1
|
Carrington JT, Wilson RHC, de La Vega E, Thiyagarajan S, Barker T, Catchpole L, Durrant A, Knitlhoffer V, Watkins C, Gharbi K, Nieduszynski CA. Most human DNA replication initiation is dispersed throughout the genome with only a minority within previously identified initiation zones. Genome Biol 2025; 26:122. [PMID: 40346587 PMCID: PMC12063229 DOI: 10.1186/s13059-025-03591-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 04/25/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND The identification of sites of DNA replication initiation in mammalian cells has been challenging. Here, we present unbiased detection of replication initiation events in human cells using BrdU incorporation and single-molecule nanopore sequencing. RESULTS Increases in BrdU incorporation allow us to measure DNA replication dynamics, including identification of replication initiation, fork direction, and termination on individual nanopore sequencing reads. Importantly, initiation and termination events are identified on single molecules with high resolution, throughout S-phase, genome-wide, and at high coverage at specific loci using targeted enrichment. We find a significant enrichment of initiation sites within the broad initiation zones identified by population-level studies. However, these focused initiation sites only account for ~ 20% of all identified replication initiation events. Most initiation events are dispersed throughout the genome and are missed by cell population approaches. This indicates that most initiation occurs at sites that, individually, are rarely used. These dispersed initiation sites contrast with the focused sites identified by population studies, in that they do not show a strong relationship to transcription or a particular epigenetic signature. CONCLUSIONS We show here that single-molecule sequencing enables unbiased detection and characterization of DNA replication initiation events, including the numerous dispersed initiation events that replicate most of the human genome.
Collapse
Affiliation(s)
| | | | | | | | - Tom Barker
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Leah Catchpole
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Alex Durrant
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | | | - Chris Watkins
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Karim Gharbi
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Conrad A Nieduszynski
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK.
- University of East Anglia, Norwich, UK.
| |
Collapse
|
2
|
Liu Y, Zhangding Z, Liu X, Hu J. Chromatin-centric insights into DNA replication. Trends Genet 2025; 41:412-424. [PMID: 39765445 DOI: 10.1016/j.tig.2024.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/28/2024] [Accepted: 12/06/2024] [Indexed: 05/08/2025]
Abstract
DNA replication ensures the precise transmission of genetic information from parent to daughter cells. In eukaryotes, this process involves the replication of every base pair within a highly complex chromatin environment, encompassing multiple levels of chromatin structure and various chromatin metabolic processes. Recent evidence has demonstrated that DNA replication is strictly regulated in both temporal and spatial dimensions by factors such as 3D genome structure and transcription, which is crucial for maintaining genomic stability in each cell cycle. In this review, we discuss the diverse mechanisms that govern eukaryotic DNA replication, emphasizing the roles of chromatin architecture and transcriptional activity within the mammalian chromatin landscape. These insights provide a foundation for future investigations in this field.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing 100871, China; Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zhengrong Zhangding
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xuhao Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jiazhi Hu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing 100871, China; Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan 610213, China.
| |
Collapse
|
3
|
Song L, Xie H, Fan H, Zhang Y, Cheng Z, Chen J, Guo Y, Zhang S, Zhou X, Li Z, Liao H, Han J, Huang J, Zhou J, Fang D, Liu T. Dynamic control of RNA-DNA hybrid formation orchestrates DNA2 activation at stalled forks by RNAPII and DDX39A. Mol Cell 2025; 85:506-522.e7. [PMID: 39706186 DOI: 10.1016/j.molcel.2024.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/17/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024]
Abstract
Stalled replication forks, susceptible to nucleolytic threats, necessitate protective mechanisms involving pivotal factors such as the tumor suppressors BRCA1 and BRCA2. Here, we demonstrate that, upon replication stress, RNA polymerase II (RNAPII) is recruited to stalled forks, actively promoting the transient formation of RNA-DNA hybrids. These hybrids act as safeguards, preventing premature engagement by the DNA2 nuclease and uncontrolled DNA2-mediated degradation of nascent DNA. Furthermore, we provide evidence that DExD box polypeptide 39A (DDX39A), serving as an RNA-DNA resolver, unwinds these structures and facilitates regulated DNA2 access to stalled forks. This orchestrated process enables controlled DNA2-dependent stalled fork processing and restart. Finally, we reveal that loss of DDX39A enhances stalled fork protection in BRCA1/2-deficient cells, consequently conferring chemoresistance. Our results suggest that the dynamic regulation of RNA-DNA hybrid formation at stalled forks by RNAPII and DDX39A precisely governs the timing of DNA2 activation, contributing to stalled fork protection, processing, and restart, ultimately promoting genome stability.
Collapse
Affiliation(s)
- Lizhi Song
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310058 Hangzhou, China; Department of Cell Biology, Zhejiang University School of Medicine, 310058 Hangzhou, China; MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 310058 Hangzhou, China
| | - Haihua Xie
- Department of Cell Biology, Zhejiang University School of Medicine, 310058 Hangzhou, China
| | - Haonan Fan
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 310058 Hangzhou, China
| | - Yanjun Zhang
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000 Yiwu, China
| | - Zixiu Cheng
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 310058 Hangzhou, China
| | - Junliang Chen
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, 321000 Shaoxing, China
| | - Yuzun Guo
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, 321000 Shaoxing, China
| | - Shudi Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 310058 Hangzhou, China
| | - Xinyu Zhou
- Department of Cell Biology, Zhejiang University School of Medicine, 310058 Hangzhou, China
| | - Zhaoshuang Li
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 310058 Hangzhou, China
| | - Haoxiang Liao
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 310058 Hangzhou, China
| | - Jinhua Han
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, 310030 Hangzhou, China
| | - Jun Huang
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310058 Hangzhou, China; MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 310058 Hangzhou, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, 321000 Shaoxing, China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310058 Hangzhou, China
| | - Dong Fang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 310058 Hangzhou, China
| | - Ting Liu
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310058 Hangzhou, China; Department of Cell Biology, Zhejiang University School of Medicine, 310058 Hangzhou, China.
| |
Collapse
|
4
|
Ummarino S, Poluben L, Ebralidze AK, Autiero I, Zhang Y, Paniza T, Deshpande M, Rinaldi L, Lee JD, Bassal MA, Trinh BQ, Balk SP, Flaumenhaft R, Gerhardt J, Mirkin SM, Tenen DG, Di Ruscio A. RNAs anchoring replication complex control initiation and firing of DNA replication. RESEARCH SQUARE 2025:rs.3.rs-5723221. [PMID: 39975922 PMCID: PMC11838740 DOI: 10.21203/rs.3.rs-5723221/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Coordinated initiation of DNA replication is essential to ensure efficient and timely DNA synthesis. Yet, molecular mechanism describing how replication initiation is coordinated in eukaryotic cells is not completely understood. Herein, we present data demonstrating a novel feature of RNAs transcribed in the proximity of actively replicating gene loci. We show that RNAs aNChoring ORC1 (ANCORs) to the histone variant H2A.Z are licensors of the DNA replication process. This ANCOR-H2A.Z interaction is essential for cells to initiate duplication of their genetic material. Widespread and locus-specific perturbations of these transcripts correlate with anomalous replication patterns and a notable loss of the H2A.Z replicative marker at the origin site. Collectively, we present a previously undescribed RNA-mediated mechanism that is associated with the generation of active replication origins in eukaryotic cells. Our findings delineate a strategy to modulate the origins of replication in human cells at a local and global level, with potentially broad biomedical implications.
Collapse
Affiliation(s)
- Simone Ummarino
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, 330 Brookline Avenue Boston, MA 02215, USA
- Beth Israel Deaconess Medical Center, Department of Medicine, Division of Hematology-Oncology, Boston, MA, 02115, USA
| | - Larysa Poluben
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, 02115, USA
- These two authors equally contributed to the work
| | - Alex K. Ebralidze
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, 330 Brookline Avenue Boston, MA 02215, USA
- Beth Israel Deaconess Medical Center, Department of Medicine, Division of Hematology-Oncology, Boston, MA, 02115, USA
- These two authors equally contributed to the work
| | - Ida Autiero
- Institute of Biostructures and Bioimaging, CNR, Naples, 80100, Italy
| | - Yanzhou Zhang
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, 330 Brookline Avenue Boston, MA 02215, USA
- Beth Israel Deaconess Medical Center, Department of Medicine, Division of Hematology-Oncology, Boston, MA, 02115, USA
| | - Theodore Paniza
- Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Madhura Deshpande
- Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Lucrezia Rinaldi
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, 330 Brookline Avenue Boston, MA 02215, USA
- Beth Israel Deaconess Medical Center, Department of Medicine, Division of Hematology-Oncology, Boston, MA, 02115, USA
| | - Johnathan D. Lee
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, 330 Brookline Avenue Boston, MA 02215, USA
| | - Mahmoud A. Bassal
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, 330 Brookline Avenue Boston, MA 02215, USA
- Beth Israel Deaconess Medical Center, Department of Medicine, Division of Hematology-Oncology, Boston, MA, 02115, USA
- Cancer Science Institute of Singapore, National University of Singapore, 117456, Singapore
| | | | - Steven P. Balk
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Robert Flaumenhaft
- Beth Israel Deaconess Medical Center, Division of Hemostasis and Thrombosis, Harvard Medical School, Boston, MA, 02115, USA
| | - Jeannine Gerhardt
- Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | | | - Daniel G. Tenen
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- These two authors equally contributed to the work
| | - Annalisa Di Ruscio
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, 330 Brookline Avenue Boston, MA 02215, USA
- Beth Israel Deaconess Medical Center, Department of Medicine, Division of Hematology-Oncology, Boston, MA, 02115, USA
- University of Eastern Piedmont, Department of Translational Medicine, Novara, 28100, Italy
- These two authors equally contributed to the work
| |
Collapse
|
5
|
Li Z, Zhang Z. A tale of two strands: Decoding chromatin replication through strand-specific sequencing. Mol Cell 2025; 85:238-261. [PMID: 39824166 PMCID: PMC11750172 DOI: 10.1016/j.molcel.2024.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/03/2024] [Accepted: 10/25/2024] [Indexed: 01/20/2025]
Abstract
DNA replication, a fundamental process in all living organisms, proceeds with continuous synthesis of the leading strand by DNA polymerase ε (Pol ε) and discontinuous synthesis of the lagging strand by polymerase δ (Pol δ). This inherent asymmetry at each replication fork necessitates the development of methods to distinguish between these two nascent strands in vivo. Over the past decade, strand-specific sequencing strategies, such as enrichment and sequencing of protein-associated nascent DNA (eSPAN) and Okazaki fragment sequencing (OK-seq), have become essential tools for studying chromatin replication in eukaryotic cells. In this review, we outline the foundational principles underlying these methodologies and summarize key mechanistic insights into DNA replication, parental histone transfer, epigenetic inheritance, and beyond, gained through their applications. Finally, we discuss the limitations and challenges of current techniques, highlighting the need for further technological innovations to better understand the dynamics and regulation of chromatin replication in eukaryotic cells.
Collapse
Affiliation(s)
- Zhiming Li
- Institute for Cancer Genetics and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; West China School of Public Health and West China Fourth Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Zhiguo Zhang
- Institute for Cancer Genetics and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pediatrics and Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
6
|
Su Z, Tian M, Shibata E, Shibata Y, Yang T, Wang Z, Jin F, Zang C, Dutta A. Regulation of epigenetics and chromosome structure by human ORC2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.18.629220. [PMID: 39829907 PMCID: PMC11741241 DOI: 10.1101/2024.12.18.629220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The six subunit Origin Recognition Complex (ORC) is a DNA replication initiator that also promotes heterochromatinization in some species. A multi-omics study in a human cell line with mutations in three subunits of ORC, reveals that the subunits bind to DNA independent of each other rather than as part of a common six-subunit ORC. While DNA-bound ORC2 was seen to compact chromatin and attract repressive histone marks, the activation of chromatin and protection from repressive marks was seen at a large number of sites. The epigenetic changes regulate hundreds of genes, including some epigenetic regulators, adding an indirect mechanism by which ORC2 regulates epigenetics without local binding. DNA-bound ORC2 also prevents the acquisition of CTCF at focal sites in the genome to regulate chromatin loops. Thus, individual ORC subunits are major regulators, in both directions, of epigenetics, gene expression and chromosome structure, independent of the role of ORC in replication.
Collapse
|
7
|
Zhu X, Kanemaki MT. Replication initiation sites and zones in the mammalian genome: Where are they located and how are they defined? DNA Repair (Amst) 2024; 141:103713. [PMID: 38959715 DOI: 10.1016/j.dnarep.2024.103713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 07/05/2024]
Abstract
Eukaryotic DNA replication is a tightly controlled process that occurs in two main steps, i.e., licensing and firing, which take place in the G1 and S phases of the cell cycle, respectively. In Saccharomyces cerevisiae, the budding yeast, replication origins contain consensus sequences that are recognized and bound by the licensing factor Orc1-6, which then recruits the replicative Mcm2-7 helicase. By contrast, mammalian initiation sites lack such consensus sequences, and the mammalian ORC does not exhibit sequence specificity. Studies performed over the past decades have identified replication initiation sites in the mammalian genome using sequencing-based assays, raising the question of whether replication initiation occurs at confined sites or in broad zones across the genome. Although recent reports have shown that the licensed MCMs in mammalian cells are broadly distributed, suggesting that ORC-dependent licensing may not determine the initiation sites/zones, they are predominantly located upstream of actively transcribed genes. This review compares the mechanism of replication initiation in yeast and mammalian cells, summarizes the sequencing-based technologies used for the identification of initiation sites/zones, and proposes a possible mechanism of initiation-site/zone selection in mammalian cells. Future directions and challenges in this field are also discussed.
Collapse
Affiliation(s)
- Xiaoxuan Zhu
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Yata 1111, Shizuoka, Mishima 411-8540, Japan.
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Yata 1111, Shizuoka, Mishima 411-8540, Japan; Graduate Institute for Advanced Studies, SOKENDAI, Yata 1111, Shizuoka, Mishima 411-8540, Japan; Department of Biological Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
8
|
Rojas P, Wang J, Guglielmi G, Sadurnì MM, Pavlou L, Leung GHD, Rajagopal V, Spill F, Saponaro M. Genome-wide identification of replication fork stalling/pausing sites and the interplay between RNA Pol II transcription and DNA replication progression. Genome Biol 2024; 25:126. [PMID: 38773641 PMCID: PMC11106976 DOI: 10.1186/s13059-024-03278-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/14/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND DNA replication progression can be affected by the presence of physical barriers like the RNA polymerases, leading to replication stress and DNA damage. Nonetheless, we do not know how transcription influences overall DNA replication progression. RESULTS To characterize sites where DNA replication forks stall and pause, we establish a genome-wide approach to identify them. This approach uses multiple timepoints during S-phase to identify replication fork/stalling hotspots as replication progresses through the genome. These sites are typically associated with increased DNA damage, overlapped with fragile sites and with breakpoints of rearrangements identified in cancers but do not overlap with replication origins. Overlaying these sites with a genome-wide analysis of RNA polymerase II transcription, we find that replication fork stalling/pausing sites inside genes are directly related to transcription progression and activity. Indeed, we find that slowing down transcription elongation slows down directly replication progression through genes. This indicates that transcription and replication can coexist over the same regions. Importantly, rearrangements found in cancers overlapping transcription-replication collision sites are detected in non-transformed cells and increase following treatment with ATM and ATR inhibitors. At the same time, we find instances where transcription activity favors replication progression because it reduces histone density. CONCLUSIONS Altogether, our findings highlight how transcription and replication overlap during S-phase, with both positive and negative consequences for replication fork progression and genome stability by the coexistence of these two processes.
Collapse
Affiliation(s)
- Patricia Rojas
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Jianming Wang
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Giovanni Guglielmi
- School of Mathematics, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Martina Mustè Sadurnì
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Lucas Pavlou
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Geoffrey Ho Duen Leung
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Vijay Rajagopal
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Fabian Spill
- School of Mathematics, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Marco Saponaro
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
9
|
Jin C, Einig E, Xu W, Kollampally RB, Schlosser A, Flentje M, Popov N. The dimeric deubiquitinase USP28 integrates 53BP1 and MYC functions to limit DNA damage. Nucleic Acids Res 2024; 52:3011-3030. [PMID: 38227944 PMCID: PMC11024517 DOI: 10.1093/nar/gkae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
DNA replication is a major source of endogenous DNA damage in tumor cells and a key target of cellular response to genotoxic stress. DNA replication can be deregulated by oncoproteins, such as transcription factor MYC, aberrantly activated in many human cancers. MYC is stringently regulated by the ubiquitin system - for example, ubiquitination controls recruitment of the elongation factor PAF1c, instrumental in MYC activity. Curiously, a key MYC-targeting deubiquitinase USP28 also controls cellular response to DNA damage via the mediator protein 53BP1. USP28 forms stable dimers, but the biological role of USP28 dimerization is unknown. We show here that dimerization limits USP28 activity and restricts recruitment of PAF1c by MYC. Expression of monomeric USP28 stabilizes MYC and promotes PAF1c recruitment, leading to ectopic DNA synthesis and replication-associated DNA damage. USP28 dimerization is stimulated by 53BP1, which selectively binds USP28 dimers. Genotoxic stress diminishes 53BP1-USP28 interaction, promotes disassembly of USP28 dimers and stimulates PAF1c recruitment by MYC. This triggers firing of DNA replication origins during early response to genotoxins and exacerbates DNA damage. We propose that dimerization of USP28 prevents ectopic DNA replication at transcriptionally active chromatin to maintain genome stability.
Collapse
Affiliation(s)
- Chao Jin
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Str 14, 72076 Tübingen, Germany
- DFG Cluster of Excellence 2180 ‘Image-guided and Functionally Instructed Tumor Therapies’ (iFIT), University of Tübingen, Tübingen, Germany
| | - Elias Einig
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Str 14, 72076 Tübingen, Germany
- DFG Cluster of Excellence 2180 ‘Image-guided and Functionally Instructed Tumor Therapies’ (iFIT), University of Tübingen, Tübingen, Germany
| | - Wenshan Xu
- Department of Radiation Oncology, University Hospital Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Ravi Babu Kollampally
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Str 14, 72076 Tübingen, Germany
- DFG Cluster of Excellence 2180 ‘Image-guided and Functionally Instructed Tumor Therapies’ (iFIT), University of Tübingen, Tübingen, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str 2, 97080 Würzburg, Germany
| | - Michael Flentje
- Department of Radiation Oncology, University Hospital Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Nikita Popov
- Department of Medical Oncology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Str 14, 72076 Tübingen, Germany
- DFG Cluster of Excellence 2180 ‘Image-guided and Functionally Instructed Tumor Therapies’ (iFIT), University of Tübingen, Tübingen, Germany
| |
Collapse
|
10
|
Tian M, Wang Z, Su Z, Shibata E, Shibata Y, Dutta A, Zang C. Integrative analysis of DNA replication origins and ORC-/MCM-binding sites in human cells reveals a lack of overlap. eLife 2024; 12:RP89548. [PMID: 38567819 PMCID: PMC10990492 DOI: 10.7554/elife.89548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
Based on experimentally determined average inter-origin distances of ~100 kb, DNA replication initiates from ~50,000 origins on human chromosomes in each cell cycle. The origins are believed to be specified by binding of factors like the origin recognition complex (ORC) or CTCF or other features like G-quadruplexes. We have performed an integrative analysis of 113 genome-wide human origin profiles (from five different techniques) and five ORC-binding profiles to critically evaluate whether the most reproducible origins are specified by these features. Out of ~7.5 million union origins identified by all datasets, only 0.27% (20,250 shared origins) were reproducibly obtained in at least 20 independent SNS-seq datasets and contained in initiation zones identified by each of three other techniques, suggesting extensive variability in origin usage and identification. Also, 21% of the shared origins overlap with transcriptional promoters, posing a conundrum. Although the shared origins overlap more than union origins with constitutive CTCF-binding sites, G-quadruplex sites, and activating histone marks, these overlaps are comparable or less than that of known transcription start sites, so that these features could be enriched in origins because of the overlap of origins with epigenetically open, promoter-like sequences. Only 6.4% of the 20,250 shared origins were within 1 kb from any of the ~13,000 reproducible ORC-binding sites in human cancer cells, and only 4.5% were within 1 kb of the ~11,000 union MCM2-7-binding sites in contrast to the nearly 100% overlap in the two comparisons in the yeast, Saccharomyces cerevisiae. Thus, in human cancer cell lines, replication origins appear to be specified by highly variable stochastic events dependent on the high epigenetic accessibility around promoters, without extensive overlap between the most reproducible origins and currently known ORC- or MCM-binding sites.
Collapse
Affiliation(s)
- Mengxue Tian
- Center for Public Health Genomics, University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Biochemistry and Molecular Genetics, University of Virginia School of MedicineCharlottesvilleUnited States
| | - Zhenjia Wang
- Center for Public Health Genomics, University of Virginia School of MedicineCharlottesvilleUnited States
| | - Zhangli Su
- Department of Biochemistry and Molecular Genetics, University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Etsuko Shibata
- Department of Biochemistry and Molecular Genetics, University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Yoshiyuki Shibata
- Department of Biochemistry and Molecular Genetics, University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Chongzhi Zang
- Center for Public Health Genomics, University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Biochemistry and Molecular Genetics, University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Public Health Sciences, University of VirginiaCharlottesvilleUnited States
| |
Collapse
|
11
|
Castellano CM, Lacroix L, Mathis E, Prorok P, Hennion M, Lopez-Rubio JJ, Méchali M, Gomes A. The genetic landscape of origins of replication in P. falciparum. Nucleic Acids Res 2024; 52:660-676. [PMID: 38038269 PMCID: PMC10810204 DOI: 10.1093/nar/gkad1103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/18/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Various origin mapping approaches have enabled genome-wide identification of origins of replication (ORI) in model organisms, but only a few studies have focused on divergent organisms. By employing three complementary approaches we provide a high-resolution map of ORIs in Plasmodium falciparum, the deadliest human malaria parasite. We profiled the distribution of origin of recognition complex (ORC) binding sites by ChIP-seq of two PfORC subunits and mapped active ORIs using NFS and SNS-seq. We show that ORIs lack sequence specificity but are not randomly distributed, and group in clusters. Licensing is biased towards regions of higher GC content and associated with G-quadruplex forming sequences (G4FS). While strong transcription likely enhances firing, active origins are depleted from transcription start sites. Instead, most accumulate in transcriptionally active gene bodies. Single molecule analysis of nanopore reads containing multiple initiation events, which could have only come from individual nuclei, showed a relationship between the replication fork pace and the distance to the nearest origin. While some similarities were drawn with the canonic eukaryote model, the distribution of ORIs in P. falciparum is likely shaped by unique genomic features such as extreme AT-richness-a product of evolutionary pressure imposed by the parasitic lifestyle.
Collapse
Affiliation(s)
| | - Laurent Lacroix
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Paris, France
| | - Emilie Mathis
- LPHI, CNRS, Université de Montpellier, 34095 Montpellier, France
| | - Paulina Prorok
- Institute of Human Genetics, CNRS, 34396 Montpellier, France
| | - Magali Hennion
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | | | - Marcel Méchali
- Institute of Human Genetics, CNRS, 34396 Montpellier, France
| | - Ana Rita Gomes
- LPHI, CNRS, Université de Montpellier, 34095 Montpellier, France
| |
Collapse
|
12
|
González-Acosta D, Lopes M. DNA replication and replication stress response in the context of nuclear architecture. Chromosoma 2024; 133:57-75. [PMID: 38055079 PMCID: PMC10904558 DOI: 10.1007/s00412-023-00813-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 12/07/2023]
Abstract
The DNA replication process needs to be coordinated with other DNA metabolism transactions and must eventually extend to the full genome, regardless of chromatin status, gene expression, secondary structures and DNA lesions. Completeness and accuracy of DNA replication are crucial to maintain genome integrity, limiting transformation in normal cells and offering targeting opportunities for proliferating cancer cells. DNA replication is thus tightly coordinated with chromatin dynamics and 3D genome architecture, and we are only beginning to understand the underlying molecular mechanisms. While much has recently been discovered on how DNA replication initiation is organised and modulated in different genomic regions and nuclear territories-the so-called "DNA replication program"-we know much less on how the elongation of ongoing replication forks and particularly the response to replication obstacles is affected by the local nuclear organisation. Also, it is still elusive how specific components of nuclear architecture participate in the replication stress response. Here, we review known mechanisms and factors orchestrating replication initiation, and replication fork progression upon stress, focusing on recent evidence linking genome organisation and nuclear architecture with the cellular responses to replication interference, and highlighting open questions and future challenges to explore this exciting new avenue of research.
Collapse
Affiliation(s)
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
13
|
Tye BK, Zhai Y. The Origin Recognition Complex: From Origin Selection to Replication Licensing in Yeast and Humans. BIOLOGY 2023; 13:13. [PMID: 38248444 PMCID: PMC10813338 DOI: 10.3390/biology13010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
Understanding human DNA replication through the study of yeast has been an extremely fruitful journey. The minichromosome maintenance (MCM) 2-7 genes that encode the catalytic core of the eukaryotic replisome were initially identified through forward yeast genetics. The origin recognition complexes (ORC) that load the MCM hexamers at replication origins were purified from yeast extracts. We have reached an age where high-resolution cryoEM structures of yeast and human replication complexes can be compared side-by-side. Their similarities and differences are converging as alternative strategies that may deviate in detail but are shared by both species.
Collapse
Affiliation(s)
- Bik-Kwoon Tye
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Yuanliang Zhai
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China;
| |
Collapse
|
14
|
Lee CSK, Weiβ M, Hamperl S. Where and when to start: Regulating DNA replication origin activity in eukaryotic genomes. Nucleus 2023; 14:2229642. [PMID: 37469113 PMCID: PMC10361152 DOI: 10.1080/19491034.2023.2229642] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023] Open
Abstract
In eukaryotic genomes, hundreds to thousands of potential start sites of DNA replication named origins are dispersed across each of the linear chromosomes. During S-phase, only a subset of origins is selected in a stochastic manner to assemble bidirectional replication forks and initiate DNA synthesis. Despite substantial progress in our understanding of this complex process, a comprehensive 'identity code' that defines origins based on specific nucleotide sequences, DNA structural features, the local chromatin environment, or 3D genome architecture is still missing. In this article, we review the genetic and epigenetic features of replication origins in yeast and metazoan chromosomes and highlight recent insights into how this flexibility in origin usage contributes to nuclear organization, cell growth, differentiation, and genome stability.
Collapse
Affiliation(s)
- Clare S K Lee
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Matthias Weiβ
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Stephan Hamperl
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
15
|
Eladl A, Yamaoki Y, Kamba K, Hoshina S, Horinouchi H, Kondo K, Waga S, Nagata T, Katahira M. NMR characterization of the structure of the intrinsically disordered region of human origin recognition complex subunit 1, hORC1, and of its interaction with G-quadruplex DNAs. Biochem Biophys Res Commun 2023; 683:149112. [PMID: 37857165 DOI: 10.1016/j.bbrc.2023.10.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
Human origin recognition complex (hORC) binds to the DNA replication origin and then initiates DNA replication. However, hORC does not exhibit DNA sequence-specificity and how hORC recognizes the replication origin on genomic DNA remains elusive. Previously, we found that hORC recognizes G-quadruplex structures potentially formed near the replication origin. Then, we showed that hORC subunit 1 (hORC1) preferentially binds to G-quadruplex DNAs using a hORC1 construct comprising residues 413 to 511 (hORC1413-511). Here, we investigate the structural characteristics of hORC1413-511 in its free and complex forms with G-quadruplex DNAs. Circular dichroism and nuclear magnetic resonance (NMR) spectroscopic studies indicated that hORC1413-511 is disordered except for a short α-helical region in both the free and complex forms. NMR chemical shift perturbation (CSP) analysis suggested that basic residues, arginines and lysines, and polar residues, serines and threonines, are involved in the G-quadruplex DNA binding. Then, this was confirmed by mutation analysis. Interestingly, CSP analysis indicated that hORC1413-511 binds to both parallel- and (3 + 1)-type G-quadruplex DNAs using the same residues, and thereby in the same manner. Our study suggests that hORC1 uses its intrinsically disordered G-quadruplex binding region to recognize parallel-type and (3 + 1)-type G-quadruplex structures at replication origin.
Collapse
Affiliation(s)
- Afaf Eladl
- Institute of Advanced Energy, Kyoto University, Kyoto, 611-0011, Japan; Graduate School of Energy Science, Kyoto University, Kyoto, 611-0011, Japan; Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Yudai Yamaoki
- Institute of Advanced Energy, Kyoto University, Kyoto, 611-0011, Japan; Graduate School of Energy Science, Kyoto University, Kyoto, 611-0011, Japan; Integrated Research Center for Carbon Negative Science, Institute of Advanced Energy, Kyoto University, Uji, 611-0011, Japan; Biomass Product Tree Industry-Academia Collaborative Research Laboratory, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Keisuke Kamba
- Institute of Advanced Energy, Kyoto University, Kyoto, 611-0011, Japan; Biomass Product Tree Industry-Academia Collaborative Research Laboratory, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Shoko Hoshina
- Department of Chemical and Biological Sciences, Japan Women's University, Tokyo, 112-8681, Japan
| | - Haruka Horinouchi
- Department of Chemical and Biological Sciences, Japan Women's University, Tokyo, 112-8681, Japan
| | - Keiko Kondo
- Institute of Advanced Energy, Kyoto University, Kyoto, 611-0011, Japan; Integrated Research Center for Carbon Negative Science, Institute of Advanced Energy, Kyoto University, Uji, 611-0011, Japan; Biomass Product Tree Industry-Academia Collaborative Research Laboratory, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Shou Waga
- Department of Chemical and Biological Sciences, Japan Women's University, Tokyo, 112-8681, Japan
| | - Takashi Nagata
- Institute of Advanced Energy, Kyoto University, Kyoto, 611-0011, Japan; Graduate School of Energy Science, Kyoto University, Kyoto, 611-0011, Japan; Integrated Research Center for Carbon Negative Science, Institute of Advanced Energy, Kyoto University, Uji, 611-0011, Japan; Biomass Product Tree Industry-Academia Collaborative Research Laboratory, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Masato Katahira
- Institute of Advanced Energy, Kyoto University, Kyoto, 611-0011, Japan; Graduate School of Energy Science, Kyoto University, Kyoto, 611-0011, Japan; Integrated Research Center for Carbon Negative Science, Institute of Advanced Energy, Kyoto University, Uji, 611-0011, Japan; Biomass Product Tree Industry-Academia Collaborative Research Laboratory, Kyoto University, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
16
|
Bellani MA, Shaik A, Majumdar I, Ling C, Seidman MM. The Response of the Replication Apparatus to Leading Template Strand Blocks. Cells 2023; 12:2607. [PMID: 37998342 PMCID: PMC10670059 DOI: 10.3390/cells12222607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
Duplication of the genome requires the replication apparatus to overcome a variety of impediments, including covalent DNA adducts, the most challenging of which is on the leading template strand. Replisomes consist of two functional units, a helicase to unwind DNA and polymerases to synthesize it. The helicase is a multi-protein complex that encircles the leading template strand and makes the first contact with a leading strand adduct. The size of the channel in the helicase would appear to preclude transit by large adducts such as DNA: protein complexes (DPC). Here we discuss some of the extensively studied pathways that support replication restart after replisome encounters with leading template strand adducts. We also call attention to recent work that highlights the tolerance of the helicase for adducts ostensibly too large to pass through the central channel.
Collapse
Affiliation(s)
| | | | | | | | - Michael M. Seidman
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; (M.A.B.)
| |
Collapse
|
17
|
Delaney K, Weiss N, Almouzni G. The cell-cycle choreography of H3 variants shapes the genome. Mol Cell 2023; 83:3773-3786. [PMID: 37734377 PMCID: PMC10621666 DOI: 10.1016/j.molcel.2023.08.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/07/2023] [Accepted: 08/29/2023] [Indexed: 09/23/2023]
Abstract
Histone variants provide versatility in the basic unit of chromatin, helping to define dynamic landscapes and cell fates. Maintaining genome integrity is paramount for the cell, and it is intimately linked with chromatin dynamics, assembly, and disassembly during DNA transactions such as replication, repair, recombination, and transcription. In this review, we focus on the family of H3 variants and their dynamics in space and time during the cell cycle. We review the distinct H3 variants' specific features along with their escort partners, the histone chaperones, compiled across different species to discuss their distinct importance considering evolution. We place H3 dynamics at different times during the cell cycle with the possible consequences for genome stability. Finally, we examine how their mutation and alteration impact disease. The emerging picture stresses key parameters in H3 dynamics to reflect on how when they are perturbed, they become a source of stress for genome integrity.
Collapse
Affiliation(s)
- Kamila Delaney
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, 26 rue d'Ulm, 75005 Paris, France
| | - Nicole Weiss
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, 26 rue d'Ulm, 75005 Paris, France
| | - Geneviève Almouzni
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, 26 rue d'Ulm, 75005 Paris, France.
| |
Collapse
|
18
|
Torma G, Tombácz D, Csabai Z, Almsarrhad IAA, Nagy GÁ, Kakuk B, Gulyás G, Spires LM, Gupta I, Fülöp Á, Dörmő Á, Prazsák I, Mizik M, Dani VÉ, Csányi V, Harangozó Á, Zádori Z, Toth Z, Boldogkői Z. Identification of herpesvirus transcripts from genomic regions around the replication origins. Sci Rep 2023; 13:16395. [PMID: 37773348 PMCID: PMC10541914 DOI: 10.1038/s41598-023-43344-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023] Open
Abstract
Long-read sequencing (LRS) techniques enable the identification of full-length RNA molecules in a single run eliminating the need for additional assembly steps. LRS research has exposed unanticipated transcriptomic complexity in various organisms, including viruses. Herpesviruses are known to produce a range of transcripts, either close to or overlapping replication origins (Oris) and neighboring genes related to transcription or replication, which possess confirmed or potential regulatory roles. In our research, we employed both new and previously published LRS and short-read sequencing datasets to uncover additional Ori-proximal transcripts in nine herpesviruses from all three subfamilies (alpha, beta and gamma). We discovered novel long non-coding RNAs, as well as splice and length isoforms of mRNAs. Moreover, our analysis uncovered an intricate network of transcriptional overlaps within the examined genomic regions. We demonstrated that herpesviruses display distinct patterns of transcriptional overlaps in the vicinity of or at the Oris. Our findings suggest the existence of a 'super regulatory center' in the genome of alphaherpesviruses that governs the initiation of both DNA replication and global transcription through multilayered interactions among the molecular machineries.
Collapse
Affiliation(s)
- Gábor Torma
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Dóra Tombácz
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- MTA -SZTE Lendület GeMiNI Research Group, University of Szeged, Szeged, Hungary
| | - Zsolt Csabai
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- MTA -SZTE Lendület GeMiNI Research Group, University of Szeged, Szeged, Hungary
| | - Islam A A Almsarrhad
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gergely Ármin Nagy
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Balázs Kakuk
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- MTA -SZTE Lendület GeMiNI Research Group, University of Szeged, Szeged, Hungary
| | - Gábor Gulyás
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- MTA -SZTE Lendület GeMiNI Research Group, University of Szeged, Szeged, Hungary
| | - Lauren McKenzie Spires
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Ishaan Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, India
| | - Ádám Fülöp
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Ákos Dörmő
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- MTA -SZTE Lendület GeMiNI Research Group, University of Szeged, Szeged, Hungary
| | - István Prazsák
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- MTA -SZTE Lendület GeMiNI Research Group, University of Szeged, Szeged, Hungary
| | - Máté Mizik
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Virág Éva Dani
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Viktor Csányi
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Ákos Harangozó
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Zoltán Zádori
- HUN-REN Veterinary Medical Research Institute HU, Budapest, Hungary
| | - Zsolt Toth
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Zsolt Boldogkői
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary.
- MTA -SZTE Lendület GeMiNI Research Group, University of Szeged, Szeged, Hungary.
| |
Collapse
|
19
|
Zhang W, Wang Y, Liu Y, Liu C, Wang Y, He L, Cheng X, Peng Y, Xia L, Wu X, Wu J, Zhang Y, Sun L, Chen P, Li G, Tu Q, Liang J, Shang Y. NFIB facilitates replication licensing by acting as a genome organizer. Nat Commun 2023; 14:5076. [PMID: 37604829 PMCID: PMC10442334 DOI: 10.1038/s41467-023-40846-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/12/2023] [Indexed: 08/23/2023] Open
Abstract
The chromatin-based rule governing the selection and activation of replication origins in metazoans remains to be investigated. Here we report that NFIB, a member of Nuclear Factor I (NFI) family that was initially purified in host cells to promote adenoviral DNA replication but has since mainly been investigated in transcription regulation, is physically associated with the pre-replication complex (pre-RC) in mammalian cells. Genomic analyses reveal that NFIB facilitates the assembly of the pre-RC by increasing chromatin accessibility. Nucleosome binding and single-molecule magnetic tweezers shows that NFIB binds to and opens up nucleosomes. Transmission electron microscopy indicates that NFIB promotes nucleosome eviction on parental chromatin. NFIB deficiency leads to alterations of chromosome contacts/compartments in both G1 and S phase and affects the firing of a subset of origins at early-replication domains. Significantly, cancer-associated NFIB overexpression provokes gene duplication and genomic alterations recapitulating the genetic aberrance in clinical breast cancer and empowering cancer cells to dynamically evolve growth advantage and drug resistance. Together, these results point a role for NFIB in facilitating replication licensing by acting as a genome organizer, shedding new lights on the biological function of NFIB and on the replication origin selection in eukaryotes.
Collapse
Affiliation(s)
- Wenting Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yue Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yongjie Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Cuifang Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yizhou Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lin He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xiao Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yani Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Lu Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xiaodi Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jiajing Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Luyang Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Ping Chen
- Department of Immunology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qiang Tu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Liang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Yongfeng Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
20
|
Mas AM, Goñi E, Ruiz de Los Mozos I, Arcas A, Statello L, González J, Blázquez L, Lee WTC, Gupta D, Sejas Á, Hoshina S, Armaos A, Tartaglia GG, Waga S, Ule J, Rothenberg E, Gómez M, Huarte M. ORC1 binds to cis-transcribed RNAs for efficient activation of replication origins. Nat Commun 2023; 14:4447. [PMID: 37488096 PMCID: PMC10366126 DOI: 10.1038/s41467-023-40105-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023] Open
Abstract
Cells must coordinate the activation of thousands of replication origins dispersed throughout their genome. Active transcription is known to favor the formation of mammalian origins, although the role that RNA plays in this process remains unclear. We show that the ORC1 subunit of the human Origin Recognition Complex interacts with RNAs transcribed from genes with origins in their transcription start sites (TSSs), displaying a positive correlation between RNA binding and origin activity. RNA depletion, or the use of ORC1 RNA-binding mutant, result in inefficient activation of proximal origins, linked to impaired ORC1 chromatin release. ORC1 RNA binding activity resides in its intrinsically disordered region, involved in intra- and inter-molecular interactions, regulation by phosphorylation, and phase-separation. We show that RNA binding favors ORC1 chromatin release, by regulating its phosphorylation and subsequent degradation. Our results unveil a non-coding function of RNA as a dynamic component of the chromatin, orchestrating the activation of replication origins.
Collapse
Affiliation(s)
- Aina Maria Mas
- Center for Applied Medical Research, University of Navarra, Pio XII 55 Ave, 31008, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Enrique Goñi
- Center for Applied Medical Research, University of Navarra, Pio XII 55 Ave, 31008, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Igor Ruiz de Los Mozos
- Center for Applied Medical Research, University of Navarra, Pio XII 55 Ave, 31008, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Aida Arcas
- Center for Applied Medical Research, University of Navarra, Pio XII 55 Ave, 31008, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Luisa Statello
- Center for Applied Medical Research, University of Navarra, Pio XII 55 Ave, 31008, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Jovanna González
- Center for Applied Medical Research, University of Navarra, Pio XII 55 Ave, 31008, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Lorea Blázquez
- RNA Networks Lab, The Francis Crick Institute, NW11BF, London, UK
- Neurosciences Area, Biodonostia Health Research Institute, 20014, San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Wei Ting Chelsea Lee
- Department of Biochemistry and Molecular Pharmacology, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA
| | - Dipika Gupta
- Department of Biochemistry and Molecular Pharmacology, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA
| | - Álvaro Sejas
- Center for Applied Medical Research, University of Navarra, Pio XII 55 Ave, 31008, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Shoko Hoshina
- Department of Chemical and Biological Sciences, Japan Women's University, Tokyo, 112-8681, Japan
| | - Alexandros Armaos
- Center for Human Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Gian Gaetano Tartaglia
- Center for Human Technologies, Istituto Italiano di Tecnologia, Genova, Italy
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Department of Biology 'Charles Darwin', Sapienza University of Rome, Rome, Italy
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Shou Waga
- Department of Chemical and Biological Sciences, Japan Women's University, Tokyo, 112-8681, Japan
| | - Jernej Ule
- RNA Networks Lab, The Francis Crick Institute, NW11BF, London, UK
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA
| | - María Gómez
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Nicolás Cabrera 1, 28049, Madrid, Spain
| | - Maite Huarte
- Center for Applied Medical Research, University of Navarra, Pio XII 55 Ave, 31008, Pamplona, Spain.
- Institute of Health Research of Navarra (IdiSNA), Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain.
| |
Collapse
|
21
|
Tombácz D, Torma G, Gulyás G, Fülöp Á, Dörmő Á, Prazsák I, Csabai Z, Mizik M, Hornyák Á, Zádori Z, Kakuk B, Boldogkői Z. Hybrid sequencing discloses unique aspects of the transcriptomic architecture in equid alphaherpesvirus 1. Heliyon 2023; 9:e17716. [PMID: 37449092 PMCID: PMC10336594 DOI: 10.1016/j.heliyon.2023.e17716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/05/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
This study employed both short-read sequencing (SRS, Illumina) and long-read sequencing (LRS Oxford Nanopore Technologies) platforms to conduct a comprehensive analysis of the equid alphaherpesvirus 1 (EHV-1) transcriptome. The study involved the annotation of canonical mRNAs and their transcript variants, encompassing transcription start site (TSS) and transcription end site (TES) isoforms, in addition to alternative splicing forms. Furthermore, the study revealed the presence of numerous non-coding RNA (ncRNA) molecules, including intergenic and antisense transcripts, produced by EHV-1. An intriguing finding was the abundant production of chimeric transcripts, some of which potentially encode fusion polypeptides. Moreover, EHV-1 exhibited a greater incidence of transcriptional overlaps and splicing compared to related viruses. It is noteworthy that many genes have their unique TESs along with the co-terminal transcription ends, a characteristic scarcely seen in other alphaherpesviruses. The study also identified transcripts that overlap the replication origins of the virus. Moreover, a novel ncRNA, referred to as NOIR, was found to intersect with the 5'-ends of longer transcript isoform specified by the major transactivator genes ORF64 and ORF65, surrounding the OriL. These findings together imply the existence of a key regulatory mechanism that governs both transcription and replication through, among others, a process that involves interference between the DNA and RNA synthesis machineries.
Collapse
Affiliation(s)
- Dóra Tombácz
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Gábor Torma
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Gábor Gulyás
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Ádám Fülöp
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Ákos Dörmő
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - István Prazsák
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zsolt Csabai
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Máté Mizik
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Ákos Hornyák
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest, Hungary
| | - Zoltán Zádori
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest, Hungary
| | - Balázs Kakuk
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zsolt Boldogkői
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
22
|
Jaksik R, Wheeler DA, Kimmel M. Detection and characterization of constitutive replication origins defined by DNA polymerase epsilon. BMC Biol 2023; 21:41. [PMID: 36829160 PMCID: PMC9960419 DOI: 10.1186/s12915-023-01527-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 01/24/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Despite the process of DNA replication being mechanistically highly conserved, the location of origins of replication (ORI) may vary from one tissue to the next, or between rounds of replication in eukaryotes, suggesting flexibility in the choice of locations to initiate replication. Lists of human ORI therefore vary widely in number and location, and there are currently no methods available to compare them. Here, we propose a method of detection of ORI based on somatic mutation patterns generated by the mutator phenotype of damaged DNA polymerase epsilon (POLE). RESULTS We report the genome-wide localization of constitutive ORI in POLE-mutated human tumors using whole genome sequencing data. Mutations accumulated after many rounds of replication of unsynchronized dividing cell populations in tumors allow to identify constitutive origins, which we show are shared with high fidelity between individuals and tumor types. Using a Smith-Waterman-like dynamic programming approach, we compared replication origin positions obtained from multiple different methods. The comparison allowed us to define a consensus set of replication origins, identified consistently by multiple ORI detection methods. Many DNA features co-localized with the consensus set of ORI, including chromatin loop anchors, G-quadruplexes, S/MARs, and CpGs. Among all features, the H2A.Z histone exhibited the most significant association. CONCLUSIONS Our results show that mutation-based detection of replication origins is a viable approach to determining their location and associated sequence features.
Collapse
Affiliation(s)
- Roman Jaksik
- Department of Systems Biology and Engineering and Biotechnology Centre, Silesian University of Technology, Gliwice, Poland.
| | - David A. Wheeler
- grid.39382.330000 0001 2160 926XHuman Genome Sequencing Centre, Baylor College of Medicine, Houston, TX USA ,grid.240871.80000 0001 0224 711XPresent Address: Clinical Genomics Group, Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, TN 38103 USA
| | - Marek Kimmel
- grid.6979.10000 0001 2335 3149Department of Systems Biology and Engineering and Biotechnology Centre, Silesian University of Technology, Gliwice, Poland ,grid.21940.3e0000 0004 1936 8278Department of Statistics, Rice University, Houston, TX USA ,grid.21940.3e0000 0004 1936 8278Department of Bioengineering, Rice University, Houston, TX USA
| |
Collapse
|
23
|
The CMG helicase and cancer: a tumor "engine" and weakness with missing mutations. Oncogene 2023; 42:473-490. [PMID: 36522488 PMCID: PMC9948756 DOI: 10.1038/s41388-022-02572-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
The replicative Cdc45-MCM-GINS (CMG) helicase is a large protein complex that functions in the DNA melting and unwinding steps as a component of replisomes during DNA replication in mammalian cells. Although the CMG performs this important role in cell growth, the CMG is not a simple bystander in cell cycle events. Components of the CMG, specifically the MCM precursors, are also involved in maintaining genomic stability by regulating DNA replication fork speeds, facilitating recovery from replicative stresses, and preventing consequential DNA damage. Given these important functions, MCM/CMG complexes are highly regulated by growth factors such as TGF-ß1 and by signaling factors such as Myc, Cyclin E, and the retinoblastoma protein. Mismanagement of MCM/CMG complexes when these signaling mediators are deregulated, and in the absence of the tumor suppressor protein p53, leads to increased genomic instability and is a contributor to tumorigenic transformation and tumor heterogeneity. The goal of this review is to provide insight into the mechanisms and dynamics by which the CMG is regulated during its assembly and activation in mammalian genomes, and how errors in CMG regulation due to oncogenic changes promote tumorigenesis. Finally, and most importantly, we highlight the emerging understanding of the CMG helicase as an exploitable vulnerability and novel target for therapeutic intervention in cancer.
Collapse
|
24
|
The human pre-replication complex is an open complex. Cell 2023; 186:98-111.e21. [PMID: 36608662 DOI: 10.1016/j.cell.2022.12.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/13/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023]
Abstract
In eukaryotes, DNA replication initiation requires assembly and activation of the minichromosome maintenance (MCM) 2-7 double hexamer (DH) to melt origin DNA strands. However, the mechanism for this initial melting is unknown. Here, we report a 2.59-Å cryo-electron microscopy structure of the human MCM-DH (hMCM-DH), also known as the pre-replication complex. In this structure, the hMCM-DH with a constricted central channel untwists and stretches the DNA strands such that almost a half turn of the bound duplex DNA is distorted with 1 base pair completely separated, generating an initial open structure (IOS) at the hexamer junction. Disturbing the IOS inhibits DH formation and replication initiation. Mapping of hMCM-DH footprints indicates that IOSs are distributed across the genome in large clusters aligning well with initiation zones designed for stochastic origin firing. This work unravels an intrinsic mechanism that couples DH formation with initial DNA melting to license replication initiation in human cells.
Collapse
|
25
|
Temporal regulation of head-on transcription at replication initiation sites. iScience 2022; 26:105791. [PMID: 36594032 PMCID: PMC9803852 DOI: 10.1016/j.isci.2022.105791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/14/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022] Open
Abstract
Head-on (HO) collisions between the DNA replication machinery and RNA polymerase over R-loop forming sequences (RLFS) are genotoxic, leading to replication fork blockage and DNA breaks. Current models suggest that HO collisions are avoided through replication initiation site (RIS) positioning upstream of active genes, ensuring co-orientation of replication fork movement and genic transcription. However, this model does not account for pervasive transcription, or intragenic RIS. Moreover, pervasive transcription initiation and CG-rich DNA is a feature of RIS, suggesting that HO transcription units (HO TUs) capable of forming R-loops might occur. Through mining phased GRO-seq data, and developing an informatics strategy to stringently identify RIS, we demonstrate that HO TUs containing RLFS occur at RIS in MCF-7 cells, and are downregulated at the G1/S phase boundary. Our analysis reveals a novel spatiotemporal relationship between transcription and replication, and supports the idea that HO collisions are avoided through transcriptional regulatory mechanisms.
Collapse
|
26
|
Jodkowska K, Pancaldi V, Rigau M, Almeida R, Fernández-Justel J, Graña-Castro O, Rodríguez-Acebes S, Rubio-Camarillo M, Carrillo-de Santa Pau E, Pisano D, Al-Shahrour F, Valencia A, Gómez M, Méndez J. 3D chromatin connectivity underlies replication origin efficiency in mouse embryonic stem cells. Nucleic Acids Res 2022; 50:12149-12165. [PMID: 36453993 PMCID: PMC9757045 DOI: 10.1093/nar/gkac1111] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/31/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
In mammalian cells, chromosomal replication starts at thousands of origins at which replisomes are assembled. Replicative stress triggers additional initiation events from 'dormant' origins whose genomic distribution and regulation are not well understood. In this study, we have analyzed origin activity in mouse embryonic stem cells in the absence or presence of mild replicative stress induced by aphidicolin, a DNA polymerase inhibitor, or by deregulation of origin licensing factor CDC6. In both cases, we observe that the majority of stress-responsive origins are also active in a small fraction of the cell population in a normal S phase, and stress increases their frequency of activation. In a search for the molecular determinants of origin efficiency, we compared the genetic and epigenetic features of origins displaying different levels of activation, and integrated their genomic positions in three-dimensional chromatin interaction networks derived from high-depth Hi-C and promoter-capture Hi-C data. We report that origin efficiency is directly proportional to the proximity to transcriptional start sites and to the number of contacts established between origin-containing chromatin fragments, supporting the organization of origins in higher-level DNA replication factories.
Collapse
Affiliation(s)
| | | | | | | | - José M Fernández-Justel
- Functional Organization of the Mammalian Genome Group, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Madrid, Spain
| | - Osvaldo Graña-Castro
- Bioinformatics Unit, Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain,Institute of Applied Molecular Medicine (IMMA-Nemesio Díez), San Pablo-CEU University, Boadilla del Monte, Madrid, Spain
| | - Sara Rodríguez-Acebes
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Miriam Rubio-Camarillo
- Bioinformatics Unit, Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - David Pisano
- Bioinformatics Unit, Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Fátima Al-Shahrour
- Bioinformatics Unit, Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Alfonso Valencia
- Computational Biology Life Sciences Group, Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - María Gómez
- Correspondence may also be addressed to María Gómez. Tel: +34 911964724; Fax: +34 911964420;
| | - Juan Méndez
- To whom correspondence should be addressed. Tel: +34 917328000; Fax: +34 917328033;
| |
Collapse
|
27
|
Masai H. Replicon hypothesis revisited. Biochem Biophys Res Commun 2022; 633:77-80. [DOI: 10.1016/j.bbrc.2022.09.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022]
|
28
|
Murat P, Perez C, Crisp A, van Eijk P, Reed SH, Guilbaud G, Sale JE. DNA replication initiation shapes the mutational landscape and expression of the human genome. SCIENCE ADVANCES 2022; 8:eadd3686. [PMID: 36351018 PMCID: PMC9645720 DOI: 10.1126/sciadv.add3686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The interplay between active biological processes and DNA repair is central to mutagenesis. Here, we show that the ubiquitous process of replication initiation is mutagenic, leaving a specific mutational footprint at thousands of early and efficient replication origins. The observed mutational pattern is consistent with two distinct mechanisms, reflecting the two-step process of origin activation, triggering the formation of DNA breaks at the center of origins and local error-prone DNA synthesis in their immediate vicinity. We demonstrate that these replication initiation-dependent mutational processes exert an influence on phenotypic diversity in humans that is disproportionate to the origins' genomic size: By increasing mutational loads at gene promoters and splice junctions, the presence of an origin significantly influences both gene expression and mRNA isoform usage. Last, we show that mutagenesis at origins not only drives the evolution of origin sequences but also contributes to sculpting regulatory domains of the human genome.
Collapse
Affiliation(s)
- Pierre Murat
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Consuelo Perez
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Alastair Crisp
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Patrick van Eijk
- Broken String Biosciences Ltd., BioData Innovation Centre, Unit AB3-03, Level 3, Wellcome Genome Campus, Hinxton, Cambridge CB10 1DR, UK
- Division of Cancer & Genetics School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Simon H. Reed
- Broken String Biosciences Ltd., BioData Innovation Centre, Unit AB3-03, Level 3, Wellcome Genome Campus, Hinxton, Cambridge CB10 1DR, UK
- Division of Cancer & Genetics School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Guillaume Guilbaud
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Julian E. Sale
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| |
Collapse
|
29
|
Safeguarding DNA Replication: A Golden Touch of MiDAS and Other Mechanisms. Int J Mol Sci 2022; 23:ijms231911331. [PMID: 36232633 PMCID: PMC9570362 DOI: 10.3390/ijms231911331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
DNA replication is a tightly regulated fundamental process allowing the correct duplication and transfer of the genetic information from the parental cell to the progeny. It involves the coordinated assembly of several proteins and protein complexes resulting in replication fork licensing, firing and progression. However, the DNA replication pathway is strewn with hurdles that affect replication fork progression during S phase. As a result, cells have adapted several mechanisms ensuring replication completion before entry into mitosis and segregating chromosomes with minimal, if any, abnormalities. In this review, we describe the possible obstacles that a replication fork might encounter and how the cell manages to protect DNA replication from S to the next G1.
Collapse
|
30
|
Shaw AE, Kairamkonda S, Ghodke H, Schauer GD. Biochemical and single-molecule techniques to study accessory helicase resolution of R-loop proteins at stalled replication forks. Methods Enzymol 2022; 673:191-225. [PMID: 35965008 DOI: 10.1016/bs.mie.2022.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
R-loop proteins present a stable and robust blockade to the progression of a DNA replication fork during S-phase. The consequences of this block can include mutagenesis and other irreversible chromosomal catastrophes, causing genomic instability and disease. As such, further investigation into the molecular mechanisms underlying R-loop protein resolution is warranted. The critical role of non-replicative accessory helicases in R-loop protein resolution has increasingly come into light in recent years. Such helicases include the Pif1-family, monomeric helicases that have been studied in many different contexts and that have been ascribed to a multitude of separable protective functions in the cell. In this chapter, we present protocols to study R-loop protein resolution by Pif1 helicase at stalled replication forks using purified proteins, both at the biochemical and single-molecule level. Our system uses recombinant proteins expressed in Saccharomyces cerevisiae but could apply to practically any organism of interest due to the high interspecies homology of the proteins involved in DNA replication. The methods we outline are extensible to many systems and should be applicable to studying R-loop clearance by any Superfamily (SF) 1B helicase. These techniques will further enable mechanistic research on these critical but understudied components of the genomic maintenance program.
Collapse
Affiliation(s)
- Alisa E Shaw
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Sreeya Kairamkonda
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Harshad Ghodke
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia; Illawarra Health & Medical Research Institute, Wollongong, NSW, Australia
| | - Grant D Schauer
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States.
| |
Collapse
|
31
|
Impact of Chromosomal Context on Origin Selection and the Replication Program. Genes (Basel) 2022; 13:genes13071244. [PMID: 35886027 PMCID: PMC9318681 DOI: 10.3390/genes13071244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 02/01/2023] Open
Abstract
Eukaryotic DNA replication is regulated by conserved mechanisms that bring about a spatial and temporal organization in which distinct genomic domains are copied at characteristic times during S phase. Although this replication program has been closely linked with genome architecture, we still do not understand key aspects of how chromosomal context modulates the activity of replication origins. To address this question, we have exploited models that combine engineered genomic rearrangements with the unique replication programs of post-quiescence and pre-meiotic S phases. Our results demonstrate that large-scale inversions surprisingly do not affect cell proliferation and meiotic progression, despite inducing a restructuring of replication domains on each rearranged chromosome. Remarkably, these alterations in the organization of DNA replication are entirely due to changes in the positions of existing origins along the chromosome, as their efficiencies remain virtually unaffected genome wide. However, we identified striking alterations in origin firing proximal to the fusion points of each inversion, suggesting that the immediate chromosomal neighborhood of an origin is a crucial determinant of its activity. Interestingly, the impact of genome reorganization on replication initiation is highly comparable in the post-quiescent and pre-meiotic S phases, despite the differences in DNA metabolism in these two physiological states. Our findings therefore shed new light on how origin selection and the replication program are governed by chromosomal architecture.
Collapse
|
32
|
Grieb BC, Eischen CM. MTBP and MYC: A Dynamic Duo in Proliferation, Cancer, and Aging. BIOLOGY 2022; 11:881. [PMID: 35741402 PMCID: PMC9219613 DOI: 10.3390/biology11060881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 12/21/2022]
Abstract
The oncogenic transcription factor c-MYC (MYC) is highly conserved across species and is frequently overexpressed or dysregulated in human cancers. MYC regulates a wide range of critical cellular and oncogenic activities including proliferation, metabolism, metastasis, apoptosis, and differentiation by transcriptionally activating or repressing the expression of a large number of genes. This activity of MYC is not carried out in isolation, instead relying on its association with a myriad of protein cofactors. We determined that MDM Two Binding Protein (MTBP) indirectly binds MYC and is a novel MYC transcriptional cofactor. MTBP promotes MYC-mediated transcriptional activity, proliferation, and cellular transformation by binding in a protein complex with MYC at MYC-bound promoters. This discovery provided critical context for data linking MTBP to aging as well as a rapidly expanding body of evidence demonstrating MTBP is overexpressed in many human malignancies, is often linked to poor patient outcomes, and is necessary for cancer cell survival. As such, MTBP represents a novel and potentially broad reaching oncologic drug target, particularly when MYC is dysregulated. Here we have reviewed the discovery of MTBP and the initial controversy with its function as well as its associations with proliferation, MYC, DNA replication, aging, and human cancer.
Collapse
Affiliation(s)
- Brian C. Grieb
- Vanderbilt-Ingram Cancer Center, Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Christine M. Eischen
- Department of Cancer Biology and the Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
33
|
Thakur BL, Baris AM, Fu H, Redon CE, Pongor L, Mosavarpour S, Gross J, Jang SM, Sebastian R, Utani K, Jenkins L, Indig F, Aladjem M. Convergence of SIRT1 and ATR signaling to modulate replication origin dormancy. Nucleic Acids Res 2022; 50:5111-5128. [PMID: 35524559 PMCID: PMC9122590 DOI: 10.1093/nar/gkac299] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 11/15/2023] Open
Abstract
During routine genome duplication, many potential replication origins remain inactive or 'dormant'. Such origin dormancy is achieved, in part, by an interaction with the metabolic sensor SIRT1 deacetylase. We report here that dormant origins are a group of consistent, pre-determined genomic sequences that are distinguished from baseline (i.e. ordinarily active) origins by their preferential association with two phospho-isoforms of the helicase component MCM2. During normal unperturbed cell growth, baseline origins, but not dormant origins, associate with a form of MCM2 that is phosphorylated by DBF4-dependent kinase (DDK) on serine 139 (pS139-MCM2). This association facilitates the initiation of DNA replication from baseline origins. Concomitantly, SIRT1 inhibits Ataxia Telangiectasia and Rad3-related (ATR)-kinase-mediated phosphorylation of MCM2 on serine 108 (pS108-MCM2) by deacetylating the ATR-interacting protein DNA topoisomerase II binding protein 1 (TOPBP1), thereby preventing ATR recruitment to chromatin. In cells devoid of SIRT1 activity, or challenged by replication stress, this inhibition is circumvented, enabling ATR-mediated S108-MCM2 phosphorylation. In turn, pS108-MCM2 enables DDK-mediated phosphorylation on S139-MCM2 and facilitates replication initiation at dormant origins. These observations suggest that replication origin dormancy and activation are regulated by distinct post-translational MCM modifications that reflect a balance between SIRT1 activity and ATR signaling.
Collapse
Affiliation(s)
- Bhushan L Thakur
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - Adrian M Baris
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - Haiqing Fu
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - Christophe E Redon
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - Lorinc S Pongor
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - Sara Mosavarpour
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - Jacob M Gross
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - Sang-Min Jang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - Robin Sebastian
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - Koichi Utani
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - Lisa M Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - Fred E Indig
- Confocal Imaging Facility, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| |
Collapse
|
34
|
Wang Y, Huang Y, Cheng E, Liu X, Zhang Y, Yang J, Young JTF, Brown GW, Yang X, Shang Y. LSD1 is required for euchromatic origin firing and replication timing. Signal Transduct Target Ther 2022; 7:102. [PMID: 35414135 PMCID: PMC9005705 DOI: 10.1038/s41392-022-00927-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 01/31/2022] [Accepted: 02/13/2022] [Indexed: 11/08/2022] Open
Abstract
The chromatin-based rule governing the selection and activation of replication origins remains to be elucidated. It is believed that DNA replication initiates from open chromatin domains; thus, replication origins reside in open and active chromatin. However, we report here that lysine-specific demethylase 1 (LSD1), which biochemically catalyzes H3K4me1/2 demethylation favoring chromatin condensation, interacts with the DNA replication machinery in human cells. We find that LSD1 level peaks in early S phase, when it is required for DNA replication by facilitating origin firing in euchromatic regions. Indeed, euchromatic zones enriched in H3K4me2 are the preferred sites for the pre-replicative complex (pre-RC) binding. Remarkably, LSD1 deficiency leads to a genome-wide switch of replication from early to late. We show that LSD1-engaged DNA replication is mechanistically linked to the loading of TopBP1-Interacting Checkpoint and Replication Regulator (TICRR) onto the pre-RC and subsequent recruitment of CDC45 during origin firing. Together, these results reveal an unexpected role for LSD1 in euchromatic origin firing and replication timing, highlighting the importance of epigenetic regulation in the activation of replication origins. As selective inhibitors of LSD1 are being exploited as potential cancer therapeutics, our study supports the importance of leveraging an appropriate level of LSD1 to curb the side effects of anti-LSD1 therapy.
Collapse
Affiliation(s)
- Yue Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yunchao Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Edith Cheng
- Department of Biochemistry and Donnelly Centre, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Xinhua Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jianguo Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jordan T F Young
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Ave., Toronto, ON, M5G 1×5, Canada
| | - Grant W Brown
- Department of Biochemistry and Donnelly Centre, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Xiaohan Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Ave., Toronto, ON, M5G 1×5, Canada.
| | - Yongfeng Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
35
|
Gatto A, Forest A, Quivy JP, Almouzni G. HIRA-dependent boundaries between H3 variants shape early replication in mammals. Mol Cell 2022; 82:1909-1923.e5. [PMID: 35381196 DOI: 10.1016/j.molcel.2022.03.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/16/2021] [Accepted: 03/09/2022] [Indexed: 10/18/2022]
Abstract
The lack of a consensus DNA sequence defining replication origins in mammals has led researchers to consider chromatin as a means to specify these regions. However, to date, there is no mechanistic understanding of how this could be achieved and maintained given that nucleosome disruption occurs with each fork passage and with transcription. Here, by genome-wide mapping of the de novo deposition of the histone variants H3.1 and H3.3 in human cells during S phase, we identified how their dual deposition mode ensures a stable marking with H3.3 flanked on both sides by H3.1. These H3.1/H3.3 boundaries correspond to the initiation zones of early origins. Loss of the H3.3 chaperone HIRA leads to the concomitant disruption of H3.1/H3.3 boundaries and initiation zones. We propose that the HIRA-dependent deposition of H3.3 preserves H3.1/H3.3 boundaries by protecting them from H3.1 invasion linked to fork progression, contributing to a chromatin-based definition of early replication zones.
Collapse
Affiliation(s)
- Alberto Gatto
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, 26 rue d'Ulm, 75005 Paris, France
| | - Audrey Forest
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, 26 rue d'Ulm, 75005 Paris, France
| | - Jean-Pierre Quivy
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, 26 rue d'Ulm, 75005 Paris, France.
| | - Geneviève Almouzni
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, 26 rue d'Ulm, 75005 Paris, France.
| |
Collapse
|
36
|
Saponaro M. Transcription-Replication Coordination. Life (Basel) 2022; 12:108. [PMID: 35054503 PMCID: PMC8781949 DOI: 10.3390/life12010108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/02/2022] Open
Abstract
Transcription and replication are the two most essential processes that a cell does with its DNA: they allow cells to express the genomic content that is required for their functions and to create a perfect copy of this genomic information to pass on to the daughter cells. Nevertheless, these two processes are in a constant ambivalent relationship. When transcription and replication occupy the same regions, there is the possibility of conflicts between transcription and replication as transcription can impair DNA replication progression leading to increased DNA damage. Nevertheless, DNA replication origins are preferentially located in open chromatin next to actively transcribed regions, meaning that the possibility of conflicts is potentially an accepted incident for cells. Data in the literature point both towards the existence or not of coordination between these two processes to avoid the danger of collisions. Several reviews have been published on transcription-replication conflicts, but we focus here on the most recent findings that relate to how these two processes are coordinated in eukaryotes, considering advantages and disadvantages from coordination, how likely conflicts are at any given time, and which are their potential hotspots in the genome.
Collapse
Affiliation(s)
- Marco Saponaro
- Transcription Associated Genome Instability Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
37
|
Higa M, Matsuda Y, Fujii J, Sugimoto N, Yoshida K, Fujita M. TRF2-mediated ORC recruitment underlies telomere stability upon DNA replication stress. Nucleic Acids Res 2021; 49:12234-12251. [PMID: 34761263 PMCID: PMC8643664 DOI: 10.1093/nar/gkab1004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Telomeres are intrinsically difficult-to-replicate region of eukaryotic chromosomes. Telomeric repeat binding factor 2 (TRF2) binds to origin recognition complex (ORC) to facilitate the loading of ORC and the replicative helicase MCM complex onto DNA at telomeres. However, the biological significance of the TRF2–ORC interaction for telomere maintenance remains largely elusive. Here, we employed a TRF2 mutant with mutations in two acidic acid residues (E111A and E112A) that inhibited the TRF2–ORC interaction in human cells. The TRF2 mutant was impaired in ORC recruitment to telomeres and showed increased replication stress-associated telomeric DNA damage and telomere instability. Furthermore, overexpression of an ORC1 fragment (amino acids 244–511), which competitively inhibited the TRF2–ORC interaction, increased telomeric DNA damage under replication stress conditions. Taken together, these findings suggest that TRF2-mediated ORC recruitment contributes to the suppression of telomere instability.
Collapse
Affiliation(s)
- Mitsunori Higa
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yukihiro Matsuda
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Jumpei Fujii
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Nozomi Sugimoto
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kazumasa Yoshida
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masatoshi Fujita
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
38
|
Kemiha S, Poli J, Lin YL, Lengronne A, Pasero P. Toxic R-loops: Cause or consequence of replication stress? DNA Repair (Amst) 2021; 107:103199. [PMID: 34399314 DOI: 10.1016/j.dnarep.2021.103199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 01/08/2023]
Abstract
Transcription-replication conflicts (TRCs) represent a potential source of endogenous replication stress (RS) and genomic instability in eukaryotic cells but the mechanisms that underlie this instability remain poorly understood. Part of the problem could come from non-B DNA structures called R-loops, which are formed of a RNA:DNA hybrid and a displaced ssDNA loop. In this review, we discuss different scenarios in which R-loops directly or indirectly interfere with DNA replication. We also present other types of TRCs that may not depend on R-loops to impede fork progression. Finally, we discuss alternative models in which toxic RNA:DNA hybrids form at stalled forks as a consequence - but not a cause - of replication stress and interfere with replication resumption.
Collapse
Affiliation(s)
- Samira Kemiha
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France
| | - Jérôme Poli
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France
| | - Yea-Lih Lin
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France
| | - Armelle Lengronne
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France
| | - Philippe Pasero
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France.
| |
Collapse
|
39
|
Efficiency and equity in origin licensing to ensure complete DNA replication. Biochem Soc Trans 2021; 49:2133-2141. [PMID: 34545932 DOI: 10.1042/bst20210161] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/19/2021] [Accepted: 08/31/2021] [Indexed: 12/21/2022]
Abstract
The cell division cycle must be strictly regulated during both development and adult maintenance, and efficient and well-controlled DNA replication is a key event in the cell cycle. DNA replication origins are prepared in G1 phase of the cell cycle in a process known as origin licensing which is essential for DNA replication initiation in the subsequent S phase. Appropriate origin licensing includes: (1) Licensing enough origins at adequate origin licensing speed to complete licensing before G1 phase ends; (2) Licensing origins such that they are well-distributed on all chromosomes. Both aspects of licensing are critical for replication efficiency and accuracy. In this minireview, we will discuss recent advances in defining how origin licensing speed and distribution are critical to ensure DNA replication completion and genome stability.
Collapse
|
40
|
Narmontė M, Gibas P, Daniūnaitė K, Gordevičius J, Kriukienė E. Multiomics Analysis of Neuroblastoma Cells Reveals a Diversity of Malignant Transformations. Front Cell Dev Biol 2021; 9:727353. [PMID: 34557494 PMCID: PMC8452964 DOI: 10.3389/fcell.2021.727353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroblastoma (NB) is a pediatric cancer of the developing sympathetic nervous system that exhibits significant variation in the stage of differentiation and cell composition of tumors. Global loss of DNA methylation and genomic 5-hydroxymethylcytosine (5hmC) is a hallmark of human cancers. Here, we used our recently developed single-base resolution approaches, hmTOP-seq and uTOP-seq, for construction of 5hmC maps and identification of large partially methylated domains (PMDs) in different NB cell subpopulations. The 5hmC profiles revealed distinct signatures characteristic to different cell lineages and stages of malignant transformation of NB cells in a conventional and oxygen-depleted environment, which often occurs in tumors. The analysis of the cell-type-specific PMD distribution highlighted differences in global genome organization among NB cells that were ascribed to the same lineage identity by transcriptomic networks. Collectively, we demonstrated a high informativeness of the integrative epigenomic and transcriptomic research and large-scale genome structure in investigating the mechanisms that regulate cell identities and developmental stages of NB cells. Such multiomics analysis, as compared with mutational studies, open new ways for identification of novel disease-associated features which bring prognostic and therapeutic value in treating this aggressive pediatric disease.
Collapse
Affiliation(s)
- Milda Narmontė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Povilas Gibas
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Kristina Daniūnaitė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania.,Human Genome Research Group, Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Juozas Gordevičius
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Edita Kriukienė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
41
|
Wang W, Klein KN, Proesmans K, Yang H, Marchal C, Zhu X, Borrman T, Hastie A, Weng Z, Bechhoefer J, Chen CL, Gilbert DM, Rhind N. Genome-wide mapping of human DNA replication by optical replication mapping supports a stochastic model of eukaryotic replication. Mol Cell 2021; 81:2975-2988.e6. [PMID: 34157308 PMCID: PMC8286344 DOI: 10.1016/j.molcel.2021.05.024] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/08/2021] [Accepted: 05/20/2021] [Indexed: 12/27/2022]
Abstract
The heterogeneous nature of eukaryotic replication kinetics and the low efficiency of individual initiation sites make mapping the location and timing of replication initiation in human cells difficult. To address this challenge, we have developed optical replication mapping (ORM), a high-throughput single-molecule approach, and used it to map early-initiation events in human cells. The single-molecule nature of our data and a total of >2,500-fold coverage of the human genome on 27 million fibers averaging ∼300 kb in length allow us to identify initiation sites and their firing probability with high confidence. We find that the distribution of human replication initiation is consistent with inefficient, stochastic activation of heterogeneously distributed potential initiation complexes enriched in accessible chromatin. These observations are consistent with stochastic models of initiation-timing regulation and suggest that stochastic regulation of replication kinetics is a fundamental feature of eukaryotic replication, conserved from yeast to humans.
Collapse
Affiliation(s)
- Weitao Wang
- Institut Curie, PSL Research University, CNRS UMR 3244, Paris 75005, France
| | - Kyle N Klein
- Florida State University, Department of Biological Science, Tallahassee, FL 32306, USA
| | - Karel Proesmans
- Simon Fraser University, Department of Physics, Burnaby, BC V5A 1S6, Canada
| | - Hongbo Yang
- Northwestern University, Feinberg School of Medicine, Department of Biochemistry and Molecular Genetics, Chicago, IL 60208, USA
| | - Claire Marchal
- Florida State University, Department of Biological Science, Tallahassee, FL 32306, USA
| | - Xiaopeng Zhu
- Carnegie Mellon University, Computational Biology Department, Pittsburgh, PA 15213, USA
| | - Tyler Borrman
- University of Massachusetts Medical School, Program in Bioinformatics and Integrated Biology, Worcester, MA 01605, USA
| | | | - Zhiping Weng
- University of Massachusetts Medical School, Program in Bioinformatics and Integrated Biology, Worcester, MA 01605, USA
| | - John Bechhoefer
- Simon Fraser University, Department of Physics, Burnaby, BC V5A 1S6, Canada.
| | - Chun-Long Chen
- Institut Curie, PSL Research University, CNRS UMR 3244, Paris 75005, France; Sorbonne University, Paris 75005, France.
| | - David M Gilbert
- Florida State University, Department of Biological Science, Tallahassee, FL 32306, USA.
| | - Nicholas Rhind
- University of Massachusetts Medical School, Department of Biochemistry and Molecular Pharmacology, Worcester, MA 01605, USA.
| |
Collapse
|
42
|
Blin M, Lacroix L, Petryk N, Jaszczyszyn Y, Chen CL, Hyrien O, Le Tallec B. DNA molecular combing-based replication fork directionality profiling. Nucleic Acids Res 2021; 49:e69. [PMID: 33836085 PMCID: PMC8266662 DOI: 10.1093/nar/gkab219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 01/05/2023] Open
Abstract
The replication strategy of metazoan genomes is still unclear, mainly because definitive maps of replication origins are missing. High-throughput methods are based on population average and thus may exclusively identify efficient initiation sites, whereas inefficient origins go undetected. Single-molecule analyses of specific loci can detect both common and rare initiation events along the targeted regions. However, these usually concentrate on positioning individual events, which only gives an overview of the replication dynamics. Here, we computed the replication fork directionality (RFD) profiles of two large genes in different transcriptional states in chicken DT40 cells, namely untranscribed and transcribed DMD and CCSER1 expressed at WT levels or overexpressed, by aggregating hundreds of oriented replication tracks detected on individual DNA fibres stretched by molecular combing. These profiles reconstituted RFD domains composed of zones of initiation flanking a zone of termination originally observed in mammalian genomes and were highly consistent with independent population-averaging profiles generated by Okazaki fragment sequencing. Importantly, we demonstrate that inefficient origins do not appear as detectable RFD shifts, explaining why dispersed initiation has remained invisible to population-based assays. Our method can both generate quantitative profiles and identify discrete events, thereby constituting a comprehensive approach to study metazoan genome replication.
Collapse
Affiliation(s)
- Marion Blin
- Département de Gastro-entérologie, pôle MAD, Assistance Publique des Hôpitaux de Marseille, Centre Hospitalier Universitaire de Marseille, Marseille, France
| | - Laurent Lacroix
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 46 rue d’Ulm, F-75005 Paris, France
| | - Nataliya Petryk
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 46 rue d’Ulm, F-75005 Paris, France
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91198 Gif-sur-Yvette, France
| | - Yan Jaszczyszyn
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91198 Gif-sur-Yvette, France
| | - Chun-Long Chen
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3244, F-75005 Paris, France
| | - Olivier Hyrien
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 46 rue d’Ulm, F-75005 Paris, France
| | - Benoît Le Tallec
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 46 rue d’Ulm, F-75005 Paris, France
| |
Collapse
|
43
|
Abstract
Safeguards against excess DNA replication are often dysregulated in cancer, and driving cancer cells towards over-replication is a promising therapeutic strategy. We determined DNA synthesis patterns in cancer cells undergoing partial genome re-replication due to perturbed regulatory interactions (re-replicating cells). These cells exhibited slow replication, increased frequency of replication initiation events, and a skewed initiation pattern that preferentially reactivated early-replicating origins. Unlike in cells exposed to replication stress, which activated a novel group of hitherto unutilized (dormant) replication origins, the preferred re-replicating origins arose from the same pool of potential origins as those activated during normal growth. Mechanistically, the skewed initiation pattern reflected a disproportionate distribution of pre-replication complexes on distinct regions of licensed chromatin prior to replication. This distinct pattern suggests that circumventing the strong inhibitory interactions that normally prevent excess DNA synthesis can occur via at least two pathways, each activating a distinct set of replication origins.
Collapse
|
44
|
Kumagai A, Dunphy WG. Binding of the Treslin-MTBP Complex to Specific Regions of the Human Genome Promotes the Initiation of DNA Replication. Cell Rep 2021; 32:108178. [PMID: 32966791 PMCID: PMC7523632 DOI: 10.1016/j.celrep.2020.108178] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/12/2020] [Accepted: 08/31/2020] [Indexed: 12/16/2022] Open
Abstract
The processes that control where higher eukaryotic cells initiate DNA replication throughout the genome are not understood clearly. In metazoans, the Treslin-MTBP complex mediates critical final steps in formation of the activated replicative helicase prior to initiation of replication. Here, we map the genome-wide distribution of the MTBP subunit of this complex in human cells. Our results indicate that MTBP binds to at least 30,000 sites in the genome. A majority of these sites reside in regions of open chromatin that contain transcriptional-regulatory elements (e.g., promoters, enhancers, and super-enhancers), which are known to be preferred areas for initiation of replication. Furthermore, many binding sites encompass two genomic features: a nucleosome-free DNA sequence (e.g., G-quadruplex DNA or AP-1 motif) and a nucleosome bearing histone marks characteristic of open chromatin, such as H3K4me2. Taken together, these findings indicate that Treslin-MTBP associates coordinately with multiple genomic signals to promote initiation of replication. Kumagai and Dunphy show that Treslin-MTBP, activator of the replicative helicase, binds to at least 30,000 sites in the human genome. Many sites contain a nucleosome with active chromatin marks and nucleosome-free DNA (G-quadruplex or AP-1 site). Thus, Treslin-MTBP associates with multiple genomic elements to promote initiation of DNA replication.
Collapse
Affiliation(s)
- Akiko Kumagai
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - William G Dunphy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
45
|
Torma G, Tombácz D, Csabai Z, Moldován N, Mészáros I, Zádori Z, Boldogkői Z. Combined Short and Long-Read Sequencing Reveals a Complex Transcriptomic Architecture of African Swine Fever Virus. Viruses 2021; 13:v13040579. [PMID: 33808073 PMCID: PMC8103240 DOI: 10.3390/v13040579] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/17/2021] [Accepted: 03/28/2021] [Indexed: 11/16/2022] Open
Abstract
African swine fever virus (ASFV) is a large DNA virus belonging to the Asfarviridae family. Despite its agricultural importance, little is known about the fundamental molecular mechanisms of this pathogen. Short-read sequencing (SRS) can produce a huge amount of high-precision sequencing reads for transcriptomic profiling, but it is inefficient for comprehensively annotating transcriptomes. Long-read sequencing (LRS) can overcome some of SRS's limitations, but it also has drawbacks, such as low-coverage and high error rate. The limitations of the two approaches can be surmounted by the combined use of these techniques. In this study, we used Illumina SRS and Oxford Nanopore Technologies LRS platforms with multiple library preparation methods (amplified and direct cDNA sequencings and native RNA sequencing) for constructing the ASFV transcriptomic atlas. This work identified many novel transcripts and transcript isoforms and annotated the precise termini of previously described RNAs. This study identified a novel species of ASFV transcripts, the replication origin-associated RNAs. Additionally, we discovered several nested genes embedded into larger canonical genes. In contrast to the current view that the ASFV transcripts are monocistronic, we detected a significant extent of polycistronism. A multifaceted meshwork of transcriptional overlaps was also discovered.
Collapse
Affiliation(s)
- Gábor Torma
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., 6720 Szeged, Hungary; (G.T.); (D.T.); (Z.C.); (N.M.)
| | - Dóra Tombácz
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., 6720 Szeged, Hungary; (G.T.); (D.T.); (Z.C.); (N.M.)
| | - Zsolt Csabai
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., 6720 Szeged, Hungary; (G.T.); (D.T.); (Z.C.); (N.M.)
| | - Norbert Moldován
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., 6720 Szeged, Hungary; (G.T.); (D.T.); (Z.C.); (N.M.)
| | - István Mészáros
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungária krt. 21, H-1143 Budapest, Hungary; (I.M.); (Z.Z.)
| | - Zoltán Zádori
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungária krt. 21, H-1143 Budapest, Hungary; (I.M.); (Z.Z.)
| | - Zsolt Boldogkői
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., 6720 Szeged, Hungary; (G.T.); (D.T.); (Z.C.); (N.M.)
- Correspondence:
| |
Collapse
|
46
|
Investigation of the Interaction of Human Origin Recognition Complex Subunit 1 with G-Quadruplex DNAs of Human c-myc Promoter and Telomere Regions. Int J Mol Sci 2021; 22:ijms22073481. [PMID: 33801762 PMCID: PMC8036949 DOI: 10.3390/ijms22073481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
Origin recognition complex (ORC) binds to replication origins in eukaryotic DNAs and plays an important role in replication. Although yeast ORC is known to sequence-specifically bind to a replication origin, how human ORC recognizes a replication origin remains unknown. Previous genome-wide studies revealed that guanine (G)-rich sequences, potentially forming G-quadruplex (G4) structures, are present in most replication origins in human cells. We previously suggested that the region comprising residues 413–511 of human ORC subunit 1, hORC1413–511, binds preferentially to G-rich DNAs, which form a G4 structure in the absence of hORC1413–511. Here, we investigated the interaction of hORC1413-511 with various G-rich DNAs derived from human c-myc promoter and telomere regions. Fluorescence anisotropy revealed that hORC1413–511 binds preferentially to DNAs that have G4 structures over ones having double-stranded structures. Importantly, circular dichroism (CD) and nuclear magnetic resonance (NMR) showed that those G-rich DNAs retain the G4 structures even after binding with hORC1413–511. NMR chemical shift perturbation analyses revealed that the external G-tetrad planes of the G4 structures are the primary binding sites for hORC1413–511. The present study suggests that human ORC1 may recognize replication origins through the G4 structure.
Collapse
|
47
|
Kirstein N, Buschle A, Wu X, Krebs S, Blum H, Kremmer E, Vorberg IM, Hammerschmidt W, Lacroix L, Hyrien O, Audit B, Schepers A. Human ORC/MCM density is low in active genes and correlates with replication time but does not delimit initiation zones. eLife 2021; 10:62161. [PMID: 33683199 PMCID: PMC7993996 DOI: 10.7554/elife.62161] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 03/05/2021] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic DNA replication initiates during S phase from origins that have been licensed in the preceding G1 phase. Here, we compare ChIP-seq profiles of the licensing factors Orc2, Orc3, Mcm3, and Mcm7 with gene expression, replication timing, and fork directionality profiles obtained by RNA-seq, Repli-seq, and OK-seq. Both, the origin recognition complex (ORC) and the minichromosome maintenance complex (MCM) are significantly and homogeneously depleted from transcribed genes, enriched at gene promoters, and more abundant in early- than in late-replicating domains. Surprisingly, after controlling these variables, no difference in ORC/MCM density is detected between initiation zones, termination zones, unidirectionally replicating regions, and randomly replicating regions. Therefore, ORC/MCM density correlates with replication timing but does not solely regulate the probability of replication initiation. Interestingly, H4K20me3, a histone modification proposed to facilitate late origin licensing, was enriched in late-replicating initiation zones and gene deserts of stochastic replication fork direction. We discuss potential mechanisms specifying when and where replication initiates in human cells.
Collapse
Affiliation(s)
- Nina Kirstein
- Research Unit Gene Vectors, Helmholtz Zentrum München (GmbH), German Research Center for Environmental Health, Munich, Germany
| | - Alexander Buschle
- Research Unit Gene Vectors, Helmholtz Zentrum München (GmbH), German Research Center for Environmental Health and German Center for Infection Research (DZIF), Munich, Germany
| | - Xia Wu
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center of the Ludwig-Maximilians Universität (LMU) München, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center of the Ludwig-Maximilians Universität (LMU) München, Munich, Germany
| | - Elisabeth Kremmer
- Institute for Molecular Immunology, Monoclonal Antibody Core Facility, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Ina M Vorberg
- German Center for Neurodegenerative Diseases (DZNE e.V.), Bonn, Germany.,Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum München (GmbH), German Research Center for Environmental Health and German Center for Infection Research (DZIF), Munich, Germany
| | - Laurent Lacroix
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Olivier Hyrien
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Benjamin Audit
- Univ Lyon, ENS de Lyon, Univ. Claude Bernard, CNRS, Laboratoire de Physique, 69342 Lyon, France
| | - Aloys Schepers
- Research Unit Gene Vectors, Helmholtz Zentrum München (GmbH), German Research Center for Environmental Health, Munich, Germany
| |
Collapse
|
48
|
Wang J, Rojas P, Mao J, Mustè Sadurnì M, Garnier O, Xiao S, Higgs MR, Garcia P, Saponaro M. Persistence of RNA transcription during DNA replication delays duplication of transcription start sites until G2/M. Cell Rep 2021; 34:108759. [PMID: 33596418 PMCID: PMC7900609 DOI: 10.1016/j.celrep.2021.108759] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 11/09/2020] [Accepted: 01/26/2021] [Indexed: 12/22/2022] Open
Abstract
As transcription and replication use DNA as substrate, conflicts between transcription and replication can occur, leading to genome instability with direct consequences for human health. To determine how the two processes are coordinated throughout S phase, we characterize both processes together at high resolution. We find that transcription occurs during DNA replication, with transcription start sites (TSSs) not fully replicated along with surrounding regions and remaining under-replicated until late in the cell cycle. TSSs undergo completion of DNA replication specifically when cells enter mitosis, when RNA polymerase II is removed. Intriguingly, G2/M DNA synthesis occurs at high frequency in unperturbed cell culture, but it is not associated with increased DNA damage and is fundamentally separated from mitotic DNA synthesis. TSSs duplicated in G2/M are characterized by a series of specific features, including high levels of antisense transcription, making them difficult to duplicate during S phase.
Collapse
Affiliation(s)
- Jianming Wang
- Transcription Associated Genome Instability Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Patricia Rojas
- Transcription Associated Genome Instability Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Jingwen Mao
- Transcription Associated Genome Instability Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Martina Mustè Sadurnì
- Transcription Associated Genome Instability Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Olivia Garnier
- Transcription Associated Genome Instability Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Songshu Xiao
- Transcription Associated Genome Instability Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Martin R Higgs
- Lysine Methylation and DNA Damage Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Paloma Garcia
- Stem Cells and Genome Stability Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Marco Saponaro
- Transcription Associated Genome Instability Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
49
|
Strobino M, Wenda JM, Padayachy L, Steiner FA. Loss of histone H3.3 results in DNA replication defects and altered origin dynamics in C. elegans. Genome Res 2020; 30:1740-1751. [PMID: 33172964 PMCID: PMC7706726 DOI: 10.1101/gr.260794.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022]
Abstract
Histone H3.3 is a replication-independent variant of histone H3 with important roles in development, differentiation, and fertility. Here, we show that loss of H3.3 results in replication defects in Caenorhabditis elegans embryos at elevated temperatures. To characterize these defects, we adapt methods to determine replication timing, map replication origins, and examine replication fork progression. Our analysis of the spatiotemporal regulation of DNA replication shows that despite the very rapid embryonic cell cycle, the genome is replicated from early and late firing origins and is partitioned into domains of early and late replication. We find that under temperature stress conditions, additional replication origins become activated. Moreover, loss of H3.3 results in altered replication fork progression around origins, which is particularly evident at stress-activated origins. These replication defects are accompanied by replication checkpoint activation, a delayed cell cycle, and increased lethality in checkpoint-compromised embryos. Our comprehensive analysis of DNA replication in C. elegans reveals the genomic location of replication origins and the dynamics of their firing, and uncovers a role of H3.3 in the regulation of replication origins under stress conditions.
Collapse
Affiliation(s)
- Maude Strobino
- Department of Molecular Biology and Institute for Genetics and Genomics in Geneva, Section of Biology, Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Joanna M Wenda
- Department of Molecular Biology and Institute for Genetics and Genomics in Geneva, Section of Biology, Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Laura Padayachy
- Department of Molecular Biology and Institute for Genetics and Genomics in Geneva, Section of Biology, Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Florian A Steiner
- Department of Molecular Biology and Institute for Genetics and Genomics in Geneva, Section of Biology, Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
50
|
Akerman I, Kasaai B, Bazarova A, Sang PB, Peiffer I, Artufel M, Derelle R, Smith G, Rodriguez-Martinez M, Romano M, Kinet S, Tino P, Theillet C, Taylor N, Ballester B, Méchali M. A predictable conserved DNA base composition signature defines human core DNA replication origins. Nat Commun 2020; 11:4826. [PMID: 32958757 PMCID: PMC7506530 DOI: 10.1038/s41467-020-18527-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023] Open
Abstract
DNA replication initiates from multiple genomic locations called replication origins. In metazoa, DNA sequence elements involved in origin specification remain elusive. Here, we examine pluripotent, primary, differentiating, and immortalized human cells, and demonstrate that a class of origins, termed core origins, is shared by different cell types and host ~80% of all DNA replication initiation events in any cell population. We detect a shared G-rich DNA sequence signature that coincides with most core origins in both human and mouse genomes. Transcription and G-rich elements can independently associate with replication origin activity. Computational algorithms show that core origins can be predicted, based solely on DNA sequence patterns but not on consensus motifs. Our results demonstrate that, despite an attributed stochasticity, core origins are chosen from a limited pool of genomic regions. Immortalization through oncogenic gene expression, but not normal cellular differentiation, results in increased stochastic firing from heterochromatin and decreased origin density at TAD borders. In metazoan the DNA sequence elements characterizing origin specification are unknown. By generating and analysing 19 SNS-seq datasets from different human cell types, the authors reveal a class and features of Core origins of replication which can be predicted by an algorithm.
Collapse
Affiliation(s)
- Ildem Akerman
- Institute of Human Genetics, CNRS - University of Montpellier, Montpellier, France. .,Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK.
| | - Bahar Kasaai
- Institute of Human Genetics, CNRS - University of Montpellier, Montpellier, France
| | - Alina Bazarova
- Centre for Computational Biology (CCB), University of Birmingham, Birmingham, UK.,Institute for Biological Physics, University of Cologne, Cologne, Germany
| | - Pau Biak Sang
- Institute of Human Genetics, CNRS - University of Montpellier, Montpellier, France
| | - Isabelle Peiffer
- Institute of Human Genetics, CNRS - University of Montpellier, Montpellier, France
| | - Marie Artufel
- Aix-Marseille University, INSERM, TAGC, UMR S1090, Marseille, France
| | - Romain Derelle
- Life and Environmental Sciences (LES), University of Birmingham, Birmingham, UK
| | - Gabrielle Smith
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
| | | | - Manuela Romano
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France
| | - Sandrina Kinet
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France
| | - Peter Tino
- Centre for Computational Biology (CCB), University of Birmingham, Birmingham, UK
| | - Charles Theillet
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Montpellier, France
| | - Naomi Taylor
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France.,Pediatric Oncology Branch, NCI, CCR, NIH, Bethesda, MD, USA
| | - Benoit Ballester
- Aix-Marseille University, INSERM, TAGC, UMR S1090, Marseille, France
| | - Marcel Méchali
- Institute of Human Genetics, CNRS - University of Montpellier, Montpellier, France.
| |
Collapse
|