1
|
Bertolini E, Rice BR, Braud M, Yang J, Hake S, Strable J, Lipka AE, Eveland AL. Regulatory variation controlling architectural pleiotropy in maize. Nat Commun 2025; 16:2140. [PMID: 40032817 DOI: 10.1038/s41467-025-56884-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 02/05/2025] [Indexed: 03/05/2025] Open
Abstract
An early event in plant organogenesis is establishment of a boundary between the stem cell containing meristem and differentiating lateral organ. In maize (Zea mays), evidence suggests a common gene network functions at boundaries of distinct organs and contributes to pleiotropy between leaf angle and tassel branch number, two agronomic traits. To uncover regulatory variation at the nexus of these two traits, we use regulatory network topologies derived from specific developmental contexts to guide multivariate genome-wide association analyses. In addition to defining network plasticity around core pleiotropic loci, we identify new transcription factors that contribute to phenotypic variation in canopy architecture, and structural variation that contributes to cis-regulatory control of pleiotropy between tassel branching and leaf angle across maize diversity. Results demonstrate the power of informing statistical genetics with context-specific developmental networks to pinpoint pleiotropic loci and their cis-regulatory components, which can be used to fine-tune plant architecture for crop improvement.
Collapse
Affiliation(s)
| | - Brian R Rice
- Department of Crop Sciences, University of Illinois, Urbana-, Champaign, IL, 61801, USA
| | - Max Braud
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Jiani Yang
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Sarah Hake
- Plant Gene Expression Center, USDA-ARS, Albany, CA, 94710, USA
- Plant and Microbial Biology Department, University of California, Berkeley, CA, 94720, USA
| | - Josh Strable
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Alexander E Lipka
- Department of Crop Sciences, University of Illinois, Urbana-, Champaign, IL, 61801, USA
| | - Andrea L Eveland
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA.
| |
Collapse
|
2
|
Li B, Liu W, Xu J, Huang X, Yang L, Xu F. Decoding maize meristems maintenance and differentiation: integrating single-cell and spatial omics. J Genet Genomics 2025; 52:319-333. [PMID: 39921079 DOI: 10.1016/j.jgg.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 02/10/2025]
Abstract
All plant organs are derived from stem cell-containing meristems. In maize, the shoot apical meristem (SAM) is responsible for generating all above-ground structures, including the male and female inflorescence meristems (IMs), which give rise to tassel and ear, respectively. Forward and reverse genetic studies on maize meristem mutants have driven forward our fundamental understanding of meristem maintenance and differentiation mechanisms. However, the high genetic redundancy of the maize genome has impeded progress in functional genomics. This review comprehensively summarizes recent advancements in understanding maize meristem development, with a focus on the integration of single-cell and spatial technologies. We discuss the mechanisms governing stem cell maintenance and differentiation in SAM and IM, emphasizing the roles of gene regulatory networks, hormonal pathways, and cellular omics insights into stress responses and adaptation. Future directions include cross-species comparisons, multi-omics integration, and the application of these technologies to precision breeding and stress adaptation research, with the ultimate goal of translating our understanding of meristem into the development of higher yield varieties.
Collapse
Affiliation(s)
- Bin Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Wenhao Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Jie Xu
- Housing and Urban Rural Development Bureau of Jimo District, Qingdao, Shandong 266200, China
| | - Xuxu Huang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Long Yang
- Agricultural Big-Data Research Center and College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Fang Xu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
3
|
Gao S, Chai Y, Zhou X, Chen S. Mining of Root-Specific Expression Genes and Their Core Cis-Regulatory Elements in Plants. Int J Mol Sci 2025; 26:1720. [PMID: 40004183 PMCID: PMC11855845 DOI: 10.3390/ijms26041720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Mining tissue-specific genes is important for studying the processes of life activities within tissues, and it is a way of finding genes that regulate relevant traits. In recent years, the massive growth of expression data from various tissues has provided important opportunities for the large-scale analysis of tissue-specific genes. We found 489, 276, and 728 RTEGs (root tissue-specific expression genes) using 35 RNA-seq databases in 13 different tissues from three species of plants, e.g., Arabidopsis, rice, and maize, respectively, by bioinformatics methods. A total of 34 RTEGs in rice were found to be conserved in all three species, and 29 genes of them were unreported. Furthermore, 16 newly core cis-acting elements, named REM1-16 (root expression motif), were predicted by four well-known bioinformatics tools, which might determine the root tissue expression pattern. In particular, REM2 is conserved in not only Arabidopsis, but also rice. These cis-acting elements may be an important genetic resource that can be introduced into synthetic memory circuits to precisely regulate the spatiotemporal expression of genes in a user-defined manner.
Collapse
Affiliation(s)
| | | | | | - Suhui Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
4
|
Ellison EL, Zhou P, Chu YH, Hermanson P, Gomez-Cano L, Myers ZA, Abnave A, Gray J, Hirsch CN, Grotewold E, Springer NM. Transcriptome profiling of maize transcription factor mutants to probe gene regulatory network predictions. G3 (BETHESDA, MD.) 2025; 15:jkae274. [PMID: 39566186 PMCID: PMC11979765 DOI: 10.1093/g3journal/jkae274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
Transcription factors play important roles in regulation of gene expression and phenotype. A variety of approaches have been utilized to develop gene regulatory networks to predict the regulatory targets for each transcription factor, such as yeast-1-hybrid screens and gene co-expression network analysis. Here we identified potential transcription factor targets and used a reverse genetics approach to test the predictions of several gene regulatory networks in maize. Loss-of-function mutant alleles were isolated for 22 maize transcription factors. These mutants did not exhibit obvious morphological phenotypes. However, transcriptomic profiling identified differentially expressed genes in each of the mutant genotypes, and targeted metabolic profiling indicated variable phenolic accumulation in some mutants. An analysis of expression levels for predicted target genes based on yeast-1-hybrid screens identified a small subset of predicted targets that exhibit altered expression levels. The analysis of predicted targets from gene co-expression network-based methods found significant enrichments for prediction sets of some transcription factors, but most predicted targets did not exhibit altered expression. This could result from false-positive gene co-expression network predictions, a transcription factor with a secondary regulatory role resulting in minor effects on gene regulation, or redundant gene regulation by other transcription factors. Collectively, these findings suggest that loss-of-function for single uncharacterized transcription factors might have limited phenotypic impacts but can reveal subsets of gene regulatory network predicted targets with altered expression.
Collapse
Affiliation(s)
- Erika L Ellison
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Peng Zhou
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Yi-Hsuan Chu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Peter Hermanson
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Lina Gomez-Cano
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Zachary A Myers
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Ankita Abnave
- Department of Biological Sciences, The University of Toledo, Toledo, OH 43606, USA
| | - John Gray
- Department of Biological Sciences, The University of Toledo, Toledo, OH 43606, USA
| | - Candice N Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN 55108, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|
5
|
Feng H, Fan W, Liu M, Huang J, Li B, Sang Q, Song B. Cross-species single-nucleus analysis reveals the potential role of whole-genome duplication in the evolution of maize flower development. BMC Genomics 2025; 26:3. [PMID: 39754060 PMCID: PMC11699695 DOI: 10.1186/s12864-024-11186-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/26/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND The evolution and development of flowers are biologically essential and of broad interest. Maize and sorghum have similar morphologies and phylogeny while harboring different inflorescence architecture. The difference in flower architecture between these two species is likely due to spatiotemporal gene expression regulation, and they are a good model for researching the evolution of flower development. RESULTS In this study, we generated single nucleus and spatial RNA-seq data for maize ear, tassel, and sorghum inflorescence. By combining single nucleus and spatial transcriptome, we can track the spatial expression of single nucleus cluster marker genes and map single nucleus clusters to spatial positions. This ability provides great power to annotate the single nucleus clusters. Combining the cell cluster resolved transcriptome comparison with genome alignment, our analysis suggested that maize ear and tassel inflorescence diversity is associated with the maize-specific whole genome duplication. Taking sorghum as the outgroup, it is likely that the loss of gene expression profiling contributes to the inflorescence diversity between tassel and ear, resulting in the unisexual flower architecture of maize. The sequence of highly expressed genes in the tassel is more conserved than the highly expressed genes in the ear. CONCLUSION This study provides a high-resolution atlas of gene activity during inflorescence development and helps to unravel the potential evolution associated with the differentiation of the ear and tassel in maize.
Collapse
Affiliation(s)
- Huawei Feng
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong, 261325, China
| | - Wenjuan Fan
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong, 261325, China
| | - Min Liu
- Baimaike Intelligent Manufacturing, Qingdao, Shandong, 266500, China
| | - Jiaqian Huang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong, 261325, China
- Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Bosheng Li
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong, 261325, China
| | - Qing Sang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong, 261325, China.
| | - Baoxing Song
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong, 261325, China.
- Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
6
|
Chaudhry A, Chen Z, Gallavotti A. Hormonal influence on maize inflorescence development and reproduction. PLANT REPRODUCTION 2024; 37:393-407. [PMID: 39367960 PMCID: PMC11511735 DOI: 10.1007/s00497-024-00510-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/04/2024] [Indexed: 10/07/2024]
Abstract
KEY MESSAGE Different plant hormones contribute to maize reproductive success. Maize is a major crop species and significantly contributes directly and indirectly to human calorie uptake. Its success can be mainly attributed to its unisexual inflorescences, the tassel and the ear, whose formation is regulated by complex genetic and hormonal networks, and is influenced by environmental cues such as temperature, and nutrient and water availability. Traditional genetic analysis of classic developmental mutants, together with new molecular approaches, have shed light on many crucial aspects of maize reproductive development including the influence that phytohormones exert on key developmental steps leading to successful reproduction and seed yield. Here we will review both historical and recent findings concerning the main roles that phytohormones play in maize reproductive development, from the commitment to reproductive development to sexual reproduction.
Collapse
Affiliation(s)
- Amina Chaudhry
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Zongliang Chen
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA.
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
7
|
Gomez-Cano F, Rodriguez J, Zhou P, Chu YH, Magnusson E, Gomez-Cano L, Krishnan A, Springer NM, de Leon N, Grotewold E. Prioritizing Maize Metabolic Gene Regulators through Multi-Omic Network Integration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582075. [PMID: 38464086 PMCID: PMC10925184 DOI: 10.1101/2024.02.26.582075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Elucidating gene regulatory networks is a major area of study within plant systems biology. Phenotypic traits are intricately linked to specific gene expression profiles. These expression patterns arise primarily from regulatory connections between sets of transcription factors (TFs) and their target genes. Here, we integrated 46 co-expression networks, 283 protein-DNA interaction (PDI) assays, and 16 million SNPs used to identify expression quantitative trait loci (eQTL) to construct TF-target networks. In total, we analyzed ∼4.6M interactions to generate four distinct types of TF-target networks: co-expression, PDI, trans -eQTL, and cis -eQTL combined with PDIs. To functionally annotate TFs based on their target genes, we implemented three different network integration strategies. We evaluated the effectiveness of each strategy through TF loss-of function mutant inspection and random network analyses. The multi-network integration allowed us to identify transcriptional regulators of several biological processes. Using the topological properties of the fully integrated network, we identified potential functionally redundant TF paralogs. Our findings retrieved functions previously documented for numerous TFs and revealed novel functions that are crucial for informing the design of future experiments. The approach here-described lays the foundation for the integration of multi-omic datasets in maize and other plant systems. GRAPHICAL ABSTRACT
Collapse
|
8
|
Bellino C, Herrera FE, Rodrigues D, Garay AS, Huck SV, Reinheimer R. Molecular Evolution of RAMOSA1 (RA1) in Land Plants. Biomolecules 2024; 14:550. [PMID: 38785957 PMCID: PMC11117814 DOI: 10.3390/biom14050550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
RAMOSA1 (RA1) is a Cys2-His2-type (C2H2) zinc finger transcription factor that controls plant meristem fate and identity and has played an important role in maize domestication. Despite its importance, the origin of RA1 is unknown, and the evolution in plants is only partially understood. In this paper, we present a well-resolved phylogeny based on 73 amino acid sequences from 48 embryophyte species. The recovered tree topology indicates that, during grass evolution, RA1 arose from two consecutive SUPERMAN duplications, resulting in three distinct grass sequence lineages: RA1-like A, RA1-like B, and RA1; however, most of these copies have unknown functions. Our findings indicate that RA1 and RA1-like play roles in the nucleus despite lacking a traditional nuclear localization signal. Here, we report that copies diversified their coding region and, with it, their protein structure, suggesting different patterns of DNA binding and protein-protein interaction. In addition, each of the retained copies diversified regulatory elements along their promoter regions, indicating differences in their upstream regulation. Taken together, the evidence indicates that the RA1 and RA1-like gene families in grasses underwent subfunctionalization and neofunctionalization enabled by gene duplication.
Collapse
Affiliation(s)
- Carolina Bellino
- Fellow of Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, CCT-Santa Fe, Ruta Nacional N° 168 Km 0, s/n, Paraje el Pozo, Santa Fe S3000, Argentina;
| | - Fernando E. Herrera
- Member of Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje El Pozo, Santa Fe S3000, Argentina; (F.E.H.); (D.R.)
| | - Daniel Rodrigues
- Member of Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje El Pozo, Santa Fe S3000, Argentina; (F.E.H.); (D.R.)
| | - A. Sergio Garay
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje El Pozo, Santa Fe S3000, Argentina;
| | - Sofía V. Huck
- Fellow of Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación, Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, CCT-Santa Fe, Ruta Nacional N° 168 Km 0, s/n, Paraje el Pozo, Santa Fe S3000, Argentina;
| | - Renata Reinheimer
- Member of Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, FCA, CONICET, CCT-Santa Fe, Ruta Nacional N° 168 Km 0, s/n, Paraje el Pozo, Santa Fe S3000, Argentina
| |
Collapse
|
9
|
Feng X, Guan H, Wen Y, Zhou H, Xing X, Li Y, Zheng D, Wang Q, Zhang W, Xiong H, Hu Y, Jia L, Luo S, Zhang X, Guo W, Wu F, Xu J, Liu Y, Lu Y. Profiling the selected hotspots for ear traits in two maize-teosinte populations. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:74. [PMID: 38451289 DOI: 10.1007/s00122-024-04554-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 01/12/2024] [Indexed: 03/08/2024]
Abstract
KEY MESSAGE Eight selected hotspots related to ear traits were identified from two maize-teosinte populations. Throughout the history of maize cultivation, ear-related traits have been selected. However, little is known about the specific genes involved in shaping these traits from their origins in the wild progenitor, teosinte, to the characteristics observed in modern maize. In this study, five ear traits (kernel row number [KRN], ear length [EL], kernel number per row [KNR], cob diameter [CD], and ear diameter [ED]) were investigated, and eight quantitative trait loci (QTL) hotspots were identified in two maize-teosinte populations. Notably, our findings revealed a significant enrichment of genes showing a selection signature and expressed in the ear in qbdCD1.1, qbdCD5.1, qbpCD2.1, qbdED1.1, qbpEL1.1, qbpEL5.1, qbdKNR1.1, and qbdKNR10.1, suggesting that these eight QTL are selected hotspots involved in shaping the maize ear. By combining the results of the QTL analysis with data from previous genome-wide association study (GWAS) involving two natural panels, we identified eight candidate selected genes related to KRN, KNR, CD, and ED. Among these, considering their expression pattern and sequence variation, Zm00001d025111, encoding a WD40/YVTN protein, was proposed as a positive regulator of KNR. This study presents a framework for understanding the genomic distribution of selected loci crucial in determining ear-related traits.
Collapse
Affiliation(s)
- Xuanjun Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, 611130, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Huarui Guan
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Ying Wen
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Hanmei Zhou
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Xiaobin Xing
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Yinzhi Li
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Dan Zheng
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Qingjun Wang
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Weixiao Zhang
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Hao Xiong
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Yue Hu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Li Jia
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Shuang Luo
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Xuemei Zhang
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Wei Guo
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Fengkai Wu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Jie Xu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Yaxi Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Yanli Lu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, 611130, Sichuan, China.
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.
| |
Collapse
|
10
|
Lindsay P, Swentowsky KW, Jackson D. Cultivating potential: Harnessing plant stem cells for agricultural crop improvement. MOLECULAR PLANT 2024; 17:50-74. [PMID: 38130059 DOI: 10.1016/j.molp.2023.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Meristems are stem cell-containing structures that produce all plant organs and are therefore important targets for crop improvement. Developmental regulators control the balance and rate of cell divisions within the meristem. Altering these regulators impacts meristem architecture and, as a consequence, plant form. In this review, we discuss genes involved in regulating the shoot apical meristem, inflorescence meristem, axillary meristem, root apical meristem, and vascular cambium in plants. We highlight several examples showing how crop breeders have manipulated developmental regulators to modify meristem growth and alter crop traits such as inflorescence size and branching patterns. Plant transformation techniques are another innovation related to plant meristem research because they make crop genome engineering possible. We discuss recent advances on plant transformation made possible by studying genes controlling meristem development. Finally, we conclude with discussions about how meristem research can contribute to crop improvement in the coming decades.
Collapse
Affiliation(s)
- Penelope Lindsay
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
11
|
Shen X, Xiao B, Kaderbek T, Lin Z, Tan K, Wu Q, Yuan L, Lai J, Zhao H, Song W. Dynamic transcriptome landscape of developing maize ear. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1856-1870. [PMID: 37731154 DOI: 10.1111/tpj.16457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 09/22/2023]
Abstract
Seed number and harvesting ability in maize (Zea mays L.) are primarily determined by the architecture of female inflorescence, namely the ear. Therefore, ear morphogenesis contributes to grain yield and as such is one of the key target traits during maize breeding. However, the molecular networks of this highly dynamic and complex grain-bearing inflorescence remain largely unclear. As a first step toward characterizing these networks, we performed a high-spatio-temporal-resolution investigation of transcriptomes using 130 ear samples collected from developing ears with length from 0.1 mm to 19.0 cm. Comparisons of these mRNA populations indicated that these spatio-temporal transcriptomes were clearly separated into four distinct stages stages I, II, III, and IV. A total of 23 793 genes including 1513 transcription factors (TFs) were identified in the investigated developing ears. During the stage I of ear morphogenesis, 425 genes were predicted to be involved in a co-expression network established by eight hub TFs. Moreover, 9714 ear-specific genes were identified in the seven kinds of meristems. Additionally, 527 genes including 59 TFs were identified as especially expressed in ear and displayed high temporal specificity. These results provide a high-resolution atlas of gene activity during ear development and help to unravel the regulatory modules associated with the differentiation of the ear in maize.
Collapse
Affiliation(s)
- Xiaomeng Shen
- State Key Laboratory of Maize Bio-breeding, China Agricultural University, Beijing, 100193, P.R. China
- Department of Plant Genetics and Breeding, National Maize Improvement Center, China Agricultural University, Beijing, 100193, P.R. China
| | - Bing Xiao
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, P.R. China
| | - Tangnur Kaderbek
- State Key Laboratory of Maize Bio-breeding, China Agricultural University, Beijing, 100193, P.R. China
- Department of Plant Genetics and Breeding, National Maize Improvement Center, China Agricultural University, Beijing, 100193, P.R. China
| | - Zhen Lin
- State Key Laboratory of Maize Bio-breeding, China Agricultural University, Beijing, 100193, P.R. China
- Department of Plant Genetics and Breeding, National Maize Improvement Center, China Agricultural University, Beijing, 100193, P.R. China
| | - Kaiwen Tan
- State Key Laboratory of Maize Bio-breeding, China Agricultural University, Beijing, 100193, P.R. China
- Department of Plant Genetics and Breeding, National Maize Improvement Center, China Agricultural University, Beijing, 100193, P.R. China
| | - Qingyu Wu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Lixing Yuan
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, P.R. China
| | - Jinsheng Lai
- State Key Laboratory of Maize Bio-breeding, China Agricultural University, Beijing, 100193, P.R. China
- Department of Plant Genetics and Breeding, National Maize Improvement Center, China Agricultural University, Beijing, 100193, P.R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, P.R. China
| | - Haiming Zhao
- State Key Laboratory of Maize Bio-breeding, China Agricultural University, Beijing, 100193, P.R. China
- Department of Plant Genetics and Breeding, National Maize Improvement Center, China Agricultural University, Beijing, 100193, P.R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, P.R. China
| | - Weibin Song
- State Key Laboratory of Maize Bio-breeding, China Agricultural University, Beijing, 100193, P.R. China
- Department of Plant Genetics and Breeding, National Maize Improvement Center, China Agricultural University, Beijing, 100193, P.R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, P.R. China
| |
Collapse
|
12
|
Li T, Yang H, Zhang X, Zhu L, Zhang J, Wei N, Li R, Dong Y, Feng Z, Zhang X, Xue J, Xu S. Genetic architecture of ear traits based on association mapping and co-expression networks in maize inbred lines and hybrids. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:78. [PMID: 37928364 PMCID: PMC10624778 DOI: 10.1007/s11032-023-01426-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Ear traits are key contributors to grain yield in maize; therefore, exploring their genetic basis facilitates the improvement of grain yield. However, the underlying molecular mechanisms of ear traits remain obscure in both inbred lines and hybrids. Here, two association panels, respectively, comprising 203 inbred lines (IP) and 246 F1 hybrids (HP) were employed to identify candidate genes for six ear traits. The IP showed higher phenotypic variation and lower phenotypic mean than the HP for all traits, except ear tip-barrenness length. By conducting a genome-wide association study (GWAS) across multiple environments, 101 and 228 significant single-nucleotide polymorphisms (SNPs) associated with six ear traits were identified in the IP and HP, respectively. Of these significant SNPs identified in the HP, most showed complete-incomplete dominance and over-dominance effects for each ear trait. Combining a gene co-expression network with GWAS results, 186 and 440 candidate genes were predicted in the IP and HP, respectively, including known ear development genes ids1 and sid1. Of these, nine candidate genes were detected in both populations and expressed in maize ear and spikelet tissues. Furthermore, two key shared genes (GRMZM2G143330 and GRMZM2G171139) in both populations were found to be significantly associated with ear traits in the maize Goodman diversity panel with high-density variations. These findings advance our knowledge of the genetic architecture of ear traits between inbred lines and hybrids and provide a valuable resource for the genetic improvement of ear traits in maize. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01426-9.
Collapse
Affiliation(s)
- Ting Li
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, 712100 Shaanxi China
| | - Haoxiang Yang
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, 712100 Shaanxi China
| | - Xiaojun Zhang
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, 712100 Shaanxi China
| | - Liangjia Zhu
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, 712100 Shaanxi China
| | - Jun Zhang
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, 712100 Shaanxi China
| | - Ningning Wei
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, 712100 Shaanxi China
| | - Ranran Li
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, 712100 Shaanxi China
| | - Yuan Dong
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, 712100 Shaanxi China
| | - Zhiqian Feng
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, 712100 Shaanxi China
| | - Xinghua Zhang
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, 712100 Shaanxi China
| | - Jiquan Xue
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, 712100 Shaanxi China
| | - Shutu Xu
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, 712100 Shaanxi China
| |
Collapse
|
13
|
Dong Z, Wang Y, Bao J, Li Y, Yin Z, Long Y, Wan X. The Genetic Structures and Molecular Mechanisms Underlying Ear Traits in Maize ( Zea mays L.). Cells 2023; 12:1900. [PMID: 37508564 PMCID: PMC10378120 DOI: 10.3390/cells12141900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Maize (Zea mays L.) is one of the world's staple food crops. In order to feed the growing world population, improving maize yield is a top priority for breeding programs. Ear traits are important determinants of maize yield, and are mostly quantitatively inherited. To date, many studies relating to the genetic and molecular dissection of ear traits have been performed; therefore, we explored the genetic loci of the ear traits that were previously discovered in the genome-wide association study (GWAS) and quantitative trait locus (QTL) mapping studies, and refined 153 QTL and 85 quantitative trait nucleotide (QTN) clusters. Next, we shortlisted 19 common intervals (CIs) that can be detected simultaneously by both QTL mapping and GWAS, and 40 CIs that have pleiotropic effects on ear traits. Further, we predicted the best possible candidate genes from 71 QTL and 25 QTN clusters that could be valuable for maize yield improvement.
Collapse
Affiliation(s)
- Zhenying Dong
- Research Institute of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (Z.D.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Yanbo Wang
- Research Institute of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (Z.D.)
| | - Jianxi Bao
- Research Institute of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (Z.D.)
| | - Ya’nan Li
- Research Institute of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (Z.D.)
| | - Zechao Yin
- Research Institute of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (Z.D.)
| | - Yan Long
- Research Institute of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (Z.D.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Xiangyuan Wan
- Research Institute of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (Z.D.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| |
Collapse
|
14
|
Han J, Liu Y, Shen Y, Zhang D, Li W. Transcriptome Dynamics during Spike Differentiation of Wheat Reveal Amazing Changes in Cell Wall Metabolic Regulators. Int J Mol Sci 2023; 24:11666. [PMID: 37511426 PMCID: PMC10380499 DOI: 10.3390/ijms241411666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Coordinated cell proliferation and differentiation result in the complex structure of the inflorescence in wheat. It exhibits unique differentiation patterns and structural changes at different stages, which have attracted the attention of botanists studying the dynamic regulation of its genes. Our research aims to understand the molecular mechanisms underlying the regulation of spike development genes at different growth stages. We conducted RNA-Seq and qRT-PCR evaluations on spikes at three stages. Our findings revealed that genes associated with the cell wall and carbohydrate metabolism showed high expression levels between any two stages throughout the entire process, suggesting their regulatory role in early spike development. Furthermore, through transgenic experiments, we elucidated the role of the cell wall regulator gene in spike development regulation. These research results contribute to identifying essential genes associated with the morphology and development of wheat spike tissue.
Collapse
Affiliation(s)
- Junjie Han
- College of Agriculture, The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832000, China
| | - Yichen Liu
- College of Agriculture, The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832000, China
| | - Yiting Shen
- College of Agriculture, The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832000, China
| | - Donghai Zhang
- College of Agriculture, The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832000, China
| | - Weihua Li
- College of Agriculture, The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832000, China
| |
Collapse
|
15
|
Li Q, Liu N, Wu C. Novel insights into maize (Zea mays) development and organogenesis for agricultural optimization. PLANTA 2023; 257:94. [PMID: 37031436 DOI: 10.1007/s00425-023-04126-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
In maize, intrinsic hormone activities and sap fluxes facilitate organogenesis patterning and plant holistic development; these hormone movements should be a primary focus of developmental biology and agricultural optimization strategies. Maize (Zea mays) is an important crop plant with distinctive life history characteristics and structural features. Genetic studies have extended our knowledge of maize developmental processes, genetics, and molecular ecophysiology. In this review, the classical life cycle and life history strategies of maize are analyzed to identify spatiotemporal organogenesis properties and develop a definitive understanding of maize development. The actions of genes and hormones involved in maize organogenesis and sex determination, along with potential molecular mechanisms, are investigated, with findings suggesting central roles of auxin and cytokinins in regulating maize holistic development. Furthermore, investigation of morphological and structural characteristics of maize, particularly node ubiquity and the alternate attachment pattern of lateral organs, yields a novel regulatory model suggesting that maize organ initiation and subsequent development are derived from the stimulation and interaction of auxin and cytokinin fluxes. Propositions that hormone activities and sap flow pathways control organogenesis are thoroughly explored, and initiation and development processes of distinctive maize organs are discussed. Analysis of physiological factors driving hormone and sap movement implicates cues of whole-plant activity for hormone and sap fluxes to stimulate maize inflorescence initiation and organ identity determination. The physiological origins and biogenetic mechanisms underlying maize floral sex determination occurring at the tassel and ear spikelet are thoroughly investigated. The comprehensive outline of maize development and morphogenetic physiology developed in this review will enable farmers to optimize field management and will provide a reference for de novo crop domestication and germplasm improvement using genome editing biotechnologies, promoting agricultural optimization.
Collapse
Affiliation(s)
- Qinglin Li
- Crop Genesis and Novel Agronomy Center, Yangling, 712100, Shaanxi, China.
| | - Ning Liu
- Shandong ZhongnongTiantai Seed Co., Ltd, Pingyi, 273300, Shandong, China
| | - Chenglai Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
16
|
Weng X, Song H, Sreedasyam A, Haque T, Zhang L, Chen C, Yoshinaga Y, Williams M, O'Malley RC, Grimwood J, Schmutz J, Juenger TE. Transcriptome and DNA methylome divergence of inflorescence development between two ecotypes in Panicum hallii. PLANT PHYSIOLOGY 2023:kiad209. [PMID: 37018475 DOI: 10.1093/plphys/kiad209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
The morphological diversity of the inflorescence determines flower and seed production, which is critical for plant adaptation. Hall's panicgrass (Panicum hallii, P. hallii) is a wild perennial grass that has been developed as a model to study perennial grass biology and adaptive evolution. Highly divergent inflorescences have evolved between the two major ecotypes in P. hallii, the upland ecotype (P. hallii var hallii, HAL2 genotype) with compact inflorescence and large seed and the lowland ecotype (P. hallii var filipes, FIL2 genotype) with an open inflorescence and small seed. Here we conducted a comparative analysis of the transcriptome and DNA methylome, an epigenetic mark that influences gene expression regulation, across different stages of inflorescence development using genomic references for each ecotype. Global transcriptome analysis of differentially expressed genes (DEGs) and co-expression modules underlying the inflorescence divergence revealed the potential role of cytokinin signaling in heterochronic changes. Comparing DNA methylome profiles revealed a remarkable level of differential DNA methylation associated with the evolution of P. hallii inflorescence. We found that a large proportion of differentially methylated regions (DMRs) were located in the flanking regulatory regions of genes. Intriguingly, we observed a substantial bias of CHH hypermethylation in the promoters of FIL2 genes. The integration of DEGs, DMRs, and Ka/Ks ratio results characterized the evolutionary features of DMRs-associated DEGs that contribute to the divergence of the P. hallii inflorescence. This study provides insights into the transcriptome and epigenetic landscape of inflorescence divergence in P. hallii and a genomic resource for perennial grass biology.
Collapse
Affiliation(s)
- Xiaoyu Weng
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Haili Song
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | | | - Taslima Haque
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Li Zhang
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Cindy Chen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yuko Yoshinaga
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Ronan C O'Malley
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
17
|
Kong D, Li C, Xue W, Wei H, Ding H, Hu G, Zhang X, Zhang G, Zou T, Xian Y, Wang B, Zhao Y, Liu Y, Xie Y, Xu M, Wu H, Liu Q, Wang H. UB2/UB3/TSH4-anchored transcriptional networks regulate early maize inflorescence development in response to simulated shade. THE PLANT CELL 2023; 35:717-737. [PMID: 36472157 PMCID: PMC9940873 DOI: 10.1093/plcell/koac352] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/11/2022] [Accepted: 12/05/2022] [Indexed: 05/12/2023]
Abstract
Increasing planting density has been adopted as an effective means to increase maize (Zea mays) yield. Competition for light from neighbors can trigger plant shade avoidance syndrome, which includes accelerated flowering. However, the regulatory networks of maize inflorescence development in response to high-density planting remain poorly understood. In this study, we showed that shade-mimicking treatments cause precocious development of the tassels and ears. Comparative transcriptome profiling analyses revealed the enrichment of phytohormone-related genes and transcriptional regulators among the genes co-regulated by developmental progression and simulated shade. Network analysis showed that three homologous Squamosa promoter binding protein (SBP)-like (SPL) transcription factors, Unbranched2 (UB2), Unbranched3 (UB3), and Tasselsheath4 (TSH4), individually exhibited connectivity to over 2,400 genes across the V3-to-V9 stages of tassel development. In addition, we showed that the ub2 ub3 double mutant and tsh4 single mutant were almost insensitive to simulated shade treatments. Moreover, we demonstrated that UB2/UB3/TSH4 could directly regulate the expression of Barren inflorescence2 (BIF2) and Zea mays teosinte branched1/cycloidea/proliferating cell factor30 (ZmTCP30). Furthermore, we functionally verified a role of ZmTCP30 in regulating tassel branching and ear development. Our results reveal a UB2/UB3/TSH4-anchored transcriptional regulatory network of maize inflorescence development and provide valuable targets for breeding shade-tolerant maize cultivars.
Collapse
Affiliation(s)
- Dexin Kong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Changyu Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weicong Xue
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Hongbin Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Hui Ding
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Guizhen Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Guisen Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Ting Zou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Yuting Xian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Baobao Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongping Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuting Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Yurong Xie
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Miaoyun Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Qing Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Haiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
18
|
Strable J, Unger-Wallace E, Aragón Raygoza A, Briggs S, Vollbrecht E. Interspecies transfer of RAMOSA1 orthologs and promoter cis sequences impacts maize inflorescence architecture. PLANT PHYSIOLOGY 2023; 191:1084-1101. [PMID: 36508348 PMCID: PMC9922432 DOI: 10.1093/plphys/kiac559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/26/2022] [Indexed: 06/18/2023]
Abstract
Grass inflorescences support floral structures that each bear a single grain, where variation in branch architecture directly impacts yield. The maize (Zea mays) RAMOSA1 (ZmRA1) transcription factor acts as a key regulator of inflorescence development by imposing branch meristem determinacy. Here, we show RA1 transcripts accumulate in boundary domains adjacent to spikelet meristems in sorghum (Sorghum bicolor, Sb) and green millet (Setaria viridis, Sv) inflorescences similar as in the developing maize tassel and ear. To evaluate the functional conservation of syntenic RA1 orthologs and promoter cis sequences in maize, sorghum, and setaria, we utilized interspecies gene transfer and assayed genetic complementation in a common inbred background by quantifying recovery of normal branching in highly ramified ra1-R mutants. A ZmRA1 transgene that includes endogenous upstream and downstream flanking sequences recovered normal tassel and ear branching in ra1-R. Interspecies expression of two transgene variants of the SbRA1 locus, modeled as the entire endogenous tandem duplication or just the nonframeshifted downstream copy, complemented ra1-R branching defects and induced unusual fasciation and branch patterns. The SvRA1 locus lacks conserved, upstream noncoding cis sequences found in maize and sorghum; interspecies expression of a SvRA1 transgene did not or only partially recovered normal inflorescence forms. Driving expression of the SvRA1 coding region by the ZmRA1 upstream region, however, recovered normal inflorescence morphology in ra1-R. These data leveraging interspecies gene transfer suggest that cis-encoded temporal regulation of RA1 expression is a key factor in modulating branch meristem determinacy that ultimately impacts grass inflorescence architecture.
Collapse
|
19
|
Benaouda S, Stöcker T, Schoof H, Léon J, Ballvora A. Transcriptome profiling at the transition to the reproductive stage uncovers stage and tissue-specific genes in wheat. BMC PLANT BIOLOGY 2023; 23:25. [PMID: 36631761 PMCID: PMC9835304 DOI: 10.1186/s12870-022-03986-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The transition from vegetative to floral phase is the result of complex crosstalk of exogenous and endogenous floral integrators. This critical physiological event is the response to environmental interaction, which causes biochemical cascades of reactions at different internal tissues, organs, and releases signals that make the plant moves from vegetative status to a reproductive phase. This network controlling flowering time is not deciphered largely in bread wheat. In this study, a comparative transcriptome analysis at a transition time in combination with genetic mapping was used to identify responsible genes in a stage and tissue-specific manner. For this reason, two winter cultivars that have been bred in Germany showing contrasting and stable heading time in different environments were selected for the analysis. RESULTS In total, 670 and 1075 differentially expressed genes in the shoot apical meristem and leaf tissue, respectively, could be identified in 23 QTL intervals for the heading date. In the transition apex, Histone methylation H3-K36 and regulation of circadian rhythm are both controlled by the same homoeolog genes mapped in QTL TaHd112, TaHd124, and TaHd137. TaAGL14 gene that identifies the floral meristem was mapped in TaHd054 in the double ridge. In the same stage, the homoeolog located on chromosome 7D of FLOWERING TIME LOCUS T mapped on chr 7B, which evolved an antagonist function and acts as a flowering repressor was uncovered. The wheat orthologue of transcription factor ASYMMETRIC LEAVES 1 (AS1) was identified in the late reproductive stage and was mapped in TaHd102, which is strongly associated with heading date. Deletion of eight nucleotides in the AS1 promoter could be identified in the binding site of the SUPPRESSOR OF CONSTANS OVEREXPRESSION 1 (SOC1) gene in the late flowering cultivar. Both proteins AS1 and SOC1 are inducing flowering time in response to gibberellin biosynthesis. CONCLUSION The global transcriptomic at the transition phase uncovered stage and tissue-specific genes mapped in QTL of heading date in winter wheat. In response to Gibberellin signaling, wheat orthologous transcription factor AS1 is expressed in the late reproductive phase of the floral transition. The locus harboring this gene is the strongest QTL associated with the heading date trait in the German cultivars. Consequently, we conclude that this is another indication of the Gibberellin biosynthesis as the mechanism behind the heading variation in wheat.
Collapse
Affiliation(s)
- Salma Benaouda
- Institute for Crop Science and Resource Conservation, Chair of Plant Breeding, University of Bonn, Bonn, Germany
| | - Tyll Stöcker
- Institute for Crop Science and Resource Conservation, Chair of Crop Bioinformatics, University of Bonn, Bonn, Germany
| | - Heiko Schoof
- Institute for Crop Science and Resource Conservation, Chair of Crop Bioinformatics, University of Bonn, Bonn, Germany
| | - Jens Léon
- Institute for Crop Science and Resource Conservation, Chair of Plant Breeding, University of Bonn, Bonn, Germany
| | - Agim Ballvora
- Institute for Crop Science and Resource Conservation, Chair of Plant Breeding, University of Bonn, Bonn, Germany
| |
Collapse
|
20
|
Li T, Yin L, Stoll CE, Lisch D, Zhao M. Conserved noncoding sequences and de novo Mutator insertion alleles are imprinted in maize. PLANT PHYSIOLOGY 2023; 191:299-316. [PMID: 36173333 PMCID: PMC9806621 DOI: 10.1093/plphys/kiac459] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/30/2022] [Indexed: 05/20/2023]
Abstract
Genomic imprinting is an epigenetic phenomenon in which differential allele expression occurs in a parent-of-origin-dependent manner. Imprinting in plants is tightly linked to transposable elements (TEs), and it has been hypothesized that genomic imprinting may be a consequence of demethylation of TEs. Here, we performed high-throughput sequencing of ribonucleic acids from four maize (Zea mays) endosperms that segregated newly silenced Mutator (Mu) transposons and identified 110 paternally expressed imprinted genes (PEGs) and 139 maternally expressed imprinted genes (MEGs). Additionally, two potentially novel paternally suppressed MEGs are associated with de novo Mu insertions. In addition, we find evidence for parent-of-origin effects on expression of 407 conserved noncoding sequences (CNSs) in maize endosperm. The imprinted CNSs are largely localized within genic regions and near genes, but the imprinting status of the CNSs are largely independent of their associated genes. Both imprinted CNSs and PEGs have been subject to relaxed selection. However, our data suggest that although MEGs were already subject to a higher mutation rate prior to their being imprinted, imprinting may be the cause of the relaxed selection of PEGs. In addition, although DNA methylation is lower in the maternal alleles of both the maternally and paternally expressed CNSs (mat and pat CNSs), the difference between the two alleles in H3K27me3 levels was only observed in pat CNSs. Together, our findings point to the importance of both transposons and CNSs in genomic imprinting in maize.
Collapse
Affiliation(s)
- Tong Li
- Department of Biology, Miami University, Oxford, Ohio 45056, USA
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, P.R. China
| | - Liangwei Yin
- Department of Biology, Miami University, Oxford, Ohio 45056, USA
| | - Claire E Stoll
- Department of Biology, Miami University, Oxford, Ohio 45056, USA
| | - Damon Lisch
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Meixia Zhao
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
21
|
Huang J, Katari MS, Juang CL, Coruzzi GM, Brooks MD. Building High-Confidence Gene Regulatory Networks by Integrating Validated TF-Target Gene Interactions Using ConnecTF. Methods Mol Biol 2023; 2698:195-220. [PMID: 37682477 DOI: 10.1007/978-1-0716-3354-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Many methods are now available to identify or predict the target genes of transcription factors (TFs) in plants. These include experimental approaches such as in vivo or in vitro TF-target gene-binding assays and various methods for identifying regulated targets in mutants, transgenics, or isolated plant cells. In addition, computational approaches are used to infer TF-target gene interactions from the regulatory elements or gene expression changes across treatments. While each of these approaches has now been applied to a large number of TFs from many species, each method has its own limitations which necessitates that multiple data types are integrated to build the most accurate representation of the gene regulatory networks operating in plants. To make the analyses of TF-target interaction datasets available to the broader research community, we have developed the ConnecTF web platform ( https://connectf.org/ ). In this chapter, we describe how ConnecTF can be used to integrate validated and predicted TF-target gene interactions in order to dissect the regulatory role of TFs in developmental and stress response pathways. Using as our examples KN1 and RA1, two well-characterized maize TFs involved in developing floral tissue, we demonstrate how ConnecTF can be used to (1) compare the target genes between TFs, (2) identify direct vs. indirect targets by combining TF-binding and TF-regulation datasets, (3) chart and visualize network paths between TFs and their downstream targets, and (4) prune inferred user networks for high-confidence predicted interactions using validated TF-target gene data. Finally, we provide instructions for setting up a private version of ConnecTF that enables research groups to store and analyze their own TF-target gene interaction datasets.
Collapse
Affiliation(s)
- Ji Huang
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Manpreet S Katari
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Che-Lun Juang
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Gloria M Coruzzi
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Matthew D Brooks
- Global Change and Photosynthesis Research Unit, USDA ARS, Urbana, IL, USA.
| |
Collapse
|
22
|
Yin L, Xu G, Yang J, Zhao M. The Heterogeneity in the Landscape of Gene Dominance in Maize is Accompanied by Unique Chromatin Environments. Mol Biol Evol 2022; 39:6709529. [PMID: 36130304 PMCID: PMC9547528 DOI: 10.1093/molbev/msac198] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Subgenome dominance after whole-genome duplication (WGD) has been observed in many plant species. However, the degree to which the chromatin environment affects this bias has not been explored. Here, we compared the dominant subgenome (maize1) and the recessive subgenome (maize2) with respect to patterns of sequence substitutions, genes expression, transposable element accumulation, small interfering RNAs, DNA methylation, histone modifications, and accessible chromatin regions (ACRs). Our data show that the degree of bias between subgenomes for all the measured variables does not vary significantly when both of the WGD genes are located in pericentromeric regions. Our data further indicate that the location of maize1 genes in chromosomal arms is pivotal for maize1 to maintain its dominance, but location has a less effect on maize2 homoeologs. In addition to homoeologous genes, we compared ACRs, which often harbor cis-regulatory elements, between the two subgenomes and demonstrate that maize1 ACRs have a higher level of chromatin accessibility, a lower level of sequence substitution, and are enriched in chromosomal arms. Furthermore, we find that a loss of maize1 ACRs near their nearby genes is associated with a reduction in purifying selection and expression of maize1 genes relative to their maize2 homoeologs. Taken together, our data suggest that chromatin environment and cis-regulatory elements are important determinants shaping the divergence and evolution of duplicated genes.
Collapse
Affiliation(s)
- Liangwei Yin
- Department of Biology, Miami University, Oxford, OH 45056
| | - Gen Xu
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588,Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Jinliang Yang
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588,Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68583
| | | |
Collapse
|
23
|
Backhaus AE, Lister A, Tomkins M, Adamski NM, Simmonds J, Macaulay I, Morris RJ, Haerty W, Uauy C. High expression of the MADS-box gene VRT2 increases the number of rudimentary basal spikelets in wheat. PLANT PHYSIOLOGY 2022; 189:1536-1552. [PMID: 35377414 PMCID: PMC9237664 DOI: 10.1093/plphys/kiac156] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/13/2022] [Indexed: 05/03/2023]
Abstract
Spikelets are the fundamental building blocks of Poaceae inflorescences, and their development and branching patterns determine the various inflorescence architectures and grain yield of grasses. In wheat (Triticum aestivum), the central spikelets produce the most and largest grains, while spikelet size gradually decreases acropetally and basipetally, giving rise to the characteristic lanceolate shape of wheat spikes. The acropetal gradient corresponds with the developmental age of spikelets; however, the basal spikelets are developed first, and the cause of their small size and rudimentary development is unclear. Here, we adapted G&T-seq, a low-input transcriptomics approach, to characterize gene expression profiles within spatial sections of individual spikes before and after the establishment of the lanceolate shape. We observed larger differences in gene expression profiles between the apical, central, and basal sections of a single spike than between any section belonging to consecutive developmental time points. We found that SHORT VEGETATIVE PHASE MADS-box transcription factors, including VEGETATIVE TO REPRODUCTIVE TRANSITION 2 (VRT-A2), are expressed highest in the basal section of the wheat spike and display the opposite expression gradient to flowering E-class SEPALLATA1 genes. Based on multi-year field trials and transgenic lines, we show that higher expression of VRT-A2 in the basal sections of the spike is associated with increased numbers of rudimentary basal spikelets. Our results, supported by computational modeling, suggest that the delayed transition of basal spikelets from vegetative to floral developmental programs results in the lanceolate shape of wheat spikes. This study highlights the value of spatially resolved transcriptomics to gain insights into developmental genetics pathways of grass inflorescences.
Collapse
Affiliation(s)
- Anna E Backhaus
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Ashleigh Lister
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | - Melissa Tomkins
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - James Simmonds
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Iain Macaulay
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | | | - Wilfried Haerty
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | | |
Collapse
|
24
|
Rahmani RS, Decap D, Fostier J, Marchal K. BLSSpeller to discover novel regulatory motifs in maize. DNA Res 2022; 29:6651838. [PMID: 35904558 PMCID: PMC9358016 DOI: 10.1093/dnares/dsac029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
With the decreasing cost of sequencing and availability of larger numbers of sequenced genomes, comparative genomics is becoming increasingly attractive to complement experimental techniques for the task of transcription factor (TF) binding site identification. In this study, we redesigned BLSSpeller, a motif discovery algorithm, to cope with larger sequence datasets. BLSSpeller was used to identify novel motifs in Zea mays in a comparative genomics setting with 16 monocot lineages. We discovered 61 motifs of which 20 matched previously described motif models in Arabidopsis. In addition, novel, yet uncharacterized motifs were detected, several of which are supported by available sequence-based and/or functional data. Instances of the predicted motifs were enriched around transcription start sites and contained signatures of selection. Moreover, the enrichment of the predicted motif instances in open chromatin and TF binding sites indicates their functionality, supported by the fact that genes carrying instances of these motifs were often found to be co-expressed and/or enriched in similar GO functions. Overall, our study unveiled several novel candidate motifs that might help our understanding of the genotype to phenotype association in crops.
Collapse
Affiliation(s)
- Razgar Seyed Rahmani
- Department of Plant Biotechnology and Bioinformatics, Ghent University , Gent, Belgium
- Department of Information Technology, IDLab, Ghent University—imec , Gent, Belgium
| | - Dries Decap
- Department of Information Technology, IDLab, Ghent University—imec , Gent, Belgium
| | - Jan Fostier
- Department of Information Technology, IDLab, Ghent University—imec , Gent, Belgium
| | - Kathleen Marchal
- Department of Plant Biotechnology and Bioinformatics, Ghent University , Gent, Belgium
- Department of Information Technology, IDLab, Ghent University—imec , Gent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria , Pretoria, South Africa
| |
Collapse
|
25
|
Zhong J, Kong F. The control of compound inflorescences: insights from grasses and legumes. TRENDS IN PLANT SCIENCE 2022; 27:564-576. [PMID: 34973922 DOI: 10.1016/j.tplants.2021.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/16/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
A major challenge in biology is to understand how organisms have increased developmental complexity during evolution. Inflorescences, with remarkable variation in branching systems, are a fitting model to understand architectural complexity. Inflorescences bear flowers that may become fruits and/or seeds, impacting crop productivity and species fitness. Great advances have been achieved in understanding the regulation of complex inflorescences, particularly in economically and ecologically important grasses and legumes. Surprisingly, a synthesis is still lacking regarding the common or distinct principles underlying the regulation of inflorescence complexity. Here, we synthesize the similarities and differences in the regulation of compound inflorescences in grasses and legumes, and propose that the emergence of novel higher-order repetitive modules is key to the evolution of inflorescence complexity.
Collapse
Affiliation(s)
- Jinshun Zhong
- School of Life Sciences, South China Agricultural University, Wushan Street 483, Guangzhou 510642, China; Institute for Plant Genetics, Heinrich-Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany; Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Köln, Germany; Cluster of Excellence on Plant Sciences, 'SMART Plants for Tomorrow's Needs', Heinrich-Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany.
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
26
|
Zhu C, Box MS, Thiruppathi D, Hu H, Yu Y, Martin C, Doust AN, McSteen P, Kellogg EA. Pleiotropic and nonredundant effects of an auxin importer in Setaria and maize. PLANT PHYSIOLOGY 2022; 189:715-734. [PMID: 35285930 DOI: 10.1101/2021.10.14.464408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/16/2022] [Indexed: 05/26/2023]
Abstract
Directional transport of auxin is critical for inflorescence and floral development in flowering plants, but the role of auxin influx carriers (AUX1 proteins) has been largely overlooked. Taking advantage of available AUX1 mutants in green millet (Setaria viridis) and maize (Zea mays), we uncover previously unreported aspects of plant development that are affected by auxin influx, including higher order branches in the inflorescence, stigma branch number, glume (floral bract) development, and plant fertility. However, disruption of auxin flux does not affect all parts of the plant, with little obvious effect on inflorescence meristem size, time to flowering, and anther morphology. In double mutant studies in maize, disruptions of ZmAUX1 also affect vegetative development. A green fluorescent protein (GFP)-tagged construct of the Setaria AUX1 protein Sparse Panicle1 (SPP1) under its native promoter showed that SPP1 localizes to the plasma membrane of outer tissue layers in both roots and inflorescences, and accumulates specifically in inflorescence branch meristems, consistent with the mutant phenotype and expected auxin maxima. RNA-seq analysis indicated that most gene expression modules are conserved between mutant and wild-type plants, with only a few hundred genes differentially expressed in spp1 inflorescences. Using clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology, we disrupted SPP1 and the other four AUX1 homologs in S. viridis. SPP1 has a larger effect on inflorescence development than the others, although all contribute to plant height, tiller formation, and leaf and root development. The AUX1 importers are thus not fully redundant in S. viridis. Our detailed phenotypic characterization plus a stable GFP-tagged line offer tools for future dissection of the function of auxin influx proteins.
Collapse
Affiliation(s)
- Chuanmei Zhu
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - Mathew S Box
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | | | - Hao Hu
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Oklahoma 74078, USA
| | - Yunqing Yu
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - Callista Martin
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - Andrew N Doust
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Oklahoma 74078, USA
| | - Paula McSteen
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
27
|
Zhu C, Box MS, Thiruppathi D, Hu H, Yu Y, Martin C, Doust AN, McSteen P, Kellogg EA. Pleiotropic and nonredundant effects of an auxin importer in Setaria and maize. PLANT PHYSIOLOGY 2022; 189:715-734. [PMID: 35285930 PMCID: PMC9157071 DOI: 10.1093/plphys/kiac115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Directional transport of auxin is critical for inflorescence and floral development in flowering plants, but the role of auxin influx carriers (AUX1 proteins) has been largely overlooked. Taking advantage of available AUX1 mutants in green millet (Setaria viridis) and maize (Zea mays), we uncover previously unreported aspects of plant development that are affected by auxin influx, including higher order branches in the inflorescence, stigma branch number, glume (floral bract) development, and plant fertility. However, disruption of auxin flux does not affect all parts of the plant, with little obvious effect on inflorescence meristem size, time to flowering, and anther morphology. In double mutant studies in maize, disruptions of ZmAUX1 also affect vegetative development. A green fluorescent protein (GFP)-tagged construct of the Setaria AUX1 protein Sparse Panicle1 (SPP1) under its native promoter showed that SPP1 localizes to the plasma membrane of outer tissue layers in both roots and inflorescences, and accumulates specifically in inflorescence branch meristems, consistent with the mutant phenotype and expected auxin maxima. RNA-seq analysis indicated that most gene expression modules are conserved between mutant and wild-type plants, with only a few hundred genes differentially expressed in spp1 inflorescences. Using clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology, we disrupted SPP1 and the other four AUX1 homologs in S. viridis. SPP1 has a larger effect on inflorescence development than the others, although all contribute to plant height, tiller formation, and leaf and root development. The AUX1 importers are thus not fully redundant in S. viridis. Our detailed phenotypic characterization plus a stable GFP-tagged line offer tools for future dissection of the function of auxin influx proteins.
Collapse
Affiliation(s)
- Chuanmei Zhu
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - Mathew S Box
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | | | - Hao Hu
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Oklahoma 74078, USA
| | - Yunqing Yu
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - Callista Martin
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - Andrew N Doust
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Oklahoma 74078, USA
| | - Paula McSteen
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
28
|
Hu G, Wang K, Huang B, Mila I, Frasse P, Maza E, Djari A, Hernould M, Zouine M, Li Z, Bouzayen M. The auxin-responsive transcription factor SlDOF9 regulates inflorescence and flower development in tomato. NATURE PLANTS 2022; 8:419-433. [PMID: 35422080 DOI: 10.1038/s41477-022-01121-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 03/03/2022] [Indexed: 05/04/2023]
Abstract
Understanding the mechanisms underlying differentiation of inflorescence and flower meristems is essential towards enlarging our knowledge of reproductive organ formation and to open new prospects for improving yield traits. Here, we show that SlDOF9 is a new modulator of floral differentiation in tomato. CRISPR/Cas9 knockout strategy uncovered the role of SlDOF9 in controlling inflorescence meristem and floral meristem differentiation via the regulation of cell division genes and inflorescence architecture regulator LIN. Tomato dof9-KO lines have more flowers in both determinate and indeterminate cultivars and produce more fruit upon vibration-assisted fertilization. SlDOF9 regulates inflorescence development through an auxin-dependent ARF5-DOF9 module that seems to operate, at least in part, differently in Arabidopsis and tomato. Our findings add a new actor to the complex mechanisms underlying reproductive organ differentiation in flowering plants and provide leads towards addressing the diversity of factors controlling the transition to reproductive organs.
Collapse
Affiliation(s)
- Guojian Hu
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits-UMR990, Castanet-Tolosan, France
- Laboratoire de Recherche en Sciences Végétales-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Keke Wang
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits-UMR990, Castanet-Tolosan, France
- Laboratoire de Recherche en Sciences Végétales-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Baowen Huang
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits-UMR990, Castanet-Tolosan, France
- Laboratoire de Recherche en Sciences Végétales-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Isabelle Mila
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits-UMR990, Castanet-Tolosan, France
| | - Pierre Frasse
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits-UMR990, Castanet-Tolosan, France
- Laboratoire de Recherche en Sciences Végétales-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Elie Maza
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits-UMR990, Castanet-Tolosan, France
- Laboratoire de Recherche en Sciences Végétales-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Anis Djari
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits-UMR990, Castanet-Tolosan, France
- Laboratoire de Recherche en Sciences Végétales-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Michel Hernould
- Biologie du Fruit et Pathologie-UMR 1332, Université Bordeaux, INRAE, Villenave d'Ornon, France
| | - Mohamed Zouine
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits-UMR990, Castanet-Tolosan, France
- Laboratoire de Recherche en Sciences Végétales-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Mondher Bouzayen
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits-UMR990, Castanet-Tolosan, France.
- Laboratoire de Recherche en Sciences Végétales-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France.
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China.
| |
Collapse
|
29
|
Yang H, Nukunya K, Ding Q, Thompson BE. Tissue-specific transcriptomics reveal functional differences in floral development. PLANT PHYSIOLOGY 2022; 188:1158-1173. [PMID: 34865134 PMCID: PMC8825454 DOI: 10.1093/plphys/kiab557] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/02/2021] [Indexed: 05/22/2023]
Abstract
Flowers are produced by floral meristems, groups of stem cells that give rise to floral organs. In grasses, including the major cereal crops, flowers (florets) are contained in spikelets, which contain one to many florets, depending on the species. Importantly, not all grass florets are developmentally equivalent, and one or more florets are often sterile or abort in each spikelet. Members of the Andropogoneae tribe, including maize (Zea mays), produce spikelets with two florets; the upper and lower florets are usually dimorphic, and the lower floret is greatly reduced compared to the upper floret. In maize ears, early development appears identical in both florets but the lower floret ultimately aborts. To gain insight into the functional differences between florets with different fates, we used laser capture microdissection coupled with RNA-sequencing to globally examine gene expression in upper and lower floral meristems in maize. Differentially expressed genes were involved in hormone regulation, cell wall, sugar, and energy homeostasis. Furthermore, cell wall modifications and sugar accumulation differed between the upper and lower florets. Finally, we identified a boundary domain between upper and lower florets, which we hypothesize is important for floral meristem activity. We propose a model in which growth is suppressed in the lower floret by limiting sugar availability and upregulating genes involved in growth repression. This growth repression module may also regulate floret fertility in other grasses and potentially be modulated to engineer more productive cereal crops.
Collapse
Affiliation(s)
- Hailong Yang
- Department of Biology, East Carolina University, Greenville, North Carolina 27858, USA
| | - Kate Nukunya
- Department of Biology, East Carolina University, Greenville, North Carolina 27858, USA
| | - Queying Ding
- Department of Biology, East Carolina University, Greenville, North Carolina 27858, USA
| | - Beth E Thompson
- Department of Biology, East Carolina University, Greenville, North Carolina 27858, USA
- Author for communication:
| |
Collapse
|
30
|
Schmitz RJ, Grotewold E, Stam M. Cis-regulatory sequences in plants: Their importance, discovery, and future challenges. THE PLANT CELL 2022; 34:718-741. [PMID: 34918159 PMCID: PMC8824567 DOI: 10.1093/plcell/koab281] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/20/2021] [Indexed: 05/19/2023]
Abstract
The identification and characterization of cis-regulatory DNA sequences and how they function to coordinate responses to developmental and environmental cues is of paramount importance to plant biology. Key to these regulatory processes are cis-regulatory modules (CRMs), which include enhancers and silencers. Despite the extraordinary advances in high-quality sequence assemblies and genome annotations, the identification and understanding of CRMs, and how they regulate gene expression, lag significantly behind. This is especially true for their distinguishing characteristics and activity states. Here, we review the current knowledge on CRMs and breakthrough technologies enabling identification, characterization, and validation of CRMs; we compare the genomic distributions of CRMs with respect to their target genes between different plant species, and discuss the role of transposable elements harboring CRMs in the evolution of gene expression. This is an exciting time to study cis-regulomes in plants; however, significant existing challenges need to be overcome to fully understand and appreciate the role of CRMs in plant biology and in crop improvement.
Collapse
Affiliation(s)
- Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
31
|
Zhang X, Guo Q, Qin L, Li L. A Cys2His2 Zinc Finger Transcription Factor BpSZA1 Positively Modulates Salt Stress in Betula platyphylla. FRONTIERS IN PLANT SCIENCE 2022; 13:823547. [PMID: 35693173 PMCID: PMC9174930 DOI: 10.3389/fpls.2022.823547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 03/29/2022] [Indexed: 05/07/2023]
Abstract
Zinc finger proteins (ZFPs) are widely involved in plant growth and abiotic stress responses, however, few of these proteins have been functionally characterized in tree species. In this study, we cloned and characterized the BpSZA1 gene encoding a C2H2-type ZFP from Betula platyphylla. BpSZA1 is a transcription factor localized in the nucleus, with a transcription activation domain located at the N-terminus. BpSZA1 was predominantly expressed in stems and was induced by salt. We generated transgenic birch lines displaying overexpression (OE) or RNAi silencing (Ri) of BpSZA1 and exposed these along with wild-type birch seedlings to salinity. Phenotypic and physiological parameters such as superoxide dismutase, peroxisome, H2O2 content, proline content, water loss rate, and malondialdehyde content were examined. Overexpression of BpSZA1 in birch conferred increased salt tolerance. Chromatin immunoprecipitation-qPCR and RNA-seq showed that BpSZA1 binds to the GAGA-motif in the promoter of downstream target genes including BpAPX1, BpAPX2, BpCAT, and Bp6PGDH to activate their transcription. BpSZA1 also participates in abscisic acid (ABA) biosynthesis, proline biosynthesis, and the ABA/jasmonic acid pathway to enhance the salt stress of B. platyphylla.
Collapse
|
32
|
Yang J, Bertolini E, Braud M, Preciado J, Chepote A, Jiang H, Eveland AL. The SvFUL2 transcription factor is required for inflorescence determinacy and timely flowering in Setaria viridis. PLANT PHYSIOLOGY 2021; 187:1202-1220. [PMID: 33871654 PMCID: PMC8566296 DOI: 10.1093/plphys/kiab169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/22/2021] [Indexed: 05/22/2023]
Abstract
Inflorescence architecture in cereal crops directly impacts yield potential through regulation of seed number and harvesting ability. Extensive architectural diversity found in inflorescences of grass species is due to spatial and temporal activity and determinacy of meristems, which control the number and arrangement of branches and flowers, and underlie plasticity. Timing of the floral transition is also intimately associated with inflorescence development and architecture, yet little is known about the intersecting pathways and how they are rewired during development. Here, we show that a single mutation in a gene encoding an AP1/FUL-like MADS-box transcription factor significantly delays flowering time and disrupts multiple levels of meristem determinacy in panicles of the C4 model panicoid grass, Setaria viridis. Previous reports of AP1/FUL-like genes in cereals have revealed extensive functional redundancy, and in panicoid grasses, no associated inflorescence phenotypes have been described. In S. viridis, perturbation of SvFul2, both through chemical mutagenesis and gene editing, converted a normally determinate inflorescence habit to an indeterminate one, and also repressed determinacy in axillary branch and floral meristems. Our analysis of gene networks connected to disruption of SvFul2 identified regulatory hubs at the intersection of floral transition and inflorescence determinacy, providing insights into the optimization of cereal crop architecture.
Collapse
Affiliation(s)
- Jiani Yang
- Donald Danforth Plant Science Center, Saint Louis, Missouri, 63132, USA
| | - Edoardo Bertolini
- Donald Danforth Plant Science Center, Saint Louis, Missouri, 63132, USA
| | - Max Braud
- Donald Danforth Plant Science Center, Saint Louis, Missouri, 63132, USA
| | - Jesus Preciado
- National Science Foundation Research Experiences in Plant Science at the Danforth Center, Saint Louis, Missouri, 63132, USA
| | - Adriana Chepote
- Donald Danforth Plant Science Center, Saint Louis, Missouri, 63132, USA
| | - Hui Jiang
- Donald Danforth Plant Science Center, Saint Louis, Missouri, 63132, USA
| | - Andrea L Eveland
- Donald Danforth Plant Science Center, Saint Louis, Missouri, 63132, USA
| |
Collapse
|
33
|
Savadel SD, Hartwig T, Turpin ZM, Vera DL, Lung PY, Sui X, Blank M, Frommer WB, Dennis JH, Zhang J, Bass HW. The native cistrome and sequence motif families of the maize ear. PLoS Genet 2021; 17:e1009689. [PMID: 34383745 PMCID: PMC8360572 DOI: 10.1371/journal.pgen.1009689] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 06/30/2021] [Indexed: 01/22/2023] Open
Abstract
Elucidating the transcriptional regulatory networks that underlie growth and development requires robust ways to define the complete set of transcription factor (TF) binding sites. Although TF-binding sites are known to be generally located within accessible chromatin regions (ACRs), pinpointing these DNA regulatory elements globally remains challenging. Current approaches primarily identify binding sites for a single TF (e.g. ChIP-seq), or globally detect ACRs but lack the resolution to consistently define TF-binding sites (e.g. DNAse-seq, ATAC-seq). To address this challenge, we developed MNase-defined cistrome-Occupancy Analysis (MOA-seq), a high-resolution (< 30 bp), high-throughput, and genome-wide strategy to globally identify putative TF-binding sites within ACRs. We used MOA-seq on developing maize ears as a proof of concept, able to define a cistrome of 145,000 MOA footprints (MFs). While a substantial majority (76%) of the known ATAC-seq ACRs intersected with the MFs, only a minority of MFs overlapped with the ATAC peaks, indicating that the majority of MFs were novel and not detected by ATAC-seq. MFs were associated with promoters and significantly enriched for TF-binding and long-range chromatin interaction sites, including for the well-characterized FASCIATED EAR4, KNOTTED1, and TEOSINTE BRANCHED1. Importantly, the MOA-seq strategy improved the spatial resolution of TF-binding prediction and allowed us to identify 215 motif families collectively distributed over more than 100,000 non-overlapping, putatively-occupied binding sites across the genome. Our study presents a simple, efficient, and high-resolution approach to identify putative TF footprints and binding motifs genome-wide, to ultimately define a native cistrome atlas. Understanding gene regulation remains a central goal of modern biology. Delineating the full set of regulatory DNA elements that orchestrate this regulation requires information at two scales; the broad landscape of accessible chromatin, and the site-specific binding of transcription factors (TFs) at discrete cis-regulatory DNA elements. Here we describe a single assay that uses micrococcal nuclease (MNase) as a structural probe to simultaneously reveal regions of accessible chromatin in addition to high-resolution footprints with signatures of TF-occupied cis-elements. We have used maize developing ear tissue as proof of concept, showing the method detects known TF-binding sites. This genome-wide assay not only defines chromatin landscapes, but crucially enables global discovery and mapping of sequence motifs underlying small footprints of ~30 bp to produce an atlas of candidate TF occupancy.
Collapse
Affiliation(s)
- Savannah D. Savadel
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Thomas Hartwig
- Institute for Molecular Physiologie, Heinrich-Heine-Universität, Düsseldorf, Germany
- Independent research groups, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Zachary M. Turpin
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Daniel L. Vera
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Pei-Yau Lung
- Department of Statistics, Florida State University, Tallahassee, Florida, United States of America
| | - Xin Sui
- Department of Statistics, Florida State University, Tallahassee, Florida, United States of America
| | - Max Blank
- Institute for Molecular Physiologie, Heinrich-Heine-Universität, Düsseldorf, Germany
- Independent research groups, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Wolf B. Frommer
- Institute for Molecular Physiologie, Heinrich-Heine-Universität, Düsseldorf, Germany
- Independent research groups, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jonathan H. Dennis
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Jinfeng Zhang
- Department of Statistics, Florida State University, Tallahassee, Florida, United States of America
| | - Hank W. Bass
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
- * E-mail:
| |
Collapse
|
34
|
Gene duplication at the Fascicled ear1 locus controls the fate of inflorescence meristem cells in maize. Proc Natl Acad Sci U S A 2021; 118:2019218118. [PMID: 33579824 PMCID: PMC7896288 DOI: 10.1073/pnas.2019218118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The maize ear is unbranched and terminates in a single point. The ear and tassel inflorescences of Fascicled ear mutants fail to grow as a single point and instead are branched. This phenotype results from the misexpression of duplicated transcription factors, ZMM8 and DRL2. We hypothesize that these gene rearrangements create regulatory sequences that cause misexpression in early inflorescence meristems, thus activating a laminar program, ablating the meristem, and producing branches. This work demonstrates that zmm8 and drl2 must be restricted from the inflorescence meristem to maintain its terminal point, and conversely, a mechanism by which branching may be imposed. Manipulation of these genes can be used to alter plant architecture, potentially to improve agronomic traits. Plant meristems are self-renewing groups of pluripotent stem cells that produce lateral organs in a stereotypical pattern. Of interest is how the radially symmetrical meristem produces laminar lateral organs. Both the male and female inflorescence meristems of the dominant Fascicled ear (Fas1) mutant fail to grow as a single point and instead show deep branching. Positional cloning of two independent Fas1 alleles identified an ∼160 kb region containing two floral genes, the MADS-box gene, zmm8, and the YABBY gene, drooping leaf2 (drl2). Both genes are duplicated within the Fas1 locus and spatiotemporally misexpressed in the mutant inflorescence meristems. Increased zmm8 expression alone does not affect inflorescence development; however, combined misexpression of zmm8, drl2, and their syntenic paralogs zmm14 and drl1, perturbs meristem organization. We hypothesize that misexpression of the floral genes in the inflorescence and their potential interaction cause ectopic activation of a laminar program, thereby disrupting signaling necessary for maintenance of radially symmetrical inflorescence meristems. Consistent with this hypothesis, RNA sequencing and in situ analysis reveal altered expression patterns of genes that define distinct zones of the meristem and developing leaf. Our findings highlight the importance of strict spatiotemporal patterns of expression for both zmm8 and drl2 and provide an example of phenotypes arising from tandem gene duplications.
Collapse
|
35
|
Chen Z, Gallavotti A. Improving architectural traits of maize inflorescences. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:21. [PMID: 37309422 PMCID: PMC10236070 DOI: 10.1007/s11032-021-01212-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/02/2021] [Indexed: 06/13/2023]
Abstract
The domestication and improvement of maize resulted in radical changes in shoot architecture relative to its wild progenitor teosinte. In particular, critical modifications involved a reduction of branching and an increase in inflorescence size to meet the needs for human consumption and modern agricultural practices. Maize is a major contributor to global agricultural production by providing large and inexpensive quantities of food, animal feed, and ethanol. Maize is also a classic system for studying the genetic regulation of inflorescence formation and its enlarged female inflorescences directly influence seed production and yield. Studies on the molecular and genetic networks regulating meristem proliferation and maintenance, including receptor-ligand interactions, transcription factor regulation, and hormonal control, provide important insights into maize inflorescence development and reveal potential avenues for the targeted modification of specific architectural traits. In this review, we summarize recent findings on the molecular mechanisms controlling inflorescence formation and discuss how this knowledge can be applied to improve maize productivity in the face of present and future environmental challenges.
Collapse
Affiliation(s)
- Zongliang Chen
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020 USA
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020 USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901 USA
| |
Collapse
|
36
|
Sun H, Xu H, Li B, Shang Y, Wei M, Zhang S, Zhao C, Qin R, Cui F, Wu Y. The brassinosteroid biosynthesis gene, ZmD11, increases seed size and quality in rice and maize. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 160:281-293. [PMID: 33540331 DOI: 10.1016/j.plaphy.2021.01.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Brassinosteroids (BRs) are a group of plant steroid hormones that regulate many important agronomic traits. Studies on the functional mechanisms of BR-related genes in crop plants are necessary for the application of BRs in agriculture. In this study, ZmD11, an ortholog of rice DWARF11 (D11), and 42 other BR biosynthesis-related genes were identified in maize (Zea mays). Complementary experiments confirmed that ZmD11 completely rescued the abnormal panicle architecture and plant height of the rice cpb1 mutant. A phylogenetic analysis indicated that ZmD11-like proteins were found in other monocots and dicots, but not in lower plants and that alternative splicing variants of these homologues mainly exist in Triticeae crops. A subcellular localization analysis showed that ZmD11 localized to the endoplasmic reticulum. The ZmD11 gene was predominantly expressed in young ears and seeds from 10 to 16 days after pollination, especially in the scutellar aleurone layer and pericarp. Furthermore, the constitutive expression of the ZmD11 gene significantly increased seed length, seed area, seed weight and both seed starch and protein contents in rice and maize. Our results suggest that ZmD11 is a key gene in the regulation of seed size and quality and that it has a potential application value in the molecular breeding of crops.
Collapse
Affiliation(s)
- Han Sun
- College of Agriculture, Ludong University, Yantai, China; Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, China
| | - Huiyuan Xu
- College of Agriculture, Ludong University, Yantai, China; Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, China
| | - Bei Li
- College of Agriculture, Ludong University, Yantai, China; Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, China
| | - Yangyang Shang
- College of Agriculture, Ludong University, Yantai, China; Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, China
| | - Meixiang Wei
- College of Agriculture, Ludong University, Yantai, China; Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, China
| | - Shanghui Zhang
- College of Agriculture, Ludong University, Yantai, China; Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, China
| | - Chunhua Zhao
- College of Agriculture, Ludong University, Yantai, China; Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, China
| | - Ran Qin
- College of Agriculture, Ludong University, Yantai, China; Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, China
| | - Fa Cui
- College of Agriculture, Ludong University, Yantai, China; Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, China.
| | - Yongzhen Wu
- College of Agriculture, Ludong University, Yantai, China; Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, China.
| |
Collapse
|
37
|
Preston JC. Insights into the evo-devo of plant reproduction using next-generation sequencing approaches. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1536-1545. [PMID: 33367867 DOI: 10.1093/jxb/eraa543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
The development of plant model organisms has traditionally been analyzed using resource-heavy, tailored applications that are not easily transferable to distantly related non-model taxa. Thus, our understanding of plant development has been limited to a subset of traits, and evolutionary studies conducted most effectively either across very wide [e.g. Arabidopsis thaliana and Oryza sativa (rice)] or narrow (i.e. population level) phylogenetic distances. As plant biologists seek to capitalize on natural diversity for crop improvement, enhance ecosystem functioning, and better understand plant responses to climate change, high-throughput and broadly applicable forms of existing molecular biology assays are becoming an invaluable resource. Next-generation sequencing (NGS) is increasingly becoming a powerful tool in evolutionary developmental biology (evo-devo) studies, particularly through its application to understanding trait evolution at different levels of gene regulation. Here, I review some of the most common and emerging NGS-based methods, using exemplar studies in reproductive plant evo-devo to illustrate their potential.
Collapse
Affiliation(s)
- Jill C Preston
- The University of Vermont, Department of Plant Biology, 63 Carrigan Drive, Burlington, VT, USA
| |
Collapse
|
38
|
Brooks MD, Juang CL, Katari MS, Alvarez JM, Pasquino A, Shih HJ, Huang J, Shanks C, Cirrone J, Coruzzi GM. ConnecTF: A platform to integrate transcription factor-gene interactions and validate regulatory networks. PLANT PHYSIOLOGY 2021; 185:49-66. [PMID: 33631799 PMCID: PMC8133578 DOI: 10.1093/plphys/kiaa012] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/27/2020] [Indexed: 05/08/2023]
Abstract
Deciphering gene regulatory networks (GRNs) is both a promise and challenge of systems biology. The promise lies in identifying key transcription factors (TFs) that enable an organism to react to changes in its environment. The challenge lies in validating GRNs that involve hundreds of TFs with hundreds of thousands of interactions with their genome-wide targets experimentally determined by high-throughput sequencing. To address this challenge, we developed ConnecTF, a species-independent, web-based platform that integrates genome-wide studies of TF-target binding, TF-target regulation, and other TF-centric omic datasets and uses these to build and refine validated or inferred GRNs. We demonstrate the functionality of ConnecTF by showing how integration within and across TF-target datasets uncovers biological insights. Case study 1 uses integration of TF-target gene regulation and binding datasets to uncover TF mode-of-action and identify potential TF partners for 14 TFs in abscisic acid signaling. Case study 2 demonstrates how genome-wide TF-target data and automated functions in ConnecTF are used in precision/recall analysis and pruning of an inferred GRN for nitrogen signaling. Case study 3 uses ConnecTF to chart a network path from NLP7, a master TF in nitrogen signaling, to direct secondary TF2s and to its indirect targets in a Network Walking approach. The public version of ConnecTF (https://ConnecTF.org) contains 3,738,278 TF-target interactions for 423 TFs in Arabidopsis, 839,210 TF-target interactions for 139 TFs in maize (Zea mays), and 293,094 TF-target interactions for 26 TFs in rice (Oryza sativa). The database and tools in ConnecTF will advance the exploration of GRNs in plant systems biology applications for model and crop species.
Collapse
Affiliation(s)
- Matthew D Brooks
- Center for Genomics and Systems Biology, Department of Biology, New York University, NY, USA
- USDA ARS Global Change and Photosynthesis Research Unit, Urbana, IL, USA
| | - Che-Lun Juang
- Center for Genomics and Systems Biology, Department of Biology, New York University, NY, USA
| | - Manpreet Singh Katari
- Center for Genomics and Systems Biology, Department of Biology, New York University, NY, USA
| | - José M Alvarez
- Center for Genomics and Systems Biology, Department of Biology, New York University, NY, USA
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Angelo Pasquino
- Center for Genomics and Systems Biology, Department of Biology, New York University, NY, USA
| | - Hung-Jui Shih
- Center for Genomics and Systems Biology, Department of Biology, New York University, NY, USA
| | - Ji Huang
- Center for Genomics and Systems Biology, Department of Biology, New York University, NY, USA
| | - Carly Shanks
- Center for Genomics and Systems Biology, Department of Biology, New York University, NY, USA
| | - Jacopo Cirrone
- Courant Institute for Mathematical Sciences, Department of Computer Science, New York University NY, USA
| | - Gloria M Coruzzi
- Center for Genomics and Systems Biology, Department of Biology, New York University, NY, USA
- Author for communication: (G.C.)
| |
Collapse
|
39
|
Xu X, Crow M, Rice BR, Li F, Harris B, Liu L, Demesa-Arevalo E, Lu Z, Wang L, Fox N, Wang X, Drenkow J, Luo A, Char SN, Yang B, Sylvester AW, Gingeras TR, Schmitz RJ, Ware D, Lipka AE, Gillis J, Jackson D. Single-cell RNA sequencing of developing maize ears facilitates functional analysis and trait candidate gene discovery. Dev Cell 2021; 56:557-568.e6. [PMID: 33400914 DOI: 10.1016/j.devcel.2020.12.015] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/31/2020] [Accepted: 12/15/2020] [Indexed: 12/30/2022]
Abstract
Crop productivity depends on activity of meristems that produce optimized plant architectures, including that of the maize ear. A comprehensive understanding of development requires insight into the full diversity of cell types and developmental domains and the gene networks required to specify them. Until now, these were identified primarily by morphology and insights from classical genetics, which are limited by genetic redundancy and pleiotropy. Here, we investigated the transcriptional profiles of 12,525 single cells from developing maize ears. The resulting developmental atlas provides a single-cell RNA sequencing (scRNA-seq) map of an inflorescence. We validated our results by mRNA in situ hybridization and by fluorescence-activated cell sorting (FACS) RNA-seq, and we show how these data may facilitate genetic studies by predicting genetic redundancy, integrating transcriptional networks, and identifying candidate genes associated with crop yield traits.
Collapse
Affiliation(s)
- Xiaosa Xu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Megan Crow
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Brian R Rice
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Forrest Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Benjamin Harris
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Lei Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Zefu Lu
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Liya Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Nathan Fox
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Xiaofei Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jorg Drenkow
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Anding Luo
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Si Nian Char
- Division of Plant Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Bing Yang
- Division of Plant Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Anne W Sylvester
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | | | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; USDA-ARS, Robert W. Holley Center, Ithaca, NY 14853, USA
| | - Alexander E Lipka
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jesse Gillis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
40
|
Stable unmethylated DNA demarcates expressed genes and their cis-regulatory space in plant genomes. Proc Natl Acad Sci U S A 2020; 117:23991-24000. [PMID: 32879011 DOI: 10.1073/pnas.2010250117] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The genomic sequences of crops continue to be produced at a frenetic pace. It remains challenging to develop complete annotations of functional genes and regulatory elements in these genomes. Chromatin accessibility assays enable discovery of functional elements; however, to uncover the full portfolio of cis-elements would require profiling of many combinations of cell types, tissues, developmental stages, and environments. Here, we explore the potential to use DNA methylation profiles to develop more complete annotations. Using leaf tissue in maize, we define ∼100,000 unmethylated regions (UMRs) that account for 5.8% of the genome; 33,375 UMRs are found greater than 2 kb from genes. UMRs are highly stable in multiple vegetative tissues, and they capture the vast majority of accessible chromatin regions from leaf tissue. However, many UMRs are not accessible in leaf, and these represent regions with potential to become accessible in specific cell types or developmental stages. These UMRs often occur near genes that are expressed in other tissues and are enriched for binding sites of transcription factors. The leaf-inaccessible UMRs exhibit unique chromatin modification patterns and are enriched for chromatin interactions with nearby genes. The total UMR space in four additional monocots ranges from 80 to 120 megabases, which is remarkably similar considering the range in genome size of 271 megabases to 4.8 gigabases. In summary, based on the profile from a single tissue, DNA methylation signatures provide powerful filters to distill large genomes down to the small fraction of putative functional genes and regulatory elements.
Collapse
|
41
|
Parvathaneni RK, Bertolini E, Shamimuzzaman M, Vera DL, Lung PY, Rice BR, Zhang J, Brown PJ, Lipka AE, Bass HW, Eveland AL. The regulatory landscape of early maize inflorescence development. Genome Biol 2020; 21:165. [PMID: 32631399 PMCID: PMC7336428 DOI: 10.1186/s13059-020-02070-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 06/11/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The functional genome of agronomically important plant species remains largely unexplored, yet presents a virtually untapped resource for targeted crop improvement. Functional elements of regulatory DNA revealed through profiles of chromatin accessibility can be harnessed for fine-tuning gene expression to optimal phenotypes in specific environments. RESULT Here, we investigate the non-coding regulatory space in the maize (Zea mays) genome during early reproductive development of pollen- and grain-bearing inflorescences. Using an assay for differential sensitivity of chromatin to micrococcal nuclease (MNase) digestion, we profile accessible chromatin and nucleosome occupancy in these largely undifferentiated tissues and classify at least 1.6% of the genome as accessible, with the majority of MNase hypersensitive sites marking proximal promoters, but also 3' ends of maize genes. This approach maps regulatory elements to footprint-level resolution. Integration of complementary transcriptome profiles and transcription factor occupancy data are used to annotate regulatory factors, such as combinatorial transcription factor binding motifs and long non-coding RNAs, that potentially contribute to organogenesis, including tissue-specific regulation between male and female inflorescence structures. Finally, genome-wide association studies for inflorescence architecture traits based solely on functional regions delineated by MNase hypersensitivity reveals new SNP-trait associations in known regulators of inflorescence development as well as new candidates. CONCLUSIONS These analyses provide a comprehensive look into the cis-regulatory landscape during inflorescence differentiation in a major cereal crop, which ultimately shapes architecture and influences yield potential.
Collapse
Affiliation(s)
| | | | - Md Shamimuzzaman
- Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
- Current address: USDA-ARS Edward T. Schafer Agricultural Research Center, Fargo, ND 58102 USA
| | - Daniel L. Vera
- The Center for Genomics and Personalized Medicine, Florida State University, Tallahassee, FL 32306 USA
- Current address: Department of Genetics, Harvard Medical School, Boston, MA 02115 USA
| | - Pei-Yau Lung
- Department of Statistics, Florida State University, Tallahassee, FL 32306 USA
| | - Brian R. Rice
- Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
| | - Jinfeng Zhang
- Department of Statistics, Florida State University, Tallahassee, FL 32306 USA
| | - Patrick J. Brown
- Department of Plant Sciences, University of California, Davis, CA 95616 USA
| | - Alexander E. Lipka
- Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
| | - Hank W. Bass
- Department of Biological Science, Florida State University, Tallahassee, FL 32306 USA
| | | |
Collapse
|
42
|
Crop reproductive meristems in the genomic era: a brief overview. Biochem Soc Trans 2020; 48:853-865. [PMID: 32573650 DOI: 10.1042/bst20190441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/15/2020] [Accepted: 05/27/2020] [Indexed: 11/17/2022]
Abstract
Modulation of traits beneficial for cultivation and yield is one of the main goals of crop improvement. One of the targets for enhancing productivity is changing the architecture of inflorescences since in many species it determines fruit and seed yield. Inflorescence shape and organization is genetically established during the early stages of reproductive development and depends on the number, arrangement, activities, and duration of meristems during the reproductive phase of the plant life cycle. Despite the variety of inflorescence architectures observable in nature, many key aspects of inflorescence development are conserved among different species. For instance, the genetic network in charge of specifying the identity of the different reproductive meristems, which can be indeterminate or determinate, seems to be similar among distantly related species. The availability of a large number of published transcriptomic datasets for plants with different inflorescence architectures, allowed us to identify transcription factor gene families that are differentially expressed in determinate and indeterminate reproductive meristems. The data that we review here for Arabidopsis, rice, barley, wheat, and maize, particularly deepens our knowledge of their involvement in meristem identity specification.
Collapse
|
43
|
Musungu B, Bhatnagar D, Quiniou S, Brown RL, Payne GA, O’Brian G, Fakhoury AM, Geisler M. Use of Dual RNA-seq for Systems Biology Analysis of Zea mays and Aspergillus flavus Interaction. Front Microbiol 2020; 11:853. [PMID: 32582038 PMCID: PMC7285840 DOI: 10.3389/fmicb.2020.00853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 04/09/2020] [Indexed: 11/18/2022] Open
Abstract
The interaction between Aspergillus flavus and Zea mays is complex, and the identification of plant genes and pathways conferring resistance to the fungus has been challenging. Therefore, the authors undertook a systems biology approach involving dual RNA-seq to determine the simultaneous response from the host and the pathogen. What was dramatically highlighted in the analysis is the uniformity in the development patterns of gene expression of the host and the pathogen during infection. This led to the development of a "stage of infection index" that was subsequently used to categorize the samples before down-stream system biology analysis. Additionally, we were able to ascertain that key maize genes in pathways such as the jasmonate, ethylene and ROS pathways, were up-regulated in the study. The stage of infection index used for the transcriptomic analysis revealed that A. flavus produces a relatively limited number of transcripts during the early stages (0 to 12 h) of infection. At later stages, in A. flavus, transcripts and pathways involved in endosomal transport, aflatoxin production, and carbohydrate metabolism were up-regulated. Multiple WRKY genes targeting the activation of the resistance pathways (i.e., jasmonate, phenylpropanoid, and ethylene) were detected using causal inference analysis. This analysis also revealed, for the first time, the activation of Z. mays resistance genes influencing the expression of specific A. flavus genes. Our results show that A. flavus seems to be reacting to a hostile environment resulting from the activation of resistance pathways in Z. mays. This study revealed the dynamic nature of the interaction between the two organisms.
Collapse
Affiliation(s)
- Bryan Musungu
- Department of Plant Biology, Southern Illinois University, Carbondale, IL, United States
| | - Deepak Bhatnagar
- Southern Regional Research Center, USDA-ARS, New Orleans, LA, United States
| | - Sylvie Quiniou
- Warm Water Aquaculture Research Unit, USDA-ARS, Stoneville, MS, United States
| | - Robert L. Brown
- Southern Regional Research Center, USDA-ARS, New Orleans, LA, United States
| | - Gary A. Payne
- Department of Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Greg O’Brian
- Department of Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Ahmad M. Fakhoury
- Department of Plant Soil and Agriculture Systems, Southern Illinois University, Carbondale, IL, United States
| | - Matt Geisler
- Department of Plant Biology, Southern Illinois University, Carbondale, IL, United States
| |
Collapse
|
44
|
Thiruppathi D. Mix, Match, and Maize: A Synthetic System for Maize Nuclear Auxin Response Circuits. PLANT PHYSIOLOGY 2020; 183:416-417. [PMID: 32493797 PMCID: PMC7271807 DOI: 10.1104/pp.20.00489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
|
45
|
Dissecting Adaptive Traits with Nested Association Mapping: Genetic Architecture of Inflorescence Morphology in Sorghum. G3-GENES GENOMES GENETICS 2020; 10:1785-1796. [PMID: 32217633 PMCID: PMC7202033 DOI: 10.1534/g3.119.400658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In the cereal crop sorghum (Sorghum bicolor) inflorescence morphology variation underlies yield variation and confers adaptation across precipitation gradients, but its genetic basis is poorly understood. We characterized the genetic architecture of sorghum inflorescence morphology using a global nested association mapping (NAM) population (2200 recombinant inbred lines) and 198,000 phenotypic observations from multi-environment trials for four inflorescence morphology traits (upper branch length, lower branch length, rachis length, and rachis diameter). Trait correlations suggest that lower and upper branch length are under somewhat independent control, while lower branch length and rachis diameter are highly pleiotropic. Joint linkage and genome-wide association mapping revealed an oligogenic architecture with 1–22 QTL per trait, each explaining 0.1–5.0% of variation across the entire NAM population. There is a significant enrichment (2.twofold) of QTL colocalizing with grass inflorescence gene homologs, notably with orthologs of maize Ramosa2 and rice Aberrant Panicle Organization1 and TAWAWA1. Still, many QTL do not colocalize with inflorescence gene homologs. In global georeferenced germplasm, allelic variation at the major inflorescence QTL is geographically patterned but only weakly associated with the gradient of annual precipitation. Comparison of NAM with diversity panel association suggests that naive association models may capture some true associations not identified by mixed linear models. Overall, the findings suggest that global inflorescence diversity in sorghum is largely controlled by oligogenic, epistatic, and pleiotropic variation in ancestral regulatory networks. The findings also provide a basis for genomics-enabled breeding of locally-adapted inflorescence morphology.
Collapse
|
46
|
Zhou P, Li Z, Magnusson E, Gomez Cano F, Crisp PA, Noshay JM, Grotewold E, Hirsch CN, Briggs SP, Springer NM. Meta Gene Regulatory Networks in Maize Highlight Functionally Relevant Regulatory Interactions. THE PLANT CELL 2020; 32:1377-1396. [PMID: 32184350 PMCID: PMC7203921 DOI: 10.1105/tpc.20.00080] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/06/2020] [Accepted: 03/16/2020] [Indexed: 05/22/2023]
Abstract
The regulation of gene expression is central to many biological processes. Gene regulatory networks (GRNs) link transcription factors (TFs) to their target genes and represent maps of potential transcriptional regulation. Here, we analyzed a large number of publically available maize (Zea mays) transcriptome data sets including >6000 RNA sequencing samples to generate 45 coexpression-based GRNs that represent potential regulatory relationships between TFs and other genes in different populations of samples (cross-tissue, cross-genotype, and tissue-and-genotype samples). While these networks are all enriched for biologically relevant interactions, different networks capture distinct TF-target associations and biological processes. By examining the power of our coexpression-based GRNs to accurately predict covarying TF-target relationships in natural variation data sets, we found that presence/absence changes rather than quantitative changes in TF gene expression are more likely associated with changes in target gene expression. Integrating information from our TF-target predictions and previous expression quantitative trait loci (eQTL) mapping results provided support for 68 TFs underlying 74 previously identified trans-eQTL hotspots spanning a variety of metabolic pathways. This study highlights the utility of developing multiple GRNs within a species to detect putative regulators of important plant pathways and provides potential targets for breeding or biotechnological applications.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Zhi Li
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Erika Magnusson
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Fabio Gomez Cano
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Peter A Crisp
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Jaclyn M Noshay
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Candice N Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Steven P Briggs
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| |
Collapse
|
47
|
Ramos Báez R, Buckley Y, Yu H, Chen Z, Gallavotti A, Nemhauser JL, Moss BL. A Synthetic Approach Allows Rapid Characterization of the Maize Nuclear Auxin Response Circuit. PLANT PHYSIOLOGY 2020; 182:1713-1722. [PMID: 32123041 PMCID: PMC7140906 DOI: 10.1104/pp.19.01475] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/22/2020] [Indexed: 05/20/2023]
Abstract
Auxin plays a key role across all land plants in growth and developmental processes. Although auxin signaling function has diverged and expanded, differences in the molecular functions of signaling components have largely been characterized in Arabidopsis (Arabidopsis thaliana). Here, we used the nuclear Auxin Response Circuit recapitulated in yeast (Saccharomyces cerevisiae) system to functionally annotate maize (Zea mays) auxin signaling components, focusing on genes expressed during the development of ear and tassel inflorescences. All 16 maize auxin/indole-3-acetic acid repressor proteins were degraded in response to auxin with rates that depended on both receptor and repressor identities. When fused to the maize TOPLESS homolog RAMOSA1 ENHANCER LOCUS2, maize auxin/indole-3-acetic acids were able to repress AUXIN RESPONSE FACTOR transcriptional activity. A complete auxin response circuit comprising all maize components, including the ZmAFB2/3 b1 maize AUXIN SIGNALING F-BOX (AFB) receptor, was fully functional. The ZmAFB2/3 b1 auxin receptor was more sensitive to hormone than AtAFB2 and allowed for rapid circuit activation upon auxin addition. These results validate the conserved role of predicted auxin response genes in maize as well as provide evidence that a synthetic approach can facilitate broader comparative studies across the wide range of species with sequenced genomes.
Collapse
Affiliation(s)
- Román Ramos Báez
- University of Washington, Department of Biology, Seattle, Washington 98105
| | - Yuli Buckley
- Whitman College, Department of Biology, Walla Walla, Washington 99362
| | - Han Yu
- Whitman College, Department of Biology, Walla Walla, Washington 99362
| | - Zongliang Chen
- Waksman Institute of Microbiology, Rutgers University, Piscataway, New Jersey 08854-8020
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, New Jersey 08854-8020
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey 08901
| | | | - Britney L Moss
- Whitman College, Department of Biology, Walla Walla, Washington 99362
| |
Collapse
|
48
|
Wang F, Yuan Z, Zhao Z, Li C, Zhang X, Liang H, Liu Y, Xu Q, Liu H. Tasselseed5 encodes a cytochrome C oxidase that functions in sex determination by affecting jasmonate catabolism in maize. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:247-255. [PMID: 31087765 DOI: 10.1111/jipb.12826] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
Maize (Zea mays L.) is a monoecious grass plant in which mature male and female florets form the tassel and ear, respectively. Maize is often used as a model plant to study flower development. Several maize tassel seed mutants, such as the recessive mutants tasselseed1 (ts1) and tasselseed2 (ts2), exhibit a reversal in sex determination, which leads to the generation of seeds in tassels. The phenotype of the dominant mutant, Tasselseed5 (Ts5), is similar to that of ts2. Here, we positionally cloned the underlying gene of Ts5 and characterized its function. We show that the GRMZM2G177668 gene is overexpressed in Ts5. This gene encodes a cytochrome C oxidase, which catalyzes the transformation of jasmonoyl-L-isoleucine (JA-Ile) to 12OH-JA-Ile during jasmonic acid catabolism. Consistent with this finding, no JA-Ile peak was detected in Ts5 tassels during the sex determination period, unlike in the wild type. Transgenic maize plants overexpressing GRMZM2G177668 exhibited a tassel-seed phenotype similar to that of Ts5. These results indicate that the JA-Ile peak in tassels is critical for sex determination and that the Ts5 mutant phenotype results from the disruption of this peak in tassels during sex determination.
Collapse
Affiliation(s)
- Fei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhenjiang Yuan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Zhiwei Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Caixia Li
- College of Agronomy, Shandong Agricultural University, Taian, 271018, China
| | - Xin Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Huafeng Liang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yawen Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Qian Xu
- College of Agronomy, Shandong Agricultural University, Taian, 271018, China
| | - Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
49
|
Knauer S, Javelle M, Li L, Li X, Ma X, Wimalanathan K, Kumari S, Johnston R, Leiboff S, Meeley R, Schnable PS, Ware D, Lawrence-Dill C, Yu J, Muehlbauer GJ, Scanlon MJ, Timmermans MCP. A high-resolution gene expression atlas links dedicated meristem genes to key architectural traits. Genome Res 2019; 29:1962-1973. [PMID: 31744902 PMCID: PMC6886502 DOI: 10.1101/gr.250878.119] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/02/2019] [Indexed: 12/20/2022]
Abstract
The shoot apical meristem (SAM) orchestrates the balance between stem cell proliferation and organ initiation essential for postembryonic shoot growth. Meristems show a striking diversity in shape and size. How this morphological diversity relates to variation in plant architecture and the molecular circuitries driving it are unclear. By generating a high-resolution gene expression atlas of the vegetative maize shoot apex, we show here that distinct sets of genes govern the regulation and identity of stem cells in maize versus Arabidopsis. Cell identities in the maize SAM reflect the combinatorial activity of transcription factors (TFs) that drive the preferential, differential expression of individual members within gene families functioning in a plethora of cellular processes. Subfunctionalization thus emerges as a fundamental feature underlying cell identity. Moreover, we show that adult plant characters are, to a significant degree, regulated by gene circuitries acting in the SAM, with natural variation modulating agronomically important architectural traits enriched specifically near dynamically expressed SAM genes and the TFs that regulate them. Besides unique mechanisms of maize stem cell regulation, our atlas thus identifies key new targets for crop improvement.
Collapse
Affiliation(s)
- Steffen Knauer
- Center for Plant Molecular Biology, University of Tuebingen, 72076 Tuebingen, Germany
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Marie Javelle
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Lin Li
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, Minnesota 55108, USA
| | - Xianran Li
- Department of Agronomy, Iowa State University, Ames, Iowa 50011, USA
| | - Xiaoli Ma
- Center for Plant Molecular Biology, University of Tuebingen, 72076 Tuebingen, Germany
| | - Kokulapalan Wimalanathan
- Interdepartmental Bioinformatics and Computational Biology Program, Iowa State University, Ames, Iowa 50011, USA
| | - Sunita Kumari
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Robyn Johnston
- Plant Biology Section, School of Intergrated Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Samuel Leiboff
- Plant Biology Section, School of Intergrated Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Robert Meeley
- DuPont Pioneer, Agricultural Biotechnology, Johnston, Iowa 50131, USA
| | | | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Carolyn Lawrence-Dill
- Department of Agronomy, Iowa State University, Ames, Iowa 50011, USA
- Interdepartmental Bioinformatics and Computational Biology Program, Iowa State University, Ames, Iowa 50011, USA
| | - Jianming Yu
- Department of Agronomy, Iowa State University, Ames, Iowa 50011, USA
| | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, Minnesota 55108, USA
| | - Michael J Scanlon
- Plant Biology Section, School of Intergrated Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Marja C P Timmermans
- Center for Plant Molecular Biology, University of Tuebingen, 72076 Tuebingen, Germany
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
50
|
Springer N, de León N, Grotewold E. Challenges of Translating Gene Regulatory Information into Agronomic Improvements. TRENDS IN PLANT SCIENCE 2019; 24:1075-1082. [PMID: 31377174 DOI: 10.1016/j.tplants.2019.07.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/26/2019] [Accepted: 07/05/2019] [Indexed: 06/10/2023]
Abstract
Improvement of agricultural species has exploited the genetic variation responsible for complex quantitative traits. Much of the functional variation is regulatory, in cis-regulatory elements and trans-acting factors that ultimately contribute to gene expression differences. However, the identification of gene regulatory network components that, when modulated, will increase plant productivity or resilience, is challenging, yet essential to provide increased predictive power for genome engineering approaches that are likely to benefit useful traits. Here, we discuss the opportunities and limitations of using data obtained from gene coexpression, transcription factor binding, and genome-wide association mapping analyses to predict regulatory interactions that impact crop improvement. It is apparent that a combination of information from these data types is necessary for the reliable identification and utilization of important regulatory interactions that underlie complex agronomic traits.
Collapse
Affiliation(s)
- Nathan Springer
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN 55108, USA.
| | - Natalia de León
- Department of Agronomy, University of Wisconsin, Madison, WI 56706, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|