1
|
Diaz C, Ayobahan SU, Simon S, Zühl L, Schiermeyer A, Eilebrecht E, Eilebrecht S. Classification of and detection techniques for RNAi-induced effects in GM plants. FRONTIERS IN PLANT SCIENCE 2025; 16:1535384. [PMID: 40123947 PMCID: PMC11925957 DOI: 10.3389/fpls.2025.1535384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/08/2025] [Indexed: 03/25/2025]
Abstract
RNA interference (RNAi) is a biotechnological tool used for gene silencing in plants, with both endogenous and exogenous applications. Endogenous approaches, such as host-induced gene silencing (HIGS), involve genetically modified (GM) plants, while exogenous methods include spray-induced gene silencing (SIGS). The RNAi mechanism hinges on the introduction of double-stranded RNA (dsRNA), which is processed into short interfering RNAs (siRNAs) that degrade specific messenger RNAs (mRNAs). However, unintended effects on non-target organisms and GM plants are a concern due to sequence homologies or siRNA-induced epigenetic changes. Regulatory bodies such as the EPA and EFSA emphasize the need for comprehensive risk assessments. Detecting unintended effects is complex, often relying on bioinformatic tools and untargeted analyses like transcriptomics and metabolomics, though these methods require extensive genomic data. This review aims to classify mechanisms of RNAi effects induced by short interfering RNA from different sources in plants and to identify technologies that can be used to detect these effects. In addition, practical case studies are summarized and discussed in which previously unintended RNAi effects in genetically modified plants have been investigated. Current literature is limited but suggests RNAi is relatively specific, with few unintended effects observed in GM crops. However, further studies are needed to fully understand and mitigate potential risks, particularly those related to transcriptional gene silencing (TGS) mechanisms, which are less predictable than post-transcriptional gene silencing (PTGS). Particularly the application of untargeted approaches such as small RNA sequencing and transcriptomics is recommended for thorough and comprehensive risk assessments.
Collapse
Affiliation(s)
- Cecilia Diaz
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Steve U. Ayobahan
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Samson Simon
- Division I 3.2 Synthetic Biology Assessment, Enforcement of Genetic Engineering Act, Federal Agency for Nature Conservation (BfN), Bonn, Germany
| | - Luise Zühl
- Division I 3.2 Synthetic Biology Assessment, Enforcement of Genetic Engineering Act, Federal Agency for Nature Conservation (BfN), Bonn, Germany
| | - Andreas Schiermeyer
- Department Plant Sciences & Bio-Hybrids, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Elke Eilebrecht
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Sebastian Eilebrecht
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| |
Collapse
|
2
|
Su CT, See DHW, Huang JW. Lipid-Based Nanocarriers in Renal RNA Therapy. Biomedicines 2022; 10:283. [PMID: 35203492 PMCID: PMC8869454 DOI: 10.3390/biomedicines10020283] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
Kidney disease is a multifactorial problem, with a growing prevalence and an increasing global burden. With the latest worldwide data suggesting that chronic kidney disease (CKD) is the 12th leading cause of death, it is no surprise that CKD remains a public health problem that requires urgent attention. Multiple factors contribute to kidney disease, each with its own pathophysiology and pathogenesis. Furthermore, microRNAs (miRNAs) have been linked to several types of kidney diseases. As dysregulation of miRNAs is often seen in some diseases, there is potential in the exploitation of this for therapeutic applications. In addition, uptake of interference RNA has been shown to be rapid in kidneys making them a good candidate for RNA therapy. The latest advancements in RNA therapy and lipid-based nanocarriers have enhanced the effectiveness and efficiency of RNA-related drugs, thereby making RNA therapy a viable treatment option for renal disease. This is especially useful for renal diseases, for which a suitable treatment is not yet available. Moreover, the high adaptability of RNA therapy combined with the low risk of lipid-based nanocarriers make for an attractive treatment choice. Currently, there are only a small number of RNA-based drugs related to renal parenchymal disease, most of which are in different stages of clinical trials. We propose the use of miRNAs or short interfering RNAs coupled with a lipid-based nanocarrier as a delivery vehicle for managing renal disease.
Collapse
Affiliation(s)
- Chi-Ting Su
- Department of Medicine, National Taiwan University Cancer Centre, Taipei 10672, Taiwan; (C.-T.S.); (D.H.W.S.)
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Douliu 640, Taiwan
| | - Daniel H. W. See
- Department of Medicine, National Taiwan University Cancer Centre, Taipei 10672, Taiwan; (C.-T.S.); (D.H.W.S.)
| | - Jenq-Wen Huang
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Douliu 640, Taiwan
| |
Collapse
|
3
|
Pan M, Li M, Guo M, Zhou H, Xu H, Zhao F, Mei F, Xue R, Dou J. Knockdown of ALDH1A3 reduces breast cancer stem cell marker CD44 via the miR-7-TGFBR2-Smad3-CD44 regulatory axis. Exp Ther Med 2021; 22:1093. [PMID: 34504547 PMCID: PMC8383762 DOI: 10.3892/etm.2021.10527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 03/22/2021] [Indexed: 12/21/2022] Open
Abstract
Inhibition of aldehyde dehydrogenase 1 family member A3 (ALDH1A3) has been revealed to lead to significant increase of microRNA (miR)-7 expression and decrease of CD44 expression in breast cancer stem cells (BCSCs), however the mechanism is not clear. The aim of the present study was to investigate the regulatory relationship between ALDH1A3, miR-7, and CD44 in BCSCs. The expression of ALDH1A3 was inhibited by small interfering RNA (siRNA or si), and the expression of miR-7 was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Then, the ratio of CD44+ cells was analyzed by flow cytometry in MDA-MB-231 cells. The dual-luciferase reporter system was used to demonstrate that miR-7 binds to transforming growth factor-β receptor 2 (TGFBR2) 3'UTR, and ChIP-PCR determined whether the transcription factor Smad3 binds to the upstream regulatory region of the CD44 promoter. The results revealed that siALDH1A3 downregulated ALDH1A3 and promoted miR-7 expression, which resulted in downregulation of CD44 expression. siALDH1A3 also downregulated the CD44 expression on the surface of MDA-MB-231 cells and inhibited the G2/M phase in BCSCs as analyzed by flow cytometry. In addition, lenti-miR-7 cells transfected with TGF-β1 + SB431542 revealed that lenti-miR-7 inhibited the TGF-β1 pathway by inhibiting Smad2/3/4 expression and, thus, downregulated CD44 expression. miR-7 was revealed to directly bind to the TGFBR2 3'UTR through dual-luciferase reporter assay, and Smad3, a transcription factor, through ChIP-PCR was demonstrated to bind to the upstream region of the CD44 promoter. These results demonstrated the existence of the ALDH1A3-miR-7-TGFBR2-Smad3-CD44 axis in MDA-MB-231 cells. RT-qPCR results of 12 breast cancer surgical specimens and SK-BR-3, MCF-7, and LD cell lines further confirmed the presence of the regulatory axis. In conclusion the findings from the present study demonstrated that the ALDH1A3-miR-7-TGFBR2-Smad3-CD44 regulatory axis was highly efficient in the inhibition of CD44 expression in BCSCs, and that the regulatory expression of ALDH1A3 and miR-7 may provide a strategy in the therapy of breast cancer.
Collapse
Affiliation(s)
- Meng Pan
- Department of Judicial Identification, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China.,Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Miao Li
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Mei Guo
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Huiying Zhou
- Department of Judicial Identification, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hui Xu
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Fengshu Zhao
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Feng Mei
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Rui Xue
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Jun Dou
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
4
|
Lou B, Connor K, Sweeney K, Miller IS, O'Farrell A, Ruiz-Hernandez E, Murray DM, Duffy GP, Wolfe A, Mastrobattista E, Byrne AT, Hennink WE. RGD-decorated cholesterol stabilized polyplexes for targeted siRNA delivery to glioblastoma cells. Drug Deliv Transl Res 2020; 9:679-693. [PMID: 30972664 DOI: 10.1007/s13346-019-00637-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The development of an effective and safe treatment for glioblastoma (GBM) represents a significant challenge in oncology today. Downregulation of key mediators of cell signal transduction by RNA interference is considered a promising treatment strategy but requires efficient, intracellular delivery of siRNA into GBM tumor cells. Here, we describe novel polymeric siRNA nanocarriers functionalized with cRGD peptide that mediates targeted and efficient reporter gene silencing in U87R invasive human GBM cells. The polymer was synthesized via RAFT copolymerization of N-(2-hydroxypropyl)-methacrylamide (HPMA) and N-acryloxysuccinimide (NAS), followed by post-polymerization modification with cholesterol for stabilization, cationic amines for siRNA complexation, and azides for copper-free click chemistry. The novel resultant cationic polymer harboring a terminal cholesterol group, self-assembled with siRNA to yield nanosized polyplexes (~ 40 nm) with good colloidal stability at physiological ionic strength. Post-modification of the preformed polyplexes with PEG-cRGD end-functionalized with bicyclo[6.1.0]nonyne (BCN) group resulted in enhanced cell uptake and increased luciferase gene silencing in U87R cells, compared to polyplexes lacking cRGD-targeting groups.
Collapse
Affiliation(s)
- Bo Lou
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Kate Connor
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, York Street, Dublin 2, Ireland
| | - Kieron Sweeney
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, York Street, Dublin 2, Ireland.,Department of Neurosurgery, Beaumont Hospital, Dublin, Ireland
| | - Ian S Miller
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, York Street, Dublin 2, Ireland
| | - Alice O'Farrell
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, York Street, Dublin 2, Ireland
| | | | - David M Murray
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, York Street, Dublin 2, Ireland
| | - Garry P Duffy
- Anatomy, School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| | - Alan Wolfe
- UCD School of Veterinary Medicine, Belfield, Dublin, Ireland
| | - Enrico Mastrobattista
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Annette T Byrne
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, York Street, Dublin 2, Ireland
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands.
| |
Collapse
|
5
|
Role of MicroRNAs in Renal Parenchymal Diseases-A New Dimension. Int J Mol Sci 2018; 19:ijms19061797. [PMID: 29914215 PMCID: PMC6032378 DOI: 10.3390/ijms19061797] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 11/18/2022] Open
Abstract
Since their discovery in 1993, numerous microRNAs (miRNAs) have been identified in humans and other eukaryotic organisms, and their role as key regulators of gene expression is still being elucidated. It is now known that miRNAs not only play a central role in the processes that ensure normal development and physiology, but they are often dysregulated in various diseases. In this review, we present an overview of the role of miRNAs in normal renal development and physiology, in maladaptive renal repair after injury, and in the pathogenesis of renal parenchymal diseases. In addition, we describe methods used for their detection and their potential as therapeutic targets. Continued research on renal miRNAs will undoubtedly improve our understanding of diseases affecting the kidneys and may also lead to new therapeutic agents.
Collapse
|
6
|
Sax MJ, Gasch C, Athota VR, Freeman R, Rasighaemi P, Westcott DE, Day CJ, Nikolic I, Elsworth B, Wei M, Rogers K, Swarbrick A, Mittal V, Pouliot N, Mellick AS. Cancer cell CCL5 mediates bone marrow independent angiogenesis in breast cancer. Oncotarget 2018; 7:85437-85449. [PMID: 27863423 PMCID: PMC5356747 DOI: 10.18632/oncotarget.13387] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/27/2016] [Indexed: 01/03/2023] Open
Abstract
It has recently been suggested that the chemokine receptor (CCR5) is required for bone marrow (BM) derived endothelial progenitor cell (EPC) mediated angiogenesis. Here we show that suppression of either cancer cell produced CCL5, or host CCR5 leads to distinctive vascular and tumor growth defects in breast cancer. Surprisingly, CCR5 restoration in the BM alone was not sufficient to rescue the wild type phenotype, suggesting that impaired tumor growth associated with inhibiting CCL5/CCR5 is not due to defects in EPC biology. Instead, to promote angiogenesis cancer cell CCL5 may signal directly to endothelium in the tumor-stroma. In support of this hypothesis, we have also shown: (i) that endothelial cell CCR5 levels increases in response to tumor-conditioned media; (ii) that the amount of CCR5+ tumor vasculature correlates with invasive grade; and (iii) that inhibition of CCL5/CCR5 signaling impairs endothelial cell migration, associated with a decrease in activation of mTOR/AKT pathway members. Finally, we show that treatment with CCR5 antagonist results in less vasculature, impaired tumor growth, reduced metastases and improved survival. Taken as a whole, this work demonstrates that directly inhibiting CCR5 expressing vasculature constitutes a novel strategy for inhibiting angiogenesis and blocking metastatic progression in breast cancer.
Collapse
Affiliation(s)
- Michael John Sax
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Christin Gasch
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Vineel Rag Athota
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Ruth Freeman
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Parisa Rasighaemi
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | | | | | - Iva Nikolic
- Kinghorn Cancer Centre & Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington NSW, Australia
| | - Benjamin Elsworth
- Kinghorn Cancer Centre & Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington NSW, Australia
| | - Ming Wei
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Kelly Rogers
- Centre for Dynamic Imaging, Walter and Eliza Hall Institute for Medical Research, Parkville Victoria, Australia
| | - Alexander Swarbrick
- Kinghorn Cancer Centre & Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington NSW, Australia
| | - Vivek Mittal
- Cardiothoracic Surgery and Neuberger Berman Lung Cancer Centre, Weill Cornell Medical College, New York, NY, USA
| | - Normand Pouliot
- Matrix Microenvironment & Metastasis Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Heidelberg, Victoria, Australia
| | - Albert Sleiman Mellick
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia.,Faculty of Medicine, University of New South Wales, NSW, Australia.,School of Medicine, Western Sydney University, Campbelltown NSW, Australia.,Translational Oncology Unit, Ingham Institute for Applied Medical Research, Liverpool NSW, Australia
| |
Collapse
|
7
|
Mishra A, Pant P, Mrinal N, Jayaram B. A computational protocol for the discovery of lead molecules targeting DNA unique to pathogens. Methods 2017; 131:4-9. [PMID: 28733089 DOI: 10.1016/j.ymeth.2017.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/11/2017] [Accepted: 07/18/2017] [Indexed: 12/19/2022] Open
Abstract
With the rapid emergence of drug resistant pathogens, it has become imperative to develop alternative medications as well as find new drug targets to overcome this crisis. Hence, this has become prime focus of several academic laboratories and pharmaceutical companies. Here, we report a computational protocol for identifying unique DNA sequence(s) in the pathogen which is absent in human and related non-pathogenic strains of the microbe. In order to use the unique sequence as drug target, the protocol, in the second step, uses virtual screening against a million compound library to identify candidate small molecules which can bind to these unique DNA targets in the pathogen only. Theoretically the molecules identified after screening should not bind to human DNA. This methodology is demonstrated on Mycobacterium tuberculosis H37Rv, wherein a new octamer sequence present only in H37Rv has been identified and a few candidate small molecules as potential drug have been proposed. Being fast and cost effective, this protocol could be of importance in generating new potential drug candidates against infectious organisms for further experimental studies. This methodology is freely available at http://www.scfbio-iitd.res.in/PSDDF/.
Collapse
Affiliation(s)
- Akhilesh Mishra
- Supercomputing Facility for Bioinformatics & Computational Biology, Indian Institute of Technology Delhi, India; Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, India
| | - Pradeep Pant
- Supercomputing Facility for Bioinformatics & Computational Biology, Indian Institute of Technology Delhi, India; Department of Chemistry, Indian Institute of Technology Delhi, India
| | - Nirotpal Mrinal
- Laboratory of Molecular Biology, South Asian University, New Delhi, India
| | - B Jayaram
- Supercomputing Facility for Bioinformatics & Computational Biology, Indian Institute of Technology Delhi, India; Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, India; Department of Chemistry, Indian Institute of Technology Delhi, India.
| |
Collapse
|
8
|
Tyagi A, Semwal M, Sharma A. A database of breast oncogenic specific siRNAs. Sci Rep 2017; 7:8706. [PMID: 28821760 PMCID: PMC5562753 DOI: 10.1038/s41598-017-08948-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 07/20/2017] [Indexed: 01/12/2023] Open
Abstract
Breast cancer is a serious problem causing the death of women across the world. At present, one of the major challenges is to design drugs to target breast cancer specific gene(s). RNA interference (RNAi) is an important technique for targeted gene silencing that may lead to promising novel therapeutic strategies for breast cancer. Therefore, identification of such molecules having high oncogene specificity is the need of the hour. Here, we have developed a database named as Breast Oncogenic Specific siRNAs (BOSS, http://bioinformatics.cimap.res.in/sharma/boss/) on the basis of the current research status on siRNA-mediated repression of oncogenes in different breast cancer cell lines. BOSS is a resource of experimentally validated breast oncogenic siRNAs, collected from research articles and patents published yet. The present database contains information on 865 breast oncogenic siRNA entries. Each entry provides comprehensive information of an siRNA that includes its name, sequence, target gene, type of cells, and inhibition value, etc. Additionally, some useful tools like siRNAMAP and BOSS BLAST were also developed and linked with the database. siRNAMAP can be used for the selection of best siRNA against a target gene while BOSS BLAST tool helps to locate the siRNA sequences in deferent oncogenes.
Collapse
Affiliation(s)
- Atul Tyagi
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O.-CIMAP, Near Kukrail Picnic Spot, Lucknow, 226 015, Uttar Pradesh, India.
| | - Manoj Semwal
- ICT Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O.-CIMAP, Near Kukrail Picnic Spot, Lucknow, 226 015, Uttar Pradesh, India.
| | - Ashok Sharma
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O.-CIMAP, Near Kukrail Picnic Spot, Lucknow, 226 015, Uttar Pradesh, India.
| |
Collapse
|
9
|
Cutler SJ, Doecke JD, Ghazawi I, Yang J, Griffiths LR, Spring KJ, Ralph SJ, Mellick AS. Novel STAT binding elements mediate IL-6 regulation of MMP-1 and MMP-3. Sci Rep 2017; 7:8526. [PMID: 28819304 PMCID: PMC5561029 DOI: 10.1038/s41598-017-08581-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/24/2017] [Indexed: 01/30/2023] Open
Abstract
Dynamic remodelling of the extracellular matrix (ECM) is a key feature of cancer progression. Enzymes that modify the ECM, such as matrix metalloproteinases (MMPs), have long been recognised as important targets of anticancer therapy. Inflammatory cytokines are known to play a key role in regulating protease expression in cancer. Here we describe the identification of gamma-activated site (GAS)-like, signal transducer and activator of transcription (STAT) binding elements (SBEs) within the proximal promoters of the MMP-1 and MMP-3 genes, which in association with AP-1 components (c-Fos or Jun), bind STAT-1 in a homodimer like complex (HDLC). We further demonstrate that MMP expression and binding of this complex to SBEs can either be enhanced by interleukin (IL)-6, or reduced by interferon gamma (IFN-γ), and that IL-6 regulation of MMPs is not STAT-3 dependent. Collectively, this data adds to existing understanding of the mechanism underlying cytokine regulation of MMP expression via STAT-1, and increases our understanding of the links between inflammation and malignancy in colon cancer.
Collapse
Affiliation(s)
- Samuel J Cutler
- School of Medical Science, Griffith Institute for Health and Medical Research, Griffith University, Parklands Drive, Southport, 4215, QLD, Australia
| | - James D Doecke
- School of Medical Science, Griffith Institute for Health and Medical Research, Griffith University, Parklands Drive, Southport, 4215, QLD, Australia
| | - Ibtisam Ghazawi
- School of Medical Science, Griffith Institute for Health and Medical Research, Griffith University, Parklands Drive, Southport, 4215, QLD, Australia
| | - Jinbo Yang
- Department of Molecular Genetics, Lerner Research Institute, 9500 Euclid Avenue, Cleveland, Ohio, 44195, USA
| | - Lyn R Griffiths
- Institute for Health & Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia
| | - Kevin J Spring
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.,Ingham Institute for Applied Medical Research, South Western Sydney Clinical School UNSW & CONCERT Translational Cancer Research Centre, 1 Campbell Street, Liverpool, NSW 2170, Australia
| | - Stephen J Ralph
- School of Medical Science, Griffith Institute for Health and Medical Research, Griffith University, Parklands Drive, Southport, 4215, QLD, Australia.
| | - Albert S Mellick
- School of Medical Science, Griffith Institute for Health and Medical Research, Griffith University, Parklands Drive, Southport, 4215, QLD, Australia. .,School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia. .,Ingham Institute for Applied Medical Research, South Western Sydney Clinical School UNSW & CONCERT Translational Cancer Research Centre, 1 Campbell Street, Liverpool, NSW 2170, Australia.
| |
Collapse
|
10
|
Abstract
Current models theorizing on what the mitochondrial permeability transition (mPT) pore is made of, implicate the c-subunit rings of ATP synthase complex. However, two very recent studies, one on atomistic simulations and in the other disrupting all genes coding for the c subunit disproved those models. As a consequence of this, the structural elements of the pore remain unknown. The purpose of the present short-review is to (i) briefly review the latest findings, (ii) serve as an index for more comprehensive reviews regarding mPT specifics, (iii) reiterate on the potential pitfalls while investigating mPT in conjunction to bioenergetics, and most importantly (iv) suggest to those in search of mPT pore identity, to also look elsewhere.
Collapse
Affiliation(s)
- Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Budapest 1094, Hungary; MTA-SE Lendület Neurobiochemistry Research Group, Hungary.
| |
Collapse
|
11
|
Kim HC, Heo JY, Lee TK, Cho SG, Kwon YJ. Optimization of Cell-Based cDNA Microarray Conditions for Gene Functional Studies in HEK293 Cells. SLAS DISCOVERY 2017; 22:1053-1059. [PMID: 28324659 DOI: 10.1177/2472555217699823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Since the cell-based cDNA microarray (CBCM) technique has been a useful tool for gain-of-function studies, many investigators have used CBCMs to identify interesting genes. However, this method requires better-established conditions to ensure high reverse transfection efficiency without cross-contamination. Therefore, we optimized CBCM techniques through various means. We determined that Lipofectamine 2000 was the most appropriate transfection reagent by evaluating eight commercialized reagents, and we determined that the most effective concentrations for printing solution constituents were 0.2 M sucrose (to yield a final concentration of 32 mM) and 0.2% gelatin (to yield a final concentration 0.075%). After examining various combinations, we also determined that the best concentrations of cDNA and transfection reagent for optimal reverse transfection efficiency were 1.5 µg/5 µL of cDNA and 5.5 µL of Lipofectamine 2000. Finally, via a time course, we determined that 72 h was the most effective reaction duration for reverse transfection, and we confirmed the stability of cDNA spot activity of CBCMs for various storage periods. In summary, the CBCM conditions that we have identified can provide more effective outcomes for cDNA reverse transfection on microarrays.
Collapse
Affiliation(s)
- Hi Chul Kim
- 1 Institut Pasteur Korea, Gyeonggi-do, Republic of Korea.,2 Department of Animal Biotechnology and Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul, Republic of Korea
| | - Jin Yeong Heo
- 1 Institut Pasteur Korea, Gyeonggi-do, Republic of Korea
| | - Tae-Kyu Lee
- 1 Institut Pasteur Korea, Gyeonggi-do, Republic of Korea
| | - Ssang-Goo Cho
- 2 Department of Animal Biotechnology and Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul, Republic of Korea
| | - Yong-Jun Kwon
- 1 Institut Pasteur Korea, Gyeonggi-do, Republic of Korea.,3 Ksilink, Strasbourg, France
| |
Collapse
|
12
|
Abstract
RNA interference is a convenient and highly effective technique to investigate the biological function of genes. Adequately designed RNA molecules introduced into an oocyte are able to bind specific endogenous mRNAs and trigger their degradation. Subsequent fertilization of these oocytes will result in the generation of embryos in which the expression of the gene of interest is downregulated, and following the degradation of maternal proteins the role of the gene product can be studied. Here, we describe the approach how post-transcriptional gene silencing can be achieved in oocytes and early embryos using siRNA.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Animal Sciences, Purdue University, Lilly Hall of Life Sciences, 915 W. State Street, West Lafayette, IN, 47907, USA
| | - Zoltan Machaty
- Department of Animal Sciences, Purdue University, Lilly Hall of Life Sciences, 915 W. State Street, West Lafayette, IN, 47907, USA.
| |
Collapse
|
13
|
Nierode G, Kwon PS, Dordick JS, Kwon SJ. Cell-Based Assay Design for High-Content Screening of Drug Candidates. J Microbiol Biotechnol 2016; 26:213-25. [PMID: 26428732 DOI: 10.4014/jmb.1508.08007] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To reduce attrition in drug development, it is crucial to consider the development and implementation of translational phenotypic assays as well as decipher diverse molecular mechanisms of action for new molecular entities. High-throughput fluorescence and confocal microscopes with advanced analysis software have simplified the simultaneous identification and quantification of various cellular processes through what is now referred to as highcontent screening (HCS). HCS permits automated identification of modifiers of accessible and biologically relevant targets and can thus be used to detect gene interactions or identify toxic pathways of drug candidates to improve drug discovery and development processes. In this review, we summarize several HCS-compatible, biochemical, and molecular biology-driven assays, including immunohistochemistry, RNAi, reporter gene assay, CRISPR-Cas9 system, and protein-protein interactions to assess a variety of cellular processes, including proliferation, morphological changes, protein expression, localization, post-translational modifications, and protein-protein interactions. These cell-based assay methods can be applied to not only 2D cell culture but also 3D cell culture systems in a high-throughput manner.
Collapse
Affiliation(s)
- Gregory Nierode
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Paul S Kwon
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Seok-Joon Kwon
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
14
|
Berthuy OI, Muldur SK, Rossi F, Colpo P, Blum LJ, Marquette CA. Multiplex cell microarrays for high-throughput screening. LAB ON A CHIP 2016; 16:4248-4262. [PMID: 27731880 DOI: 10.1039/c6lc00831c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Microarray technology was developed in the early 1990s to measure the transcription levels of thousands of genes in parallel. The basic premise of high-density arraying has since been expanded to create cell microarrays. Cells on chip are powerful experimental tools for high-throughput and multiplex screening of samples or cellular functions. Miniaturization increases assay throughput while reducing both reagent consumption and cell population heterogeneity effect, making these systems attractive for a wide range of assays, from drug discovery to toxicology, stem cell research and therapy. It is usual to functionalize the surface of a substrate to design cell microarrays. One form of cell microarrays, the transfected cell microarray, wherein plasmid DNA or siRNA spotted on the surface of a substrate is reverse-transfected locally into adherent cells, has become a standard tool for parallel cell-based analysis. With the advent of technology, cells can also be directly spotted onto functionalized surfaces using robotic fluid-dispensing devices or printed directly on bio-ink material. We are providing herein an overview of the latest developments in optical cell microarrays allowing high-throughput and high-content analysis.
Collapse
Affiliation(s)
- Ophélie I Berthuy
- Univ Lyon, Université Lyon1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 43, Bd du 11 novembre 1918, 69622 Villeurbanne cedex, France.
| | - Sinan K Muldur
- Européen Commission, Joint Research Centre, Institute for Heath and Consumer Protection, Ispra, VA, Italy
| | - François Rossi
- Européen Commission, Joint Research Centre, Institute for Heath and Consumer Protection, Ispra, VA, Italy
| | - Pascal Colpo
- Européen Commission, Joint Research Centre, Institute for Heath and Consumer Protection, Ispra, VA, Italy
| | - Loïc J Blum
- Univ Lyon, Université Lyon1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 43, Bd du 11 novembre 1918, 69622 Villeurbanne cedex, France.
| | - Christophe A Marquette
- Univ Lyon, Université Lyon1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 43, Bd du 11 novembre 1918, 69622 Villeurbanne cedex, France.
| |
Collapse
|
15
|
Jonczyk R, Kurth T, Lavrentieva A, Walter JG, Scheper T, Stahl F. Living Cell Microarrays: An Overview of Concepts. MICROARRAYS (BASEL, SWITZERLAND) 2016; 5:E11. [PMID: 27600077 PMCID: PMC5003487 DOI: 10.3390/microarrays5020011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/09/2016] [Accepted: 05/11/2016] [Indexed: 02/06/2023]
Abstract
Living cell microarrays are a highly efficient cellular screening system. Due to the low number of cells required per spot, cell microarrays enable the use of primary and stem cells and provide resolution close to the single-cell level. Apart from a variety of conventional static designs, microfluidic microarray systems have also been established. An alternative format is a microarray consisting of three-dimensional cell constructs ranging from cell spheroids to cells encapsulated in hydrogel. These systems provide an in vivo-like microenvironment and are preferably used for the investigation of cellular physiology, cytotoxicity, and drug screening. Thus, many different high-tech microarray platforms are currently available. Disadvantages of many systems include their high cost, the requirement of specialized equipment for their manufacture, and the poor comparability of results between different platforms. In this article, we provide an overview of static, microfluidic, and 3D cell microarrays. In addition, we describe a simple method for the printing of living cell microarrays on modified microscope glass slides using standard DNA microarray equipment available in most laboratories. Applications in research and diagnostics are discussed, e.g., the selective and sensitive detection of biomarkers. Finally, we highlight current limitations and the future prospects of living cell microarrays.
Collapse
Affiliation(s)
- Rebecca Jonczyk
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, Hannover 30167, Germany.
| | - Tracy Kurth
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, Hannover 30167, Germany.
| | - Antonina Lavrentieva
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, Hannover 30167, Germany.
| | - Johanna-Gabriela Walter
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, Hannover 30167, Germany.
| | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, Hannover 30167, Germany.
| | - Frank Stahl
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, Hannover 30167, Germany.
| |
Collapse
|
16
|
Kim HC, Kim GH, Cho SG, Lee EJ, Kwon YJ. Development of a cell-defined siRNA microarray for analysis of gene function in human bone marrow stromal cells. Stem Cell Res 2016; 16:365-76. [PMID: 26896857 DOI: 10.1016/j.scr.2016.02.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/24/2015] [Accepted: 02/06/2016] [Indexed: 10/22/2022] Open
Abstract
Small interfering RNA (siRNA) screening approaches have provided useful tools for the validation of genetic functions; however, image-based siRNA screening using multiwell plates requires large numbers of cells and time, which could be the barrier in application for gene mechanisms study using human adult cells. Therefore, we developed the advanced method with the cell-defined siRNA microarray (CDSM), for functional analysis of genes in small scale within slide glass using human bone marrow stromal cells (hBMSCs). We designed cell spot system with biomaterials (sucrose, gelatin, poly-L-lysine and matrigel) to control the attachment of hBMSCs inside spot area on three-dimensional (3D) hydrogel-coated slides. The p65 expression was used as a validation standard which described our previous report. For the optimization of siRNA mixture, first, we detected five kinds of commercialized reagent (Lipofectamine 2000, RNAi-Max, Metafectine, Metafectine Pro, TurboFectin 8.0) via validation. Then, according to quantification of p65 expression, we selected 2 μl of RNAi-Max as the most effective reagent condition on our system. Using same validation standard, we optimized sucrose and gelatin concentration (80 mM and 0.13%), respectively. Next, we performed titration of siRNA quantity (2.66-5.55 μM) by reverse transfection time (24 h, 48 h, 72 h) and confirmed 3.75 μM siRNA concentration and 48 h as the best condition. To sum up the process for optimized CDSM, 3 μl of 20 μM siRNA (3.75 μM) was transferred to the 384-well V-bottom plate containing 2 μl of dH2O and 2 μl of 0.6M sucrose (80 mM). Then, 2 μl of RNAi-Max was added and incubated for 20 min at room temperature after mixing gently and centrifugation shortly. Five microliters of gelatin (0.26%) and 2 μl of growth factor reduced phenol red-free matrigel (12.5%) were added and mixed by pipetting gently. Finally, optimized siRNA mixture was printed on 3D hydrogel-coated slides and cell-defined attachment and siRNA reverse transfection were induced. The efficiency of this CDSM was verified using three siRNAs (targeting p65, Slug, and N-cadherin), with persistent gene silencing for 5 days. We obtained the significant and reliable data with effective knock-down in our condition, and suggested our method as the qualitatively improved siRNA microarray screening method for hBMSCs.
Collapse
Affiliation(s)
- Hi Chul Kim
- Institut Pasteur Korea, IP-Korea, 696 Sampyeong-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-400, Republic of Korea; Department of Animal Biotechnology (BK21), Animal Resources Research Center, Konkuk University, Seoul 143-702, Republic of Korea
| | - Gi-Hwan Kim
- Biomedical Research Institute and IRICT, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ssang-Goo Cho
- Department of Animal Biotechnology (BK21), Animal Resources Research Center, Konkuk University, Seoul 143-702, Republic of Korea
| | - Eun Ju Lee
- Biomedical Research Institute and IRICT, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Yong-Jun Kwon
- Institut Pasteur Korea, IP-Korea, 696 Sampyeong-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-400, Republic of Korea.
| |
Collapse
|
17
|
Cells on chip for multiplex screening. Biosens Bioelectron 2016; 76:29-37. [DOI: 10.1016/j.bios.2015.04.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/08/2015] [Accepted: 04/10/2015] [Indexed: 01/18/2023]
|
18
|
Tsai WH, Chang WT. Construction of simple and efficient siRNA validation systems for screening and identification of effective RNAi-targeted sequences from mammalian genes. Methods Mol Biol 2014; 1101:321-38. [PMID: 24233788 PMCID: PMC7121774 DOI: 10.1007/978-1-62703-721-1_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
RNA interference (RNAi) is an evolutionarily conserved mechanism of gene silencing induced by double-stranded RNAs (dsRNAs). Among the widely used dsRNAs, small interfering RNAs (siRNAs) and short hairpin RNAs have evolved as extremely powerful and the most popular gene silencing reagents. The key challenge to achieving efficient gene silencing especially for the purpose of therapeutics is mainly dependent on the effectiveness and specificity of the selected RNAi-targeted sequences. Practically, only a small number of dsRNAs are capable of inducing highly effective and sequence-specific gene silencing via RNAi mechanism. In addition, the efficiency of gene silencing induced by dsRNAs can only be experimentally examined based on inhibition of the target gene expression. Therefore, it is essential to develop a fully robust and comparative validation system for measuring the efficacy of designed dsRNAs. In this chapter, we focus our discussion on a reliable and quantitative reporter-based siRNA validation system that has been previously established in our laboratory. The system consists of a short synthetic DNA fragment containing an RNAi-targeted sequence of interest and two expression vectors for targeting reporter and triggering siRNA expressions. The efficiency of siRNAs is determined by their abilities to inhibit expression of the targeting reporters with easily quantified readouts including enhanced green fluorescence protein and firefly luciferase. Since only a readily available short synthetic DNA fragment is needed for constructing this reliable and efficient reporter-based siRNA validation system, this system not only provides a powerful strategy for screening highly effective RNAi-targeted sequences from mammalian genes but also implicates the use of RNAi-based dsRNA reagents for reverse functional genomics and molecular therapeutics.
Collapse
Affiliation(s)
- Wen-Hui Tsai
- Institute of Clinical Medicine, National Cheng Kung University Medical College, Taiwan, P.R. China
| | | |
Collapse
|
19
|
Abstract
RNA interference has become an indispensable tool for loss-of-function studies across eukaryotes. By enabling stable and reversible gene silencing, shRNAs provide a means to study long-term phenotypes, perform pool-based forward genetic screens and examine the consequences of temporary target inhibition in vivo. However, efficient implementation in vertebrate systems has been hindered by technical difficulties affecting potency and specificity. Focusing on these issues, we analyse current strategies to obtain maximal knockdown with minimal off-target effects.
Collapse
|
20
|
Mittal V, Nolan DJ. Genomics and proteomics approaches in understanding tumor angiogenesis. Expert Rev Mol Diagn 2014; 7:133-47. [PMID: 17331062 DOI: 10.1586/14737159.7.2.133] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Functional genomic and proteomic approaches have begun to revolutionize cancer research. The advent of powerful technologies, such as DNA microarrays, serial analysis of gene expression, RNA interference and proteomics, has accelerated investigations of gene identification and function at a scale never before accomplished. Approaches integrating these technologies with high-throughput forward and reverse genetic screens, are already providing insights into the mechanistic understanding of angiogenesis, leading to the identification of proteins that can be used for selective targeting of tumor vessels.
Collapse
Affiliation(s)
- Vivek Mittal
- Cold Spring Harbor Laboratory, Cancer Genome Research Center, NY, USA.
| | | |
Collapse
|
21
|
Abstract
In the postgenomic era, DNA and protein arrays are increasing the speed at which knowledge is gathered on gene expression in cells and tissues. At the same time, researchers realize that a miniaturized and parallelized analysis of whole cells may equally expedite the acquisition of data describing cellular properties and function. Researchers are starting to explore means of generating and using cell microarrays to investigate cells at higher throughput. In this initial phase of exploration, cell microarrays are being developed for various cellular analyses including the effects of gene expression, cellular reactions to the biomolecular environment, and profiling of cell surface molecules. This article will provide an overview of different types of eukaryotic cell microarrays described to date, how they are generated, and their fields of application.
Collapse
Affiliation(s)
- Brigitte Angres
- Department of Cellular Assay Systems, NMI Natural & Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany.
| |
Collapse
|
22
|
Takasaki S. Methods for selecting effective siRNA target sequences using a variety of statistical and analytical techniques. Methods Mol Biol 2013; 942:17-55. [PMID: 23027044 DOI: 10.1007/978-1-62703-119-6_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Short interfering RNA (siRNA) has been widely used for studying gene function in mammalian cells but varies markedly in its gene silencing efficacy. Although many design rules/guidelines for effective siRNAs based on various criteria have been reported recently, there are only a few consistencies among them. This makes it difficult to select effective siRNA sequences in mammalian genes. This chapter first reviews the recently reported siRNA design guidelines and then proposes new methods for selecting effective siRNA sequences from many possible candidates by using decision tree learning, Bayes' theorem, and average silencing probability on the basis of a large number of known effective siRNAs. These methods differ from the previous score-based siRNA design techniques and can predict the probability that a candidate siRNA sequence will be effective. Evaluation of these methods by applying them to recently reported effective and ineffective siRNA sequences for a number of genes indicates that they would be useful for many other genes. They should, therefore, be of general utility for selecting effective siRNA sequences for mammalian genes. The chapter also describes another method using a hidden Markov model to select the optimal functional siRNAs and discusses the frequencies of combinations of two successive nucleotides as an important characteristic of effective siRNA sequences.
Collapse
|
23
|
|
24
|
Overview of micro- and nano-technology tools for stem cell applications: micropatterned and microelectronic devices. SENSORS 2012. [PMID: 23202240 PMCID: PMC3522993 DOI: 10.3390/s121115947] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In the past few decades the scientific community has been recognizing the paramount role of the cell microenvironment in determining cell behavior. In parallel, the study of human stem cells for their potential therapeutic applications has been progressing constantly. The use of advanced technologies, enabling one to mimic the in vivo stem cell microenviroment and to study stem cell physiology and physio-pathology, in settings that better predict human cell biology, is becoming the object of much research effort. In this review we will detail the most relevant and recent advances in the field of biosensors and micro- and nano-technologies in general, highlighting advantages and disadvantages. Particular attention will be devoted to those applications employing stem cells as a sensing element.
Collapse
|
25
|
Filhol O, Ciais D, Lajaunie C, Charbonnier P, Foveau N, Vert JP, Vandenbrouck Y. DSIR: assessing the design of highly potent siRNA by testing a set of cancer-relevant target genes. PLoS One 2012; 7:e48057. [PMID: 23118925 PMCID: PMC3484153 DOI: 10.1371/journal.pone.0048057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 09/20/2012] [Indexed: 11/21/2022] Open
Abstract
Chemically synthesized small interfering RNA (siRNA) is a widespread molecular tool used to knock down genes in mammalian cells. However, designing potent siRNA remains challenging. Among tools predicting siRNA efficacy, very few have been validated on endogenous targets in realistic experimental conditions. We previously described a tool to assist efficient siRNA design (DSIR, Designer of siRNA), which focuses on intrinsic features of the siRNA sequence. Here, we evaluated DSIR’s performance by systematically investigating the potency of the siRNA it designs to target ten cancer-related genes. mRNA knockdown was measured by quantitative RT-PCR in cell-based assays, revealing that over 60% of siRNA sequences designed by DSIR silenced their target genes by at least 70%. Silencing efficacy was sustained even when low siRNA concentrations were used. This systematic analysis revealed in particular that, for a subset of genes, the efficiency of siRNA constructs significantly increases when the sequence is located closer to the 5′-end of the target gene coding sequence, suggesting the distance to the 5′-end as a new feature for siRNA potency prediction. A new version of DSIR incorporating these new findings, as well as the list of validated siRNA against the tested cancer genes, has been made available on the web (http://biodev.extra.cea.fr/DSIR).
Collapse
Affiliation(s)
- Odile Filhol
- CEA, DSV, iRTSV, Laboratoire de Biologie du Cancer et de l’Infection, Grenoble, France
- INSERM U1036, Grenoble, France
- Université Grenoble I, Grenoble, France
- * E-mail: (OF); (YV)
| | - Delphine Ciais
- CEA, DSV, iRTSV, Laboratoire de Biologie du Cancer et de l’Infection, Grenoble, France
- INSERM U1036, Grenoble, France
- Université Grenoble I, Grenoble, France
| | - Christian Lajaunie
- Mines ParisTech, Centre for Computational Biology, Fontainebleau, France
- Institut Curie, Paris, France
- INSERM U900, Paris, France
| | - Peggy Charbonnier
- Université Grenoble I, Grenoble, France
- CEA, DSV, iRTSV, Laboratoire de Biologie à Grande Echelle, Grenoble, France
- INSERM U1038, Grenoble, France
| | - Nicolas Foveau
- Université Grenoble I, Grenoble, France
- CEA, DSV, iRTSV, Laboratoire de Biologie à Grande Echelle, Grenoble, France
- INSERM U1038, Grenoble, France
| | - Jean-Philippe Vert
- Mines ParisTech, Centre for Computational Biology, Fontainebleau, France
- Institut Curie, Paris, France
- INSERM U900, Paris, France
| | - Yves Vandenbrouck
- Université Grenoble I, Grenoble, France
- CEA, DSV, iRTSV, Laboratoire de Biologie à Grande Echelle, Grenoble, France
- INSERM U1038, Grenoble, France
- * E-mail: (OF); (YV)
| |
Collapse
|
26
|
Ma J, Huang C, Yao X, Shi C, Sun L, Yuan L, Lei P, Zhu H, Liu H, Wu X, Ning Q, Zhou C, Shen G. Inhibition of hepatitis B virus and induction of hepatoma cell apoptosis by ASGPR-directed delivery of shRNAs. PLoS One 2012; 7:e46096. [PMID: 23094023 PMCID: PMC3477153 DOI: 10.1371/journal.pone.0046096] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 08/28/2012] [Indexed: 01/23/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a worldwide liver disease and nearly 25% of chronic HBV infections terminate in hepatocellular carcinoma (HCC). Currently, there is no effective therapy to inhibit HBV replication and to eliminate hepatoma cells, making it highly desired to develop novel therapies for these two stages of the HBV-caused detrimental disease. Recently, short hairpin RNA (shRNA) has emerged as a potential therapy for virus-infected disease and cancer. Here, we have generated a shRNA, pGenesil-siHBV4, which effectively inhibits HBV replication in the human hepatoma cell line HepG2.2.15. The inhibitory effects of pGenesil-siHBV4 are manifested by the decrease of both the HBV mRNA level and the protein levels of the secreted HBV surface antigen (HBsAg) and HBV e antigen (HBeAg), and by the reduction of secreted HBV DNA. Using mouse hydrodynamic tail vein injection, we demonstrate that pGenesil-siHBV4 is effective in inhibiting HBV replication in vivo. Because survivin plays a key role in cancer cell escape from apoptosis, we further generated pGenesil-siSurvivin, a survivin-silencing shRNA, and showed its effect of triggering apoptosis of HBV-containing hepatoma cells. To develop targeted shRNA therapy, we have identified that as a specific binder of the asialoglycoprotein receptor (ASGPR), jetPEI-Hepatocyte delivers pGenesil-siHBV4 and pGenesil-siSurvivin specifically to hepatocytes, not other types of cells. Finally, co-transfection of pGenesil-siHBV4 and pGenesil-siSurvivin exerts synergistic effects in inducing hepatoma cell apoptosis, a novel approach to eliminate hepatoma by downregulating survivin via multiple mechanisms. The application of these novel shRNAs with the jetPEI-Hepatocyte targeting strategy demonstrates the proof-of-principle for a promising approach to inhibit HBV replication and eliminate hepatoma cells with high specificity.
Collapse
MESH Headings
- Animals
- Apoptosis
- Asialoglycoprotein Receptor/genetics
- Asialoglycoprotein Receptor/metabolism
- Carcinoma, Hepatocellular/etiology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/therapy
- DNA, Viral/antagonists & inhibitors
- DNA, Viral/biosynthesis
- Gene Expression Regulation, Neoplastic
- Genetic Vectors
- Hepatitis B Surface Antigens/genetics
- Hepatitis B e Antigens/genetics
- Hepatitis B virus/genetics
- Hepatitis B virus/growth & development
- Hepatitis B, Chronic/complications
- Hepatitis B, Chronic/genetics
- Hepatitis B, Chronic/therapy
- Humans
- Inhibitor of Apoptosis Proteins/antagonists & inhibitors
- Inhibitor of Apoptosis Proteins/genetics
- Inhibitor of Apoptosis Proteins/metabolism
- Injections, Intravenous
- Liver/pathology
- Liver/virology
- Male
- Mice
- Mice, Inbred BALB C
- Molecular Targeted Therapy
- Organ Specificity
- RNA, Small Interfering/genetics
- RNA, Small Interfering/therapeutic use
- Repressor Proteins/antagonists & inhibitors
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Survivin
- Transfection
Collapse
Affiliation(s)
- Jingwei Ma
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Chunmei Huang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xinxin Yao
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Chuan Shi
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Lifang Sun
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Lu Yuan
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ping Lei
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Huifen Zhu
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hongbo Liu
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiongwen Wu
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qin Ning
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Chun Zhou
- Department of Environmental Health Sciences, Columbia University, New York, New York, United States of America
- * E-mail: (CZ); (GS)
| | - Guanxin Shen
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- * E-mail: (CZ); (GS)
| |
Collapse
|
27
|
Optimizing cell arrays for accurate functional genomics. BMC Res Notes 2012; 5:358. [PMID: 22805280 PMCID: PMC3541979 DOI: 10.1186/1756-0500-5-358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 06/14/2012] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Cellular responses emerge from a complex network of dynamic biochemical reactions. In order to investigate them is necessary to develop methods that allow perturbing a high number of gene products in a flexible and fast way. Cell arrays (CA) enable such experiments on microscope slides via reverse transfection of cellular colonies growing on spotted genetic material. In contrast to multi-well plates, CA are susceptible to contamination among neighboring spots hindering accurate quantification in cell-based screening projects. Here we have developed a quality control protocol for quantifying and minimizing contamination in CA. RESULTS We imaged checkered CA that express two distinct fluorescent proteins and segmented images into single cells to quantify the transfection efficiency and interspot contamination. Compared with standard procedures, we measured a 3-fold reduction of contaminants when arrays containing HeLa cells were washed shortly after cell seeding. We proved that nucleic acid uptake during cell seeding rather than migration among neighboring spots was the major source of contamination. Arrays of MCF7 cells developed without the washing step showed 7-fold lower percentage of contaminant cells, demonstrating that contamination is dependent on specific cell properties. CONCLUSIONS Previously published methodological works have focused on achieving high transfection rate in densely packed CA. Here, we focused in an equally important parameter: The interspot contamination. The presented quality control is essential for estimating the rate of contamination, a major source of false positives and negatives in current microscopy based functional genomics screenings. We have demonstrated that a washing step after seeding enhances CA quality for HeLA but is not necessary for MCF7. The described method provides a way to find optimal seeding protocols for cell lines intended to be used for the first time in CA.
Collapse
|
28
|
Zhang H, Lee MY, Hogg MG, Dordick JS, Sharfstein ST. High-throughput transfection of interfering RNA into a 3D cell-culture chip. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:2091-2098. [PMID: 22511323 DOI: 10.1002/smll.201102205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/20/2011] [Indexed: 05/31/2023]
Abstract
A method for high-throughput retroviral transfection of genes and interfering RNA into 3D cell-culture microarrays is described. 3D cultures more closely mimic the in vivo cellular milieu, thus providing cellular responses to genetic manipulation more similar to the in vivo situation than 2D cultures. This technique is applied to transfect several "toxic" short-hairpin RNAs (shRNAs) into 3D cell cultures. It is demonstrated that the toxicity is similar to that obtained by conventional (non-high-throughput) retroviral transfection of cells grown in similar 3D culture microarrays.
Collapse
Affiliation(s)
- Haiyuan Zhang
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Science, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | | | | | |
Collapse
|
29
|
Glebova KV, Marakhonov AV, Baranova AV, Skoblov MY. Nonviral delivery systems for small interfering RNAs. Mol Biol 2012. [DOI: 10.1134/s0026893312020070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
30
|
Abbud-Antaki RA, Marhefka JN, DeLuca AL, Zuromskis MP. The Cancer BioChip System: a functional genomic assay for anchorage-independent three-dimensional breast cancer cell growth. Discov Oncol 2012; 3:261-70. [PMID: 22689254 DOI: 10.1007/s12672-012-0116-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 05/30/2012] [Indexed: 01/21/2023] Open
Abstract
Advances in genomic research have revealed that each patient has their own unique tumor profile. While silencing RNA (siRNA) screening tests can identify which genes drive tumor cell growth, results obtained from these assays have been limited in their clinical translatability because they employ cell lines growing on flat surfaces. The Cancer BioChip System (CBCS) is a functional screening assay for identification of siRNA capable of inhibiting anchorage-independent three-dimensional (3D) cancer cell growth. Anchorage-independent growth assays are important in vitro predicators of regulators of cancer cell growth. Unique features of the CBCS include a Cancer BioChip, wherein cells incorporate different siRNAs in parallel and grow in a 3D matrix to form colonies that can be quantified using real-time imaging and an image analysis software. Thus, the CBCS can be developed as a tool for personalized identification of targeted cancer therapies.
Collapse
Affiliation(s)
- Rula A Abbud-Antaki
- Falcon Genomics, Inc., 160 North Craig Street, Suite 222, Pittsburgh, PA 15213, USA.
| | | | | | | |
Collapse
|
31
|
Pieraets S, Cox L, Gielen O, Cools J. Development of a siRNA and shRNA screening system based on a kinase fusion protein. RNA (NEW YORK, N.Y.) 2012; 18:1296-1306. [PMID: 22539522 PMCID: PMC3358651 DOI: 10.1261/rna.030015.111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 03/14/2012] [Indexed: 05/31/2023]
Abstract
RNA interference (RNAi) is one of the processes in the cell that regulates mRNA expression levels. RNAi can be exploited to experimentally knockdown the expression of one or more genes in cell lines or even in cells in vivo and also became an interesting tool to develop new therapeutic approaches. One of the major challenges of using RNAi is selecting effective shRNAs or siRNAs that sufficiently down-regulate the expression of the target gene. Here, we describe a system to select functional shRNAs or siRNAs that makes use of the leukemia cell line Ba/F3 that is dependent on the expression of a mutant form of the PDGFRα kinase for its proliferation and survival. The basis of this system is the generation of an expression construct, where part of the open reading frame of the gene of interest is linked to the mutant PDGFRα. Thus, shRNAs or siRNAs that effectively target the gene of interest also result in a reduction of the expression of the mutant PDGFRα protein, which can be detected by a reduction of the proliferation of the cells. We demonstrate that this validation system can be used for the selection of effective siRNAs as well as shRNAs. Unlike other systems, the system described here is not dependent on obtaining high-transduction efficiencies, and nonspecific effects of the siRNAs or shRNAs can be detected by comparing the effects in the presence or absence of the growth factor interleukin-3.
Collapse
Affiliation(s)
- Sofie Pieraets
- Center for the Biology of Disease, VIB, B-3000 Leuven, Belgium
- Center for Human Genetics, KU Leuven, B-3000 Leuven, Belgium
| | - Luk Cox
- Center for the Biology of Disease, VIB, B-3000 Leuven, Belgium
- Center for Human Genetics, KU Leuven, B-3000 Leuven, Belgium
| | - Olga Gielen
- Center for the Biology of Disease, VIB, B-3000 Leuven, Belgium
- Center for Human Genetics, KU Leuven, B-3000 Leuven, Belgium
| | - Jan Cools
- Center for the Biology of Disease, VIB, B-3000 Leuven, Belgium
- Center for Human Genetics, KU Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
32
|
Harada A, Okada S, Konno D, Odawara J, Yoshimi T, Yoshimura S, Kumamaru H, Saiwai H, Tsubota T, Kurumizaka H, Akashi K, Tachibana T, Imbalzano AN, Ohkawa Y. Chd2 interacts with H3.3 to determine myogenic cell fate. EMBO J 2012; 31:2994-3007. [PMID: 22569126 DOI: 10.1038/emboj.2012.136] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 04/18/2012] [Indexed: 11/09/2022] Open
Abstract
Cell differentiation is mediated by lineage-determining transcription factors. We show that chromodomain helicase DNA-binding domain 2 (Chd2), a SNF2 chromatin remodelling enzyme family member, interacts with MyoD and myogenic gene regulatory sequences to specifically mark these loci via deposition of the histone variant H3.3 prior to cell differentiation. Directed and genome-wide analysis of endogenous H3.3 incorporation demonstrates that knockdown of Chd2 prevents H3.3 deposition at differentiation-dependent, but not housekeeping, genes and inhibits myogenic gene activation. The data indicate that MyoD determines cell fate and facilitates differentiation-dependent gene expression through Chd2-dependent deposition of H3.3 at myogenic loci prior to differentiation.
Collapse
Affiliation(s)
- Akihito Harada
- Department of Advanced Medical Initiatives, JST-CREST, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Rantala JK, Mäkelä R, Aaltola AR, Laasola P, Mpindi JP, Nees M, Saviranta P, Kallioniemi O. A cell spot microarray method for production of high density siRNA transfection microarrays. BMC Genomics 2011; 12:162. [PMID: 21443765 PMCID: PMC3073923 DOI: 10.1186/1471-2164-12-162] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 03/28/2011] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND High-throughput RNAi screening is widely applied in biological research, but remains expensive, infrastructure-intensive and conversion of many assays to HTS applications in microplate format is not feasible. RESULTS Here, we describe the optimization of a miniaturized cell spot microarray (CSMA) method, which facilitates utilization of the transfection microarray technique for disparate RNAi analyses. To promote rapid adaptation of the method, the concept has been tested with a panel of 92 adherent cell types, including primary human cells. We demonstrate the method in the systematic screening of 492 GPCR coding genes for impact on growth and survival of cultured human prostate cancer cells. CONCLUSIONS The CSMA method facilitates reproducible preparation of highly parallel cell microarrays for large-scale gene knockdown analyses. This will be critical towards expanding the cell based functional genetic screens to include more RNAi constructs, allow combinatorial RNAi analyses, multi-parametric phenotypic readouts or comparative analysis of many different cell types.
Collapse
Affiliation(s)
- Juha K Rantala
- Medical Biotechnology, VTT Technical Research Centre of Finland, 20521 Turku, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Cell-based microarrays were first described by Ziauddin and Sabatini in 2001 as a novel method for performing high-throughput screens of gene function. They reported a technique whereby expression vectors containing the open reading frame (ORF) of human genes were printed onto glass microscope slides to form a microarray. Transfection reagents were added pre- or post-spotting and cells grown over the surface of the array. They demonstrated that cells growing in the immediate vicinity of the expression vectors underwent 'reverse transfection' and that subsequent alterations in cell function could then be detected by secondary assays performed on the array. Subsequent publications have adapted the technique to a variety of applications and have also shown that the approach works when arrays are fabricated using siRNAs and compounds. The potential of this method for performing analyses of gene function and identification of novel therapeutic agents has now been clearly demonstrated. Current efforts are focused on improving and harnessing this technology for high-throughput screening applications.
Collapse
Affiliation(s)
- Ella Palmer
- Clinical Sciences Centre, Hammersmith Hospital, London, UK.
| |
Collapse
|
35
|
Fellmann C, Zuber J, McJunkin K, Chang K, Malone CD, Dickins RA, Xu Q, Hengartner MO, Elledge SJ, Hannon GJ, Lowe SW. Functional identification of optimized RNAi triggers using a massively parallel sensor assay. Mol Cell 2011; 41:733-46. [PMID: 21353615 PMCID: PMC3130540 DOI: 10.1016/j.molcel.2011.02.008] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 11/29/2010] [Accepted: 02/02/2011] [Indexed: 10/18/2022]
Abstract
Short hairpin RNAs (shRNAs) provide powerful experimental tools by enabling stable and regulated gene silencing through programming of endogenous microRNA pathways. Since requirements for efficient shRNA biogenesis and target suppression are largely unknown, many predicted shRNAs fail to efficiently suppress their target. To overcome this barrier, we developed a "Sensor assay" that enables the biological identification of effective shRNAs at large scale. By constructing and evaluating 20,000 RNAi reporters covering every possible target site in nine mammalian transcripts, we show that our assay reliably identifies potent shRNAs that are surprisingly rare and predominantly missed by existing algorithms. Our unbiased analyses reveal that potent shRNAs share various predicted and previously unknown features associated with specific microRNA processing steps, and suggest a model for competitive strand selection. Together, our study establishes a powerful tool for large-scale identification of highly potent shRNAs and provides insights into sequence requirements of effective RNAi.
Collapse
Affiliation(s)
- Christof Fellmann
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kato K, Iwata H. High-throughput analyses of gene functions on a cell chip by electroporation. Methods Mol Biol 2011; 706:181-190. [PMID: 21104064 DOI: 10.1007/978-1-61737-970-3_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Genome-wide functional annotation of genes is one of the major challenges in current biology. Such investigation requires a high-throughput methodology for efficient and parallel overexpression or silencing of multiplexed genes in living cells. The transfection method described here employs an electric pulse and a cell-chip technology, and provides the possibility of analyzing gene functions in a high-throughput manner.
Collapse
Affiliation(s)
- Koichi Kato
- Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan.
| | | |
Collapse
|
37
|
Palmer E, Freeman TC. Large-scale cell-based microarrays and their use with HEK293T cells and downstream apoptotic assays. Methods Mol Biol 2011; 706:27-40. [PMID: 21104052 DOI: 10.1007/978-1-61737-970-3_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cell-based microarrays are a powerful technology platform for performing high-throughput screens of gene function. The approach entails printing expression vectors containing either genes or shRNAs onto a glass microscope slide or 384-well microtitre plate to form an array. These vectors are then packaged in lipid-based transfection reagent, cells grown over the top of the array are transfected and the arrays can then be examined for alterations in cellular function as manifested in localised changes to the cells biochemistry or morphology. We have used this technology for two purposes: to study the sub-cellular localisation of proteins and to perform a large-scale screen for genes that when over-expressed lead to apoptotic cell death. Here we have provided detailed protocols for the large-scale screen and discuss some of the issues associated with this technology.
Collapse
Affiliation(s)
- Ella Palmer
- Clinical Sciences Centre, Hammersmith Hospital, London, UK.
| | | |
Collapse
|
38
|
RNA Interference in Pigs: Comparison of RNAi Test Systems and Expression Vectors. Mol Biotechnol 2010; 48:38-48. [DOI: 10.1007/s12033-010-9346-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
39
|
Mellick AS, Plummer PN, Nolan DJ, Gao D, Bambino K, Hahn M, Catena R, Turner V, McDonnell K, Benezra R, Brink R, Swarbrick A, Mittal V. Using the transcription factor inhibitor of DNA binding 1 to selectively target endothelial progenitor cells offers novel strategies to inhibit tumor angiogenesis and growth. Cancer Res 2010; 70:7273-82. [PMID: 20807818 DOI: 10.1158/0008-5472.can-10-1142] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Tumor angiogenesis is essential for malignant growth and metastasis. Bone marrow (BM)-derived endothelial progenitor cells (EPC) contribute to angiogenesis-mediated tumor growth. EPC ablation can reduce tumor growth; however, the lack of a marker that can track EPCs from the BM to tumor neovasculature has impeded progress in understanding the molecular mechanisms underlying EPC biology. Here, we report the use of transgenic mouse and lentiviral models to monitor the BM-derived compartment of the tumor stroma; this approach exploits the selectivity of the transcription factor inhibitor of DNA binding 1 (Id1) for EPCs to track EPCs in the BM, blood, and tumor stroma, as well as mature EPCs. Acute ablation of BM-derived EPCs using Id1-directed delivery of a suicide gene reduced circulating EPCs and yielded significant defects in angiogenesis-mediated tumor growth. Additionally, use of the Id1 proximal promoter to express microRNA-30-based short hairpin RNA inhibited the expression of critical EPC-intrinsic factors, confirming that signaling through vascular endothelial growth factor receptor 2 is required for EPC-mediated tumor biology. By exploiting the selectivity of Id1 gene expression in EPCs, our results establish a strategy to track and target EPCs in vivo, clarifying the significant role that EPCs play in BM-mediated tumor angiogenesis.
Collapse
Affiliation(s)
- Albert S Mellick
- School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhang H, Lee MY, Hogg MG, Dordick JS, Sharfstein ST. Gene delivery in three-dimensional cell cultures by superparamagnetic nanoparticles. ACS NANO 2010; 4:4733-4743. [PMID: 20731451 DOI: 10.1021/nn9018812] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Three-dimensional (3D) cellular assays closely mimic the in vivo milieu, providing a rapid, inexpensive system for screening drug candidates for toxicity or efficacy in the early stages of drug discovery. However, 3D culture systems may suffer from mass transfer limitations, particularly in delivery of large polypeptide or nucleic acid compounds. Nucleic acids (e.g., genes, silencing RNA) are of particular interest both as potential therapeutics and due to a desire to modulate the gene-expression patterns of cells exposed to small-molecule pharmacological agents. In the present study, polyethylenimine (PEI)-coated superparamagnetic nanoparticles (SPMNs) were designed to deliver interfering RNA and green fluorescent protein (GFP) plasmids through a collagen-gel matrix into 3D cell cultures driven by an external magnetic field. The highest transfection efficiency achieved was 64% for siRNA and 77% for GFP plasmids. Delivery of an shRNA plasmid against GFP by PEI-coated SPMNs silenced the GFP expression with 82% efficiency. We further demonstrated that this delivery approach could be used for screening interfering RNA constructs for therapeutic or toxic effects for cells grown in 3D cultures. Four known toxic shRNA plasmids were delivered by PEI-coated SPMNs into 3D cell cultures, and significant toxicities (41-51% cell death) were obtained.
Collapse
Affiliation(s)
- Haiyuan Zhang
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Science, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | | | | | | | |
Collapse
|
41
|
Takasaki S. Efficient prediction methods for selecting effective siRNA sequences. Comput Biol Med 2010; 40:149-58. [PMID: 20022002 DOI: 10.1016/j.compbiomed.2009.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 09/19/2009] [Accepted: 11/18/2009] [Indexed: 10/20/2022]
Abstract
Although short interfering RNA (siRNA) has been widely used for studying gene functions in mammalian cells, its gene silencing efficacy varies markedly and there are only a few consistencies among the recently reported design rules/guidelines for selecting siRNA sequences effective for mammalian genes. Another shortcoming of the previously reported methods is that they cannot estimate the probability that a candidate sequence will silence the target gene. This paper first reviewed the recently reported siRNA design guidelines and clarified the problems concerning the guidelines. It then proposed two prediction methods-Radial Basis Function (RBF) network and decision tree learning-and their combined method for selecting effective siRNA target sequences from many possible candidate sequences. They are quite different from the previous score-based siRNA design techniques and can predict the probability that a candidate siRNA sequence will be effective. The methods imply high estimation accuracy for selecting candidate siRNA sequences.
Collapse
|
42
|
Functional studies on RNA-transfected cell microarrays. Methods Mol Biol 2010; 629:175-91. [PMID: 20387150 DOI: 10.1007/978-1-60761-657-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
RNA-transfected cell microarray shows great promise in functional genomics. By printing siRNA complexed with transfection reagent on glass slides, arrays of transfected cells are formed in which the phenotypic consequences of gene suppression can be investigated. Using reporter plasmids with fluorescence intensity as output data, we have developed a strategy for statistical analysis of the intensity data from medium-scale functional studies using data from several experimental replicates.
Collapse
|
43
|
Zhang R, Ma L, Zheng M, Ren J, Wang T, Meng Y, Zhao J, Jia L, Yao L, Han H, Li K, Yang A. Survivin knockdown by short hairpin RNA abrogates the growth of human hepatocellular carcinoma xenografts in nude mice. Cancer Gene Ther 2010; 17:275-288. [PMID: 19876077 DOI: 10.1038/cgt.2009.68] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 06/01/2009] [Accepted: 07/11/2009] [Indexed: 12/14/2022]
Abstract
Abnormal high activation of survivin is involved in carcinogenesis of various types of cancer. Survivin has been shown to promote cell proliferation in human hepatocellular carcinoma (HCC). Survivin-targeting approaches have become a promising strategy for treating HCC. Here, we used a reporter system to screen effective survivin siRNA sequences. The effect of vector-based survivin short hairpin RNA (shRNA) on the malignant phenotype of HCC cells in vitro and in vivo was determined, and an adenovirus-mediated shRNA expression vector was developed to decrease survivin expression of the established HCC tumor in nude mice. In vitro study showed that stable survivin knockdown inhibited cancer cell proliferation, enhanced apoptotic susceptibility, arrested cell cycle in the G1 phase and resulted in apparent mitotic catastrophe. Moreover, cells stably expressing survivin shRNA showed decreased tumorigenicity in nude mice. An additional in vivo study showed that intratumoral injection of adenovirus-delivered survivin shRNA suppressed tumor growth by spontaneous apoptosis of cancer cells and significantly prolonged animal survival. In conclusion, we proved the therapeutic potential of survivin shRNA for the treatment of HCC. And our results indicated that adenovirus-delivered shRNA may serve as a novel therapeutic for HCC.
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- Apoptosis
- Blotting, Western
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Cell Line, Tumor
- Flow Cytometry
- Fluorescent Antibody Technique
- Gene Knockdown Techniques
- Gene Silencing/physiology
- Genetic Therapy
- Genetic Vectors/therapeutic use
- Humans
- Immunoenzyme Techniques
- In Situ Nick-End Labeling
- Inhibitor of Apoptosis Proteins
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/pathology
- Liver Neoplasms, Experimental/therapy
- Luciferases/metabolism
- Mice
- Mice, Nude
- Microtubule-Associated Proteins/genetics
- Microtubule-Associated Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/pharmacology
- Reverse Transcriptase Polymerase Chain Reaction
- Survivin
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- R Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Shannxi Province, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Layer-by-layer assembly of small interfering RNA and poly(ethyleneimine) for substrate-mediated electroporation with high efficiency. Anal Bioanal Chem 2010; 397:571-8. [DOI: 10.1007/s00216-010-3648-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 02/28/2010] [Accepted: 03/09/2010] [Indexed: 12/15/2022]
|
45
|
Kamio N, Hirai H, Ashihara E, Tenen DG, Maekawa T, Imanishi J. Use of bicistronic vectors in combination with flow cytometry to screen for effective small interfering RNA target sequences. Biochem Biophys Res Commun 2010; 393:498-503. [PMID: 20152796 PMCID: PMC2948238 DOI: 10.1016/j.bbrc.2010.02.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 02/06/2010] [Indexed: 12/13/2022]
Abstract
The efficacy and specificity of small interfering RNAs (siRNAs) are largely dependent on the siRNA sequence. Since only empirical strategies are currently available for predicting these parameters, simple and accurate methods for evaluating siRNAs are needed. To simplify such experiments, target genes are often tagged with reporters for easier readout. Here, we used a bicistronic vector expressing a target gene and green fluorescent protein (GFP) to create a system in which the effect of an siRNA sequence was reflected in the GFP expression level. Cells were transduced with the bicistronic vector, expression vectors for siRNA and red fluorescent protein (RFP). Flow cytometric analysis of the transduced cells revealed that siRNAs for the target gene silenced GFP from the bicistronic vector, but did not silence GFP transcribed without the target gene sequence. In addition, the mean fluorescence intensities of GFP on RFP-expressing cells correlated well with the target gene mRNA and protein levels. These results suggest that this flow cytometry-based method enables us to quantitatively evaluate the efficacy and specificity of siRNAs. Because of its simplicity and effectiveness, this method will facilitate the screening of effective siRNA target sequences, even in high-throughput applications.
Collapse
Affiliation(s)
- Naoka Kamio
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, 54, Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
- Department of Microbiology and Immunology, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kamigyo-ku, Kyoto 606-8566, Japan
| | - Hideyo Hirai
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, 54, Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
- Department of Microbiology and Immunology, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kamigyo-ku, Kyoto 606-8566, Japan
| | - Eishi Ashihara
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, 54, Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Daniel G. Tenen
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA02115
- Cancer Science Institute, National University of Singapore, Singapore 117456
| | - Taira Maekawa
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, 54, Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Jiro Imanishi
- Department of Microbiology and Immunology, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kamigyo-ku, Kyoto 606-8566, Japan
| |
Collapse
|
46
|
Fujita S, Takano K, Ota E, Sano T, Yoshikawa T, Miyake M, Miyake J. New methods for reverse transfection with siRNA from a solid surface. Methods Mol Biol 2010; 623:197-209. [PMID: 20217553 DOI: 10.1007/978-1-60761-588-0_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We describe two efficient and inexpensive methods for reverse transfection with siRNA from a solid surface. One method involves localized reverse transfection from spots on a glass slide, which is mainly useful for making "transfection microarrays" (TMAs). The other involves reverse transfection in multiple wells of microtiter plates. Conditions for cell culture, preparation of reagents, and details of reverse transfection have been determined for several lines of cells, but we focus here on experiments with HeLa cells. In particular, we evaluated the efficiency of transfection, the cytotoxic effects of reverse transfection, and the efficiency of gene "knockdown" by transfection. We also performed phenotypic screening for a functional gene, during which cell viability was evaluated in terms of fluorescence from Calcein-AM. Our methods for reverse transfection with siRNA should be powerful tools that are useful for high-throughput analysis of functional genes.
Collapse
Affiliation(s)
- Satoshi Fujita
- Research Institute for Cell Engineering (RICE), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Elad T, Lee JH, Gu MB, Belkin S. Microbial cell arrays. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010; 117:85-108. [PMID: 20625955 DOI: 10.1007/10_2009_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The coming of age of whole-cell biosensors, combined with the continuing advances in array technologies, has prepared the ground for the next step in the evolution of both disciplines - the whole cell array. In the present chapter, we highlight the state-of-the-art in the different disciplines essential for a functional bacterial array. These include the genetic engineering of the biological components, their immobilization in different polymers, technologies for live cell deposition and patterning on different types of solid surfaces, and cellular viability maintenance. Also reviewed are the types of signals emitted by the reporter cell arrays, some of the transduction methodologies for reading these signals, and the mathematical approaches proposed for their analysis. Finally, we review some of the potential applications for bacterial cell arrays, and list the future needs for their maturation: a richer arsenal of high-performance reporter strains, better methodologies for their incorporation into hardware platforms, design of appropriate detection circuits, the continuing development of dedicated algorithms for multiplex signal analysis, and - most importantly - enhanced long term maintenance of viability and activity on the fabricated biochips.
Collapse
Affiliation(s)
- Tal Elad
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | | | | | | |
Collapse
|
48
|
Tseng WC, Fang TY, Chang KW, Tang CH, Su LY. Effects of enhancers and coating substrates on the transgene expression mediated by branched polyethylenimine. J Appl Polym Sci 2009. [DOI: 10.1002/app.30466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
49
|
Reymann J, Beil N, Beneke J, Kaletta PP, Burkert K, Erfle H. Next-generation 9216-microwell cell arrays for high-content screening microscopy. Biotechniques 2009; 47:877-8. [DOI: 10.2144/000113251] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Reverse transfection on cell arrays is a high-throughput method for the parallel transfection of mammalian cells for use in high-content screening light microscopy. Here, we present novel 9216-microwell cell arrays which combine the advantages of multiwell plates (physically separated samples) and cell microarrays (high sample density and long-term storage).
Collapse
Affiliation(s)
- Jürgen Reymann
- ViroQuant-CellNetworks RNAi Screening Facility, BioQuant, University of Heidelber, Germany
| | - Nina Beil
- ViroQuant-CellNetworks RNAi Screening Facility, BioQuant, University of Heidelber, Germany
| | - Jürgen Beneke
- ViroQuant-CellNetworks RNAi Screening Facility, BioQuant, University of Heidelber, Germany
| | | | - Klaus Burkert
- Graffinity Pharmaceuticals GmbH, Heidelberg, Germany
| | - Holger Erfle
- ViroQuant-CellNetworks RNAi Screening Facility, BioQuant, University of Heidelber, Germany
| |
Collapse
|
50
|
Takasaki S. Selecting effective siRNA target sequences by using Bayes' theorem. Comput Biol Chem 2009; 33:368-72. [PMID: 19682951 DOI: 10.1016/j.compbiolchem.2009.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 07/12/2009] [Accepted: 07/12/2009] [Indexed: 11/29/2022]
Abstract
Short interfering RNA (siRNA) has been widely used for studying gene functions in mammalian cells but varies markedly in its gene silencing efficacy. Although many design rules/guidelines for effective siRNAs based on various criteria have been reported recently, there are few consistencies among them. This makes it difficult to select effective siRNA sequences in mammalian genes. Another shortcoming of most previously reported methods is that they cannot estimate the probability that a candidate sequence will silence the target gene. The analytical prediction method proposed in the present study uses Bayes' theorem to select effective siRNA target sequences from many possible candidate sequences. It is quite different from the previous score-based siRNA design techniques and can predict the probability that a candidate siRNA sequence will be effective. The results of evaluating it by applying it to recently reported effective and ineffective siRNA sequences for various genes indicate that it would be useful for many other genes. It should therefore be useful for selecting siRNA sequences effective for mammalian genes.
Collapse
Affiliation(s)
- Shigeru Takasaki
- Toyo University, 1-1-1 Izumino Itakura-machi, Ora-gun, Gunma 374-0193, Japan. s
| |
Collapse
|