1
|
Iarossi M, Verma NC, Bhattacharya I, Meller A. The Emergence of Nanofluidics for Single-Biomolecule Manipulation and Sensing. Anal Chem 2025; 97:8641-8653. [PMID: 40244645 PMCID: PMC12044595 DOI: 10.1021/acs.analchem.4c06684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/16/2025] [Accepted: 04/08/2025] [Indexed: 04/18/2025]
Abstract
Driven by recent advancements in nanofabrication techniques, single-molecule sensing and manipulations in nanofluidic devices are rapidly evolving. These sophisticated biosensors have already had significant impacts on basic research as well as on applications in molecular diagnostics. The nanoscale dimensions of these devices introduce new physical phenomena by confining the biomolecules in at least one dimension, creating effects such as biopolymer linearization, stretching, and separation by mass that are utilized to enhance the biomolecule sensing resolutions. At the same time, the suppressed diffusional motion allows for better single-molecule SNR (signal-to-noise ratio) sensing over time. In particular, nanofluidic devices based on nanochannels have been established as promising technologies for the linearization of ultralong genomic DNA molecules and for optical genome mapping, opening a window to directly observe and infer genome organization. More recently, nanochannels have shown promising capabilities for single-molecule protein sizing, separation, and identification. Consequently, this technology is attracting remarkable interest for applications in single-molecule proteomics. In this review, we discuss the recent advancements of nanochannel-based technologies, focusing on their applications for single-molecule sensing and the characterization of a wide range of biomolecules.
Collapse
Affiliation(s)
- Marzia Iarossi
- Faculty of Biomedical Engineering, Technion -IIT, Haifa 3200003, Israel
| | | | - Ivy Bhattacharya
- Faculty of Biomedical Engineering, Technion -IIT, Haifa 3200003, Israel
| | - Amit Meller
- Faculty of Biomedical Engineering, Technion -IIT, Haifa 3200003, Israel
| |
Collapse
|
2
|
Ghabrial J, Stinnett V, Ribeiro E, Klausner M, Morsberger L, Long P, Middlezong W, Xian R, Gocke C, Lin MT, Rooper L, Baraban E, Argani P, Pallavajjala A, Murry JB, Gross JM, Zou YS. Diagnostic and Prognostic/Therapeutic Significance of Comprehensive Analysis of Bone and Soft Tissue Tumors Using Optical Genome Mapping and Next-Generation Sequencing. Mod Pathol 2025; 38:100684. [PMID: 39675429 DOI: 10.1016/j.modpat.2024.100684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/05/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024]
Abstract
Detecting somatic structural variants (SVs), copy number variants (CNVs), and mutations in bone and soft tissue tumors is essential for accurately diagnosing, treating, and prognosticating outcomes. Optical genome mapping (OGM) holds promise to yield useful data on SVs and CNVs but requires fresh or snap-frozen tissues. This study aimed to evaluate the clinical utility of data from OGM compared with current standard-of-care cytogenetic testing. We evaluated 60 consecutive specimens from bone and soft tissue tumors using OGM and karyotyping, fluorescence in situ hybridization, gene fusion assays, and deep next-generation sequencing. OGM accurately identified diagnostic SVs/CNVs previously detected by karyotyping and fluorescence in situ hybridization (specificity = 100%). OGM identified diagnostic and pathogenic SVs/CNVs (∼23% of cases) undetected by karyotyping (cryptic/submicroscopic). OGM allowed the detection and further characterization of complex structural rearrangements including chromoanagenesis (27% of cases) and complex 3- to 6-way translocations (15% of cases). In addition to identifying 321 SVs and CNVs among cases with chromoanagenesis events, OGM identified approximately 9 SVs and 12 CNVs per sample. A combination of OGM and deep next-generation sequencing data identified diagnostic, disease-associated, and pathogenic SVs, CNVs, and mutations in ∼98% of the cases. Our cohort contained the most extensive collection of bone and soft tissue tumors profiled by OGM. OGM had excellent concordance with standard-of-care cytogenetic testing, detecting and assigning high-resolution genome-wide genomic abnormalities with higher sensitivity than routine testing. This is the first and largest study to provide insights into the clinical utility of combined OGM and deep sequencing for the pathologic diagnosis and potential prognostication of bone and soft tissue tumors in routine clinical practice.
Collapse
Affiliation(s)
- Jen Ghabrial
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Victoria Stinnett
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Efrain Ribeiro
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Melanie Klausner
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Laura Morsberger
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Patty Long
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - William Middlezong
- Molecular and Cellular Biology, Johns Hopkins University, Baltimore, Maryland
| | - Rena Xian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christopher Gocke
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ming-Tseh Lin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lisa Rooper
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ezra Baraban
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Pedram Argani
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Aparna Pallavajjala
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jaclyn B Murry
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John M Gross
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Ying S Zou
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
3
|
Krupina K, Goginashvili A, Cleveland DW. Scrambling the genome in cancer: causes and consequences of complex chromosome rearrangements. Nat Rev Genet 2024; 25:196-210. [PMID: 37938738 PMCID: PMC10922386 DOI: 10.1038/s41576-023-00663-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 11/09/2023]
Abstract
Complex chromosome rearrangements, known as chromoanagenesis, are widespread in cancer. Based on large-scale DNA sequencing of human tumours, the most frequent type of complex chromosome rearrangement is chromothripsis, a massive, localized and clustered rearrangement of one (or a few) chromosomes seemingly acquired in a single event. Chromothripsis can be initiated by mitotic errors that produce a micronucleus encapsulating a single chromosome or chromosomal fragment. Rupture of the unstable micronuclear envelope exposes its chromatin to cytosolic nucleases and induces chromothriptic shattering. Found in up to half of tumours included in pan-cancer genomic analyses, chromothriptic rearrangements can contribute to tumorigenesis through inactivation of tumour suppressor genes, activation of proto-oncogenes, or gene amplification through the production of self-propagating extrachromosomal circular DNAs encoding oncogenes or genes conferring anticancer drug resistance. Here, we discuss what has been learned about the mechanisms that enable these complex genomic rearrangements and their consequences in cancer.
Collapse
Affiliation(s)
- Ksenia Krupina
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Alexander Goginashvili
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Don W Cleveland
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
Finlay D, Murad R, Hong K, Lee J, Pang AWC, Lai CY, Clifford B, Burian C, Mason J, Hastie AR, Yin J, Vuori K. Detection of Genomic Structural Variations Associated with Drug Sensitivity and Resistance in Acute Leukemia. Cancers (Basel) 2024; 16:418. [PMID: 38254907 PMCID: PMC10814465 DOI: 10.3390/cancers16020418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Acute leukemia is a particularly problematic collection of hematological cancers, and, while somewhat rare, the survival rate of patients is typically abysmal without bone marrow transplantation. Furthermore, traditional chemotherapies used as standard-of-care for patients cause significant side effects. Understanding the evolution of leukemia to identify novel targets and, therefore, drug treatment regimens is a significant medical need. Genomic rearrangements and other structural variations (SVs) have long been known to be causative and pathogenic in multiple types of cancer, including leukemia. These SVs may be involved in cancer initiation, progression, clonal evolution, and drug resistance, and a better understanding of SVs from individual patients may help guide therapeutic options. Here, we show the utilization of optical genome mapping (OGM) to detect known and novel SVs in the samples of patients with leukemia. Importantly, this technology provides an unprecedented level of granularity and quantitation unavailable to other current techniques and allows for the unbiased detection of novel SVs, which may be relevant to disease pathogenesis and/or drug resistance. Coupled with the chemosensitivities of these samples to FDA-approved oncology drugs, we show how an impartial integrative analysis of these diverse datasets can be used to associate the detected genomic rearrangements with multiple drug sensitivity profiles. Indeed, an insertion in the gene MUSK is shown to be associated with increased sensitivity to the clinically relevant agent Idarubicin, while partial tandem duplication events in the KMT2A gene are related to the efficacy of another frontline treatment, Cytarabine.
Collapse
Affiliation(s)
- Darren Finlay
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (R.M.)
| | - Rabi Murad
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (R.M.)
| | - Karl Hong
- Bionano Genomics Inc., San Diego, CA 92121, USA
| | - Joyce Lee
- Bionano Genomics Inc., San Diego, CA 92121, USA
| | | | - Chi-Yu Lai
- Bionano Genomics Inc., San Diego, CA 92121, USA
| | | | | | - James Mason
- Scripps MD Anderson, La Jolla, CA 92037, USA
| | | | - Jun Yin
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (R.M.)
| | - Kristiina Vuori
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (R.M.)
| |
Collapse
|
5
|
Paulraj P, Barrie E, Jackson‐Cook C. Optical genome mapping reveals balanced and unbalanced genetic changes associated with tumor-forming potential in an early-stage prostate cancer epithelial subline (M2205). Mol Genet Genomic Med 2024; 12:e2307. [PMID: 37902189 PMCID: PMC10767587 DOI: 10.1002/mgg3.2307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/26/2023] [Accepted: 10/13/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND Identifying cytogenetic changes in tumors can aid in diagnosis/prognosis and disease management. Complete cytogenetic characterization has historically required a multimethod/time-consuming approach. Optical genome mapping (OGM) offers a potential solution to this challenge by detecting both balanced and unbalanced abnormalities in a single assay. METHODS Genetic changes acquired with tumor-forming potential in a prostate xenograft subline [M2205] (derived from a Black male) that were detected using cytogenetic versus OGM analyses were compared to assess the utility of OGM for analyzing solid tumors. RESULTS Cytogenetic/OGM concordance was noted for (a) copy number gains (16, 1p, 3q, 5q, 7p, 8q, 9q, 11p, 11q, 15q, 20q), (b) copy number losses (Y, 3p, 4p, 6p, 7p, 9p, 11q), and (c) structural changes, including multibreak rearrangements. Discordance was noted for two structural findings, both of which had breakpoints localized to repetitive sequences. The OGM studies identified new findings and confirmed/further characterized 8q24 structural abnormalities. It also detected genes gained/disrupted in the 8q24 region (e.g., MYC, DEPTOR, and EXT1); but recognizing a jumping translocation required cytogenetic analyses. CONCLUSION These results support using OGM as a tool to analyze solid tumors in clinical/research settings. Moreover, this OGM analysis expanded the characterization of cytogenetic changes present in the M2205 subline, including alterations associated with tumors from Black males diagnosed with prostate cancer.
Collapse
Affiliation(s)
- Prabakaran Paulraj
- Department of PathologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- NeogenomicsPhoenixArizonaUSA
| | - Elizabeth Barrie
- Department of PathologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Colleen Jackson‐Cook
- Department of PathologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of Human & Molecular GeneticsVirginia Commonwealth UniversityRichmondVirginiaUSA
| |
Collapse
|
6
|
Xu H, Gao H, Wang C, Cheng X, Li Z, Lei C, Huang X, Li W, Yue Z, Tian S, Zhao X, Xue T, Xing T, Li J, Wang Y, Duan Y, Wang T, Zhang R. Optical Genome Mapping Reveals Novel Structural Variants in Lymphoblastic Lymphoma. J Pediatr Hematol Oncol 2024; 46:e71-e82. [PMID: 38018972 DOI: 10.1097/mph.0000000000002787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 10/15/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Accurate histologic and molecular genetic diagnosis is critical for the pathogenesis study of pediatric patients with lymphoblastic lymphoma (LBL). Optical genome mapping (OGM) as all-in-one process allows the detection of most major genomic risk markers, which addresses some of the limitations associated with conventional cytogenomic testing, such as low resolution and throughput, difficulty in ascertaining genomic localization, and orientation of segments in duplication, inversions, and insertions. Here, for the first time, we examined the cytogenetics of 5 children with LBL using OGM. METHODS OGM was used to analyze 5 samples of pediatric LBL patients treated according to the modified NHL-BFM95 backbone regimen. Whole-exon Sequencing (WES) was used to confirm the existence of structural variants (SVs) identified by OGM with potentially clinical significance on MGI Tech (DNBSEQ-T7) platform. According to the fusion exon sequences revealed by WES, the HBS1L :: AHI1 fusion mRNA in case 4 was amplified by cDNA-based PCR. RESULTS In total, OGM identified 251 rare variants (67 insertions, 129 deletions, 3 inversion, 25 duplications, 15 intrachromosomal translocations, and 12 interchromosomal translocations) and 229 copy number variants calls (203 gains and 26 losses). Besides all of the reproducible and pathologically significant genomic SVs detected by conventional cytogenetic techniques, OGM identified more SVs with definite or potential pathologic significance that were not detected by traditional methods, including 2 new fusion genes, HBS1L :: AHI1 and GRIK1::NSDHL , which were confirmed by WES and/or Reverse Transcription-Polymerase Chain Reaction. CONCLUSIONS Our results demonstrate the feasibility of OGM to detect genomic aberrations, which may play an important role in the occurrence and development of lymphomagenesis as an important driving factor.
Collapse
Affiliation(s)
- Hanli Xu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University
| | - Huixia Gao
- Hematology Center, Beijing Children's Hospital, Capital Medical University; National Center for Children's Health
- Beijing Key Laboratory of Pediatric Hematology Oncology
- Key Laboratory of Major Diseases in Children, Ministry of Education
- National Key Discipline of Pediatrics, Capital Medical University
| | - Chanjuan Wang
- Hematology Center, Beijing Children's Hospital, Capital Medical University; National Center for Children's Health
- Beijing Key Laboratory of Pediatric Hematology Oncology
- Key Laboratory of Major Diseases in Children, Ministry of Education
- National Key Discipline of Pediatrics, Capital Medical University
| | - Xiyu Cheng
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University
| | - Zhigang Li
- Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University
- National Center for Children's Health
- Beijing Key Laboratory of Pediatric Hematology Oncology
- Key Laboratory of Major Diseases in Children, Ministry of Education
- National Key Discipline of Pediatrics, Capital Medical University, Beijing
| | - Cui Lei
- Hematology Center, Beijing Children's Hospital, Capital Medical University; National Center for Children's Health
- Beijing Key Laboratory of Pediatric Hematology Oncology
- Key Laboratory of Major Diseases in Children, Ministry of Education
- National Key Discipline of Pediatrics, Capital Medical University
| | - XiaoTong Huang
- Hematology Center, Beijing Children's Hospital, Capital Medical University; National Center for Children's Health
- Beijing Key Laboratory of Pediatric Hematology Oncology
- Key Laboratory of Major Diseases in Children, Ministry of Education
- National Key Discipline of Pediatrics, Capital Medical University
| | - Weijing Li
- Hematology Center, Beijing Children's Hospital, Capital Medical University; National Center for Children's Health
- Beijing Key Laboratory of Pediatric Hematology Oncology
- Key Laboratory of Major Diseases in Children, Ministry of Education
- National Key Discipline of Pediatrics, Capital Medical University
| | - Zhixia Yue
- Hematology Center, Beijing Children's Hospital, Capital Medical University; National Center for Children's Health
- Beijing Key Laboratory of Pediatric Hematology Oncology
- Key Laboratory of Major Diseases in Children, Ministry of Education
- National Key Discipline of Pediatrics, Capital Medical University
| | - Shuo Tian
- Hematology Center, Beijing Children's Hospital, Capital Medical University; National Center for Children's Health
- Beijing Key Laboratory of Pediatric Hematology Oncology
- Key Laboratory of Major Diseases in Children, Ministry of Education
- National Key Discipline of Pediatrics, Capital Medical University
| | - Xiaoxi Zhao
- Hematology Center, Beijing Children's Hospital, Capital Medical University; National Center for Children's Health
- Beijing Key Laboratory of Pediatric Hematology Oncology
- Key Laboratory of Major Diseases in Children, Ministry of Education
- National Key Discipline of Pediatrics, Capital Medical University
| | - Tianlin Xue
- Hematology Center, Beijing Children's Hospital, Capital Medical University; National Center for Children's Health
- Beijing Key Laboratory of Pediatric Hematology Oncology
- Key Laboratory of Major Diseases in Children, Ministry of Education
- National Key Discipline of Pediatrics, Capital Medical University
| | - Tianyu Xing
- Hematology Center, Beijing Children's Hospital, Capital Medical University; National Center for Children's Health
- Beijing Key Laboratory of Pediatric Hematology Oncology
- Key Laboratory of Major Diseases in Children, Ministry of Education
- National Key Discipline of Pediatrics, Capital Medical University
| | - Jun Li
- Hematology Center, Beijing Children's Hospital, Capital Medical University; National Center for Children's Health
- Beijing Key Laboratory of Pediatric Hematology Oncology
- Key Laboratory of Major Diseases in Children, Ministry of Education
- National Key Discipline of Pediatrics, Capital Medical University
| | - Ying Wang
- Hematology Center, Beijing Children's Hospital, Capital Medical University; National Center for Children's Health
- Beijing Key Laboratory of Pediatric Hematology Oncology
- Key Laboratory of Major Diseases in Children, Ministry of Education
- National Key Discipline of Pediatrics, Capital Medical University
| | - Yanlong Duan
- Beijing Key Laboratory of Pediatric Hematology Oncology
- Key Laboratory of Major Diseases in Children, Ministry of Education
- National Key Discipline of Pediatrics, Capital Medical University
- National Center for Children's Health
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children's Hospital, Capital Medical University, China
| | - Tianyou Wang
- Hematology Center, Beijing Children's Hospital, Capital Medical University; National Center for Children's Health
- Beijing Key Laboratory of Pediatric Hematology Oncology
- Key Laboratory of Major Diseases in Children, Ministry of Education
- National Key Discipline of Pediatrics, Capital Medical University
| | - Ruidong Zhang
- Hematology Center, Beijing Children's Hospital, Capital Medical University; National Center for Children's Health
- Beijing Key Laboratory of Pediatric Hematology Oncology
- Key Laboratory of Major Diseases in Children, Ministry of Education
- National Key Discipline of Pediatrics, Capital Medical University
| |
Collapse
|
7
|
Smith AC, Hoischen A, Raca G. Cytogenetics Is a Science, Not a Technique! Why Optical Genome Mapping Is So Important to Clinical Genetic Laboratories. Cancers (Basel) 2023; 15:5470. [PMID: 38001730 PMCID: PMC10670395 DOI: 10.3390/cancers15225470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Karyotyping is a technique that has been used in clinical cytogenetic laboratories for more than 40 years [...].
Collapse
Affiliation(s)
- Adam C. Smith
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Alexander Hoischen
- Department of Human Genetics and Department of Internal Medicine, Research Institute for Medical Innovation, Radboud Expertise Center for Immunodeficiency and Autoinflammation and Radboud Center for Infectious Disease (RCI), Radboud University Medical Center, 6525 Nijmegen, The Netherlands;
| | - Gordana Raca
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA;
| |
Collapse
|
8
|
Ahsan MU, Liu Q, Perdomo JE, Fang L, Wang K. A survey of algorithms for the detection of genomic structural variants from long-read sequencing data. Nat Methods 2023; 20:1143-1158. [PMID: 37386186 PMCID: PMC11208083 DOI: 10.1038/s41592-023-01932-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 05/31/2023] [Indexed: 07/01/2023]
Abstract
As long-read sequencing technologies are becoming increasingly popular, a number of methods have been developed for the discovery and analysis of structural variants (SVs) from long reads. Long reads enable detection of SVs that could not be previously detected from short-read sequencing, but computational methods must adapt to the unique challenges and opportunities presented by long-read sequencing. Here, we summarize over 50 long-read-based methods for SV detection, genotyping and visualization, and discuss how new telomere-to-telomere genome assemblies and pangenome efforts can improve the accuracy and drive the development of SV callers in the future.
Collapse
Affiliation(s)
- Mian Umair Ahsan
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Qian Liu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jonathan Elliot Perdomo
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- School of Biomedical Engineering, Drexel University, Philadelphia, PA, USA
| | - Li Fang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Soler G, Ouedraogo ZG, Goumy C, Lebecque B, Aspas Requena G, Ravinet A, Kanold J, Véronèse L, Tchirkov A. Optical Genome Mapping in Routine Cytogenetic Diagnosis of Acute Leukemia. Cancers (Basel) 2023; 15:cancers15072131. [PMID: 37046792 PMCID: PMC10093111 DOI: 10.3390/cancers15072131] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023] Open
Abstract
Cytogenetic aberrations are found in 65% of adults and 75% of children with acute leukemia. Specific aberrations are used as markers for the prognostic stratification of patients. The current standard cytogenetic procedure for acute leukemias is karyotyping in combination with FISH and RT-PCR. Optical genome mapping (OGM) is a new technology providing a precise identification of chromosomal abnormalities in a single approach. In our prospective study, the results obtained using OGM and standard techniques were compared in 29 cases of acute myeloid (AML) or lymphoblastic leukemia (ALL). OGM detected 73% (53/73) of abnormalities identified by standard methods. In AML cases, two single clones and three subclones were missed by OGM, but the assignment of patients to cytogenetic risk groups was concordant in all patients. OGM identified additional abnormalities in six cases, including one cryptic structural variant of clinical interest and two subclones. In B-ALL cases, OGM correctly detected all relevant aberrations and revealed additional potentially targetable alterations. In T-ALL cases, OGM characterized a complex karyotype in one case and identified additional abnormalities in two others. In conclusion, OGM is an attractive alternative to current multiple cytogenetic testing in acute leukemia that simplifies the procedure and reduces costs.
Collapse
Affiliation(s)
- Gwendoline Soler
- Cytogénétique Médicale, CHU Clermont-Ferrand, CHU Estaing, 63000 Clermont-Ferrand, France
| | - Zangbéwendé Guy Ouedraogo
- Cytogénétique Médicale, CHU Clermont-Ferrand, CHU Estaing, 63000 Clermont-Ferrand, France
- Service de Biochimie et Génétique Moléculaire, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France
- CNRS, INSERM, iGReD, Université Clermont Auvergne, 63001 Clermont-Ferrand, France
| | - Carole Goumy
- Cytogénétique Médicale, CHU Clermont-Ferrand, CHU Estaing, 63000 Clermont-Ferrand, France
- INSERM U1240 Imagerie Moléculaire et Stratégies Théranostiques, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | | | - Gaspar Aspas Requena
- Hématologie Clinique Adulte et de Thérapie Cellulaire, CHU Estaing, 63100 Clermont-Ferrand, France
| | - Aurélie Ravinet
- Hématologie Clinique Adulte et de Thérapie Cellulaire, CHU Estaing, 63100 Clermont-Ferrand, France
| | - Justyna Kanold
- Service d'Hématologie et d'Oncologie Pédiatrique et Unité CRECHE (Centre de REcherche Clinique CHez l'Enfant), CHU Estaing, 63100 Clermont-Ferrand, France
| | - Lauren Véronèse
- Cytogénétique Médicale, CHU Clermont-Ferrand, CHU Estaing, 63000 Clermont-Ferrand, France
- Clonal Heterogeneity and Leukemic Environment in Therapy Resistance of Chronic Leukemias (CHELTER), EA7453, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Andrei Tchirkov
- Cytogénétique Médicale, CHU Clermont-Ferrand, CHU Estaing, 63000 Clermont-Ferrand, France
- Clonal Heterogeneity and Leukemic Environment in Therapy Resistance of Chronic Leukemias (CHELTER), EA7453, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| |
Collapse
|
10
|
Zhang S, Pei Z, Lei C, Zhu S, Deng K, Zhou J, Yang J, Lu D, Sun X, Xu C, Xu C. Detection of cryptic balanced chromosomal rearrangements using high-resolution optical genome mapping. J Med Genet 2023; 60:274-284. [PMID: 35710108 DOI: 10.1136/jmedgenet-2022-108553] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/28/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Chromosomal rearrangements have profound consequences in diverse human genetic diseases. Currently, the detection of balanced chromosomal rearrangements (BCRs) mainly relies on routine cytogenetic G-banded karyotyping. However, cryptic BCRs are hard to detect by karyotyping, and the risk of miscarriage or delivering abnormal offspring with congenital malformations in carrier couples is significantly increased. In the present study, we aimed to investigate the potential of single-molecule optical genome mapping (OGM) in unravelling cryptic chromosomal rearrangements. METHODS Eleven couples with normal karyotypes that had abortions/affected offspring with unbalanced rearrangements were enrolled. Ultra-high-molecular-weight DNA was isolated from peripheral blood cells and processed via OGM. The genome assembly was performed followed by variant calling and annotation. Meanwhile, multiple detection strategies, including FISH, long-range-PCR amplicon-based next-generation sequencing and Sanger sequencing were implemented to confirm the results obtained from OGM. RESULTS High-resolution OGM successfully detected cryptic reciprocal translocation in all recruited couples, which was consistent with the results of FISH and sequencing. All high-confidence cryptic chromosomal translocations detected by OGM were confirmed by sequencing analysis of rearrangement breakpoints. Moreover, OGM revealed additional complex rearrangement events such as inverted aberrations, further refining potential genetic interpretation. CONCLUSION To the best of our knowledge, this is the first study wherein OGM facilitate the rapid and robust detection of cryptic chromosomal reciprocal translocations in clinical practice. With the excellent performance, our findings suggest that OGM is well qualified as an accurate, comprehensive and first-line method for detecting cryptic BCRs in routine clinical testing.
Collapse
Affiliation(s)
- Shuo Zhang
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Zhenle Pei
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Caixia Lei
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Saijuan Zhu
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Ke Deng
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jing Zhou
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jingmin Yang
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China.,NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning, Science and Technology Research Institute, Chongqing, China
| | - Daru Lu
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China.,NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning, Science and Technology Research Institute, Chongqing, China
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Chenming Xu
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Congjian Xu
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
11
|
Pitel BA, Zuckerman EZ, Baughn LB. Mate Pair Sequencing: Next-Generation Sequencing for Structural Variant Detection. Methods Mol Biol 2023; 2621:127-149. [PMID: 37041444 DOI: 10.1007/978-1-0716-2950-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Structural variant detection by next-generation sequencing (NGS) methods have a higher molecular resolution than conventional cytogenetic techniques (Aypar et al., Eur J Haematol 102(1):87-96, 2019; Smadbeck et al., Blood Cancer J 9(12):103, 2019) and are particularly helpful in characterizing genomic rearrangements. Mate pair sequencing (MPseq) leverages a unique library preparation chemistry involving circularization of long DNA fragments, allowing for a unique application of paired-end sequencing of reads that are expected to map 2-5 kb apart in the genome. The unique orientation of the reads allows the user to estimate the location of breakpoints involved in a structural variant either within the sequenced reads or between the two reads. The precision of structural variant and copy number detection by this method allows for characterization of cryptic and complex rearrangements that may be otherwise undetectable by conventional cytogenetic methods (Singh et al., Leuk Lymphoma 60(5):1304-1307, 2019; Peterson et al., Blood Adv 3(8):1298-1302, 2019; Schultz et al., Leuk Lymphoma 61(4):975-978, 2020; Peterson et al., Mol Case Studies 5(2), 2019; Peterson et al., Mol Case Studies 5(3), 2019).
Collapse
Affiliation(s)
- Beth A Pitel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | | | - Linda B Baughn
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
12
|
Gao H, Xu H, Wang C, Cui L, Huang X, Li W, Yue Z, Tian S, Zhao X, Xue T, Xing T, Li J, Wang Y, Zhang R, Li Z, Wang T. Optical Genome Mapping for Comprehensive Assessment of Chromosomal Aberrations and Discovery of New Fusion Genes in Pediatric B-Acute Lymphoblastic Leukemia. Cancers (Basel) 2022; 15:35. [PMID: 36612032 PMCID: PMC9817688 DOI: 10.3390/cancers15010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE To assess the potential added value of Optical Genomic Mapping (OGM) for identifying chromosomal aberrations. METHODS We utilized Optical Genomic Mapping (OGM) to determine chromosomal aberrations in 46 children with B-cell Acute lymphoblastic leukemia ALL (B-ALL) and compared the results of OGM with conventional technologies. Partial detection results were verified by WGS and PCR. RESULTS OGM showed a good concordance with conventional cytogenetic techniques in identifying the reproducible and pathologically significant genomic SVs. Two new fusion genes (LMNB1::PPP2R2B and TMEM272::KDM4B) were identified by OGM and verified by WGS and RT-PCR for the first time. OGM has a greater ability to detect complex chromosomal aberrations, refine complicated karyotypes, and identify more SVs. Several novel fusion genes and single-gene alterations, associated with definite or potential pathologic significance that had not been detected by traditional methods, were also identified. CONCLUSION OGM addresses some of the limitations associated with conventional cytogenomic testing. This all-in-one process allows the detection of most major genomic risk markers in one test, which may have important meanings for the development of leukemia pathogenesis and targeted drugs.
Collapse
Affiliation(s)
- Huixia Gao
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Hanli Xu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Chanjuan Wang
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Lei Cui
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Xiaotong Huang
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Weijing Li
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Zhixia Yue
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Shuo Tian
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Xiaoxi Zhao
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Tianlin Xue
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Tianyu Xing
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Jun Li
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Ying Wang
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Ruidong Zhang
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| | - Zhigang Li
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
- Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
| | - Tianyou Wang
- Hematology Center, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- National Center for Children’s Health, Beijing 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing 100045, China
| |
Collapse
|
13
|
Muñoz-Barrera A, Rubio-Rodríguez LA, Díaz-de Usera A, Jáspez D, Lorenzo-Salazar JM, González-Montelongo R, García-Olivares V, Flores C. From Samples to Germline and Somatic Sequence Variation: A Focus on Next-Generation Sequencing in Melanoma Research. Life (Basel) 2022; 12:1939. [PMID: 36431075 PMCID: PMC9695713 DOI: 10.3390/life12111939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
Next-generation sequencing (NGS) applications have flourished in the last decade, permitting the identification of cancer driver genes and profoundly expanding the possibilities of genomic studies of cancer, including melanoma. Here we aimed to present a technical review across many of the methodological approaches brought by the use of NGS applications with a focus on assessing germline and somatic sequence variation. We provide cautionary notes and discuss key technical details involved in library preparation, the most common problems with the samples, and guidance to circumvent them. We also provide an overview of the sequence-based methods for cancer genomics, exposing the pros and cons of targeted sequencing vs. exome or whole-genome sequencing (WGS), the fundamentals of the most common commercial platforms, and a comparison of throughputs and key applications. Details of the steps and the main software involved in the bioinformatics processing of the sequencing results, from preprocessing to variant prioritization and filtering, are also provided in the context of the full spectrum of genetic variation (SNVs, indels, CNVs, structural variation, and gene fusions). Finally, we put the emphasis on selected bioinformatic pipelines behind (a) short-read WGS identification of small germline and somatic variants, (b) detection of gene fusions from transcriptomes, and (c) de novo assembly of genomes from long-read WGS data. Overall, we provide comprehensive guidance across the main methodological procedures involved in obtaining sequencing results for the most common short- and long-read NGS platforms, highlighting key applications in melanoma research.
Collapse
Affiliation(s)
- Adrián Muñoz-Barrera
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
| | - Luis A. Rubio-Rodríguez
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
| | - Ana Díaz-de Usera
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - David Jáspez
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
| | - José M. Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
| | - Rafaela González-Montelongo
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
| | - Víctor García-Olivares
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
| | - Carlos Flores
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Facultad de Ciencias de la Salud, Universidad Fernando de Pessoa Canarias, 35450 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
14
|
Hanlon VCT, Lansdorp PM, Guryev V. A survey of current methods to detect and genotype inversions. Hum Mutat 2022; 43:1576-1589. [PMID: 36047337 DOI: 10.1002/humu.24458] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/11/2022]
Abstract
Polymorphic inversions are ubiquitous in humans, and they have been linked to both adaptation and disease. Following their discovery in Drosophila more than a century ago, inversions have proved to be more elusive than other structural variants. A wide variety of methods for the detection and genotyping of inversions have recently been developed: multiple techniques based on selective amplification by PCR, short- and long-read sequencing approaches, principal component analysis of small variant haplotypes, template strand sequencing, optical mapping, and various genome assembly methods. Many methods apply complex wet lab protocols or increasingly refined bioinformatic analyses. This review is an attempt to provide a practical summary and comparison of the methods that are in current use, with a focus on metrics such as the maximum size of segmental duplications at inversion breakpoints that each method can tolerate, the size range of inversions that they recover, their throughput, and whether the locations of putative inversions must be known beforehand. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Peter M Lansdorp
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, V5Z 1L3, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Victor Guryev
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
15
|
Ordulu Z, Nardi V. Molecular Detection of Oncogenic Gene Rearrangements. Clin Lab Med 2022; 42:435-449. [DOI: 10.1016/j.cll.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Xia L, Wang Z, Wu X, Zeng T, Luo W, Hu X, Ni Y, Che G, Liu L, Zhang W, Xie D, Li W. Multiplatform discovery and regulatory function analysis of structural variations in non-small cell lung carcinoma. Cell Rep 2021; 36:109660. [PMID: 34496260 DOI: 10.1016/j.celrep.2021.109660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/06/2021] [Accepted: 08/11/2021] [Indexed: 02/08/2023] Open
Abstract
Non-small cell lung carcinoma (NSCLC), the most common form of lung cancer, is the leading cause of cancer-related death worldwide. We perform whole-genome sequencing (WGS) on samples from 43 primary patients with NSCLC and matched normal samples and analyze their matched open chromatin data and transcriptome data. Our results indicate that next-generation sequencing (NGS) and the Bionano Genomics (BNG) platform should be viewed as complementary technologies in terms of structural variations detection. By creating a framework integrating these two platforms, we detect high-technical-confidence somatic structural variations (SVs) in NSCLC cases, which could aid in the efficient investigation of new candidate oncogenes, such as TRIO and SESTD1. Our findings highlight the impact of somatic SVs on NSCLC oncogenesis and lay a foundation for exploring associations among somatic SVs, gene expression, and regulatory networks in patients with NSCLC.
Collapse
Affiliation(s)
- Lin Xia
- Frontier Science Center for Disease Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 17 People's South Road, Chengdu, Sichuan 610041, China
| | - Zhoufeng Wang
- Frontier Science Center for Disease Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 17 People's South Road, Chengdu, Sichuan 610041, China; Precision Medicine Research Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan 610041, China; The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, No. 37 Guoxue Alley, Chengdu, Sichuan 610041, China
| | - Xinyue Wu
- Frontier Science Center for Disease Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 17 People's South Road, Chengdu, Sichuan 610041, China
| | - Tianfu Zeng
- Frontier Science Center for Disease Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 17 People's South Road, Chengdu, Sichuan 610041, China
| | - Wenxin Luo
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan 610041, China
| | - Xinlei Hu
- Frontier Science Center for Disease Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 17 People's South Road, Chengdu, Sichuan 610041, China
| | - Yinyun Ni
- Precision Medicine Research Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan 610041, China
| | - Guowei Che
- Department of Thoracic Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan 610041, China
| | - Lunxu Liu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan 610041, China
| | - Wei Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, the Second Military Medical University, No. 168 Changhai Road, Shanghai 200433, China
| | - Dan Xie
- Frontier Science Center for Disease Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 17 People's South Road, Chengdu, Sichuan 610041, China; Precision Medicine Research Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan 610041, China.
| | - Weimin Li
- Frontier Science Center for Disease Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 17 People's South Road, Chengdu, Sichuan 610041, China; Precision Medicine Research Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan 610041, China; Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan 610041, China; The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, No. 37 Guoxue Alley, Chengdu, Sichuan 610041, China.
| |
Collapse
|
17
|
Lühmann JL, Stelter M, Wolter M, Kater J, Lentes J, Bergmann AK, Schieck M, Göhring G, Möricke A, Cario G, Žaliová M, Schrappe M, Schlegelberger B, Stanulla M, Steinemann D. The Clinical Utility of Optical Genome Mapping for the Assessment of Genomic Aberrations in Acute Lymphoblastic Leukemia. Cancers (Basel) 2021; 13:cancers13174388. [PMID: 34503197 PMCID: PMC8431583 DOI: 10.3390/cancers13174388] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 01/01/2023] Open
Abstract
Simple Summary The stratification of childhood ALL is currently based on various diagnostic assays. This study investigates the feasibility of Optical Genome Mapping (OGM) to determine the genetic risk profile of ALL using fresh and frozen blood cells in an all-in-one approach. Acute lymphoblastic leukemia samples with data available from SNP-array/array-CGH, RNA-Seq, MLPA, karyotyping and FISH were compared to results obtained by OGM. We show that OGM has the potential to simplify the diagnostic workflow and to identify new structural variants helpful for classifying patients into treatment groups. Abstract Acute lymphoblastic leukemia (ALL) is the most prevalent type of cancer occurring in children. ALL is characterized by structural and numeric genomic aberrations that strongly correlate with prognosis and clinical outcome. Usually, a combination of cyto- and molecular genetic methods (karyotyping, array-CGH, FISH, RT-PCR, RNA-Seq) is needed to identify all aberrations relevant for risk stratification. We investigated the feasibility of optical genome mapping (OGM), a DNA-based method, to detect these aberrations in an all-in-one approach. As proof of principle, twelve pediatric ALL samples were analyzed by OGM, and results were validated by comparing OGM data to results obtained from routine diagnostics. All genomic aberrations including translocations (e.g., dic(9;12)), aneuploidies (e.g., high hyperdiploidy) and copy number variations (e.g., IKZF1, PAX5) known from other techniques were also detected by OGM. Moreover, OGM was superior to well-established techniques for resolution of the more complex structure of a translocation t(12;21) and had a higher sensitivity for detection of copy number alterations. Importantly, a new and unknown gene fusion of JAK2 and NPAT due to a translocation t(9;11) was detected. We demonstrate the feasibility of OGM to detect well-established as well as new putative prognostic markers in an all-in-one approach in ALL. We hope that these limited results will be confirmed with testing of more samples in the future.
Collapse
Affiliation(s)
- Jonathan Lukas Lühmann
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (J.L.L.); (M.S.); (M.W.); (J.K.); (J.L.); (A.K.B.); (M.S.); (G.G.); (B.S.)
| | - Marie Stelter
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (J.L.L.); (M.S.); (M.W.); (J.K.); (J.L.); (A.K.B.); (M.S.); (G.G.); (B.S.)
| | - Marie Wolter
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (J.L.L.); (M.S.); (M.W.); (J.K.); (J.L.); (A.K.B.); (M.S.); (G.G.); (B.S.)
| | - Josephine Kater
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (J.L.L.); (M.S.); (M.W.); (J.K.); (J.L.); (A.K.B.); (M.S.); (G.G.); (B.S.)
| | - Jana Lentes
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (J.L.L.); (M.S.); (M.W.); (J.K.); (J.L.); (A.K.B.); (M.S.); (G.G.); (B.S.)
| | - Anke Katharina Bergmann
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (J.L.L.); (M.S.); (M.W.); (J.K.); (J.L.); (A.K.B.); (M.S.); (G.G.); (B.S.)
| | - Maximilian Schieck
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (J.L.L.); (M.S.); (M.W.); (J.K.); (J.L.); (A.K.B.); (M.S.); (G.G.); (B.S.)
| | - Gudrun Göhring
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (J.L.L.); (M.S.); (M.W.); (J.K.); (J.L.); (A.K.B.); (M.S.); (G.G.); (B.S.)
| | - Anja Möricke
- Department of Pediatrics I, ALL-BFM Study Group, Christian-Albrechts University Kiel and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany; (A.M.); (G.C.); (M.S.)
| | - Gunnar Cario
- Department of Pediatrics I, ALL-BFM Study Group, Christian-Albrechts University Kiel and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany; (A.M.); (G.C.); (M.S.)
| | - Markéta Žaliová
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, CZ-15006 Prague, Czech Republic;
| | - Martin Schrappe
- Department of Pediatrics I, ALL-BFM Study Group, Christian-Albrechts University Kiel and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany; (A.M.); (G.C.); (M.S.)
| | - Brigitte Schlegelberger
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (J.L.L.); (M.S.); (M.W.); (J.K.); (J.L.); (A.K.B.); (M.S.); (G.G.); (B.S.)
| | - Martin Stanulla
- Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany;
| | - Doris Steinemann
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (J.L.L.); (M.S.); (M.W.); (J.K.); (J.L.); (A.K.B.); (M.S.); (G.G.); (B.S.)
- Correspondence:
| |
Collapse
|
18
|
Kriegova E, Fillerova R, Minarik J, Savara J, Manakova J, Petrackova A, Dihel M, Balcarkova J, Krhovska P, Pika T, Gajdos P, Behalek M, Vasinek M, Papajik T. Whole-genome optical mapping of bone-marrow myeloma cells reveals association of extramedullary multiple myeloma with chromosome 1 abnormalities. Sci Rep 2021; 11:14671. [PMID: 34282158 PMCID: PMC8289962 DOI: 10.1038/s41598-021-93835-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/24/2021] [Indexed: 11/18/2022] Open
Abstract
Extramedullary disease (EMM) represents a rare, aggressive and mostly resistant phenotype of multiple myeloma (MM). EMM is frequently associated with high-risk cytogenetics, but their complex genomic architecture is largely unexplored. We used whole-genome optical mapping (Saphyr, Bionano Genomics) to analyse the genomic architecture of CD138+ cells isolated from bone-marrow aspirates from an unselected cohort of newly diagnosed patients with EMM (n = 4) and intramedullary MM (n = 7). Large intrachromosomal rearrangements (> 5 Mbp) within chromosome 1 were detected in all EMM samples. These rearrangements, predominantly deletions with/without inversions, encompassed hundreds of genes and led to changes in the gene copy number on large regions of chromosome 1. Compared with intramedullary MM, EMM was characterised by more deletions (size range of 500 bp–50 kbp) and fewer interchromosomal translocations, and two EMM samples had copy number loss in the 17p13 region. Widespread genomic heterogeneity and novel aberrations in the high-risk IGH/IGK/IGL, 8q24 and 13q14 regions were detected in individual patients but were not specific to EMM/MM. Our pilot study revealed an association of chromosome 1 abnormalities in bone marrow myeloma cells with extramedullary progression. Optical mapping showed the potential for refining the complex genomic architecture in MM and its phenotypes.
Collapse
Affiliation(s)
- Eva Kriegova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Hnevotinska 3, 779 00, Olomouc, Czech Republic.
| | - Regina Fillerova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Hnevotinska 3, 779 00, Olomouc, Czech Republic
| | - Jiri Minarik
- Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Jakub Savara
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Hnevotinska 3, 779 00, Olomouc, Czech Republic.,Department of Computer Science, Faculty of Electrical Engineering and Computer Science, VŠB-Technical University of Ostrava, Ostrava, Czech Republic
| | - Jirina Manakova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Hnevotinska 3, 779 00, Olomouc, Czech Republic
| | - Anna Petrackova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Hnevotinska 3, 779 00, Olomouc, Czech Republic
| | - Martin Dihel
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Hnevotinska 3, 779 00, Olomouc, Czech Republic
| | - Jana Balcarkova
- Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Petra Krhovska
- Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Tomas Pika
- Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Petr Gajdos
- Department of Computer Science, Faculty of Electrical Engineering and Computer Science, VŠB-Technical University of Ostrava, Ostrava, Czech Republic
| | - Marek Behalek
- Department of Computer Science, Faculty of Electrical Engineering and Computer Science, VŠB-Technical University of Ostrava, Ostrava, Czech Republic
| | - Michal Vasinek
- Department of Computer Science, Faculty of Electrical Engineering and Computer Science, VŠB-Technical University of Ostrava, Ostrava, Czech Republic
| | - Tomas Papajik
- Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| |
Collapse
|
19
|
Lestringant V, Duployez N, Penther D, Luquet I, Derrieux C, Lutun A, Preudhomme C, West M, Ouled-Haddou H, Devoldere C, Marolleau JP, Garçon L, Jedraszak G, Ferret Y. Optical genome mapping, a promising alternative to gold standard cytogenetic approaches in a series of acute lymphoblastic leukemias. Genes Chromosomes Cancer 2021; 60:657-667. [PMID: 33982372 DOI: 10.1002/gcc.22971] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022] Open
Abstract
Acute lymphoblastic leukemias (ALL) are characterized by a large number of cytogenetic abnormalities of clinical interest that require the use of several complementary techniques. Optical genome mapping (OGM) is based on analysis of ultra-high molecular weight DNA molecules that provides a high-resolution genome-wide analysis highlighting copy number and structural anomalies, including balanced translocations. We compared OGM to standard techniques (karyotyping, fluorescent in situ hybridization, single nucleotide polymorphism-array and reverse transcription multiplex ligation-dependent probe amplification) in 10 selected B or T-ALL. Eighty abnormalities were found using standard techniques of which 72 (90%) were correctly detected using OGM. Eight discrepancies were identified, while 12 additional anomalies were found by OGM. Among the discrepancies, four were detected in raw data but not retained because of filtering issues. However, four were truly missed, either because of a low variant allele frequency or because of a low coverage of some regions. Of the additional anomalies revealed by OGM, seven were confirmed by another technique, some of which are recurrent in ALL such as LMO2-TRA and MYC-TRB fusions. Despite false positive anomalies due to background noise and a case of inter-sample contamination secondarily identified, the OGM technology was relatively simple to use with little practice. Thus, OGM represents a promising alternative to cytogenetic techniques currently performed for ALL characterization. It enables a time and cost effective analysis allowing identification of complex cytogenetic events, including those currently inaccessible to standard techniques.
Collapse
Affiliation(s)
| | - Nicolas Duployez
- Univ. Lille, CNRS, Inserm, CHU Lille, Département d'Hématologie, UMR9020 - UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Dominique Penther
- Department of Oncology Genetics, Henri Becquerel Center, Rouen, France
| | | | - Coralie Derrieux
- Laboratoire d'hématologie, Centre de Biologie - Pathologie- génétique, Lille, France
| | - Anne Lutun
- Service d'Hématologie, Oncologie, Immunologie et Rhumatologie Pédiatriques, CHU Amiens Picardie, France
| | - Claude Preudhomme
- Univ. Lille, CNRS, Inserm, CHU Lille, Département d'Hématologie, UMR9020 - UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Michaela West
- Genotyping, Sequencing and optical mapping Platform (Gentyane), Clermont-Ferrand, France
| | | | - Catherine Devoldere
- Service d'Hématologie, Oncologie, Immunologie et Rhumatologie Pédiatriques, CHU Amiens Picardie, France
| | - Jean-Pierre Marolleau
- EA4666 HEMATIM, UPJV, Amiens, France.,Service d'Hématologie Clinique, CHU Amiens Picardie, France
| | - Loïc Garçon
- Service d'Hématologie Biologique, CHU Amiens Picardie, France.,EA4666 HEMATIM, UPJV, Amiens, France.,Laboratoire de Génétique Constitutionnelle, CHU Amiens Picardie, France
| | - Guillaume Jedraszak
- EA4666 HEMATIM, UPJV, Amiens, France.,Laboratoire de Génétique Constitutionnelle, CHU Amiens Picardie, France
| | - Yann Ferret
- Service d'Hématologie Biologique, CHU Amiens Picardie, France
| |
Collapse
|
20
|
Re-examination of two diatom reference genomes using long-read sequencing. BMC Genomics 2021; 22:379. [PMID: 34030633 PMCID: PMC8147415 DOI: 10.1186/s12864-021-07666-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/26/2021] [Indexed: 12/03/2022] Open
Abstract
Background The marine diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum are valuable model organisms for exploring the evolution, diversity and ecology of this important algal group. Their reference genomes, published in 2004 and 2008, respectively, were the product of traditional Sanger sequencing. In the case of T. pseudonana, optical restriction site mapping was employed to further clarify and contextualize chromosome-level scaffolds. While both genomes are considered highly accurate and reasonably contiguous, they still contain many unresolved regions and unordered/unlinked scaffolds. Results We have used Oxford Nanopore Technologies long-read sequencing to update and validate the quality and contiguity of the T. pseudonana and P. tricornutum genomes. Fine-scale assessment of our long-read derived genome assemblies allowed us to resolve previously uncertain genomic regions, further characterize complex structural variation, and re-evaluate the repetitive DNA content of both genomes. We also identified 1862 previously undescribed genes in T. pseudonana. In P. tricornutum, we used transposable element detection software to identify 33 novel copia-type LTR-RT insertions, indicating ongoing activity and rapid expansion of this superfamily as the organism continues to be maintained in culture. Finally, Bionano optical mapping of P. tricornutum chromosomes was combined with long-read sequence data to explore the potential of long-read sequencing and optical mapping for resolving haplotypes. Conclusion Despite its potential to yield highly contiguous scaffolds, long-read sequencing is not a panacea. Even for relatively small nuclear genomes such as those investigated herein, repetitive DNA sequences cause problems for current genome assembly algorithms. Determining whether a long-read derived genomic assembly is ‘better’ than one produced using traditional sequence data is not straightforward. Our revised reference genomes for P. tricornutum and T. pseudonana nevertheless provide additional insight into the structure and evolution of both genomes, thereby providing a more robust foundation for future diatom research. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07666-3.
Collapse
|
21
|
Raeisi Dehkordi S, Luebeck J, Bafna V. FaNDOM: Fast nested distance-based seeding of optical maps. PATTERNS (NEW YORK, N.Y.) 2021; 2:100248. [PMID: 34027500 PMCID: PMC8134938 DOI: 10.1016/j.patter.2021.100248] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/08/2021] [Accepted: 04/01/2021] [Indexed: 12/25/2022]
Abstract
Optical mapping (OM) provides single-molecule readouts of fluorescently labeled sequence motifs on long fragments of DNA, resolved to nucleotide-level coordinates. With the advent of microfluidic technologies for analysis of DNA molecules, it is possible to inexpensively generate long OM data ( > 150 kbp) at high coverage. In addition to scaffolding for de novo assembly, OM data can be aligned to a reference genome for identification of genomic structural variants. We introduce FaNDOM (Fast Nested Distance Seeding of Optical Maps)-an optical map alignment tool that greatly reduces the search space of the alignment process. On four benchmark human datasets, FaNDOM was significantly (4-14×) faster than competing tools while maintaining comparable sensitivity and specificity. We used FaNDOM to map variants in three cancer cell lines and identified many biologically interesting structural variants, including deletions, duplications, gene fusions and gene-disrupting rearrangements. FaNDOM is publicly available at https://github.com/jluebeck/FaNDOM.
Collapse
Affiliation(s)
- Siavash Raeisi Dehkordi
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jens Luebeck
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA 92093, USA
- Bioinformatics & Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Vineet Bafna
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
22
|
Chen X, Lan H, He D, Wang Z, Xu R, Yuan J, Xiao M, Zhang Y, Gong L, Xiao S, Cao K. Analysis of Autophagy-Related Signatures Identified Two Distinct Subtypes for Evaluating the Tumor Immune Microenvironment and Predicting Prognosis in Ovarian Cancer. Front Oncol 2021; 11:616133. [PMID: 34041016 PMCID: PMC8141647 DOI: 10.3389/fonc.2021.616133] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 04/19/2021] [Indexed: 12/26/2022] Open
Abstract
Ovarian cancer (OC) is one of the most lethal gynecologic malignant tumors. The interaction between autophagy and the tumor immune microenvironment has clinical importance. Hence, it is necessary to explore reliable biomarkers associated with autophagy-related genes (ARGs) for risk stratification in OC. Here, we obtained ARGs from the MSigDB database and downloaded the expression profile of OC from TCGA database. The k-means unsupervised clustering method was used for clustering, and two subclasses of OC (cluster A and cluster B) were identified. SsGSEA method was used to quantify the levels of infiltration of 24 subtypes of immune cells. Metascape and GSEA were performed to reveal the differential gene enrichment in signaling pathways and cellular processes of the subtypes. We found that patients in cluster A were significantly associated with higher immune infiltration and immune-associated signaling pathways. Then, we established a risk model by LASSO Cox regression. ROC analysis and Kaplan-Meier analysis were applied for evaluating the efficiency of the risk signature, patients with low-risk got better outcomes than those with high-risk in overall survival. Finally, ULK2 and GABARAPL1 expression was further validated in clinical samples. In conclusion, Our study constructed an autophagy-related prognostic indicator, and identified two promising targets in OC.
Collapse
Affiliation(s)
- Xingyu Chen
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Hua Lan
- Department of Obstetrics and Gynecology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Dong He
- The Second People's Hospital of Hunan Province, Hunan University of Chinese Medicine, Changsha, China
| | - Zhanwang Wang
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Runshi Xu
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Jing Yuan
- Department of Obstetrics and Gynecology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Mengqing Xiao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Yao Zhang
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Lian Gong
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Songshu Xiao
- Department of Obstetrics and Gynecology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
23
|
Jeffet J, Margalit S, Michaeli Y, Ebenstein Y. Single-molecule optical genome mapping in nanochannels: multidisciplinarity at the nanoscale. Essays Biochem 2021; 65:51-66. [PMID: 33739394 PMCID: PMC8056043 DOI: 10.1042/ebc20200021] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022]
Abstract
The human genome contains multiple layers of information that extend beyond the genetic sequence. In fact, identical genetics do not necessarily yield identical phenotypes as evident for the case of two different cell types in the human body. The great variation in structure and function displayed by cells with identical genetic background is attributed to additional genomic information content. This includes large-scale genetic aberrations, as well as diverse epigenetic patterns that are crucial for regulating specific cell functions. These genetic and epigenetic patterns operate in concert in order to maintain specific cellular functions in health and disease. Single-molecule optical genome mapping is a high-throughput genome analysis method that is based on imaging long chromosomal fragments stretched in nanochannel arrays. The access to long DNA molecules coupled with fluorescent tagging of various genomic information presents a unique opportunity to study genetic and epigenetic patterns in the genome at a single-molecule level over large genomic distances. Optical mapping entwines synergistically chemical, physical, and computational advancements, to uncover invaluable biological insights, inaccessible by sequencing technologies. Here we describe the method's basic principles of operation, and review the various available mechanisms to fluorescently tag genomic information. We present some of the recent biological and clinical impact enabled by optical mapping and present recent approaches for increasing the method's resolution and accuracy. Finally, we discuss how multiple layers of genomic information may be mapped simultaneously on the same DNA molecule, thus paving the way for characterizing multiple genomic observables on individual DNA molecules.
Collapse
Affiliation(s)
- Jonathan Jeffet
- Raymond and Beverly Sackler Faculty of Exact Sciences, Center for Nanoscience and Nanotechnology, Center for Light Matter Interaction, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sapir Margalit
- Raymond and Beverly Sackler Faculty of Exact Sciences, Center for Nanoscience and Nanotechnology, Center for Light Matter Interaction, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yael Michaeli
- Raymond and Beverly Sackler Faculty of Exact Sciences, Center for Nanoscience and Nanotechnology, Center for Light Matter Interaction, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yuval Ebenstein
- Raymond and Beverly Sackler Faculty of Exact Sciences, Center for Nanoscience and Nanotechnology, Center for Light Matter Interaction, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
24
|
Takahashi S, Oshige M, Katsura S. DNA Manipulation and Single-Molecule Imaging. Molecules 2021; 26:1050. [PMID: 33671359 PMCID: PMC7922115 DOI: 10.3390/molecules26041050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 11/22/2022] Open
Abstract
DNA replication, repair, and recombination in the cell play a significant role in the regulation of the inheritance, maintenance, and transfer of genetic information. To elucidate the biomolecular mechanism in the cell, some molecular models of DNA replication, repair, and recombination have been proposed. These biological studies have been conducted using bulk assays, such as gel electrophoresis. Because in bulk assays, several millions of biomolecules are subjected to analysis, the results of the biological analysis only reveal the average behavior of a large number of biomolecules. Therefore, revealing the elementary biological processes of a protein acting on DNA (e.g., the binding of protein to DNA, DNA synthesis, the pause of DNA synthesis, and the release of protein from DNA) is difficult. Single-molecule imaging allows the analysis of the dynamic behaviors of individual biomolecules that are hidden during bulk experiments. Thus, the methods for single-molecule imaging have provided new insights into almost all of the aspects of the elementary processes of DNA replication, repair, and recombination. However, in an aqueous solution, DNA molecules are in a randomly coiled state. Thus, the manipulation of the physical form of the single DNA molecules is important. In this review, we provide an overview of the unique studies on DNA manipulation and single-molecule imaging to analyze the dynamic interaction between DNA and protein.
Collapse
Affiliation(s)
- Shunsuke Takahashi
- Division of Life Science and Engineering, School of Science and Engineering, Tokyo Denki University, Hatoyama-cho, Hiki-gun, Saitama 350-0394, Japan;
| | - Masahiko Oshige
- Department of Environmental Engineering Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan;
- Gunma University Center for Food Science and Wellness (GUCFW), Maebashi, Gunma 371-8510, Japan
| | - Shinji Katsura
- Department of Environmental Engineering Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan;
- Gunma University Center for Food Science and Wellness (GUCFW), Maebashi, Gunma 371-8510, Japan
| |
Collapse
|
25
|
Eisfeldt J, Pettersson M, Petri A, Nilsson D, Feuk L, Lindstrand A. Hybrid sequencing resolves two germline ultra-complex chromosomal rearrangements consisting of 137 breakpoint junctions in a single carrier. Hum Genet 2020; 140:775-790. [PMID: 33315133 PMCID: PMC8052244 DOI: 10.1007/s00439-020-02242-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022]
Abstract
Chromoanagenesis is a genomic event responsible for the formation of complex structural chromosomal rearrangements (CCRs). Germline chromoanagenesis is rare and the majority of reported cases are associated with an affected phenotype. Here, we report a healthy female carrying two de novo CCRs involving chromosomes 4, 19, 21 and X and chromosomes 7 and 11, respectively, with a total of 137 breakpoint junctions (BPJs). We characterized the CCRs using a hybrid-sequencing approach, combining short-read sequencing, nanopore sequencing, and optical mapping. The results were validated using multiple cytogenetic methods, including fluorescence in situ hybridization, spectral karyotyping, and Sanger sequencing. We identified 137 BPJs, which to our knowledge is the highest number of reported breakpoint junctions in germline chromoanagenesis. We also performed a statistical assessment of the positioning of the breakpoints, revealing a significant enrichment of BPJ-affecting genes (96 intragenic BPJs, 26 genes, p < 0.0001), indicating that the CCRs formed during active transcription of these genes. In addition, we find that the DNA fragments are unevenly and non-randomly distributed across the derivative chromosomes indicating a multistep process of scattering and re-joining of DNA fragments. In summary, we report a new maximum number of BPJs (137) in germline chromoanagenesis. We also show that a hybrid sequencing approach is necessary for the correct characterization of complex CCRs. Through in-depth statistical assessment, it was found that the CCRs most likely was formed through an event resembling chromoplexy—a catastrophic event caused by erroneous transcription factor binding.
Collapse
Affiliation(s)
- Jesper Eisfeldt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital Solna, 171 76, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet Science Park, Solna, Sweden
| | - Maria Pettersson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital Solna, 171 76, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Petri
- Science for Life Laboratory Uppsala, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Daniel Nilsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital Solna, 171 76, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet Science Park, Solna, Sweden
| | - Lars Feuk
- Science for Life Laboratory Uppsala, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital Solna, 171 76, Stockholm, Sweden. .,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
26
|
Li R, Gong J, Xiao C, Zhu S, Hu Z, Liang J, Li X, Yan X, Zhang X, Li D, Liu W, Chong Y, Jie Y. A comprehensive analysis of the MAGE family as prognostic and diagnostic markers for hepatocellular carcinoma. Genomics 2020; 112:5101-5114. [PMID: 32941982 DOI: 10.1016/j.ygeno.2020.09.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/02/2020] [Accepted: 09/09/2020] [Indexed: 12/24/2022]
Abstract
The Melanoma Antigen Gene (MAGE) family is a large, highly conserved group of proteins which was reported to participate in the progression of multiple cancers in humans. However, the function of distinct MAGE genes in hepatocellular carcinoma (HCC) is largely unclear. In this study, we comprehensively evaluated the expression, clinical significance, genetic alteration, interaction network and functional enrichment of MAGEs in HCC. Our research showed that many MAGE genes were dysregulated in HCC. Among them, MAGEA1, MAGEC2, MAGED1, MAGED2, MAGEF1 and MAGEL2 were significantly associated with clinical stage and differentiation of HCC. MAGED1, MAGED2, MAGEA6, MAGEA12, MAGEA10, MAGEB4, MAGEL2 and MAGEC3 significantly correlated with HCC prognosis. Further functional enrichment analysis suggested the dysregulated MAGEs may play important roles in signal transduction. These results indicate that multiple dysregulated MAGEs might play important roles in the development of HCC and can be exploited as useful biomarkers for diagnosis and treatment in HCC.
Collapse
Affiliation(s)
- Rong Li
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China; Guangdong province engineering laboratory for transplantation medicine, Guangzhou 510630, China
| | - Jiao Gong
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Cuicui Xiao
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Cell-Gene Therapy Translational Medicine Research Center, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Shuguang Zhu
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Zhongying Hu
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China
| | - Jinliang Liang
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China
| | - Xuejiao Li
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China
| | - Xijing Yan
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xijian Zhang
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Danyang Li
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Wei Liu
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China; Guangdong province engineering laboratory for transplantation medicine, Guangzhou 510630, China.
| | - Yutian Chong
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China; Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| | - Yusheng Jie
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China; Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
27
|
Luebeck J, Coruh C, Dehkordi SR, Lange JT, Turner KM, Deshpande V, Pai DA, Zhang C, Rajkumar U, Law JA, Mischel PS, Bafna V. AmpliconReconstructor integrates NGS and optical mapping to resolve the complex structures of focal amplifications. Nat Commun 2020; 11:4374. [PMID: 32873787 PMCID: PMC7463033 DOI: 10.1038/s41467-020-18099-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022] Open
Abstract
Oncogene amplification, a major driver of cancer pathogenicity, is often mediated through focal amplification of genomic segments. Recent results implicate extrachromosomal DNA (ecDNA) as the primary driver of focal copy number amplification (fCNA) - enabling gene amplification, rapid tumor evolution, and the rewiring of regulatory circuitry. Resolving an fCNA's structure is a first step in deciphering the mechanisms of its genesis and the fCNA's subsequent biological consequences. We introduce a computational method, AmpliconReconstructor (AR), for integrating optical mapping (OM) of long DNA fragments (>150 kb) with next-generation sequencing (NGS) to resolve fCNAs at single-nucleotide resolution. AR uses an NGS-derived breakpoint graph alongside OM scaffolds to produce high-fidelity reconstructions. After validating its performance through multiple simulation strategies, AR reconstructed fCNAs in seven cancer cell lines to reveal the complex architecture of ecDNA, a breakage-fusion-bridge and other complex rearrangements. By reconstructing the rearrangement signatures associated with an fCNA's generative mechanism, AR enables a more thorough understanding of the origins of fCNAs.
Collapse
Affiliation(s)
- Jens Luebeck
- Bioinformatics and Systems Biology Graduate Program, University of California at San Diego, La Jolla, CA, 92093, USA
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Ceyda Coruh
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Siavash R Dehkordi
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Joshua T Lange
- Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, CA, 92093, USA
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Kristen M Turner
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Viraj Deshpande
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Dave A Pai
- Bionano Genomics, Inc., San Diego, CA, 92121, USA
| | - Chao Zhang
- Bioinformatics and Systems Biology Graduate Program, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Utkrisht Rajkumar
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Julie A Law
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Paul S Mischel
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, 92093, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, CA, 92093, USA
- Department of Pathology, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
28
|
Yuan Y, Chung CYL, Chan TF. Advances in optical mapping for genomic research. Comput Struct Biotechnol J 2020; 18:2051-2062. [PMID: 32802277 PMCID: PMC7419273 DOI: 10.1016/j.csbj.2020.07.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/08/2020] [Accepted: 07/24/2020] [Indexed: 12/28/2022] Open
Abstract
Recent advances in optical mapping have allowed the construction of improved genome assemblies with greater contiguity. Optical mapping also enables genome comparison and identification of large-scale structural variations. Association of these large-scale genomic features with biological functions is an important goal in plant and animal breeding and in medical research. Optical mapping has also been used in microbiology and still plays an important role in strain typing and epidemiological studies. Here, we review the development of optical mapping in recent decades to illustrate its importance in genomic research. We detail its applications and algorithms to show its specific advantages. Finally, we discuss the challenges required to facilitate the optimization of optical mapping and improve its future development and application.
Collapse
Key Words
- 3D, three-dimensional
- DBG, de Bruijn graph
- DLS, direct label and strain
- DNA, deoxyribonucleic acid
- Genome assembly
- Hi-C, high-throughput chromosome conformation capture
- Mb, million base pair
- Next generation sequencing
- OLC, overlap-layout-consensus
- Optical mapping
- PCR, polymerase chain reaction
- PacBio, Pacific Biosciences
- SRS, short-read sequencing
- SV, structural variation
- Structural variation
- bp, base pair
- kb, kilobase pair
Collapse
Affiliation(s)
- Yuxuan Yuan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory for Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
- AoE Centre for Genomic Studies on Plant-Environment Interaction for Sustainable Agriculture and Food Security, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Claire Yik-Lok Chung
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory for Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ting-Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory for Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
- AoE Centre for Genomic Studies on Plant-Environment Interaction for Sustainable Agriculture and Food Security, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
29
|
Yang X, Zhang Z, Zhang L, Zhou L. MicroRNA hsa-mir-3923 serves as a diagnostic and prognostic biomarker for gastric carcinoma. Sci Rep 2020; 10:4672. [PMID: 32170105 PMCID: PMC7070044 DOI: 10.1038/s41598-020-61633-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 03/01/2020] [Indexed: 12/12/2022] Open
Abstract
Gastric carcinoma (GC) refers to a common digestive system disease that exhibits a very high incidence. MicroRNA hsa-mir-3923 belongs to a type of miRNA, of which the function has been merely investigated in breast, pancreatic cancers and pre-neoplasic stages of gastric cancer. It has not been studied or reported in gastric carcinoma, so the relationship between gastric hsa-mir-3923 expression and the clinics feature and pathology of GC cases was examined. This study employed data mining for analyzing gastric carcinoma data in The Cancer Genome Atlas database. A Chi squared test was performed for assessing the relations of hsa-mir-3923 expression with clinics-related and pathology-regulated variables. This study conducted the assessment of the role of hsa-mir-3923 in prognostic process using Kaplan-Meier curves, Receiver operating characteristic (ROC) analysis and proportional hazards model (Cox) study. With the use of Gene Expression Omnibus, this study carried out gene set enrichment analysis (GSEA). In the meantime, the common miRNA database was compared to predict potential target genes; as revealed by co-expression analysis, a regulatory network probably existed, containing hsa-mir-3923. For the analysis of the most tightly associated cytological behavior and pathway in GC, this study adopted the databases for Annotation, Visualization and Integrated Discovery (David) and KO-Based Annotation System (KOBAS). Cytoscape, R and STRING were employed for mapping probable regulatory networks displaying relations to hsa-mir-3923. Lastly, we obtained 69 genes most tightly associated with hsa-mir-3923 and described their relationship with Circos plot. As revealed from the results, hsa-mir-3923 displayed up-regulation in gastric carcinoma, and it displayed associations with vital status, N stage and histologic grade when being expressed. The predicted results of miRNA target genes suggested that there may be a close relationship between 66 genes and hsa-mir-3923 in gastric cancer. As indicated from co-expression data, a small regulating network of 4 genes probably existed. Our results elucidated that hsa-mir-3923 high-expression reveals poor prognosis of GC patients.
Collapse
Affiliation(s)
- Xiaohui Yang
- Department of Obstetrics & Gynecology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Ze Zhang
- Department of General Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Lichao Zhang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li Zhou
- Department of Obstetrics & Gynecology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
30
|
Abstract
Identifying structural variation (SV) is essential for genome interpretation but has been historically difficult due to limitations inherent to available genome technologies. Detection methods that use ensemble algorithms and emerging sequencing technologies have enabled the discovery of thousands of SVs, uncovering information about their ubiquity, relationship to disease and possible effects on biological mechanisms. Given the variability in SV type and size, along with unique detection biases of emerging genomic platforms, multiplatform discovery is necessary to resolve the full spectrum of variation. Here, we review modern approaches for investigating SVs and proffer that, moving forwards, studies integrating biological information with detection will be necessary to comprehensively understand the impact of SV in the human genome.
Collapse
Affiliation(s)
- Steve S Ho
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Alexander E Urban
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ryan E Mills
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
31
|
Wang H, Jia Z, Mao A, Xu B, Wang S, Wang L, Liu S, Zhang H, Zhang X, Yu T, Mu T, Xu M, Cram DS, Yao Y. Analysis of balanced reciprocal translocations in patients with subfertility using single-molecule optical mapping. J Assist Reprod Genet 2020; 37:509-516. [PMID: 32026199 DOI: 10.1007/s10815-020-01702-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/27/2020] [Indexed: 12/26/2022] Open
Abstract
PURPOSE Approximately 1% of individuals who carry a balanced reciprocal translocation (BRT) are subfertile. Current karyotyping does not have the resolution to determine whether the breakpoints of the involved chromosomes perturb genes important for fertility. The aim of this study was to apply single-molecule optical mapping (SMOM) to patients presenting for IVF (in vitro fertilization) to ascertain whether the BRT disrupted any genes associated with normal fertility. METHODS Nine subfertile patients with different BRTs were recruited for the study. Methyltransferase enzyme DLE1 was used to fluorescently label their genomic DNA samples at the recognition motif CTTAAG. The SMOM was performed on the Bionano platform, and long molecules aligned against the reference genome hg19 to identify the breakpoint regions. Mate-pair and PCR-Sanger sequencing were used to confirm the precise breakpoint sequences. RESULTS Both breakpoint regions in each of the nine BRTs were finely mapped to small regions of approximately 10 Kb, and their positions were consistent with original cytogenetic banding patterns determined by karyotyping. In three BRTs, breakpoints disrupted genes known to be associated with male infertility, namely NUP155 and FNDC3A [46,XY,t(5;13)(p15;q22)], DPY19L1 [46,XY,t(1;7)(p36.3;p15), and BAI3 [46,XY,t(3;6)(p21;q16)]. CONCLUSIONS The SMOM has potential clinical application as a rapid tool to screen patients with BRTs for underlying genetic causes of infertility and other diseases.
Collapse
Affiliation(s)
- Hui Wang
- Department of Obstetrics and Gynecology, PLA General Hospital, Beijing, 100853, China
| | - Zhengjun Jia
- Prenatal Diagnosis Center of Hunan Province, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, China
| | - Aiping Mao
- Berry Genomics Corporation, Beijing, 102200, China
| | - Bing Xu
- Department of Obstetrics and Gynecology, PLA General Hospital, Beijing, 100853, China
| | - Shuling Wang
- Department of Obstetrics and Gynecology, PLA General Hospital, Beijing, 100853, China
| | - Li Wang
- The First Hospital of KunMing, Kunming, 650034, China
| | - Sai Liu
- Department of Obstetrics and Gynecology, PLA General Hospital, Beijing, 100853, China.,The First Hospital of KunMing, Kunming, 650034, China
| | - Haiman Zhang
- Berry Genomics Corporation, Beijing, 102200, China
| | | | - Tao Yu
- Berry Genomics Corporation, Beijing, 102200, China
| | - Ting Mu
- Berry Genomics Corporation, Beijing, 102200, China
| | - Mengnan Xu
- Berry Genomics Corporation, Beijing, 102200, China
| | - David S Cram
- Berry Genomics Corporation, Beijing, 102200, China.
| | - Yuanqing Yao
- Department of Obstetrics and Gynecology, PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
32
|
Zhang Z, Wang S, Yang F, Meng Z, Liu Y. LncRNA ROR1‑AS1 high expression and its prognostic significance in liver cancer. Oncol Rep 2020; 43:55-74. [PMID: 31746401 PMCID: PMC6908930 DOI: 10.3892/or.2019.7398] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common disease of the digestive system with no curative treatments. Long noncoding RNA tyrosine protein kinase transmembrane receptor 1 antisense RNA 1 (lncRNA ROR1‑AS1) is an lncRNA whose functions have been predicted in human diseases; however, its important role in cancer has been probed only in mantle cell lymphoma, not in HCC. Therefore, the present study aimed to elucidate the prognostic significance of lncRNA ROR1‑AS1 in HCC. The Cancer Genome Atlas Liver Hepatocellular Carcinoma was used to analyze the expression of ROR1‑AS1 in liver cancer. χ2 tests were performed to evaluate associations between clinical characteristics and ROR1‑AS1 expression. The role of ROR1‑AS1 in HCC prognosis was assessed using Kaplan‑Meier curves and proportional hazards model (Cox) analysis. Gene set enrichment analysis was performed by using a Gene Expression Omnibus dataset. At the same time, Multi Experiment Matrix was used to predict genes that may be co‑expressed with ROR1‑AS1. The Database for Annotation, Visualization and Integrated Discovery and KO‑Based Annotation System were used to analyze the most closely associated cytological behaviors and pathways in HCC. Then, the genes in the three databases were integrated to screen mRNAs, microRNAs and lncRNAs that had co‑expression relationships with ROR1‑AS1. Cytoscape, Search Tool for the Retrieval of Interacting Genes/Proteins and Molecular Evolutionary Genetics Analysis were used to map potential regulatory networks and developmental relationships associated with ROR1‑AS1. Finally, 12 genes most closely associated with ROR1‑AS1 were identified, and their relationship was described using a Circos plot. The results showed that ROR1‑AS1 was upregulated in HCC, and its expression was related to clinical stage, T stage and N stage. Furthermore, Kaplan‑Meier curves and Cox analysis indicated that high expression of ROR1‑AS1 was associated with poor prognosis, and that ROR1‑AS1 was an independent risk factor for HCC. Co‑expression data suggested that there may be a large regulatory network of 45 genes with indirect associations with ROR1‑AS1, a small regulatory network of 15 genes with direct or indirect regulatory relationships, and a special regulatory network containing 12 genes directly associated with ROR1‑AS1. The present findings indicated that high expression of ROR1‑AS1 suggests poor prognosis in patients with HCC.
Collapse
Affiliation(s)
- Ze Zhang
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
- Department of General Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shouqian Wang
- Department of General Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Fan Yang
- Department of General Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zihui Meng
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Yahui Liu
- Department of General Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
33
|
Zheng Y, Kong L, Xu H, Lu Y, Zhao X, Yang Y, Yu G, Li P, Liang F, Jin H, Kong X. Rapid prenatal diagnosis of Facioscapulohumeral Muscular Dystrophy 1 by combined Bionano optical mapping and karyomapping. Prenat Diagn 2019; 40:317-323. [PMID: 31711258 PMCID: PMC7065173 DOI: 10.1002/pd.5607] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 10/07/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022]
Abstract
Purpose To explore the feasibility of performing rapid prenatal diagnoses of FSHD1 using a combination of Bianano optical mapping and linkage‐based karyomapping. Methods DNA specimens from a family that had been previously diagnosed with FSHD1 using Southern Blot analysis were used for this study. Genetic diagnosis of the proband, fetus chorionic amniotic fluid, and aborted fetal tissue was performed using Bianano optical mapping (BOM) together with linkage‐based karyomapping. Results BOM analysis showed that the proband's 4q35.2 region contained four D4Z4 repeats and the 4qA permissible allele, consistent with the previous FSHD1 diagnosis obtained by Southern Blotting. BOM analysis of the fetus' 4q35.2 region was consistent with that of the proband. Karyomap analysis revealed that the fetus inherited the affected chromosome segment from the proband. After genetic counseling, the couple choose termination of pregnancy, and we performed gene diagnosis of the abortus tissue by BOM. Conclusions Bianano optical mapping can determine the number of D4Z4 repeats and exclude interference of the 10q26.3 homologous region, and in combination with karyomapping, can be used for rapid and accurate prenatal diagnosis of FSHD1.
Collapse
Affiliation(s)
- Yuting Zheng
- Genetics and Prenatal Diagnostic Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Hui Xu
- Genetics and Prenatal Diagnostic Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongjie Lu
- Genetics and Prenatal Diagnostic Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuechao Zhao
- Genetics and Prenatal Diagnostic Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuxia Yang
- Genetics and Prenatal Diagnostic Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Pidong Li
- Grandomics Biosciences, Beijing, China
| | - Fan Liang
- Grandomics Biosciences, Beijing, China
| | | | - Xiangdong Kong
- Genetics and Prenatal Diagnostic Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
34
|
Varapula D, LaBouff E, Raseley K, Uppuluri L, Ehrlich GD, Noh M, Xiao M. A micropatterned substrate for on-surface enzymatic labelling of linearized long DNA molecules. Sci Rep 2019; 9:15059. [PMID: 31636335 PMCID: PMC6803683 DOI: 10.1038/s41598-019-51507-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/02/2019] [Indexed: 12/22/2022] Open
Abstract
Optical mapping of linearized DNA molecules is a promising new technology for sequence assembly and scaffolding, large structural variant detection, and diagnostics. This is currently achieved either using nanochannel confinement or by stretching single DNA molecules on a solid surface. While the first method necessitates DNA labelling before linearization, the latter allows for modification post-linearization, thereby affording increased process flexibility. Each method is constrained by various physical and chemical limitations. One of the most common techniques for linearization of DNA uses a hydrophobic surface and a receding meniscus, termed molecular combing. Here, we report the development of a microfabricated surface that can not only comb the DNA molecules efficiently but also provides for sequence-specific enzymatic fluorescent DNA labelling. By modifying a glass surface with two contrasting functionalities, such that DNA binds selectively to one of the two regions, we can control DNA extension, which is known to be critical for sequence-recognition by an enzyme. Moreover, the surface modification provides enzymatic access to the DNA backbone, as well as minimizing non-specific fluorescent dye adsorption. These enhancements make the designed surface suitable for large-scale and high-resolution single DNA molecule studies.
Collapse
Affiliation(s)
- Dharma Varapula
- School of Biomedical Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Eric LaBouff
- School of Biomedical Engineering, Drexel University, Philadelphia, PA, 19104, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Center for Genomic Sciences and Center for Advanced Microbial Processing, Institute of Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Kaitlin Raseley
- School of Biomedical Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Lahari Uppuluri
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA, 19104, USA
| | - Garth D Ehrlich
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Center for Genomic Sciences and Center for Advanced Microbial Processing, Institute of Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Department of Otolaryngology Head and Neck Surgery, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Moses Noh
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA, 19104, USA
| | - Ming Xiao
- School of Biomedical Engineering, Drexel University, Philadelphia, PA, 19104, USA.
- Center for Genomic Sciences and Center for Advanced Microbial Processing, Institute of Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
| |
Collapse
|
35
|
Zhang Z, Wang S, Liu Y, Meng Z, Chen F. Low lncRNA ZNF385D‑AS2 expression and its prognostic significance in liver cancer. Oncol Rep 2019; 42:1110-1124. [PMID: 31322274 PMCID: PMC6667919 DOI: 10.3892/or.2019.7238] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/10/2019] [Indexed: 12/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common digestive system disease with no curative treatment. Zinc finger protein 385D antisense RNA 2 (ZNF385D‑AS2) is a long non‑coding RNA (lncRNA) that has been predicted to function in human diseases, including several types of cancer. Yet, it has not been investigated in relation to liver cancer. Thus, the present study was designed with an aim to elucidate the prognostic significance of lncRNA ZNF385D‑AS2 in HCC. The Cancer Genome Atlas‑Liver Hepatocellular Carcinoma (TCGA‑LIHC) collection of data was utilized to analyze the expression of lncRNA ZNF385D‑AS2 in liver cancer. Then Chi‑square tests were used to evaluate the correlation between clinical characteristics and lncRNA ZNF385D‑AS2 expression. The significance of lncRNA ZNF385D‑AS2 in patient prognosis was evaluated using Kaplan‑Meier curves and Cox analysis. Concomitantly, Gene Set Enrichment Analysis (GSEA) was performed to analyze the most closely related cytological behavior. Finally, we used the Database for Annotation, Visualization and Integrated Discovery (DAVID) and KOBAS software and data from the Gene Expression Omnibus (GEO) database to analyze the possible competing endogenous RNA (ceRNA) network pattern as well as the co‑expression network in liver cancer. Based on the results, analysis of RNA‑Seq gene expression data for 303 patients with primary tumors revealed low expression of ZNF385D‑AS2 in liver cancer. Low expression of ZNF385D‑AS2 was found to be significantly associated with sex (P=0.050), T stage (P=0.049), M stage (P=0.040), N stage (P<0.001) and clinical stage (P=0.037). Patients with ZNF385D‑AS2 low‑expression liver cancers had a shorter median overall survival compared with the patients with ZNF385D‑AS2 high‑expression liver cancers (P=0.0079). Cox analysis identified ZNF385D‑AS2 low‑expression as an independent prognostic variable (AUC=0.594) for overall survival in liver cancer patients. Co‑expression and ceRNA predictive analysis data suggested that there may be a regulatory signaling axis between ZNF385D‑AS2 and miR‑96 and miR‑182. In conclusion, our results suggests that low expression of ZNF385D‑AS2 is predictive of a poor prognosis of liver cancer patients.
Collapse
Affiliation(s)
- Ze Zhang
- Department of General Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shouqian Wang
- Department of General Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yahui Liu
- Department of General Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zihui Meng
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Fangfang Chen
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|