew Fire
- Department of Genetics, Stanford University, Stanford, California, United States of America
- Department of Pathology, Stanford University, Stanford, California, United States of America
| |
Collapse
|
41
|
de Giorgio A, Krell J, Harding V, Stebbing J, Castellano L. Emerging roles of competing endogenous RNAs in cancer: insights from the regulation of PTEN. Mol Cell Biol 2013; 33:3976-82. [PMID: 23918803 PMCID: PMC3811677 DOI: 10.1128/mcb.00683-13] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The capacity of noncoding RNA to regulate gene expression in health and disease is epitomized by the microRNAs, small ∼22-nucleotide RNAs that target mRNAs to repress their translation into protein. Recently a previously unrecognized gene regulatory layer has emerged, characterized by the ability of a wide range of RNA transcripts to vie for microRNA binding and alleviate the repressive effect of microRNAs on their mRNA targets. Termed competing endogenous RNAs (ceRNAs), these participate in a microRNA-dependent cross talk, producing robust networks that when perturbed may lead to cancer. To date, the tumor suppressor PTEN has been most extensively validated as competing with a variety of ceRNAs in different cancers: reducing these ceRNAs appears to reduce PTEN levels, tipping cells toward cancer progression. In this review we look at ceRNA networks in cancer, their characteristics, and constituent parts, focusing on the insights that can be gained from the studies conducted on PTEN. We also explore the conditions that facilitate ceRNA cross talk, proposing that the disruption of these conditions may represent a general phenomenon in carcinogenesis.
Collapse
Affiliation(s)
- Alexander de Giorgio
- Division of Oncology, Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College, London, United Kingdom
| | | | | | | | | |
Collapse
|
42
|
Liu MJ, Wu SH, Wu JF, Lin WD, Wu YC, Tsai TY, Tsai HL, Wu SH. Translational landscape of photomorphogenic Arabidopsis. THE PLANT CELL 2013; 25:3699-710. [PMID: 24179124 PMCID: PMC3877810 DOI: 10.1105/tpc.113.114769] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/27/2013] [Accepted: 10/11/2013] [Indexed: 05/19/2023]
Abstract
Translational control plays a vital role in regulating gene expression. To decipher the molecular basis of translational regulation in photomorphogenic Arabidopsis thaliana, we adopted a ribosome profiling method to map the genome-wide positions of translating ribosomes in Arabidopsis etiolated seedlings in the dark and after light exposure. We found that, in Arabidopsis, a translating ribosome protects an ~30-nucleotide region and moves in three-nucleotide periodicity, characteristics also observed in Saccharomyces cerevisiae and mammals. Light enhanced the translation of genes involved in the organization and function of chloroplasts. Upstream open reading frames initiated by ATG but not CTG mediated translational repression of the downstream main open reading frame. Also, we observed widespread translational repression of microRNA target genes in both light- and dark-grown Arabidopsis seedlings. This genome-wide characterization of transcripts undergoing translation at the nucleotide-resolution level reveals that a combination of multiple translational mechanisms orchestrates and fine-tunes the translation of diverse transcripts in plants with environmental responsiveness.
Collapse
Affiliation(s)
- Ming-Jung Liu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Szu-Hsien Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Biotechnology and Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan
| | - Jing-Fen Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Wen-Dar Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Chen Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Tsung-Ying Tsai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Huang-Lung Tsai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Shu-Hsing Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Biotechnology and Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan
- Address correspondence to
| |
Collapse
|
43
|
Dual regulation of the lin-14 target mRNA by the lin-4 miRNA. PLoS One 2013; 8:e75475. [PMID: 24058689 PMCID: PMC3772890 DOI: 10.1371/journal.pone.0075475] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 08/20/2013] [Indexed: 12/03/2022] Open
Abstract
microRNAs (miRNAs) are ∼22 nt regulatory RNAs that in animals typically bind with partial complementarity to sequences in the 3′ untranslated (UTR) regions of target mRNAs, to induce a decrease in the production of the encoded protein. The relative contributions of translational inhibition of intact mRNAs and degradation of mRNAs caused by binding of the miRNA vary; for many genetically validated miRNA targets, translational repression has been implicated, whereas some analyses of other miRNA targets have revealed only modest translational repression and more significant mRNA destabilization. In Caenorhabditis elegans, the lin-4 miRNA accumulates during early larval development, binds to target elements in the lin-14 mRNA, and causes a sharp decrease in the abundance of LIN-14 protein. Here, we monitor the dynamics of lin-14 mRNA and protein as well as lin-4 miRNA levels in finely staged animals during early larval development. We find complex regulation of lin-14, with the abundance of lin-14 mRNA initially modestly declining followed by fluctuation but little further decline of lin-14 mRNA levels accompanied by continuing and more dramatic decline in LIN-14 protein abundance. We show that the translational inhibition of lin-14 is dependent on binding of the lin-4 miRNA to multiple lin-4 complementary sites in the lin-14 3′UTR. Our results point to the importance of translational inhibition in silencing of lin-14 by the lin-4 miRNA.
Collapse
|
44
|
Ma X, Cao X, Mo B, Chen X. Trip to ER: MicroRNA-mediated translational repression in plants. RNA Biol 2013; 10:1586-92. [PMID: 24100209 DOI: 10.4161/rna.26313] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
miRNAs elicit gene silencing at the post-transcriptional level by several modes of action: translational repression, mRNA decay, and mRNA cleavage. Studies in animals have suggested that translational repression occurs at early steps of translation initiation, which can be followed by deadenylation and mRNA decay. Plant miRNAs were originally thought to solely participate in mRNA cleavage, but increasing evidence has indicated that they are also commonly involved in translational inhibition. Here we discuss recent findings on miRNA-mediated translational repression in plants. The identification of AMP1 in Arabidopsis as a protein required for the translational repression but not the mRNA cleavage activity of miRNAs links miRNA-based translational repression to the endoplasmic reticulum (ER). Future work is required to further elucidate the miRNA machinery on the ER.
Collapse
Affiliation(s)
- Xuan Ma
- Shenzhen Key Laboratory of Microbial Genetic Engineering; College of Life Sciences; Shenzhen University; Shenzhen, P.R. China; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing, P.R. China
| | - Xiaofeng Cao
- Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing, P.R. China
| | - Beixin Mo
- Shenzhen Key Laboratory of Microbial Genetic Engineering; College of Life Sciences; Shenzhen University; Shenzhen, P.R. China
| | - Xuemei Chen
- Department of Botany and Plant Sciences; Institute of Integrative Genome Biology; University of California; Riverside, CA USA; Howard Hughes Medical Institute; University of California; Riverside, CA USA
| |
Collapse
|
45
|
Roy B, von Arnim AG. Translational Regulation of Cytoplasmic mRNAs. THE ARABIDOPSIS BOOK 2013; 11:e0165. [PMID: 23908601 PMCID: PMC3727577 DOI: 10.1199/tab.0165] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Translation of the coding potential of a messenger RNA into a protein molecule is a fundamental process in all living cells and consumes a large fraction of metabolites and energy resources in growing cells. Moreover, translation has emerged as an important control point in the regulation of gene expression. At the level of gene regulation, translational control is utilized to support the specific life histories of plants, in particular their responses to the abiotic environment and to metabolites. This review summarizes the diversity of translational control mechanisms in the plant cytoplasm, focusing on specific cases where mechanisms of translational control have evolved to complement or eclipse other levels of gene regulation. We begin by introducing essential features of the translation apparatus. We summarize early evidence for translational control from the pre-Arabidopsis era. Next, we review evidence for translation control in response to stress, to metabolites, and in development. The following section emphasizes RNA sequence elements and biochemical processes that regulate translation. We close with a chapter on the role of signaling pathways that impinge on translation.
Collapse
Affiliation(s)
- Bijoyita Roy
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996-0840
- Current address: University of Massachussetts Medical School, Worcester, MA 01655-0122, USA
| | - Albrecht G. von Arnim
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996-0840
- Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN 37996-0840
| |
Collapse
|
46
|
Michel AM, Baranov PV. Ribosome profiling: a Hi-Def monitor for protein synthesis at the genome-wide scale. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:473-90. [PMID: 23696005 PMCID: PMC3823065 DOI: 10.1002/wrna.1172] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/21/2013] [Accepted: 04/23/2013] [Indexed: 01/28/2023]
Abstract
Ribosome profiling or ribo-seq is a new technique that provides genome-wide information on protein synthesis (GWIPS) in vivo. It is based on the deep sequencing of ribosome protected mRNA fragments allowing the measurement of ribosome density along all RNA molecules present in the cell. At the same time, the high resolution of this technique allows detailed analysis of ribosome density on individual RNAs. Since its invention, the ribosome profiling technique has been utilized in a range of studies in both prokaryotic and eukaryotic organisms. Several studies have adapted and refined the original ribosome profiling protocol for studying specific aspects of translation. Ribosome profiling of initiating ribosomes has been used to map sites of translation initiation. These studies revealed the surprisingly complex organization of translation initiation sites in eukaryotes. Multiple initiation sites are responsible for the generation of N-terminally extended and truncated isoforms of known proteins as well as for the translation of numerous open reading frames (ORFs), upstream of protein coding ORFs. Ribosome profiling of elongating ribosomes has been used for measuring differential gene expression at the level of translation, the identification of novel protein coding genes and ribosome pausing. It has also provided data for developing quantitative models of translation. Although only a dozen or so ribosome profiling datasets have been published so far, they have already dramatically changed our understanding of translational control and have led to new hypotheses regarding the origin of protein coding genes.
Collapse
|
47
|
Kuersten S, Radek A, Vogel C, Penalva LOF. Translation regulation gets its 'omics' moment. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:617-30. [PMID: 23677826 DOI: 10.1002/wrna.1173] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 04/23/2013] [Accepted: 04/24/2013] [Indexed: 12/22/2022]
Abstract
The fate of cellular RNA is largely determined by complex networks of protein-RNA interactions through ribonucleoprotein (RNP) complexes. Despite their relatively short half-life, transcripts associate with many different proteins that process, modify, translate, and degrade the RNA. Following biogenesis some mRNPs are immediately directed to translation and produce proteins, but many are diverted and regulated by processes including miRNA-mediated mechanisms, transport and localization, as well as turnover. Because of this complex interplay estimates of steady-state expression by methods such as RNAseq alone cannot capture critical aspects of cellular fate, environmental response, tumorigenesis, or gene expression regulation. More selective and integrative tools are needed to measure protein-RNA complexes and the regulatory processes involved. One focus area is measurements of the transcriptome associated with ribosomes and translation. These so-called polysome or ribosome profiling techniques can evaluate translation efficiency as well as the interplay between translation initiation, elongation, and termination-subject areas not well understood at a systems biology level. Ribosome profiling is a highly promising technique that provides mRNA positional information of ribosome occupancy, potentially bridging the gap between gene expression (i.e., RNAseq and microarray analysis) and protein quantification (i.e., mass spectrometry). In combination with methods such as RNA immunoprecipitation, miRNA profiling, or proteomics, we obtain a fresh view of global post-transcriptional and translational gene regulation. In addition, these techniques also provide new insight into new regulatory elements, such as alternative open reading frames, and translation regulation under different conditions.
Collapse
|
48
|
Hunter SE, Finnegan EF, Zisoulis DG, Lovci MT, Melnik-Martinez KV, Yeo GW, Pasquinelli AE. Functional genomic analysis of the let-7 regulatory network in Caenorhabditis elegans. PLoS Genet 2013; 9:e1003353. [PMID: 23516374 PMCID: PMC3597506 DOI: 10.1371/journal.pgen.1003353] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 01/16/2013] [Indexed: 12/21/2022] Open
Abstract
The let-7 microRNA (miRNA) regulates cellular differentiation across many animal species. Loss of let-7 activity causes abnormal development in Caenorhabditis elegans and unchecked cellular proliferation in human cells, which contributes to tumorigenesis. These defects are due to improper expression of protein-coding genes normally under let-7 regulation. While some direct targets of let-7 have been identified, the genome-wide effect of let-7 insufficiency in a developing animal has not been fully investigated. Here we report the results of molecular and genetic assays aimed at determining the global network of genes regulated by let-7 in C. elegans. By screening for mis-regulated genes that also contribute to let-7 mutant phenotypes, we derived a list of physiologically relevant potential targets of let-7 regulation. Twenty new suppressors of the rupturing vulva or extra seam cell division phenotypes characteristic of let-7 mutants emerged. Three of these genes, opt-2, prmt-1, and T27D12.1, were found to associate with Argonaute in a let-7–dependent manner and are likely novel direct targets of this miRNA. Overall, a complex network of genes with various activities is subject to let-7 regulation to coordinate developmental timing across tissues during worm development. In the past decade, microRNAs (miRNAs) have become recognized as key regulators of gene expression in many biological pathways. These small, non-coding RNAs target specific protein-coding genes for repression. The specificity is mediated by partial base-pairing interactions between the 22 nucleotide miRNA and sequences in the target messenger RNA (mRNA). The use of imperfect base-pairing means that a single miRNA can regulate many different mRNAs, but it also means that identifying these targets is not straightforward. One of the first discovered miRNAs, let-7, generally promotes cellular differentiation pathways through a repertoire of targets that is yet to be fully described. Here we utilized molecular and genetic approaches to identify biologically relevant targets of the let-7 miRNA in Caenorhabditis elegans. Our analyses indicate that let-7 regulates a large cast of genes, both directly and indirectly. Loss of let-7 activity in C. elegans results in multiple developmental abnormalities and, ultimately, death. We uncovered new targets of let-7 that contribute to these phenotypes when they fail to be properly regulated. Given the highly conserved nature of let-7 from worms to humans, our studies highlight new genes and pathways potentially under let-7 regulation across species.
Collapse
Affiliation(s)
- Shaun E. Hunter
- Division of Biology, University of California San Diego, La Jolla, California, United States of America
| | - Emily F. Finnegan
- Division of Biology, University of California San Diego, La Jolla, California, United States of America
| | - Dimitrios G. Zisoulis
- Division of Biology, University of California San Diego, La Jolla, California, United States of America
| | - Michael T. Lovci
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
- Stem Cell Program, University of California San Diego, La Jolla, California, United States of America
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Katya V. Melnik-Martinez
- Division of Biology, University of California San Diego, La Jolla, California, United States of America
| | - Gene W. Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
- Stem Cell Program, University of California San Diego, La Jolla, California, United States of America
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Amy E. Pasquinelli
- Division of Biology, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
49
|
Ma X, Kim EJ, Kook I, Ma F, Voshall A, Moriyama E, Cerutti H. Small interfering RNA-mediated translation repression alters ribosome sensitivity to inhibition by cycloheximide in Chlamydomonas reinhardtii. THE PLANT CELL 2013; 25:985-98. [PMID: 23512853 PMCID: PMC3634701 DOI: 10.1105/tpc.113.109256] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Small RNAs (sRNAs; ∼20 to 30 nucleotides in length) play important roles in gene regulation as well as in defense responses against transposons and viruses in eukaryotes. Their biogenesis and modes of action have attracted great attention in recent years. However, many aspects of sRNA function, such as the mechanism(s) of translation repression at postinitiation steps, remain poorly characterized. In the unicellular green alga Chlamydomonas reinhardtii, sRNAs derived from genome-integrated inverted repeat transgenes, perfectly complementary to the 3' untranslated region of a target transcript, can inhibit protein synthesis without or with only minimal mRNA destabilization. Here, we report that the sRNA-repressed transcripts are not altered in their polyadenylation status and they remain associated with polyribosomes, indicating inhibition at a postinitiation step of translation. Interestingly, ribosomes associated with sRNA-repressed transcripts show reduced sensitivity to translation inhibition by some antibiotics, such as cycloheximide, both in ribosome run-off assays and in in vivo experiments. Our results suggest that sRNA-mediated repression of protein synthesis in C. reinhardtii may involve alterations to the function/structural conformation of translating ribosomes. Additionally, sRNA-mediated translation inhibition is now known to occur in a number of phylogenetically diverse eukaryotes, suggesting that this mechanism may have been a feature of an ancestral RNA interference machinery.
Collapse
|
50
|
Park JH, Ahn S, Kim S, Lee J, Nam JW, Shin C. Degradome sequencing reveals an endogenous microRNA target inC. elegans. FEBS Lett 2013; 587:964-9. [DOI: 10.1016/j.febslet.2013.02.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/15/2013] [Accepted: 02/15/2013] [Indexed: 11/15/2022]
|