1
|
Zhang B, Bu Y, Song J, Yuan B, Xiao S, Wang F, Fang Q, Ye G, Yang Y, Ye X. Genomic Analysis Reveals the Role of New Genes in Venom Regulatory Network of Parasitoid Wasps. INSECTS 2025; 16:502. [PMID: 40429215 PMCID: PMC12112512 DOI: 10.3390/insects16050502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/22/2025] [Accepted: 05/03/2025] [Indexed: 05/29/2025]
Abstract
New genes play a critical role in phenotypic diversity and evolutionary innovation. Parasitoid wasps, a highly abundant and diverse group of insects, parasitize other arthropods and exhibit remarkable evolutionary adaptations, such as evading host immune responses and exploiting host resources. However, the specific contributions of new genes to their unique traits remain poorly understood. Here, we identified 480 new genes that emerged after the Nasonia-Pteromalus divergence. Among these, 272 (56.7%) originated through DNA-mediated duplication, representing the largest proportion, followed by 77 (16.0%) derived from RNA-mediated duplication and 131 (27.3%) that arose de novo. Comparative analysis revealed that these new genes generally have shorter coding sequences and fewer exons compared to single-copy older genes conserved in the seven parasitoid wasps. These new genes are predominantly expressed in the reproductive glands and exhibit venom gland-biased expression. Notably, gene co-expression network analysis further identified that a new gene may act as a hub by interacting with older genes to regulate venom-related networks rather than directly encoding venom proteins. Together, our findings provide novel insights into the role of new genes in driving venom innovation in parasitoid wasps.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Rice Biology and Breeding, Zhejiang University, Hangzhou 310058, China; (B.Z.); (Y.B.)
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Yifan Bu
- State Key Laboratory of Rice Biology and Breeding, Zhejiang University, Hangzhou 310058, China; (B.Z.); (Y.B.)
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Jiqiang Song
- State Key Laboratory of Rice Biology and Breeding, Zhejiang University, Hangzhou 310058, China; (B.Z.); (Y.B.)
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Bo Yuan
- State Key Laboratory of Rice Biology and Breeding, Zhejiang University, Hangzhou 310058, China; (B.Z.); (Y.B.)
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Shan Xiao
- State Key Laboratory of Rice Biology and Breeding, Zhejiang University, Hangzhou 310058, China; (B.Z.); (Y.B.)
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Fang Wang
- State Key Laboratory of Rice Biology and Breeding, Zhejiang University, Hangzhou 310058, China; (B.Z.); (Y.B.)
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Qi Fang
- State Key Laboratory of Rice Biology and Breeding, Zhejiang University, Hangzhou 310058, China; (B.Z.); (Y.B.)
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Gongyin Ye
- State Key Laboratory of Rice Biology and Breeding, Zhejiang University, Hangzhou 310058, China; (B.Z.); (Y.B.)
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Yi Yang
- State Key Laboratory of Rice Biology and Breeding, Zhejiang University, Hangzhou 310058, China; (B.Z.); (Y.B.)
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Xinhai Ye
- College of Advanced Agriculture Science, Zhejiang A&F University, Hangzhou 311300, China
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
2
|
Dibyachintan S, Dubé AK, Bradley D, Lemieux P, Dionne U, Landry CR. Cryptic genetic variation shapes the fate of gene duplicates in a protein interaction network. Nat Commun 2025; 16:1530. [PMID: 39934115 PMCID: PMC11814230 DOI: 10.1038/s41467-025-56597-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 01/20/2025] [Indexed: 02/13/2025] Open
Abstract
Paralogous genes are often functionally redundant for long periods of time. While their functions are preserved, paralogs accumulate cryptic changes in sequence and expression, which could modulate the impact of future mutations through epistasis. We examine the impact of mutations on redundant myosin proteins that have maintained the same binding preference despite having accumulated differences in expression levels and amino acid substitutions in the last 100 million years. By quantifying the impact of all single-amino acid substitutions in their SH3 domains on the physical interaction with their interaction partners, we show that the same mutations in the paralogous SH3s change binding in a paralog-specific and interaction partner-specific manner. This contingency is explained by the difference in promoter strength of the two paralogous myosin genes and epistatic interactions between the mutations introduced and cryptic divergent sites within the SH3s. One significant consequence of this contingency is that while some mutations would be sufficient to nonfunctionalize one paralog, they would have minimal impact on the other. Our results reveal how cryptic divergence, which accumulates while maintaining functional redundancy in cellular networks, could bias gene duplicates to specific fates.
Collapse
Affiliation(s)
- Soham Dibyachintan
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, Québec, QC, Canada
- Centre de Recherche en Données Massives de l'Université Laval, Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Québec, QC, Canada
| | - Alexandre K Dubé
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, Québec, QC, Canada
- Centre de Recherche en Données Massives de l'Université Laval, Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Québec, QC, Canada
- Département de Biologie, Université Laval, Québec, QC, Canada
| | - David Bradley
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, Québec, QC, Canada
- Centre de Recherche en Données Massives de l'Université Laval, Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Québec, QC, Canada
- Département de Biologie, Université Laval, Québec, QC, Canada
| | - Pascale Lemieux
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, Québec, QC, Canada
- Centre de Recherche en Données Massives de l'Université Laval, Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Québec, QC, Canada
| | - Ugo Dionne
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, Québec, QC, Canada
- Centre de Recherche en Données Massives de l'Université Laval, Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Christian R Landry
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, Québec, QC, Canada.
- Centre de Recherche en Données Massives de l'Université Laval, Université Laval, Québec, QC, Canada.
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada.
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Québec, QC, Canada.
- Département de Biologie, Université Laval, Québec, QC, Canada.
| |
Collapse
|
3
|
Klure DM, Greenhalgh R, Orr TJ, Shapiro MD, Dearing MD. Parallel gene expansions drive rapid dietary adaptation in herbivorous woodrats. Science 2025; 387:156-162. [PMID: 39787210 PMCID: PMC12172070 DOI: 10.1126/science.adp7978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/15/2024] [Indexed: 01/12/2025]
Abstract
How mammalian herbivores evolve to feed on chemically defended plants remains poorly understood. In this study, we investigated the adaptation of two species of woodrats (Neotoma lepida and N. bryanti) to creosote bush (Larrea tridentata), a toxic shrub that expanded across the southwestern United States after the Last Glacial Maximum. We found that creosote-adapted woodrats have elevated gene dosage across multiple biotransformation enzyme families. These duplication events occurred independently across species and substantially increase expression of biotransformation genes, especially within the glucuronidation pathway. We propose that increased gene dosage resulting from duplication is an important mechanism by which animals initially adapt to novel environmental pressures.
Collapse
Affiliation(s)
- Dylan M. Klure
- School of Biological Sciences, University of Utah; Salt Lake City, USA
| | - Robert Greenhalgh
- School of Biological Sciences, University of Utah; Salt Lake City, USA
| | - Teri J. Orr
- School of Biological Sciences, University of Utah; Salt Lake City, USA
- Department of Biology, New Mexico State University, Las Cruces, USA
| | | | - M. Denise Dearing
- School of Biological Sciences, University of Utah; Salt Lake City, USA
| |
Collapse
|
4
|
Jia S, Li R, Li Y, Huang Y, Liu M, Zhou Y, Liang Y, Hao Z, Xu Y, Wang H. Evolutionary Novelty of Apolipoprotein D Facilitates Metabolic Plasticity in Lepidopteran Wings. Mol Biol Evol 2024; 41:msae252. [PMID: 39665685 PMCID: PMC11683417 DOI: 10.1093/molbev/msae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/27/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024] Open
Abstract
Understanding metabolic plasticity of animal evolution is a fundamental challenge in evolutionary biology. Owing to the diversification of insect wing morphology and dynamic energy requirements, the molecular adaptation mechanisms underlying the metabolic pathways in wing evolution remain largely unknown. This study reveals the pivotal role of the duplicated Apolipoprotein D (ApoD) gene in lipid and energy homeostasis in the lepidopteran wing. ApoD underwent significant expansion in insects, with gene duplication and consistent retention observed in Lepidoptera. Notably, duplicated ApoD2 was highly expressed in lepidopteran wings and encoded a unique C-terminal tail, conferring distinct ligand-binding properties. Using Bombyx mori as a model organism, we integrated evolutionary analysis, multiomics, and in vivo functional experiments to elucidate the way duplicated ApoD2 mediates lipid trafficking and homeostasis via the AMP-activated protein kinase pathway in wings. Moreover, we revealed the specific expression and functional divergence of duplicated ApoD as a key mechanism regulating lipid homeostasis in the lepidopteran wing. These findings highlight an evolutionary scenario in which neofunctionalization conferred a novel role of ApoD in shaping adaptive lipid metabolic regulatory networks during wing phenotypic evolution. Overall, we provide in vivo evidence for the functional differentiation of duplicate genes in shaping adaptive metabolic regulatory networks during phenotypic evolution.
Collapse
Affiliation(s)
- Shunze Jia
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Rongqiao Li
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yinghui Li
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuxin Huang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Minmin Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanyan Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanting Liang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhihua Hao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yusong Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huabing Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Hervas-Sotomayor F, Murat F. Gene duplication contributes to liver evolution. Nat Ecol Evol 2024; 8:1788-1789. [PMID: 39152329 DOI: 10.1038/s41559-024-02509-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Affiliation(s)
| | - Florent Murat
- INRAE, Fish Physiology and Genomics Institute (LPGP), Rennes, France.
| |
Collapse
|
6
|
Lin TC, Tsai CH, Shiau CK, Huang JH, Tsai HK. Predicting splicing patterns from the transcription factor binding sites in the promoter with deep learning. BMC Genomics 2024; 25:830. [PMID: 39227799 PMCID: PMC11373144 DOI: 10.1186/s12864-024-10667-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 07/25/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Alternative splicing is a pivotal mechanism of post-transcriptional modification that contributes to the transcriptome plasticity and proteome diversity in metazoan cells. Although many splicing regulations around the exon/intron regions are known, the relationship between promoter-bound transcription factors and the downstream alternative splicing largely remains unexplored. RESULTS In this study, we present computational approaches to unravel the regulatory relationship between promoter-bound transcription factor binding sites (TFBSs) and the splicing patterns. We curated a fine dataset that includes DNase I hypersensitive site sequencing and transcriptomes across fifteen human tissues from ENCODE. Specifically, we proposed different representations of TF binding context and splicing patterns to examine the associations between the promoter and downstream splicing events. While machine learning models demonstrated potential in predicting splicing patterns based on TFBS occupancies, the limitations in the generalization of predicting the splicing forms of singleton genes across diverse tissues was observed with carefully examination using different cross-validation methods. We further investigated the association between alterations in individual TFBS at promoters and shifts in exon splicing efficiency. Our results demonstrate that the convolutional neural network (CNN) models, trained on TF binding changes in the promoters, can predict the changes in splicing patterns. Furthermore, a systemic in silico substitutions analysis on the CNN models highlighted several potential splicing regulators. Notably, using empirical validation using K562 CTCFL shRNA knock-down data, we showed the significant role of CTCFL in splicing regulation. CONCLUSION In conclusion, our finding highlights the potential role of promoter-bound TFBSs in influencing the regulation of downstream splicing patterns and provides insights for discovering alternative splicing regulations.
Collapse
Affiliation(s)
- Tzu-Chieh Lin
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Cheng-Hung Tsai
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Cheng-Kai Shiau
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Jia-Hsin Huang
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan.
- Taiwan AI Labs & Foundation, Taipei, 10351, Taiwan.
| | - Huai-Kuang Tsai
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan.
- Taiwan AI Labs & Foundation, Taipei, 10351, Taiwan.
| |
Collapse
|
7
|
Singh PP, Reeves GA, Contrepois K, Papsdorf K, Miklas JW, Ellenberger M, Hu CK, Snyder MP, Brunet A. Evolution of diapause in the African turquoise killifish by remodeling the ancient gene regulatory landscape. Cell 2024; 187:3338-3356.e30. [PMID: 38810644 PMCID: PMC11970524 DOI: 10.1016/j.cell.2024.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 11/30/2023] [Accepted: 04/30/2024] [Indexed: 05/31/2024]
Abstract
Suspended animation states allow organisms to survive extreme environments. The African turquoise killifish has evolved diapause as a form of suspended development to survive a complete drought. However, the mechanisms underlying the evolution of extreme survival states are unknown. To understand diapause evolution, we performed integrative multi-omics (gene expression, chromatin accessibility, and lipidomics) in the embryos of multiple killifish species. We find that diapause evolved by a recent remodeling of regulatory elements at very ancient gene duplicates (paralogs) present in all vertebrates. CRISPR-Cas9-based perturbations identify the transcription factors REST/NRSF and FOXOs as critical for the diapause gene expression program, including genes involved in lipid metabolism. Indeed, diapause shows a distinct lipid profile, with an increase in triglycerides with very-long-chain fatty acids. Our work suggests a mechanism for the evolution of complex adaptations and offers strategies to promote long-term survival by activating suspended animation programs in other species.
Collapse
Affiliation(s)
| | - G Adam Reeves
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Kévin Contrepois
- Department of Genetics, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | | | - Jason W Miklas
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Chi-Kuo Hu
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA; Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA; Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
8
|
Greenhalgh R, Klure DM, Orr TJ, Armstrong NM, Shapiro MD, Dearing MD. The desert woodrat (Neotoma lepida) induces a diversity of biotransformation genes in response to creosote bush resin. Comp Biochem Physiol C Toxicol Pharmacol 2024; 280:109870. [PMID: 38428625 PMCID: PMC11006593 DOI: 10.1016/j.cbpc.2024.109870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/26/2024] [Accepted: 02/24/2024] [Indexed: 03/03/2024]
Abstract
Liver biotransformation enzymes have long been thought to enable animals to feed on diets rich in xenobiotic compounds. However, despite decades of pharmacological research in humans and rodents, little is known about hepatic gene expression in specialized mammalian herbivores feeding on toxic diets. Leveraging a recently identified population of the desert woodrat (Neotoma lepida) found to be highly tolerant to toxic creosote bush (Larrea tridentata), we explored the expression changes of suites of biotransformation genes in response to diets enriched with varying amounts of creosote resin. Analysis of hepatic RNA-seq data indicated a dose-dependent response to these compounds, including the upregulation of several genes encoding transcription factors and numerous phase I, II, and III biotransformation families. Notably, elevated expression of five biotransformation families - carboxylesterases, cytochromes P450, aldo-keto reductases, epoxide hydrolases, and UDP-glucuronosyltransferases - corresponded to species-specific duplication events in the genome, suggesting that these genes play a prominent role in N. lepida's adaptation to creosote bush. Building on pharmaceutical studies in model rodents, we propose a hypothesis for how the differentially expressed genes are involved in the biotransformation of creosote xenobiotics. Our results provide some of the first details about how these processes likely operate in the liver of a specialized mammalian herbivore.
Collapse
Affiliation(s)
- Robert Greenhalgh
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, UT 84112, USA.
| | - Dylan M Klure
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, UT 84112, USA.
| | - Teri J Orr
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, UT 84112, USA.
| | - Noah M Armstrong
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, UT 84112, USA.
| | - Michael D Shapiro
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, UT 84112, USA.
| | - M Denise Dearing
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, UT 84112, USA.
| |
Collapse
|
9
|
Castellanos MDP, Wickramasinghe CD, Betrán E. The roles of gene duplications in the dynamics of evolutionary conflicts. Proc Biol Sci 2024; 291:20240555. [PMID: 38865605 DOI: 10.1098/rspb.2024.0555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 04/02/2024] [Indexed: 06/14/2024] Open
Abstract
Evolutionary conflicts occur when there is antagonistic selection between different individuals of the same or different species, life stages or between levels of biological organization. Remarkably, conflicts can occur within species or within genomes. In the dynamics of evolutionary conflicts, gene duplications can play a major role because they can bring very specific changes to the genome: changes in protein dose, the generation of novel paralogues with different functions or expression patterns or the evolution of small antisense RNAs. As we describe here, by having those effects, gene duplication might spark evolutionary conflict or fuel arms race dynamics that takes place during conflicts. Interestingly, gene duplication can also contribute to the resolution of a within-locus evolutionary conflict by partitioning the functions of the gene that is under an evolutionary trade-off. In this review, we focus on intraspecific conflicts, including sexual conflict and illustrate the various roles of gene duplications with a compilation of examples. These examples reveal the level of complexity and the differences in the patterns of gene duplications within genomes under different conflicts. These examples also reveal the gene ontologies involved in conflict and the genomic location of the elements of the conflict. The examples provide a blueprint for the direct study of these conflicts or the exploration of the presence of similar conflicts in other lineages.
Collapse
Affiliation(s)
| | | | - Esther Betrán
- Department of Biology, University of Texas at Arlington , Arlington, TX 76019, USA
| |
Collapse
|
10
|
Mantica F, Iñiguez LP, Marquez Y, Permanyer J, Torres-Mendez A, Cruz J, Franch-Marro X, Tulenko F, Burguera D, Bertrand S, Doyle T, Nouzova M, Currie PD, Noriega FG, Escriva H, Arnone MI, Albertin CB, Wotton KR, Almudi I, Martin D, Irimia M. Evolution of tissue-specific expression of ancestral genes across vertebrates and insects. Nat Ecol Evol 2024; 8:1140-1153. [PMID: 38622362 DOI: 10.1038/s41559-024-02398-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/08/2024] [Indexed: 04/17/2024]
Abstract
Regulation of gene expression is arguably the main mechanism underlying the phenotypic diversity of tissues within and between species. Here we assembled an extensive transcriptomic dataset covering 8 tissues across 20 bilaterian species and performed analyses using a symmetric phylogeny that allowed the combined and parallel investigation of gene expression evolution between vertebrates and insects. We specifically focused on widely conserved ancestral genes, identifying strong cores of pan-bilaterian tissue-specific genes and even larger groups that diverged to define vertebrate and insect tissues. Systematic inferences of tissue-specificity gains and losses show that nearly half of all ancestral genes have been recruited into tissue-specific transcriptomes. This occurred during both ancient and, especially, recent bilaterian evolution, with several gains being associated with the emergence of unique phenotypes (for example, novel cell types). Such pervasive evolution of tissue specificity was linked to gene duplication coupled with expression specialization of one of the copies, revealing an unappreciated prolonged effect of whole-genome duplications on recent vertebrate evolution.
Collapse
Affiliation(s)
- Federica Mantica
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Luis P Iñiguez
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Yamile Marquez
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Jon Permanyer
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Antonio Torres-Mendez
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Josefa Cruz
- Institute of Evolutionary Biology (IBE, CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Xavier Franch-Marro
- Institute of Evolutionary Biology (IBE, CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Frank Tulenko
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Demian Burguera
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Stephanie Bertrand
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins; BIOM, Banyuls-sur-Mer, France
| | - Toby Doyle
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Marcela Nouzova
- Institute of Parasitology, CAS, České Budějovice, Czech Republic
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- EMBL Australia; Victorian Node, Monash University, Clayton, Victoria, Australia
| | - Fernando G Noriega
- Biology and BSI, Florida International University, Miami, FL, USA
- Department of Parasitology, University of South Bohemia, České Budějovice, Czech Republic
| | - Hector Escriva
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins; BIOM, Banyuls-sur-Mer, France
| | | | - Caroline B Albertin
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Karl R Wotton
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Isabel Almudi
- Department of Genetics, Microbiology and Statistics and IRBio, Universitat de Barcelona, Barcelona, Spain
| | - David Martin
- Institute of Evolutionary Biology (IBE, CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
11
|
Kagan F, Hejnol A. Comparative Analysis of Maternal Gene Expression Patterns Unravels Evolutionary Signatures Across Reproductive Modes. Mol Biol Evol 2024; 41:msae081. [PMID: 38679468 DOI: 10.1093/molbev/msae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/09/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024] Open
Abstract
Maternal genes have a pivotal role in regulating metazoan early development. As such their functions have been extensively studied since the dawn of developmental biology. The temporal and spatial dynamics of their transcripts have been thoroughly described in model organisms and their functions have been undergoing heavy investigations. Yet, less is known about the evolutionary changes shaping their presence within diverse oocytes. Due to their unique maternal inheritance pattern, a high degree is predicted to be present when it comes to their expression. Insofar only limited and conflicting results have emerged around it. Here, we set out to elucidate which evolutionary changes could be detected in the maternal gene expression patterns using phylogenetic comparative methods on RNAseq data from 43 species. Using normalized gene expression values and fold change information throughout early development we set out to find the best-fitting evolutionary model. Through modeling, we find evidence supporting both the high degree of divergence and constraint on gene expression values, together with their temporal dynamics. Furthermore, we find that maternal gene expression alone can be used to explain the reproductive modes of different species. Together, these results suggest a highly dynamic evolutionary landscape of maternal gene expression. We also propose a possible functional dichotomy of maternal genes which is influenced by the reproductive strategy undertaken by examined species.
Collapse
Affiliation(s)
- Ferenc Kagan
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Andreas Hejnol
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Faculty of Biological Sciences, Friedrich Schiller University, Institute for Zoology and Evolutionary Research, Jena, Germany
| |
Collapse
|
12
|
Zou Y, Yang J, Zhou J, Liu G, Shen L, Zhou Z, Su Z, Gu X. Anciently duplicated genes continuously recruited to heart expression in vertebrate evolution are associated with heart chamber increase. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024. [PMID: 38361319 DOI: 10.1002/jez.b.23248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
Although gene/genome duplications in the early stage of vertebrates have been thought to provide major resources of raw genetic materials for evolutionary innovations, it is unclear whether they continuously contribute to the evolution of morphological complexity during the course of vertebrate evolution, such as the evolution from two heart chambers (fishes) to four heart chambers (mammals and birds). We addressed this issue by our heart RNA-Seq experiments combined with published data, using 13 vertebrates and one invertebrate (sea squirt, as an outgroup). Our evolutionary transcriptome analysis showed that number of ancient paralogous genes expressed in heart tends to increase with the increase of heart chamber number along the vertebrate phylogeny, in spite that most of them were duplicated at the time near to the origin of vertebrates or even more ancient. Moreover, those paralogs expressed in heart exert considerably different functions from heart-expressed singletons: the former are functionally enriched in cardiac muscle and muscle contraction-related categories, whereas the latter play more basic functions of energy generation like aerobic respiration. These findings together support the notion that recruiting anciently paralogous genes that are expressed in heart is associated with the increase of chamber number in vertebrate evolution.
Collapse
Affiliation(s)
- Yangyun Zou
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jingwen Yang
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- Brown Center for Immunotherapy, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Jingqi Zhou
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Gangbiao Liu
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Libing Shen
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zhan Zhou
- Innovation Institute for Artificial Intelligence in Medicine and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhixi Su
- Singlera Genomics Ltd., Shanghai, China
| | - Xun Gu
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
13
|
Bontonou G, Saint-Leandre B, Kafle T, Baticle T, Hassan A, Sánchez-Alcañiz JA, Arguello JR. Evolution of chemosensory tissues and cells across ecologically diverse Drosophilids. Nat Commun 2024; 15:1047. [PMID: 38316749 PMCID: PMC10844241 DOI: 10.1038/s41467-023-44558-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/19/2023] [Indexed: 02/07/2024] Open
Abstract
Chemosensory tissues exhibit significant between-species variability, yet the evolution of gene expression and cell types underlying this diversity remain poorly understood. To address these questions, we conducted transcriptomic analyses of five chemosensory tissues from six Drosophila species and integrated the findings with single-cell datasets. While stabilizing selection predominantly shapes chemosensory transcriptomes, thousands of genes in each tissue have evolved expression differences. Genes that have changed expression in one tissue have often changed in multiple other tissues but at different past epochs and are more likely to be cell type-specific than unchanged genes. Notably, chemosensory-related genes have undergone widespread expression changes, with numerous species-specific gains/losses including novel chemoreceptors expression patterns. Sex differences are also pervasive, including a D. melanogaster-specific excess of male-biased expression in sensory and muscle cells in its forelegs. Together, our analyses provide new insights for understanding evolutionary changes in chemosensory tissues at both global and individual gene levels.
Collapse
Affiliation(s)
- Gwénaëlle Bontonou
- Department of Ecology & Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Bastien Saint-Leandre
- Department of Ecology & Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Tane Kafle
- Department of Ecology & Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Tess Baticle
- Department of Ecology & Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Afrah Hassan
- Department of Ecology & Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | | | - J Roman Arguello
- Department of Ecology & Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| |
Collapse
|
14
|
Hannon Bozorgmehr J. Four classic "de novo" genes all have plausible homologs and likely evolved from retro-duplicated or pseudogenic sequences. Mol Genet Genomics 2024; 299:6. [PMID: 38315248 DOI: 10.1007/s00438-023-02090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/15/2023] [Indexed: 02/07/2024]
Abstract
Despite being previously regarded as extremely unlikely, the idea that entirely novel protein-coding genes can emerge from non-coding sequences has gradually become accepted over the past two decades. Examples of "de novo origination", resulting in lineage-specific "orphan" genes, lacking coding orthologs, are now produced every year. However, many are likely cases of duplicates that are difficult to recognize. Here, I re-examine the claims and show that four very well-known examples of genes alleged to have emerged completely "from scratch"- FLJ33706 in humans, Goddard in fruit flies, BSC4 in baker's yeast and AFGP2 in codfish-may have plausible evolutionary ancestors in pre-existing genes. The first two are likely highly diverged retrogenes coding for regulatory proteins that have been misidentified as orphans. The antifreeze glycoprotein, moreover, may not have evolved from repetitive non-genic sequences but, as in several other related cases, from an apolipoprotein that could have become pseudogenized before later being reactivated. These findings detract from various claims made about de novo gene birth and show there has been a tendency not to invest the necessary effort in searching for homologs outside of a very limited syntenic or phylostratigraphic methodology. A robust approach is used for improving detection that draws upon similarities, not just in terms of statistical sequence analysis, but also relating to biochemistry and function, to obviate notable failures to identify homologs.
Collapse
|
15
|
Lu JB, Ren PP, Li Q, He F, Xu ZT, Wang SN, Chen JP, Li JM, Zhang CX. The evolution and functional divergence of 10 Apolipoprotein D-like genes in Nilaparvata lugens. INSECT SCIENCE 2024; 31:91-105. [PMID: 37334667 DOI: 10.1111/1744-7917.13216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/16/2023] [Accepted: 04/22/2023] [Indexed: 06/20/2023]
Abstract
Apolipoprotein D (ApoD), a member of the lipocalin superfamily of proteins, is involved in lipid transport and stress resistance. Whereas only a single copy of the ApoD gene is found in humans and some other vertebrates, there are typically several ApoD-like genes in insects. To date, there have been relatively few studies that have examined the evolution and functional differentiation of ApoD-like genes in insects, particularly hemi-metabolous insects. In this study, we identified 10 ApoD-like genes (NlApoD1-10) with distinct spatiotemporal expression patterns in Nilaparvata lugens (BPH), which is an important pest of rice. NlApoD1-10 were found to be distributed on 3 chromosomes in a tandem array of NlApoD1/2, NlApoD3-5, and NlApoD7/8, and show sequence and gene structural divergence in the coding regions, indicating that multiple gene duplication events occurred during evolution. Phylogenetic analysis revealed that NlApoD1-10 can be clustered into 5 clades, with NlApoD3-5 and NlApoD7/8 potentially evolving exclusively in the Delphacidae family. Functional screening using an RNA interference approach revealed that only NlApoD2 was essential for BPH development and survival, whereas NlApoD4/5 are highly expressed in testes, and might play roles in reproduction. Moreover, stress response analysis revealed that NlApoD3-5/9, NlApoD3-5, and NlApoD9 were up-regulated after treatment with lipopolysaccharide, H2 O2 , and ultraviolet-C, respectively, indicating their potential roles in stress resistance.
Collapse
Affiliation(s)
- Jia-Bao Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang Province, China
| | - Peng-Peng Ren
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang Province, China
| | - Qiao Li
- Technology Center of Wuhan Customs District, Hubei, China
- Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Fang He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang Province, China
| | - Zhong-Tian Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang Province, China
| | - Sai-Nan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang Province, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang Province, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang Province, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang Province, China
- Institute of Insect Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Ma F, Lau CY, Zheng C. Young duplicate genes show developmental stage- and cell type-specific expression and function in Caenorhabditis elegans. CELL GENOMICS 2024; 4:100467. [PMID: 38190105 PMCID: PMC10794840 DOI: 10.1016/j.xgen.2023.100467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/06/2023] [Accepted: 11/23/2023] [Indexed: 01/09/2024]
Abstract
Gene duplication produces the material that fuels evolutionary innovation. The "out-of-testis" hypothesis suggests that sperm competition creates selective pressure encouraging the emergence of new genes in male germline, but the somatic expression and function of the newly evolved genes are not well understood. We systematically mapped the expression of young duplicate genes throughout development in Caenorhabditis elegans using both whole-organism and single-cell transcriptomic data. Based on the expression dynamics across developmental stages, young duplicate genes fall into three clusters that are preferentially expressed in early embryos, mid-stage embryos, and late-stage larvae. Early embryonic genes are involved in protein degradation and develop essentiality comparable to the genomic average. In mid-to-late embryos and L4-stage larvae, young genes are enriched in intestine, epidermal cells, coelomocytes, and amphid chemosensory neurons. Their molecular functions and inducible expression indicate potential roles in innate immune response and chemosensory perceptions, which may contribute to adaptation outside of the sperm.
Collapse
Affiliation(s)
- Fuqiang Ma
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Chun Yin Lau
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Chaogu Zheng
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
17
|
Islam M, Behura SK. Role of paralogs in the sex-bias transcriptional and metabolic regulation of the brain-placental axis in mice. Placenta 2024; 145:143-150. [PMID: 38134547 DOI: 10.1016/j.placenta.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
INTRODUCTION Duplicated genes or paralogs play important roles in the adaptive function of eukaryotic genomes. Animal studies have shown evidence for the functional role of paralogs in pregnancy, but our knowledge about the role of paralogs in the fetoplacental regulation remains limited. In particular, if fetoplacental metabolic regulation is modulated by differential expression of paralogs remains unexamined. METHODS In this study, gene expression profiles of day-15 placenta and fetal brain were compared to identify families or groups of paralogous genes expressed in the placenta and brain of male versus female fetuses in mice. A Bayesian modeling was applied to infer directional relationship of transcriptional variation of the paralogs relative to the phylogenetic variation of the genes in each family. Gas chromatography-mass spectrometry (GC-MS) was used to perform untargeted metabolomics analysis of day-15 placenta and fetal brain of both sexes. RESULTS We identified paralog groups that were expressed in a sex and/or tissue biased manner between the placenta and fetal brain. Bayesian modeling showed evidence for directional relationship between expression and phylogeny of specific paralogs. These relationships were sex specific. GC-MS analysis identified metabolites that were expressed in a sex-bias manner between the placenta and fetal brain. By performing integrative analysis of the metabolomics and gene expression data, we showed that specific groups of metabolites and paralogous genes were expressed in a coordinated manner between the placenta and fetal brain. DISCUSSION The findings of this study collectively suggest that paralogs play an influential role in the regulation of the brain-placental axis in mice.
Collapse
Affiliation(s)
- Maliha Islam
- Division of Animal Sciences, University of Missouri, 920 East Campus Drive, Columbia, Missouri, 65211, USA
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, 920 East Campus Drive, Columbia, Missouri, 65211, USA; MU Institute for Data Science and Informatics, University of Missouri, USA; Interdisciplinary Reproduction and Health Group, University of Missouri, USA; Interdisciplinary Neuroscience Program, University of Missouri, USA.
| |
Collapse
|
18
|
Zhang X, Han W, Fan X, Wang Y, Xu D, Sun K, Wang W, Zhang Y, Ma J, Ye N. Gene duplication and functional divergence of new genes contributed to the polar acclimation of Antarctic green algae. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:511-524. [PMID: 38045541 PMCID: PMC10689623 DOI: 10.1007/s42995-023-00203-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 10/12/2023] [Indexed: 12/05/2023]
Abstract
Psychrophilic microalgae successfully survive in the extreme and highly variable polar ecosystems, which represent the energy base of most food webs and play a fundamental role in nutrient cycling. The success of microalgae is rooted in their adaptive evolution. Revealing how they have evolved to thrive in extreme polar environments will help us better understand the origin of life in polar ecosystems. We isolated a psychrophilic unicellular green alga, Microglena sp. YARC, from Antarctic sea ice which has a huge genome. Therefore, we predicted that gene replication may play an important role in its polar adaptive evolution. We found that its protein-coding gene number significantly increased and the duplication time was dated between 37 and 48 million years ago, which is consistent with the formation of the circumpolar Southern Ocean. Most duplicated paralogous genes were enriched in pathways related to photosynthesis, DNA repair, and fatty acid metabolism. Moreover, there were a total of 657 Microglena-specific families, including collagen-like proteins. The divergence in the expression patterns of the duplicated and species-specific genes reflects sub- and neo-functionalization during stress acclimation. Overall, key findings from this study provide new information on how gene duplication and their functional novelty contributed to polar algae adaptation to the highly variable polar environmental conditions. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00203-z.
Collapse
Affiliation(s)
- Xiaowen Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, 266200 China
| | - Wentao Han
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071 China
| | - Xiao Fan
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071 China
| | - Yitao Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071 China
| | - Dong Xu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071 China
| | - Ke Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071 China
| | - Wei Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071 China
| | - Yan Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071 China
| | - Jian Ma
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071 China
| | - Naihao Ye
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, 266200 China
| |
Collapse
|
19
|
Clifton BD, Hariyani I, Kimura A, Luo F, Nguyen A, Ranz JM. Paralog transcriptional differentiation in the D. melanogaster-specific gene family Sdic across populations and spermatogenesis stages. Commun Biol 2023; 6:1069. [PMID: 37864070 PMCID: PMC10589255 DOI: 10.1038/s42003-023-05427-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023] Open
Abstract
How recently originated gene copies become stable genomic components remains uncertain as high sequence similarity of young duplicates precludes their functional characterization. The tandem multigene family Sdic is specific to Drosophila melanogaster and has been annotated across multiple reference-quality genome assemblies. Here we show the existence of a positive correlation between Sdic copy number and total expression, plus vast intrastrain differences in mRNA abundance among paralogs, using RNA-sequencing from testis of four strains with variable paralog composition. Single cell and nucleus RNA-sequencing data expose paralog expression differentiation in meiotic cell types within testis from third instar larva and adults. Additional RNA-sequencing across synthetic strains only differing in their Y chromosomes reveal a tissue-dependent trans-regulatory effect on Sdic: upregulation in testis and downregulation in male accessory gland. By leveraging paralog-specific expression information from tissue- and cell-specific data, our results elucidate the intraspecific functional diversification of a recently expanded tandem gene family.
Collapse
Affiliation(s)
- Bryan D Clifton
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA.
| | - Imtiyaz Hariyani
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA
| | - Ashlyn Kimura
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA
| | - Fangning Luo
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA
| | - Alvin Nguyen
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA
| | - José M Ranz
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
20
|
Bourret J, Borvető F, Bravo IG. Subfunctionalisation of paralogous genes and evolution of differential codon usage preferences: The showcase of polypyrimidine tract binding proteins. J Evol Biol 2023; 36:1375-1392. [PMID: 37667674 DOI: 10.1111/jeb.14212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 09/06/2023]
Abstract
Gene paralogs are copies of an ancestral gene that appear after gene or full genome duplication. When two sister gene copies are maintained in the genome, redundancy may release certain evolutionary pressures, allowing one of them to access novel functions. Here, we focused our study on gene paralogs on the evolutionary history of the three polypyrimidine tract binding protein genes (PTBP) and their concurrent evolution of differential codon usage preferences (CUPrefs) in vertebrate species. PTBP1-3 show high identity at the amino acid level (up to 80%) but display strongly different nucleotide composition, divergent CUPrefs and, in humans and in many other vertebrates, distinct tissue-specific expression levels. Our phylogenetic inference results show that the duplication events leading to the three extant PTBP1-3 lineages predate the basal diversification within vertebrates, and genomic context analysis illustrates that local synteny has been well preserved over time for the three paralogs. We identify a distinct evolutionary pattern towards GC3-enriching substitutions in PTBP1, concurrent with enrichment in frequently used codons and with a tissue-wide expression. In contrast, PTBP2s are enriched in AT-ending, rare codons, and display tissue-restricted expression. As a result of this substitution trend, CUPrefs sharply differ between mammalian PTBP1s and the rest of PTBPs. Genomic context analysis suggests that GC3-rich nucleotide composition in PTBP1s is driven by local substitution processes, while the evidence in this direction is thinner for PTBP2-3. An actual lack of co-variation between the observed GC composition of PTBP2-3 and that of the surrounding non-coding genomic environment would raise an interrogation on the origin of CUPrefs, warranting further research on a putative tissue-specific translational selection. Finally, we communicate an intriguing trend for the use of the UUG-Leu codon, which matches the trends of AT-ending codons. Our results are compatible with a scenario in which a combination of directional mutation-selection processes would have differentially shaped CUPrefs of PTBPs in vertebrates: the observed GC-enrichment of PTBP1 in placental mammals may be linked to genomic location and to the strong and broad tissue-expression, while AT-enrichment of PTBP2 and PTBP3 would be associated with rare CUPrefs and thus, possibly to specialized spatio-temporal expression. Our interpretation is coherent with a gene subfunctionalisation process by differential expression regulation associated with the evolution of specific CUPrefs.
Collapse
Affiliation(s)
- Jérôme Bourret
- Laboratoire MIVEGEC (CNRS IRD Univ Montpellier), Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Fanni Borvető
- Laboratoire MIVEGEC (CNRS IRD Univ Montpellier), Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Ignacio G Bravo
- Laboratoire MIVEGEC (CNRS IRD Univ Montpellier), Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| |
Collapse
|
21
|
Liu W, Zhu P, Li M, Li Z, Yu Y, Liu G, Du J, Wang X, Yang J, Tian R, Seim I, Kaya A, Li M, Li M, Gladyshev VN, Zhou X. Large-scale across species transcriptomic analysis identifies genetic selection signatures associated with longevity in mammals. EMBO J 2023; 42:e112740. [PMID: 37427458 PMCID: PMC10476176 DOI: 10.15252/embj.2022112740] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 07/11/2023] Open
Abstract
Lifespan varies significantly among mammals, with more than 100-fold difference between the shortest and longest living species. This natural difference may uncover the evolutionary forces and molecular features that define longevity. To understand the relationship between gene expression variation and longevity, we conducted a comparative transcriptomics analysis of liver, kidney, and brain tissues of 103 mammalian species. We found that few genes exhibit common expression patterns with longevity in the three organs analyzed. However, pathways related to translation fidelity, such as nonsense-mediated decay and eukaryotic translation elongation, correlated with longevity across mammals. Analyses of selection pressure found that selection intensity related to the direction of longevity-correlated genes is inconsistent across organs. Furthermore, expression of methionine restriction-related genes correlated with longevity and was under strong selection in long-lived mammals, suggesting that a common strategy is utilized by natural selection and artificial intervention to control lifespan. Our results indicate that lifespan regulation via gene expression is driven through polygenic and indirect natural selection.
Collapse
Affiliation(s)
- Weiqiang Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Pingfen Zhu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Meng Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Zihao Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yang Yu
- School of Life SciencesUniversity of Science and Technology of ChinaAnhuiChina
| | - Gaoming Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Juan Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiao Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Jing Yang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ran Tian
- Integrative Biology Laboratory, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Inge Seim
- Integrative Biology Laboratory, College of Life SciencesNanjing Normal UniversityNanjingChina
- School of Biology and Environmental ScienceQueensland University of TechnologyBrisbaneQLDAustralia
| | - Alaattin Kaya
- Department of BiologyVirginia Commonwealth UniversityRichmondVAUSA
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural UniversityChengduChina
| | - Ming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| |
Collapse
|
22
|
Vetro A, Pelorosso C, Balestrini S, Masi A, Hambleton S, Argilli E, Conti V, Giubbolini S, Barrick R, Bergant G, Writzl K, Bijlsma EK, Brunet T, Cacheiro P, Mei D, Devlin A, Hoffer MJV, Machol K, Mannaioni G, Sakamoto M, Menezes MP, Courtin T, Sherr E, Parra R, Richardson R, Roscioli T, Scala M, von Stülpnagel C, Smedley D, Torella A, Tohyama J, Koichihara R, Hamada K, Ogata K, Suzuki T, Sugie A, van der Smagt JJ, van Gassen K, Valence S, Vittery E, Malone S, Kato M, Matsumoto N, Ratto GM, Guerrini R. Stretch-activated ion channel TMEM63B associates with developmental and epileptic encephalopathies and progressive neurodegeneration. Am J Hum Genet 2023; 110:1356-1376. [PMID: 37421948 PMCID: PMC10432263 DOI: 10.1016/j.ajhg.2023.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 07/10/2023] Open
Abstract
By converting physical forces into electrical signals or triggering intracellular cascades, stretch-activated ion channels allow the cell to respond to osmotic and mechanical stress. Knowledge of the pathophysiological mechanisms underlying associations of stretch-activated ion channels with human disease is limited. Here, we describe 17 unrelated individuals with severe early-onset developmental and epileptic encephalopathy (DEE), intellectual disability, and severe motor and cortical visual impairment associated with progressive neurodegenerative brain changes carrying ten distinct heterozygous variants of TMEM63B, encoding for a highly conserved stretch-activated ion channel. The variants occurred de novo in 16/17 individuals for whom parental DNA was available and either missense, including the recurrent p.Val44Met in 7/17 individuals, or in-frame, all affecting conserved residues located in transmembrane regions of the protein. In 12 individuals, hematological abnormalities co-occurred, such as macrocytosis and hemolysis, requiring blood transfusions in some. We modeled six variants (p.Val44Met, p.Arg433His, p.Thr481Asn, p.Gly580Ser, p.Arg660Thr, and p.Phe697Leu), each affecting a distinct transmembrane domain of the channel, in transfected Neuro2a cells and demonstrated inward leak cation currents across the mutated channel even in isotonic conditions, while the response to hypo-osmotic challenge was impaired, as were the Ca2+ transients generated under hypo-osmotic stimulation. Ectopic expression of the p.Val44Met and p.Gly580Cys variants in Drosophila resulted in early death. TMEM63B-associated DEE represents a recognizable clinicopathological entity in which altered cation conductivity results in a severe neurological phenotype with progressive brain damage and early-onset epilepsy associated with hematological abnormalities in most individuals.
Collapse
Affiliation(s)
- Annalisa Vetro
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | | | - Simona Balestrini
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy; University of Florence, Florence, Italy
| | - Alessio Masi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NeuroFarBa), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Sophie Hambleton
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK; Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Emanuela Argilli
- Department of Neurology and Institute of Human Genetics and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Valerio Conti
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Simone Giubbolini
- National Enterprise for NanoScience and NanoTechnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, Pisa, Italy
| | - Rebekah Barrick
- Division of Metabolic Disorders, Children's Hospital of Orange County (CHOC), Orange, CA, USA
| | - Gaber Bergant
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Karin Writzl
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Emilia K Bijlsma
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Theresa Brunet
- Institute of Human Genetics, School of Medicine, Technical University Munich, Munich, Germany; Department of Pediatric Neurology and Developmental Medicine, Dr. v. Hauner Children's Hospital, LMU - University of Munich, München, Germany
| | - Pilar Cacheiro
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Davide Mei
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Anita Devlin
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK; Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Mariëtte J V Hoffer
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Keren Machol
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Guido Mannaioni
- Department of Neuroscience, Psychology, Drug Research and Child Health (NeuroFarBa), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Masamune Sakamoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004 Japan
| | - Manoj P Menezes
- Department of Neurology, The Children's Hospital at Westmead and the Children's Hospital at Westmead Clinical School, University of Sydney, Westmead NSW, Australia
| | - Thomas Courtin
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France; Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Génétique, DMU BioGeM, Paris, France
| | - Elliott Sherr
- Department of Neurology and Institute of Human Genetics and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Riccardo Parra
- National Enterprise for NanoScience and NanoTechnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, Pisa, Italy
| | - Ruth Richardson
- Northern Genetics Service, Newcastle upon Tyne hospitals NHS Foundation Trust, Newcastle, UK
| | - Tony Roscioli
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW 2031, Australia; Neuroscience Research Australia, Sydney, NSW 2031, Australia
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Celina von Stülpnagel
- Department of Pediatric Neurology and Developmental Medicine, Dr. v. Hauner Children's Hospital, LMU - University of Munich, München, Germany; Institute for Transition, Rehabilitation and Palliation, Paracelsus Medical University, Salzburg, Austria
| | - Damian Smedley
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Annalaura Torella
- Department of Precision Medicine, University "Luigi Vanvitelli," Naples, Italy; Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Jun Tohyama
- Department of Child Neurology, Nishi-Niigata Chuo National Hospital, Niigata 950-2085, Japan
| | - Reiko Koichihara
- Department for Child Health and Human Development, Saitama Children's Medical Center, Saitama 330-8777, Japan
| | - Keisuke Hamada
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Kazuhiro Ogata
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Takashi Suzuki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Atsushi Sugie
- Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | | | - Koen van Gassen
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Stephanie Valence
- Centre de référence Maladies Rares "Déficience intellectuelle de cause rare," Sorbonne Université, Paris, France; Département de Neuropédiatrie, Hôpital Armand Trousseau, APHP, Sorbonne Université, Paris, France
| | - Emma Vittery
- Northern Genetics Service, Newcastle upon Tyne hospitals NHS Foundation Trust, Newcastle, UK
| | - Stephen Malone
- Department of Neurosciences, Queensland Children's Hospital, Brisbane QLD, Australia; Centre for Advanced Imaging, University of Queensland, St Lucia QLD, Australia
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004 Japan
| | - Gian Michele Ratto
- National Enterprise for NanoScience and NanoTechnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, Pisa, Italy; Istituto Neuroscienze CNR, Padova, Italy
| | - Renzo Guerrini
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy; University of Florence, Florence, Italy.
| |
Collapse
|
23
|
Fraimovitch E, Hagai T. Promoter evolution of mammalian gene duplicates. BMC Biol 2023; 21:80. [PMID: 37055747 PMCID: PMC10100218 DOI: 10.1186/s12915-023-01590-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/06/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Gene duplication is thought to be a central process in evolution to gain new functions. The factors that dictate gene retention following duplication as well paralog gene divergence in sequence, expression and function have been extensively studied. However, relatively little is known about the evolution of promoter regions of gene duplicates and how they influence gene duplicate divergence. Here, we focus on promoters of paralog genes, comparing their similarity in sequence, in the sets of transcription factors (TFs) that bind them, and in their overall promoter architecture. RESULTS We observe that promoters of recent duplications display higher sequence similarity between them and that sequence similarity rapidly declines between promoters of more ancient paralogs. In contrast, similarity in cis-regulation, as measured by the set of TFs that bind promoters of both paralogs, does not simply decrease with time from duplication and is instead related to promoter architecture-paralogs with CpG Islands (CGIs) in their promoters share a greater fraction of TFs, while CGI-less paralogs are more divergent in their TF binding set. Focusing on recent duplication events and partitioning them by their duplication mechanism enables us to uncover promoter properties associated with gene retention, as well as to characterize the evolution of promoters of newly born genes: In recent retrotransposition-mediated duplications, we observe asymmetry in cis-regulation of paralog pairs: Retrocopy genes are lowly expressed and their promoters are bound by fewer TFs and are depleted of CGIs, in comparison with the original gene copy. Furthermore, looking at recent segmental duplication regions in primates enable us to compare successful retentions versus loss of duplicates, showing that duplicate retention is associated with fewer TFs and with CGI-less promoter architecture. CONCLUSIONS In this work, we profiled promoters of gene duplicates and their inter-paralog divergence. We also studied how their characteristics are associated with duplication time and duplication mechanism, as well as with the fate of these duplicates. These results underline the importance of cis-regulatory mechanisms in shaping the evolution of new genes and their fate following duplication.
Collapse
Affiliation(s)
- Evgeny Fraimovitch
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Tzachi Hagai
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel.
| |
Collapse
|
24
|
Fajardo D, Saint Jean R, Lyons PJ. Acquisition of new function through gene duplication in the metallocarboxypeptidase family. Sci Rep 2023; 13:2512. [PMID: 36781897 PMCID: PMC9925722 DOI: 10.1038/s41598-023-29800-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Gene duplication is a key first step in the process of expanding the functionality of a multigene family. In order to better understand the process of gene duplication and its role in the formation of new enzymes, we investigated recent duplication events in the M14 family of proteolytic enzymes. Within vertebrates, four of 23 M14 genes were frequently found in duplicate form. While AEBP1, CPXM1, and CPZ genes were duplicated once through a large-scale, likely whole-genome duplication event, the CPO gene underwent many duplication events within fish and Xenopus lineages. Bioinformatic analyses of enzyme specificity and conservation suggested a greater amount of neofunctionalization and purifying selection in CPO paralogs compared with other CPA/B enzymes. To examine the functional consequences of evolutionary changes on CPO paralogs, the four CPO paralogs from Xenopus tropicalis were expressed in Sf9 and HEK293T cells. Immunocytochemistry showed subcellular distribution of Xenopus CPO paralogs to be similar to that of human CPO. Upon activation with trypsin, the enzymes demonstrated differential activity against three substrates, suggesting an acquisition of new function following duplication and subsequent mutagenesis. Characteristics such as gene size and enzyme activation mechanisms are possible contributors to the evolutionary capacity of the CPO gene.
Collapse
Affiliation(s)
- Daniel Fajardo
- Department of Biology, Andrews University, Berrien Springs, MI, 49104, USA
| | - Ritchie Saint Jean
- Department of Biology, Andrews University, Berrien Springs, MI, 49104, USA
| | - Peter J Lyons
- Department of Biology, Andrews University, Berrien Springs, MI, 49104, USA.
| |
Collapse
|
25
|
Kasianov AS, Klepikova AV, Mayorov AV, Buzanov GS, Logacheva MD, Penin AA. Interspecific comparison of gene expression profiles using machine learning. PLoS Comput Biol 2023; 19:e1010743. [PMID: 36626392 PMCID: PMC9879537 DOI: 10.1371/journal.pcbi.1010743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/26/2023] [Accepted: 11/16/2022] [Indexed: 01/11/2023] Open
Abstract
Interspecific gene comparisons are the keystones for many areas of biological research and are especially important for the translation of knowledge from model organisms to economically important species. Currently they are hampered by the low resolution of methods based on sequence analysis and by the complex evolutionary history of eukaryotic genes. This is especially critical for plants, whose genomes are shaped by multiple whole genome duplications and subsequent gene loss. This requires the development of new methods for comparing the functions of genes in different species. Here, we report ISEEML (Interspecific Similarity of Expression Evaluated using Machine Learning)-a novel machine learning-based algorithm for interspecific gene classification. In contrast to previous studies focused on sequence similarity, our algorithm focuses on functional similarity inferred from the comparison of gene expression profiles. We propose novel metrics for expression pattern similarity-expression score (ES)-that is suitable for species with differing morphologies. As a proof of concept, we compare detailed transcriptome maps of Arabidopsis thaliana, the model species, Zea mays (maize) and Fagopyrum esculentum (common buckwheat), which are species that represent distant clades within flowering plants. The classifier resulted in an AUC of 0.91; under the ES threshold of 0.5, the specificity was 94%, and sensitivity was 72%.
Collapse
Affiliation(s)
- Artem S. Kasianov
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Anna V. Klepikova
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Alexey V. Mayorov
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
| | | | - Maria D. Logacheva
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Aleksey A. Penin
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
- * E-mail:
| |
Collapse
|
26
|
Metivier JC, Chain FJJ. Diversity in Expression Biases of Lineage-Specific Genes During Development and Anhydrobiosis Among Tardigrade Species. Evol Bioinform Online 2022; 18:11769343221140277. [PMID: 36578471 PMCID: PMC9791283 DOI: 10.1177/11769343221140277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/27/2022] [Indexed: 12/24/2022] Open
Abstract
Lineage-specific genes can contribute to the emergence and evolution of novel traits and adaptations. Tardigrades are animals that have adapted to tolerate extreme conditions by undergoing a form of cryptobiosis called anhydrobiosis, a physical transformation to an inactive desiccated state. While studies to understand the genetics underlying the interspecies diversity in anhydrobiotic transitions have identified tardigrade-specific genes and family expansions involved in this process, the contributions of species-specific genes to the variation in tardigrade development and cryptobiosis are less clear. We used previously published transcriptomes throughout development and anhydrobiosis (5 embryonic stages, 7 juvenile stages, active adults, and tun adults) to assess the transcriptional biases of different classes of genes between 2 tardigrade species, Hypsibius exemplaris and Ramazzottius varieornatus. We also used the transcriptomes of 2 other tardigrades, Echiniscoides sigismundi and Richtersius coronifer, and data from 3 non-tardigrade species (Adenita vaga, Drosophila melanogaster, and Caenorhabditis elegans) to help identify lineage-specific genes. We found that lineage-specific genes have generally low and narrow expression but are enriched among biased genes in different stages of development depending on the species. Biased genes tend to be specific to early and late development, but there is little overlap in functional enrichment of biased genes between species. Gene expansions in the 2 tardigrades also involve families with different functions despite homologous genes being expressed during anhydrobiosis in both species. Our results demonstrate the interspecific variation in transcriptional contributions and biases of lineage-specific genes during development and anhydrobiosis in 2 tardigrades.
Collapse
Affiliation(s)
| | - Frédéric J J Chain
- Frédéric J J Chain, Department of Biological Sciences, University of Massachusetts Lowell, One University Ave, Lowell, MA 01854, USA.
| |
Collapse
|
27
|
Brasó-Vives M, Marlétaz F, Echchiki A, Mantica F, Acemel RD, Gómez-Skarmeta JL, Hartasánchez DA, Le Targa L, Pontarotti P, Tena JJ, Maeso I, Escriva H, Irimia M, Robinson-Rechavi M. Parallel evolution of amphioxus and vertebrate small-scale gene duplications. Genome Biol 2022; 23:243. [PMID: 36401278 PMCID: PMC9673378 DOI: 10.1186/s13059-022-02808-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Amphioxus are non-vertebrate chordates characterized by a slow morphological and molecular evolution. They share the basic chordate body-plan and genome organization with vertebrates but lack their 2R whole-genome duplications and their developmental complexity. For these reasons, amphioxus are frequently used as an outgroup to study vertebrate genome evolution and Evo-Devo. Aside from whole-genome duplications, genes continuously duplicate on a smaller scale. Small-scale duplicated genes can be found in both amphioxus and vertebrate genomes, while only the vertebrate genomes have duplicated genes product of their 2R whole-genome duplications. Here, we explore the history of small-scale gene duplications in the amphioxus lineage and compare it to small- and large-scale gene duplication history in vertebrates. RESULTS We present a study of the European amphioxus (Branchiostoma lanceolatum) gene duplications thanks to a new, high-quality genome reference. We find that, despite its overall slow molecular evolution, the amphioxus lineage has had a history of small-scale duplications similar to the one observed in vertebrates. We find parallel gene duplication profiles between amphioxus and vertebrates and conserved functional constraints in gene duplication. Moreover, amphioxus gene duplicates show levels of expression and patterns of functional specialization similar to the ones observed in vertebrate duplicated genes. We also find strong conservation of gene synteny between two distant amphioxus species, B. lanceolatum and B. floridae, with two major chromosomal rearrangements. CONCLUSIONS In contrast to their slower molecular and morphological evolution, amphioxus' small-scale gene duplication history resembles that of the vertebrate lineage both in quantitative and in functional terms.
Collapse
Affiliation(s)
- Marina Brasó-Vives
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
| | - Ferdinand Marlétaz
- Department of Genetics, Evolution and Environment (GEE), University College London, London, UK
| | - Amina Echchiki
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Federica Mantica
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Rafael D Acemel
- Andalusian Centre for Developmental Biology (CABD), CSIC-Pablo Olavide University, Sevilla, Spain
| | - José L Gómez-Skarmeta
- Andalusian Centre for Developmental Biology (CABD), CSIC-Pablo Olavide University, Sevilla, Spain
| | - Diego A Hartasánchez
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Lorlane Le Targa
- IRD, APHM, MEPHI, Aix Marseille Université, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Pierre Pontarotti
- IRD, APHM, MEPHI, Aix Marseille Université, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
- CNRS, Paris, France
| | - Juan J Tena
- Andalusian Centre for Developmental Biology (CABD), CSIC-Pablo Olavide University, Sevilla, Spain
| | - Ignacio Maeso
- Andalusian Centre for Developmental Biology (CABD), CSIC-Pablo Olavide University, Sevilla, Spain
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Hector Escriva
- Biologie Intégrative des Organismes Marins, BIOM, CNRS-Sorbonne University, Banyuls-sur-Mer, France
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Pompeu Fabra University (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
| |
Collapse
|
28
|
Colbourne JK, Shaw JR, Sostare E, Rivetti C, Derelle R, Barnett R, Campos B, LaLone C, Viant MR, Hodges G. Toxicity by descent: A comparative approach for chemical hazard assessment. ENVIRONMENTAL ADVANCES 2022; 9:100287. [PMID: 39228468 PMCID: PMC11370884 DOI: 10.1016/j.envadv.2022.100287] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Toxicology is traditionally divided between human and eco-toxicology. In the shared pursuit of environmental health, this separation does not account for discoveries made in the comparative studies of animal genomes. Here, we provide evidence on the feasibility of understanding the health impact of chemicals on all animals, including ecological keystone species and humans, based on a significant number of conserved genes and their functional associations to health-related outcomes across much of animal diversity. We test four conditions to understand the value of comparative genomics data to inform mechanism-based human and environmental hazard assessment: (1) genes that are most fundamental for health evolved early during animal evolution; (2) the molecular functions of pathways are better conserved among distantly related species than the individual genes that are members of these pathways; (3) the most conserved pathways among animals are those that cause adverse health outcomes when disrupted; (4) gene sets that serve as molecular signatures of biological processes or disease-states are largely enriched by evolutionarily conserved genes across the animal phylogeny. The concept of homology is applied in a comparative analysis of gene families and pathways among invertebrate and vertebrate species compared with humans. Results show that over 70% of gene families associated with disease are shared among the greatest variety of animal species through evolution. Pathway conservation between invertebrates and humans is based on the degree of conservation within vertebrates and the number of interacting genes within the human network. Human gene sets that already serve as biomarkers are enriched by evolutionarily conserved genes across the animal phylogeny. By implementing a comparative method for chemical hazard assessment, human and eco-toxicology converge towards a more holistic and mechanistic understanding of toxicity disrupting biological processes that are important for health and shared among animals (including humans).
Collapse
Affiliation(s)
- John K. Colbourne
- Michabo Health Science Ltd, Coventry CV1 2NT, UK
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Joseph R. Shaw
- O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington 47405, USA
| | | | - Claudia Rivetti
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook MK44 1LQ, UK
| | - Romain Derelle
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK
| | | | - Bruno Campos
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook MK44 1LQ, UK
| | - Carlie LaLone
- US Environmental Protection Agency, Duluth 55804, USA
| | - Mark R. Viant
- Michabo Health Science Ltd, Coventry CV1 2NT, UK
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Geoff Hodges
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook MK44 1LQ, UK
| |
Collapse
|
29
|
Detecting signatures of selection on gene expression. Nat Ecol Evol 2022; 6:1035-1045. [PMID: 35551249 DOI: 10.1038/s41559-022-01761-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/01/2022] [Indexed: 12/15/2022]
Abstract
A substantial amount of phenotypic diversity results from changes in gene expression levels and patterns. Understanding how the transcriptome evolves is therefore a key priority in identifying mechanisms of adaptive change. However, in contrast to powerful models of sequence evolution, we lack a consensus model of gene expression evolution. Furthermore, recent work has shown that many of the comparative approaches used to study gene expression are subject to biases that can lead to false signatures of selection. Here we first outline the main approaches for describing expression evolution and their inherent biases. Next, we bridge the gap between the fields of phylogenetic comparative methods and transcriptomics to reinforce the main pitfalls of inferring selection on expression patterns and use simulation studies to show that shifts in tissue composition can heavily bias inferences of selection. We close by highlighting the multi-dimensional nature of transcriptional variation and identifying major unanswered questions in disentangling how selection acts on the transcriptome.
Collapse
|
30
|
Fouchécourt S, Fillon V, Marrauld C, Callot C, Ronsin S, Picolo F, Douet C, Piégu B, Monget P. Expanding duplication of the testis PHD Finger Protein 7 (PHF7) gene in the chicken genome. Genomics 2022; 114:110411. [PMID: 35716824 DOI: 10.1016/j.ygeno.2022.110411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/06/2022] [Accepted: 06/10/2022] [Indexed: 11/04/2022]
Abstract
Gene duplications increase genetic and phenotypic diversity and occur in complex genomic regions that are still difficult to sequence and assemble. PHD Finger Protein 7 (PHF7) acts during spermiogenesis for histone-to-histone protamine exchange and is a determinant of male fertility in Drosophila and the mouse. We aimed to explore and characterise in the chicken genome the expanding family of the numerous orthologues of the unique mouse Phf7 gene (highly expressed in the testis), observing the fact that this information is unclear and/or variable according to the versions of databases. We validated nine primer pairs by in silico PCR for their use in screening the chicken bacterial artificial chromosome (BAC) library to produce BAC-derived probes to detect and localise PHF7-like loci by fluorescence in situ hybridisation (FISH). We selected nine BAC that highlighted nine chromosomal regions for a total of 10 distinct PHF7-like loci on five Gallus gallus chromosomes: Chr1 (three loci), Chr2 (two loci), Chr12 (one locus), Chr19 (one locus) and ChrZ (three loci). We sequenced the corresponding BAC by using high-performance PacBio technology. After assembly, we performed annotation with the FGENESH program: there were a total of 116 peptides, including 39 PHF7-like proteins identified by BLASTP. These proteins share a common exon-intron core structure of 8-11 exons. Phylogeny revealed that the duplications occurred first between chromosomal regions and then inside each region. There are other duplicated genes in the identified BAC sequences, suggesting that these genomic regions exhibit a high rate of tandem duplication. We showed that the PHF7 gene, which is highly expressed in the rooster testis, is a highly duplicated gene family in the chicken genome, and this phenomenon probably concerns other bird species.
Collapse
Affiliation(s)
| | - Valérie Fillon
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet Tolosan, France
| | - Christelle Marrauld
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet Tolosan, France
| | - Caroline Callot
- CNRGV - Plant Genomic Center, INRAE, F-31326, Castanet Tolosan, France
| | - Sarah Ronsin
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Floriane Picolo
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Cécile Douet
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Benoit Piégu
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Philippe Monget
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| |
Collapse
|
31
|
Distinguishing Evolutionary Conservation from Derivedness. Life (Basel) 2022; 12:life12030440. [PMID: 35330191 PMCID: PMC8954198 DOI: 10.3390/life12030440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022] Open
Abstract
While the concept of “evolutionary conservation” has enabled biologists to explain many ancestral features and traits, it has also frequently been misused to evaluate the degree of changes from a common ancestor, or “derivedness”. We propose that the distinction of these two concepts allows us to properly understand phenotypic and organismal evolution. From a methodological aspect, “conservation” mainly considers genes or traits which species have in common, while “derivedness” additionally covers those that are not commonly shared, such as novel or lost traits and genes to evaluate changes from the time of divergence from a common ancestor. Due to these differences, while conservation-oriented methods are effective in identifying ancestral features, they may be prone to underestimating the overall changes accumulated during the evolution of certain lineages. Herein, we describe our recently developed method, “transcriptomic derivedness index”, for estimating the phenotypic derivedness of embryos with a molecular approach using the whole-embryonic transcriptome as a phenotype. Although echinoderms are often considered as highly derived species, our analyses with this method showed that their embryos, at least at the transcriptomic level, may not be much more derived than those of chordates. We anticipate that the future development of derivedness-oriented methods could provide quantitative indicators for finding highly/lowly evolvable traits.
Collapse
|
32
|
Di Fraia D, Anitei M, Mackmull MT, Parca L, Behrendt L, Andres-Pons A, Gilmour D, Helmer Citterich M, Kaether C, Beck M, Ori A. Conserved exchange of paralog proteins during neuronal differentiation. Life Sci Alliance 2022; 5:5/6/e202201397. [PMID: 35273078 PMCID: PMC8917807 DOI: 10.26508/lsa.202201397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/24/2022] Open
Abstract
Paralog proteins promote fine tuning of protein complexes. The author identified a specific paralog signature conserved across vertebrate neuronal differentiation. Altering the ratio of SEC23 paralogs in the COPII complex influences neuronal differentiation in a opposite way. Gene duplication enables the emergence of new functions by lowering the evolutionary pressure that is posed on the ancestral genes. Previous studies have highlighted the role of specific paralog genes during cell differentiation, for example, in chromatin remodeling complexes. It remains unexplored whether similar mechanisms extend to other biological functions and whether the regulation of paralog genes is conserved across species. Here, we analyze the expression of paralogs across human tissues, during development and neuronal differentiation in fish, rodents and humans. Whereas ∼80% of paralog genes are co-regulated, a subset of paralogs shows divergent expression profiles, contributing to variability of protein complexes. We identify 78 substitutions of paralog pairs that occur during neuronal differentiation and are conserved across species. Among these, we highlight a substitution between the paralogs SEC23A and SEC23B members of the COPII complex. Altering the ratio between these two genes via RNAi-mediated knockdown is sufficient to influence neuron differentiation. We propose that remodeling of the vesicular transport system via paralog substitutions is an evolutionary conserved mechanism enabling neuronal differentiation.
Collapse
Affiliation(s)
| | - Mihaela Anitei
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Marie-Therese Mackmull
- Eidgenössische Technische Hochschule (ETH) Zürich Inst. f. Molekulare Systembiologie, Zürich, Switzerland
| | - Luca Parca
- Department of Biology, University of Tor Vergata, Rome, Italy
| | - Laura Behrendt
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | | | - Darren Gilmour
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | | | | | - Martin Beck
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Alessandro Ori
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| |
Collapse
|
33
|
Dimos B, Emery M, Beavers K, MacKnight N, Brandt M, Demuth J, Mydlarz L. Adaptive Variation in Homolog Number Within Transcript Families Promotes Expression Divergence in Reef-Building Coral. Mol Ecol 2022; 31:2594-2610. [PMID: 35229964 DOI: 10.1111/mec.16414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 02/10/2022] [Accepted: 02/22/2022] [Indexed: 11/30/2022]
Abstract
Gene expression, especially in multi-species experiments, is used to gain insight into the genetic basis of how organisms adapt and respond to changing environments. However, evolutionary processes which can influence gene expression patterns between species such as the presence of paralogs which arise from gene duplication events are rarely accounted for. Paralogous transcripts can alter the transcriptional output of a gene and thus exclusion of these transcripts can obscure important biological differences between species. To address this issue, we investigated how differences in transcript family size is associated with divergent gene expression patterns in five species of Caribbean reef-building corals. We demonstrate that transcript families that are rapidly evolving in terms of size have increased levels of expression divergence. Additionally, these rapidly evolving transcript families are enriched for multiple biological processes, with genes involved in the coral innate immune system demonstrating pronounced variation in homolog number between species. Overall, this investigation demonstrates the importance of incorporating paralogous transcripts when comparing gene expression across species by influencing both transcriptional output and the number of transcripts within biological processes. As this investigation was based on transcriptome assemblies, additional insights into the relationship between gene duplications and expression patterns will likely emergence once more genome assemblies are available for study.
Collapse
Affiliation(s)
- Bradford Dimos
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Madison Emery
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Kelsey Beavers
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Nicholas MacKnight
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Marilyn Brandt
- Center for Marine and Environmental Studies, University of the Virgin Islands, St. Thomas, US Virgin Islands, 00802, USA
| | - Jeffery Demuth
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Laura Mydlarz
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| |
Collapse
|
34
|
Quiver MH, Lachance J. Adaptive eQTLs reveal the evolutionary impacts of pleiotropy and tissue-specificity while contributing to health and disease. HGG ADVANCES 2022; 3:100083. [PMID: 35047867 PMCID: PMC8756519 DOI: 10.1016/j.xhgg.2021.100083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/21/2021] [Indexed: 11/24/2022] Open
Abstract
Large numbers of expression quantitative trait loci (eQTLs) have recently been identified in humans, and many of these regulatory variants have large allele frequency differences between populations. Here, we conducted genome-wide scans of selection to identify adaptive eQTLs (i.e., eQTLs with large population branch statistics). We then tested if tissue pleiotropy affects whether eQTLs are more or less likely to be adaptive and identified tissues that have been key targets of positive selection during the last 100,000 years. Top adaptive eQTL outliers include rs1043809, rs66899053, and rs2814778 (a SNP that is associated with malaria resistance). We found that effect sizes of eQTLs were negatively correlated with population branch statistics and that adaptive eQTLs affect two-thirds as many tissues as do non-adaptive eQTLs. Because the tissue breadth of an eQTL can be viewed as a measure of pleiotropy, these results imply that pleiotropy inhibits adaptation. The proportion of eQTLs that are adaptive varies by tissue, and we found that eQTLs that regulate expression in testis, thyroid, blood, or sun-exposed skin are enriched for signatures of positive selection. By contrast, eQTLs that regulate expression in the cerebrum or female-specific tissues have a relative lack of adaptive outliers. Scans of selections also reveal that many adaptive eQTLs are closely linked to disease-associated loci. Taken together, our results indicate that eQTLs have played an important role in recent human evolution.
Collapse
Affiliation(s)
- Melanie H Quiver
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Joseph Lachance
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
35
|
Xie D, Chen G, Meng X, Wang H, Bi X, Fang M, Yang C, Zhou Y, Long E, Feng S. Comparable Number of Genes Having Experienced Positive Selection among Great Ape Species. Animals (Basel) 2021; 11:ani11113264. [PMID: 34827995 PMCID: PMC8614513 DOI: 10.3390/ani11113264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary It is of great interest to quantify adaptive evolution in human lineage by studying genes under positive selection, since these genes could reveal insights into our own adaptive evolutionary history compared to our closely related species and often these genes are functionally important. We used the great apes as the subjects to detect gene-level adaptive evolution signals in all the great ape lineages and investigated the evolutionary patterns and functional relevance of these adaptive evolution signals. Even the differences in population size among these closely related great apes have resulted in differences in their ability to remove deleterious alleles and to adapt to changing environments, we found that they experienced comparable numbers of positive selection. Notably, we identified several genes that offer insights into great ape and human evolution. For example, SOD1, a gene associated with aging in humans, experienced positive selection in the common ancestor of the great ape and this positive selection may contribute to the aging evolution in great apes. Overall, an updated list of positively selected genes reported by this study not only informs us of adaptive evolution during great ape evolution, but is also helpful to the further study of non-human primate models for disease and other fields. Abstract Alleles that cause advantageous phenotypes with positive selection contribute to adaptive evolution. Investigations of positive selection in protein-coding genes rely on the accuracy of orthology, models, the quality of assemblies, and alignment. Here, based on the latest genome assemblies and gene annotations, we present a comparative analysis on positive selection in four great ape species and identify 211 high-confidence positively selected genes (PSGs). Even the differences in population size among these closely related great apes have resulted in differences in their ability to remove deleterious alleles and to adapt to changing environments, we found that they experienced comparable numbers of positive selection. We also uncovered that more than half of multigene families exhibited signals of positive selection, suggesting that imbalanced positive selection resulted in the functional divergence of duplicates. Moreover, at the expression level, although positive selection led to a more non-uniform pattern across tissues, the correlation between positive selection and expression patterns is diverse. Overall, this updated list of PSGs is of great significance for the further study of the phenotypic evolution in great apes.
Collapse
Affiliation(s)
- Duo Xie
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
- BGI-Shenzhen, Shenzhen 518083, China; (X.B.); (M.F.); (C.Y.); (Y.Z.)
- Correspondence: (D.X.); (S.F.)
| | - Guangji Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
- BGI-Shenzhen, Shenzhen 518083, China; (X.B.); (M.F.); (C.Y.); (Y.Z.)
| | - Xiaoyu Meng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (X.M.); (H.W.)
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Haotian Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (X.M.); (H.W.)
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Xupeng Bi
- BGI-Shenzhen, Shenzhen 518083, China; (X.B.); (M.F.); (C.Y.); (Y.Z.)
| | - Miaoquan Fang
- BGI-Shenzhen, Shenzhen 518083, China; (X.B.); (M.F.); (C.Y.); (Y.Z.)
| | - Chentao Yang
- BGI-Shenzhen, Shenzhen 518083, China; (X.B.); (M.F.); (C.Y.); (Y.Z.)
| | - Yang Zhou
- BGI-Shenzhen, Shenzhen 518083, China; (X.B.); (M.F.); (C.Y.); (Y.Z.)
| | - Erping Long
- Laboratory of Translational Genomics, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20850, USA;
| | - Shaohong Feng
- BGI-Shenzhen, Shenzhen 518083, China; (X.B.); (M.F.); (C.Y.); (Y.Z.)
- Correspondence: (D.X.); (S.F.)
| |
Collapse
|
36
|
Lineage-Specific Genes and Family Expansions in Dictyostelid Genomes Display Expression Bias and Evolutionary Diversification during Development. Genes (Basel) 2021; 12:genes12101628. [PMID: 34681022 PMCID: PMC8535579 DOI: 10.3390/genes12101628] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/23/2022] Open
Abstract
Gene duplications generate new genes that can contribute to expression changes and the evolution of new functions. Genomes often consist of gene families that undergo expansions, some of which occur in specific lineages that reflect recent adaptive diversification. In this study, lineage-specific genes and gene family expansions were studied across five dictyostelid species to determine when and how they are expressed during multicellular development. Lineage-specific genes were found to be enriched among genes with biased expression (predominant expression in one developmental stage) in each species and at most developmental time points, suggesting independent functional innovations of new genes throughout the phylogeny. Biased duplicate genes had greater expression divergence than their orthologs and paralogs, consistent with subfunctionalization or neofunctionalization. Lineage-specific expansions in particular had biased genes with both molecular signals of positive selection and high expression, suggesting adaptive genetic and transcriptional diversification following duplication. Our results present insights into the potential contributions of lineage-specific genes and families in generating species-specific phenotypes during multicellular development in dictyostelids.
Collapse
|
37
|
Sania RE, Cardoso JCR, Louro B, Marquet N, Canário AVM. A new subfamily of ionotropic glutamate receptors unique to the echinoderms with putative sensory role. Mol Ecol 2021; 30:6642-6658. [PMID: 34601781 DOI: 10.1111/mec.16206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 11/29/2022]
Abstract
Chemosensation is a critical signalling process in animals and especially important in sea cucumbers, a group of ecologically and economically important marine echinoderms (class Holothuroidea), which lack audio and visual organs and rely on chemical sensing for survival, feeding and reproduction. The ionotropic receptors are a recently identified family of chemosensory receptors in insects and other protostomes, related to the ionotropic glutamate receptor family (iGluR), a large family of membrane receptors in metazoan. Here we characterize the echinoderm iGluR subunits and consider their possible role in chemical communication in sea cucumbers. Sequence similarity searches revealed that sea cucumbers have in general a higher number of iGluR subunits when compared to other echinoderms. Phylogenetic analysis and sequence comparisons revealed GluH as a specific iGluR subfamily present in all echinoderms. Homologues of the vertebrate GluA (aka α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, AMPA), GluK (aka kainate) and GluD (aka delta) were also identified. The GluN (aka N-methyl-d-aspartate, NMDA) as well as the invertebrate deuterostome subfamily GluF (aka phi) are absent in echinoderms. The echinoderm GluH subfamily shares conserved structural protein organization with vertebrate iGluRs and the ligand binding domain (LBD) is the most conserved region; genome analysis indicates evolution via lineage and species-specific tandem gene duplications. GluH genes (named Grih) are the most highly expressed iGluRs subunit genes in tissues in the sea cucumber Holothuria arguinesis, with Griha1, Griha2 and Griha5 exclusively expressed in tentacles, making them candidates to have a chemosensory role in this species. The multiple GluH subunits may provide alternative receptor assembly combinations, thus expanding the functional possibilities and widening the range of compounds detected during aggregation and spawning in echinoderms.
Collapse
Affiliation(s)
- Rubaiyat E Sania
- CCMAR/CIMAR LA, Centro de Ciências do Mar do Algarve, Universidade do Algarve, Faro, Portugal
| | - João C R Cardoso
- CCMAR/CIMAR LA, Centro de Ciências do Mar do Algarve, Universidade do Algarve, Faro, Portugal
| | - Bruno Louro
- CCMAR/CIMAR LA, Centro de Ciências do Mar do Algarve, Universidade do Algarve, Faro, Portugal
| | - Nathalie Marquet
- CCMAR/CIMAR LA, Centro de Ciências do Mar do Algarve, Universidade do Algarve, Faro, Portugal
| | - Adelino V M Canário
- CCMAR/CIMAR LA, Centro de Ciências do Mar do Algarve, Universidade do Algarve, Faro, Portugal
| |
Collapse
|
38
|
Brohard-Julien S, Frouin V, Meyer V, Chalabi S, Deleuze JF, Le Floch E, Battail C. Region-specific expression of young small-scale duplications in the human central nervous system. BMC Ecol Evol 2021; 21:59. [PMID: 33882820 PMCID: PMC8059171 DOI: 10.1186/s12862-021-01794-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The duplication of genes is one of the main genetic mechanisms that led to the gain in complexity of biological tissue. Although the implication of duplicated gene expression in brain evolution was extensively studied through comparisons between organs, their role in the regional specialization of the adult human central nervous system has not yet been well described. RESULTS Our work explored intra-organ expression properties of paralogs through multiple territories of the human central nervous system (CNS) using transcriptome data generated by the Genotype-Tissue Expression (GTEx) consortium. Interestingly, we found that paralogs were associated with region-specific expression in CNS, suggesting their involvement in the differentiation of these territories. Beside the influence of gene expression level on region-specificity, we observed the contribution of both duplication age and duplication type to the CNS region-specificity of paralogs. Indeed, we found that small scale duplicated genes (SSDs) and in particular ySSDs (SSDs younger than the 2 rounds of whole genome duplications) were more CNS region-specific than other paralogs. Next, by studying the two paralogs of ySSD pairs, we observed that when they were region-specific, they tend to be specific to the same region more often than for other paralogs, showing the high co-expression of ySSD pairs. The extension of this analysis to families of paralogs showed that the families with co-expressed gene members (i.e. homogeneous families) were enriched in ySSDs. Furthermore, these homogeneous families tended to be region-specific families, where the majority of their gene members were specifically expressed in the same region. CONCLUSIONS Overall, our study suggests the involvement of ySSDs in the differentiation of human central nervous system territories. Therefore, we show the relevance of exploring region-specific expression of paralogs at the intra-organ level.
Collapse
Affiliation(s)
- Solène Brohard-Julien
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut François Jacob, CEA, Université Paris-Saclay, Evry, France.
- UNATI, Neurospin, Institut Joliot, CEA, Université Paris-Saclay, 91191, Gif-sur-Yvette, France.
- Université Paris-Sud, Université Paris-Saclay, Orsay, France.
| | - Vincent Frouin
- UNATI, Neurospin, Institut Joliot, CEA, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Vincent Meyer
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Smahane Chalabi
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut François Jacob, CEA, Université Paris-Saclay, Evry, France
- Centre d'Etude du Polymorphisme Humain, Fondation Jean Dausset, Paris, France
- Centre de Référence, d'Innovation, d'expertise et de transfert (CREFIX), Evry, France
| | - Edith Le Floch
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut François Jacob, CEA, Université Paris-Saclay, Evry, France.
| | - Christophe Battail
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut François Jacob, CEA, Université Paris-Saclay, Evry, France.
- CEA, Univ. Grenoble Alpes, INSERM, IRIG, Biology of Cancer and Infection UMR1292, 38000, Grenoble, France.
| |
Collapse
|
39
|
Kundu S, Ray MD, Sharma A. Interplay between genome organization and epigenomic alterations of pericentromeric DNA in cancer. J Genet Genomics 2021; 48:184-197. [PMID: 33840602 DOI: 10.1016/j.jgg.2021.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/07/2021] [Accepted: 02/20/2021] [Indexed: 12/16/2022]
Abstract
In eukaryotic genome biology, the genomic organization inside the three-dimensional (3D) nucleus is highly complex, and whether this organization governs gene expression is poorly understood. Nuclear lamina (NL) is a filamentous meshwork of proteins present at the lining of inner nuclear membrane that serves as an anchoring platform for genome organization. Large chromatin domains termed as lamina-associated domains (LADs), play a major role in silencing genes at the nuclear periphery. The interaction of the NL and genome is dynamic and stochastic. Furthermore, many genes change their positions during developmental processes or under disease conditions such as cancer, to activate certain sorts of genes and/or silence others. Pericentromeric heterochromatin (PCH) is mostly in the silenced region within the genome, which localizes at the nuclear periphery. Studies show that several genes located at the PCH are aberrantly expressed in cancer. The interesting question is that despite being localized in the pericentromeric region, how these genes still manage to overcome pericentromeric repression. Although epigenetic mechanisms control the expression of the pericentromeric region, recent studies about genome organization and genome-nuclear lamina interaction have shed light on a new aspect of pericentromeric gene regulation through a complex and coordinated interplay between epigenomic remodeling and genomic organization in cancer.
Collapse
Affiliation(s)
- Subhadip Kundu
- Laboratory of Chromatin and Cancer Epigenetics, Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - M D Ray
- Department of Surgical Oncology, IRCH, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Ashok Sharma
- Laboratory of Chromatin and Cancer Epigenetics, Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.
| |
Collapse
|
40
|
Zhong X, Lundberg M, Råberg L. Divergence in Coding Sequence and Expression of Different Functional Categories of Immune Genes between Two Wild Rodent Species. Genome Biol Evol 2021; 13:6132239. [PMID: 33565592 PMCID: PMC7936018 DOI: 10.1093/gbe/evab023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Differences in immune function between species could be a result of interspecific divergence in coding sequence and/or expression of immune genes. Here, we investigate how the degree of divergence in coding sequence and expression differs between functional categories of immune genes, and if differences between categories occur independently of other factors (expression level, pleiotropy). To this end, we compared spleen transcriptomes of wild-caught yellow-necked mice and bank voles. Immune genes expressed in the spleen were divided into four categories depending on the function of the encoded protein: pattern recognition receptors (PRR); signal transduction proteins; transcription factors; and cyto- and chemokines and their receptors. Genes encoding PRR and cyto-/chemokines had higher sequence divergence than genes encoding signal transduction proteins and transcription factors, even when controlling for potentially confounding factors. Genes encoding PRR also had higher expression divergence than genes encoding signal transduction proteins and transcription factors. There was a positive correlation between expression divergence and coding sequence divergence, in particular for PRR genes. We propose that this is a result of that divergence in PRR coding sequence leads to divergence in PRR expression through positive feedback of PRR ligand binding on PRR expression. When controlling for sequence divergence, expression divergence of PRR genes did not differ from other categories. Taken together, the results indicate that coding sequence divergence of PRR genes is a major cause of differences in immune function between species.
Collapse
Affiliation(s)
| | | | - Lars Råberg
- Department of Biology, Lund University, Sweden
| |
Collapse
|
41
|
El Taher A, Böhne A, Boileau N, Ronco F, Indermaur A, Widmer L, Salzburger W. Gene expression dynamics during rapid organismal diversification in African cichlid fishes. Nat Ecol Evol 2021; 5:243-250. [PMID: 33230257 PMCID: PMC7610457 DOI: 10.1038/s41559-020-01354-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022]
Abstract
Changes in gene expression play a fundamental role in phenotypic evolution. Transcriptome evolutionary dynamics have so far mainly been compared among distantly related species and remain largely unexplored during rapid organismal diversification, in which gene regulatory changes have been suggested as particularly effective drivers of phenotypic divergence. Here we studied gene expression evolution in a model system of adaptive radiation, the cichlid fishes of African Lake Tanganyika. By comparing gene expression profiles of 6 different organs in 74 cichlid species representing all subclades of this radiation, we demonstrate that the rate of gene expression evolution varies among organs, transcriptome parts and the subclades of the radiation, indicating different strengths of selection. We found that the noncoding part of the transcriptome evolved more rapidly than the coding part, and that the gonadal transcriptomes evolved more rapidly than the somatic ones, with the exception of liver. We further show that the rate of gene expression change was not constant over the course of the radiation but accelerated at its later phase. Finally, we show that-at the per-gene level-the evolution of expression patterns is dominated by stabilizing selection.
Collapse
Affiliation(s)
- Athimed El Taher
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland.
| | - Astrid Böhne
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Bonn, Germany
| | - Nicolas Boileau
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Fabrizia Ronco
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Adrian Indermaur
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Lukas Widmer
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Walter Salzburger
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
42
|
Bhutani K, Stansifer K, Ticau S, Bojic L, Villani AC, Slisz J, Cremers CM, Roy C, Donovan J, Fiske B, Friedman RC. Widespread haploid-biased gene expression enables sperm-level natural selection. Science 2021; 371:science.abb1723. [PMID: 33446482 DOI: 10.1126/science.abb1723] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022]
Abstract
Sperm are haploid but must be functionally equivalent to distribute alleles equally among progeny. Accordingly, gene products are shared through spermatid cytoplasmic bridges that erase phenotypic differences between individual haploid sperm. Here, we show that a large class of mammalian genes are not completely shared across these bridges. We call these genes "genoinformative markers" (GIMs) and show that a subset can act as selfish genetic elements that spread alleles unevenly through murine, bovine, and human populations. We identify evolutionary pressure to avoid conflict between sperm and somatic function as GIMs are enriched for testis-specific gene expression, paralogs, and isoforms. Therefore, GIMs and sperm-level natural selection may help to explain why testis gene expression patterns are an outlier relative to all other tissues.
Collapse
Affiliation(s)
| | | | | | | | - Alexandra-Chloé Villani
- Center for Immunology and Inflammatory Diseases, Center for Cancer Research, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Jackson TNW, Koludarov I. How the Toxin got its Toxicity. Front Pharmacol 2020; 11:574925. [PMID: 33381030 PMCID: PMC7767849 DOI: 10.3389/fphar.2020.574925] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
Venom systems are functional and ecological traits, typically used by one organism to subdue or deter another. A predominant subset of their constituent molecules—“toxins”—share this ecological function and are therefore molecules that mediate interactions between organisms. Such molecules have been referred to as “exochemicals.” There has been debate within the field of toxinology concerning the evolutionary pathways leading to the “recruitment” of a gene product for a toxic role within venom. We review these discussions and the evidence interpreted in support of alternate pathways, along with many of the most popular models describing the origin of novel molecular functions in general. We note that such functions may arise with or without gene duplication occurring and are often the consequence of a gene product encountering a novel “environment,” i.e., a range of novel partners for molecular interaction. After stressing the distinction between “activity” and “function,” we describe in detail the results of a recent study which reconstructed the evolutionary history of a multigene family that has been recruited as a toxin and argue that these results indicate that a pluralistic approach to understanding the origin of novel functions is advantageous. This leads us to recommend that an expansive approach be taken to the definition of “neofunctionalization”—simply the origins of a novel molecular function by any process—and “recruitment”—the “weaponization” of a molecule via the acquisition of a toxic function in venom, by any process. Recruitment does not occur at the molecular level or even at the level of gene expression, but only when a confluence of factors results in the ecological deployment of a physiologically active molecule as a toxin. Subsequent to recruitment, the evolutionary regime of a gene family may shift into a more dynamic form of “birth-and-death.” Thus, recruitment leads to a form of “downwards causation,” in which a change at the ecological level at which whole organisms interact leads to a change in patterns of evolution at the genomic level.
Collapse
Affiliation(s)
- Timothy N W Jackson
- Australian Venom Research Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Australia
| | - Ivan Koludarov
- Animal Venomics Group, Justus Leibig University, Giessen, Germany
| |
Collapse
|
44
|
Noda Y, Uchida M, Mouri A, Yamada S, Goto S, Kitagaki S, Mamiya T, Kushima I, Arioka Y, Ozaki N, Yoshimi A. Involvement of nicotinic acetylcholine receptors in behavioral abnormalities and psychological dependence in schizophrenia-like model mice. Eur Neuropsychopharmacol 2020; 41:92-105. [PMID: 33109433 DOI: 10.1016/j.euroneuro.2020.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 08/22/2020] [Accepted: 10/03/2020] [Indexed: 01/09/2023]
Abstract
The smoking incentive in patients with schizophrenia (SCZ) depends on stimulation of nicotinic acetylcholine receptors (nAChRs) in the central nervous system. To detect potential predictor genes for nicotine responses in SCZ, we explored common factor using research data in human and animal samples. In lymphoblastoid cell lines from SCZ, the mRNA expression level of α7 nAChR subunit was decreased. In SCZ-like model mice of phencyclidine (PCP; 10 mg/kg/day, subcutaneously for 14 days)-administered mice, the mRNA expression level of α7 nAChR subunit and protein expression level of α7 or α4 nAChR subunit were significantly decreased in the prefrontal cortex during PCP withdrawal. Protein, but not mRNA, expression levels of α7, α4, and β2 nAChR subunits were significantly increased in the nucleus accumbens. Acute (-)-nicotine [(-)-NIC: 0.3 mg/kg, s.c.] treatment attenuated impairments of social behaviors and visual recognition memory. These effects of (-)-NIC were completely blocked by both methyllycaconitine, a selective α7 nAChR antagonist, and dihydro-β-erythroidine (DHβE), a selective α4β2 nAChR antagonist. (-)-NIC did not induce conditioned place preference, but enhanced sensitivity to methamphetamine-induced hyperactivity. These findings suggest that α7 nAChR is associated with development of disease and is implicated in the therapeutic effect of nicotine in SCZ. The smoking incentive in SCZ might be attributed to treat their own symptoms, rather than a result of (-)-NIC dependence, by stimulating α7 and/or α4β2 nAChRs.
Collapse
Affiliation(s)
- Yukihiro Noda
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan.
| | - Mizuki Uchida
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Akihiro Mouri
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Shokuro Yamada
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Sakika Goto
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Shinji Kitagaki
- Department of Medical Chemistry, Graduate School of Pharmacy, Meijo University, Nagoya, Japan
| | - Takayoshi Mamiya
- Department of Chemical Pharmacology, Graduate School of Pharmacy, Meijo University, Nagoya, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Yuko Arioka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Yoshimi
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| |
Collapse
|
45
|
Santesmasses D, Mariotti M, Gladyshev VN. Tolerance to Selenoprotein Loss Differs between Human and Mouse. Mol Biol Evol 2020; 37:341-354. [PMID: 31560400 PMCID: PMC6993852 DOI: 10.1093/molbev/msz218] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mouse has emerged as the most common model organism in biomedicine. Here, we analyzed the tolerance to the loss-of-function (LoF) of selenoprotein genes, estimated from mouse knockouts and the frequency of LoF variants in humans. We found not only a general correspondence in tolerance (e.g., GPX1, GPX2) and intolerance (TXNRD1, SELENOT) to gene LoF between humans and mice but also important differences. Notably, humans are intolerant to the loss of iodothyronine deiodinases, whereas their deletion in mice leads to mild phenotypes, and this is consistent with phenotype differences in selenocysteine machinery loss between these species. In contrast, loss of TXNRD2 and GPX4 is lethal in mice but may be tolerated in humans. We further identified the first human SELENOP variants coding for proteins varying in selenocysteine content. Finally, our analyses suggested that premature termination codons in selenoprotein genes trigger nonsense-mediated decay, but do this inefficiently when UGA codon is gained. Overall, our study highlights differences in the physiological importance of selenoproteins between human and mouse.
Collapse
Affiliation(s)
- Didac Santesmasses
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Marco Mariotti
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
46
|
Picart-Picolo A, Grob S, Picault N, Franek M, Llauro C, Halter T, Maier TR, Jobet E, Descombin J, Zhang P, Paramasivan V, Baum TJ, Navarro L, Dvořáčková M, Mirouze M, Pontvianne F. Large tandem duplications affect gene expression, 3D organization, and plant-pathogen response. Genome Res 2020; 30:1583-1592. [PMID: 33033057 PMCID: PMC7605254 DOI: 10.1101/gr.261586.120] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023]
Abstract
Rapid plant genome evolution is crucial to adapt to environmental changes. Chromosomal rearrangements and gene copy number variation (CNV) are two important tools for genome evolution and sources for the creation of new genes. However, their emergence takes many generations. In this study, we show that in Arabidopsis thaliana, a significant loss of ribosomal RNA (rRNA) genes with a past history of a mutation for the chromatin assembly factor 1 (CAF1) complex causes rapid changes in the genome structure. Using long-read sequencing and microscopic approaches, we have identified up to 15 independent large tandem duplications in direct orientation (TDDOs) ranging from 60 kb to 1.44 Mb. Our data suggest that these TDDOs appeared within a few generations, leading to the duplication of hundreds of genes. By subsequently focusing on a line only containing 20% of rRNA gene copies (20rDNA line), we investigated the impact of TDDOs on 3D genome organization, gene expression, and cytosine methylation. We found that duplicated genes often accumulate more transcripts. Among them, several are involved in plant–pathogen response, which could explain why the 20rDNA line is hyper-resistant to both bacterial and nematode infections. Finally, we show that the TDDOs create gene fusions and/or truncations and discuss their potential implications for the evolution of plant genomes.
Collapse
Affiliation(s)
- Ariadna Picart-Picolo
- CNRS, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France.,UPVD, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France
| | - Stefan Grob
- Institute of Plant and Microbial Biology, University of Zurich, CH-8008 Zurich, Switzerland
| | - Nathalie Picault
- CNRS, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France.,UPVD, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France
| | - Michal Franek
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, 625 00 Brno, Czech Republic
| | - Christel Llauro
- CNRS, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France.,UPVD, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France
| | - Thierry Halter
- ENS, IBENS, CNRS/INSERM, PSL Research University, 75005 Paris, France
| | - Tom R Maier
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011, USA
| | - Edouard Jobet
- CNRS, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France.,UPVD, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France
| | - Julie Descombin
- CNRS, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France.,UPVD, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France
| | - Panpan Zhang
- UPVD, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France.,IRD, UMR232 DIADE, 34394 Montpellier, France
| | | | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011, USA
| | - Lionel Navarro
- ENS, IBENS, CNRS/INSERM, PSL Research University, 75005 Paris, France
| | - Martina Dvořáčková
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, 625 00 Brno, Czech Republic
| | - Marie Mirouze
- UPVD, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France.,IRD, UMR232 DIADE, 34394 Montpellier, France
| | - Frédéric Pontvianne
- CNRS, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France.,UPVD, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France
| |
Collapse
|
47
|
Amalgamated cross-species transcriptomes reveal organ-specific propensity in gene expression evolution. Nat Commun 2020; 11:4459. [PMID: 32900997 PMCID: PMC7479108 DOI: 10.1038/s41467-020-18090-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 07/29/2020] [Indexed: 12/24/2022] Open
Abstract
The origins of multicellular physiology are tied to evolution of gene expression. Genes can shift expression as organisms evolve, but how ancestral expression influences altered descendant expression is not well understood. To examine this, we amalgamate 1,903 RNA-seq datasets from 182 research projects, including 6 organs in 21 vertebrate species. Quality control eliminates project-specific biases, and expression shifts are reconstructed using gene-family-wise phylogenetic Ornstein-Uhlenbeck models. Expression shifts following gene duplication result in more drastic changes in expression properties than shifts without gene duplication. The expression properties are tightly coupled with protein evolutionary rate, depending on whether and how gene duplication occurred. Fluxes in expression patterns among organs are nonrandom, forming modular connections that are reshaped by gene duplication. Thus, if expression shifts, ancestral expression in some organs induces a strong propensity for expression in particular organs in descendants. Regardless of whether the shifts are adaptive or not, this supports a major role for what might be termed preadaptive pathways of gene expression evolution.
Collapse
|
48
|
Chernukha I, Kotenkova E. A randomised controlled trial of innovative specialised meat product for patients with cardiovascular and metabolic disorders. POTRAVINARSTVO 2020. [DOI: 10.5219/1298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cardiovascular diseases remain one of the leading causes of death globally. A lot of dietary patterns for CVD prevention have been proposed, but special attention is paid to functional foods. Bioactive proteins and peptides from animal sources are also considered tools for the prevention of CVDs. Here, 40 overweight or obese adult men and women aged between 61 and 66 years, with a body-mass index between 28 and 61 kg.m-2, were enrolled into a randomised controlled trial of new meat products for specialised nutrition. Participants in the control group (n = 20) consumed a standard hyponatric low-calorie diet for 28-30 days (10 days inpatient and 18-20 days outpatient), and in the experimental group – a low-calorie diet and 100g developed meat product (ratio of the porcine aorta to hearts 1:3) per day. Total cholesterol, triglyceride, cholesterol low-density lipoprotein, and cholesterol high-density lipoprotein levels were measured in the serum; from this, the atherogenic index was calculated. The positive effect of developed meat products on the serum lipid profile of patients during the trial was mild but noticeable. A significant reduction in cholesterol levels was noticed in the experimental group, by 18.2% and 14.0% after 7 – 10 and 28 – 30 days, respectively, while the cholesterol level in the control group returned to its original level after 28 – 30 days of dieting. The difference between the control and experimental groups was not significant, while data in the percentiles were. Therefore, it is more preferable to use a developed product as a component in diet therapy for hyperlipidaemic humans for over 28 – 30 days. Pronounced effects of the product could be linked to the unique proteome and peptidome of heart and aorta tissues based on organ-specific gene expression and the presence of tissue-specific substances.
Collapse
|
49
|
A genome-wide survey of copy number variations reveals an asymmetric evolution of duplicated genes in rice. BMC Biol 2020; 18:73. [PMID: 32591023 PMCID: PMC7318451 DOI: 10.1186/s12915-020-00798-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/20/2020] [Indexed: 11/21/2022] Open
Abstract
Background Copy number variations (CNVs) are an important type of structural variations in the genome that usually affect gene expression levels by gene dosage effect. Understanding CNVs as part of genome evolution may provide insights into the genetic basis of important agricultural traits and contribute to the crop breeding in the future. While available methods to detect CNVs utilizing next-generation sequencing technology have helped shed light on prevalence and effects of CNVs, the complexity of crop genomes poses a major challenge and requires development of additional tools. Results Here, we generated genomic and transcriptomic data of 93 rice (Oryza sativa L.) accessions and developed a comprehensive pipeline to call CNVs in this large-scale dataset. We analyzed the correlation between CNVs and gene expression levels and found that approximately 13% of the identified genes showed a significant correlation between their expression levels and copy numbers. Further analysis showed that about 36% of duplicate pairs were involved in pseudogenetic events while only 5% of them showed functional differentiation. Moreover, the offspring copy mainly contributed to the expression levels and seemed more likely to become a pseudogene, whereas the parent copy tended to maintain the function of ancestral gene. Conclusion We provide a high-accuracy CNV dataset that will contribute to functional genomics studies and molecular breeding in rice. We also showed that gene dosage effect of CNVs in rice is not exponential or linear. Our work demonstrates that the evolution of duplicated genes is asymmetric in both expression levels and gene fates, shedding a new insight into the evolution of duplicated genes.
Collapse
|
50
|
Parey E, Louis A, Cabau C, Guiguen Y, Roest Crollius H, Berthelot C. Synteny-Guided Resolution of Gene Trees Clarifies the Functional Impact of Whole-Genome Duplications. Mol Biol Evol 2020; 37:3324-3337. [DOI: 10.1093/molbev/msaa149] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Abstract
Whole-genome duplications (WGDs) have major impacts on the evolution of species, as they produce new gene copies contributing substantially to adaptation, isolation, phenotypic robustness, and evolvability. They result in large, complex gene families with recurrent gene losses in descendant species that sequence-based phylogenetic methods fail to reconstruct accurately. As a result, orthologs and paralogs are difficult to identify reliably in WGD-descended species, which hinders the exploration of functional consequences of WGDs. Here, we present Synteny-guided CORrection of Paralogies and Orthologies (SCORPiOs), a novel method to reconstruct gene phylogenies in the context of a known WGD event. WGDs generate large duplicated syntenic regions, which SCORPiOs systematically leverages as a complement to sequence evolution to infer the evolutionary history of genes. We applied SCORPiOs to the 320-My-old WGD at the origin of teleost fish. We find that almost one in four teleost gene phylogenies in the Ensembl database (3,394) are inconsistent with their syntenic contexts. For 70% of these gene families (2,387), we were able to propose an improved phylogenetic tree consistent with both the molecular substitution distances and the local syntenic information. We show that these synteny-guided phylogenies are more congruent with the species tree, with sequence evolution and with expected expression conservation patterns than those produced by state-of-the-art methods. Finally, we show that synteny-guided gene trees emphasize contributions of WGD paralogs to evolutionary innovations in the teleost clade.
Collapse
Affiliation(s)
- Elise Parey
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Alexandra Louis
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Cédric Cabau
- SIGENAE, GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | | | - Hugues Roest Crollius
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Camille Berthelot
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|